WO1999056015A1 - Kraftstoffeinspritzventil - Google Patents

Kraftstoffeinspritzventil Download PDF

Info

Publication number
WO1999056015A1
WO1999056015A1 PCT/DE1998/003581 DE9803581W WO9956015A1 WO 1999056015 A1 WO1999056015 A1 WO 1999056015A1 DE 9803581 W DE9803581 W DE 9803581W WO 9956015 A1 WO9956015 A1 WO 9956015A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
fuel injection
sealing element
pressure chamber
fuel
Prior art date
Application number
PCT/DE1998/003581
Other languages
English (en)
French (fr)
Inventor
Hermann Grieshaber
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP55347799A priority Critical patent/JP2002507269A/ja
Priority to EP98966197A priority patent/EP1003964B1/de
Priority to DE59811392T priority patent/DE59811392D1/de
Publication of WO1999056015A1 publication Critical patent/WO1999056015A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/12Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship providing a continuous cyclic delivery with variable pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0205Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively for cutting-out pumps or injectors in case of abnormal operation of the engine or the injection apparatus, e.g. over-speed, break-down of fuel pumps or injectors ; for cutting-out pumps for stopping the engine

Definitions

  • the invention relates to a fuel injection valve for internal combustion engines, with a valve body braced on a valve holding body by a clamping nut, in which a valve member is guided axially displaceably in a bore, the bore having a radially expanded pressure space, into which at least one inlet channel running next to the bore opens .
  • Such fuel injection valves which are used in particular in self-igniting internal combustion engines, have long been known, for example from DE 197 29 843.5.
  • a high-pressure fuel pump delivers fuel from a low-pressure space via a delivery line into a high-pressure collection space, which is connected via high-pressure lines to the injection valves projecting into the combustion chamber of the internal combustion engine to be supplied with fuel.
  • the opening and closing movements of the fuel injection valves are each controlled by an electrically controlled control valve arranged in the high-pressure line on the injection valve.
  • a problem with these fuel injection devices is, for example, a break in a high-pressure line, which leads to an uncontrolled outflow of fuel.
  • a break in a high-pressure line which leads to an uncontrolled outflow of fuel.
  • the flow restrictors known from the prior art in the feed to the fuel injection valves do not completely prevent an unintentional outflow of fuel, particularly in the case of minor leaks.
  • a higher speed and a high load of the internal combustion engine are required in order to prevent an uncontrolled outflow of fuel through such flow restrictors.
  • flow control valves do not respond immediately, but because of their design, at least a starting quantity of fuel is inadmissibly injected into the combustion chamber of the fuel engine in the presence of a leak.
  • knock sensors In addition to the arrangement of the flow limiting valves in the high-pressure lines, it is also known to arrange knock sensors in the engine block and HC sensors in the exhaust of the internal combustion engine in order to detect leaks. Knock sensors cannot detect small to medium-sized leaks, whereas HC sensors have a dead time of several work cycles and cross-sensitivities. With both sensor types, leaks can therefore only be detected and reacted to after repeated work cycles. During this period, fuel inadmissibly enters the combustion chamber of the internal combustion engine due to the leaks, whereby damage to the internal combustion engine can already occur.
  • the object of the invention is therefore to develop a fuel injection valve of the generic type in such a way that uncontrolled outflow of fuel in the event of, for example, a leak at the valve seat of the fuel injection valve is effectively prevented with the least possible technical outlay.
  • This sealing element effectively prevents practically that fuel can get from the pressure chamber to injection openings on the valve member seat during the injection breaks. This prevents fuel from flowing out into the combustion chamber of the internal combustion engine in an uncontrolled manner, not only when, for example, leaks have occurred on the valve member seat due to the impressions described above. An uncontrolled outflow of fuel into the combustion chamber of the internal combustion engine is also prevented in the event of leaks of any size that occur in any other way - even very large leaks.
  • an advantageous embodiment provides that the sealing element only opens during injection processes after covering a predetermined axial stroke. This not only ensures a good seal during the injection breaks and a defined injection Injection processes achieved.
  • an optimal mixing of air and fuel is made possible before an injection process.
  • the sealing element initially causes a pressure drop in the annular gap in which the valve member moves, so that compressed air from the combustion chamber of the internal combustion engine can penetrate into the interior of the fuel injection valve. This air comes out together with fuel in a first part of the injection and thus causes a small but well-prepared amount of injected fuel and injected air during the ignition delay. This reduces the NO x emissions and the noise of the internal combustion engine.
  • the sealing element is a slide seal with an essentially circular cylindrical shape, which has at least one recess on its cylinder circumference. This recess opens the pressure chamber on the valve seat side during a valve member stroke movement, so that fuel can flow out of the pressure chamber to the valve seat.
  • a plurality of recesses is advantageously provided, which are arranged at equal angles to one another over the circumference at equal angles.
  • the recesses on their side facing the pressure chamber have flow-dynamically optimized, preferably rounded surfaces. It can go in In principle, pressure-controlled injection curve shaping can also be realized by designing the flow dynamically optimized areas.
  • the sealing element could be a separate part which is connected to the valve member.
  • a particularly advantageous embodiment provides that the sealing element is formed in one piece with the valve member.
  • Fig. 1 is a sectional view of the combustion chamber side part of the valve body of a fuel injector according to the invention
  • FIG. 2 shows a sectional illustration of a sealing element of a fuel injection valve according to the invention in FIG. 1 along the line II-II.
  • a fuel injection valve for internal combustion engines shown in FIG. 1 has a valve body 1 which, in a manner known per se and, for example, from DE 197 29 843.5, with the interposition of an intermediate disk by means of a sleeve-shaped one Clamping nut is clamped axially on a valve holding body (not shown).
  • the valve body 1 has an axial bore 9, in which a piston-shaped valve member 11 is guided axially displaceably, which cooperates at one end with an inward-facing valve seat 13 in a combustion chamber-side dome 15, in which a plurality of injection openings 17 downstream of the valve seat 13 are arranged.
  • the valve body 1 is a rotationally symmetrical component with an upper thick section 19 and a lower, slender shaft part 21, the combustion chamber end of which is closed by the crest 15.
  • the part of the bore 9 arranged in the upper section 19 is designed as a guide bore 23 for the guide part 25 of the valve member.
  • the bore 9 has a diameter Extended, undercut pressure chamber 29 is arranged, the outer boundary 31 of which is preferably curved.
  • a spring inserted in a blind bore of the valve holding body holds the valve member 11 in contact with the valve seat 13 via a spring plate in a manner known per se when the injection valve is closed (not shown).
  • an inlet channel 37 to the pressure chamber 29 adjacent to the guide bore 23.
  • the inlet channel 37 cuts the pressure chamber 29 laterally.
  • a sealing element 40 is provided in one piece with the valve member 11 and the guide member 25 between the guide member 25 and the valve member 11.
  • the sealing element 40 has a substantially circular cylindrical shape (see FIG. 2).
  • incisions 41 are provided which, for example, as shown in FIG. 2, are each offset by an angle of 90 ° to one another.
  • the incisions 41 have, on their side facing the pressure chamber 29, flow-optimized surfaces, for example, as shown in FIG. 1, rounded surfaces 42, which enable the fuel to flow optimally into the annular gap 27.
  • the sealing element 40 The function of the sealing element 40 is described below. During the injection breaks, i.e. When the injection valve is closed, the cylindrical sealing element 40, which is inserted into the bore 9 with a precise fit, seals the pressure chamber from the annular gap 27.
  • the sealing element 40 performs a stroke movement together with the valve member 11.
  • the sealing element 40 runs through a path of length d, during which the pressure chamber 29 is sealed off from the annular gap 27. Only after covering this predetermined axial stroke distance do the recesses 41 pass over the lower edge of the pressure chamber 29 on the valve seat side, whereby the pressure chamber 29 is opened with respect to the annular gap 27.
  • the length d corresponds to the distance between the lower edge of the pressure chamber 29 on the valve seat side and the upper edge of the recesses 41 on the pressure chamber side, or in other words the axial length along which the cylindrical region of the sealing element 40, which is not provided with incisions 41, the valve body 1 below the edge of the valve seat side of the pressure chamber 29 overlaps.
  • this enables a connection between the pressure chamber 29 and the annular gap 27 or an opening of the pressure chamber 29 only after a predetermined valve member travel path has been covered.
  • This has the great advantage that in the time in which the valve member executes a lifting movement without the pressure chamber 29 being open, a negative pressure is created in the annular gap 27, which draws air from the combustion chamber into the annular gap 27.
  • the valve member 11 thus acts as a pump. This air is mixed with the fuel introduced on it and thus enables a well-prepared amount during the ignition delay. This enables lower NO x emissions and less noise from the internal combustion engine.
  • the fuel flows from the pressure chamber 29 via the recesses 41 into the annular gap 27 and from there via the ejection openings 17 into the combustion chamber of the internal combustion engine.
  • the flow-dynamically optimized surfaces 42 of the recesses 41 therefore enable an optimal flow characteristic of the fuel, wherein an injection course shaping effect can also be achieved by appropriately designing the recesses 41 and in particular the surfaces 42. 10
  • the sealing element described above enables a very effective sealing of the fuel injection valve during the injection breaks, so that it is prevented that fuel can flow into the combustion chamber of the internal combustion engine in an uncontrolled manner, particularly in the event of major leaks.
  • HC sensors in the exhaust tract can be used to detect, in particular, minor leaks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Ein Kraftstoffeinspritzventil für Brennkraftmaschinen, mit einem an einem Ventilhaltekörper durch eine Spannmutter verspannten Ventilkörper (1), in dem ein Ventilglied (11) in einer Bohrung (9) axial verschiebbar geführt ist, wobei die Bohrung (9) einen radial erweiterten Druckraum (29) aufweist, in den wenigstens ein neben der Bohrung verlaufender Zulaufkanal (37) mündet, ist dadurch gekennzeichnet, dass ein durch eine Ventilgliedhubbewegung axial verschiebliches Dichtelement (40) vorgesehen ist, welches den Druckraum (29) während der Einspritzpausen ventilsitzseitig verschliesst und während der Einspritzvorgänge öffnet.

Description

Kraftstoffβinspritzventil
Stand der Technik
Die Erfindung betrifft ein Kraftstoffeinspritzventil für Brennkraftmaschinen, mit einem an einem Ventilhaltekörper durch eine Spannmutter verspannten Ventilkörper, in dem ein Ventilglied in einer Bohrung axial verschiebbar geführt ist, wobei die Bohrung einen radial erweiterten Druckraum aufweist, in den wenigstens ein neben der Bohrung verlaufender Zulaufkanal mündet .
Derartige Kraftstoffeinspritzventile, die insbesondere bei selbstzündenden Brennkraftmaschinen zum Einsatz kommen, sind seit längerem, beispielsweise aus der DE 197 29 843.5, bekannt.
Sie kommen beispielsweise bei einer aus der DE 44 14 242 AI bekannten Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen zum Einsatz. Bei dieser Kraftstoffeinspritzeinrichtung fördert eine Kraftstoffhochdruckpumpe Kraftstoff aus einem Niederdruckraum über eine Förderleitung in einen Hochdrucksammeiraum, der über Hochdruckleitungen mit den in den Brennraum der mit Kraftstoff zu versorgenden Brennkraftmaschine ragenden Einspritzventilen verbunden ist. Bei derartigen, auch als Common-Rail-Systeme bekannten Kraftstoffeinspritzeinrich- tungen werden die Öffnungs- und Schließbewegungen der Kraftstoffeinspritzventile jeweils von einem elektrisch angesteuerten, in der Hochdruckleitung am Einspritzventil angeordneten Steuerventil gesteuert.
Problematisch bei diesen Kraftstoffeinspritzeinrichtungen ist beispielsweise ein Bruch in einer Hochdruckleitung, welcher zu einem unkontrollierten Abströmen von Kraftstoff führt . Um bei einem Bruch in einer Hochdruckleitung ein unkontrolliertes Abströmen von Kraftstoff zu vermeiden, ist es aus der DE 44 14 242 AI bekannt, Durchflußbegrenzungsventile in allen Hochdruckleitungen vorzusehen, welche diese beim Überschreiten einer zulässigen Durchflußmenge verschließen.
Die weitaus häufigste Undichtheit bei Kraftstoffein- spritzventilen erfolgt durch Spänchen oder Schmutzteilchen im Größenbereich von 0,01 bis etwa 0,05 mm, die sich im Ventilsitz festsetzen. Derartige Teilchen hinterlassen am Düsennadelsitz der Kraftstoffeinspritzventile nicht selten Eindrücke und werden danach durch Einspritzvorgänge ausgespült. Aufgrund der Eindrücke entstehen am Ventilsitz Undichtheiten. Diese Lecks führen aufgrund des an den Kraftstoffeinspritzventilen dauernd anliegenden hohen Drucks dazu, daß permanent Kraftstoff in den Brennraum der Brennkraf maschine eingespritzt wird. Insbesondere bei größeren Lecks kann dabei ein Schaden an der Brennkraftmaschine auftreten.
Die aus dem Stand der Technik bekannten Durchflußbegrenzer im Zulauf zu den Kraftstoffeinspritzventilen verhindern ein unbeabsichtigtes Abströmen von Kraftstoff insbesondere bei kleineren Lecks nicht vollständig. So sind insbesondere bei kleineren Lecks eine höhere Drehzahl und eine hohe Last der Brennkraftmaschine erforderlich, um ein unkontrolliertes Abströmen von Kraftstoff durch derartige Durchflußbegrenzer zu verhindern.
Außerdem sprechen derartige Durchflußbegrenzungsventile nicht sofort an, sondern aufgrund ihrer Bauart wird bei Vorhandensein eines Lecks vielmehr unzulässigerweise zumindest eine Startmenge Kraftstoffs in den Brennraum der Kraftstoffmaschine unzulässigerweise eingespritzt.
Neben der Anordnung der Durchflußbegrenzungsventile in den Hochdruckleitungen ist es darüber hinaus bekannt, Klopfsensoren im Motorblock und HC-Sensoren im Auspuff der Brennkraftmaschine anzuordnen, um Lecks zu erfassen. Klopfsensoren können dabei kleinere bis mittlere Leckagen nicht erkennen, wohingegen HC-Sensoren eine Totzeit von mehreren Arbeitsspielen sowie Querempfindlichkeiten aufweisen. Mit beiden Sensorentypen kann daher erst nach mehrmaligen Arbeitsspielen Lecks detektiert und auf diese reagiert werden. In diesem Zeitraum tritt jeweils aufgrund der Lecks unzulässigerweise Kraftstoff in den Brennraum der Brennkraftmaschine ein, wodurch bereits ein Schaden an der Brennkraftmaschine auftreten kann. Aufgabe der Erfindung ist es daher, ein Kraftstoffein- spritzventil der gattungsgemäßen Art derart weiterzubilden, daß bei möglichst geringem technischen Aufwand ein unkontrolliertes Abströmen von Kraftstoff im Falle beispielsweise einer Leckage an dem Ventilsitz des Kraftstoffeinspritzventils wirkungsvoll verhindert wird.
Vorteile der Erfindung
Diese Aufgabe wird bei einem Kraftstoffeinspritzventil der eingangs beschriebenen Art erfindungsgemäß dadurch gelöst, daß ein durch eine Ventilgliedhubbewegung axial verschiebliches Dichtelement vorgesehen ist, welches den Druckraum während der Einspritzpausen ventilsitzseitig verschließt und während der Einspritzvorgänge öffnet.
Durch dieses Dichtelement wird auf wirkungsvolle Weise praktisch ausgeschlossen, daß während der Einspritzpausen Kraftstoff von dem Druckraum zu Einspritzöffnungen am Ventilgliedsitz gelangen kann. Hierdurch wird nicht nur dann, wenn beispielsweise am Ventilgliedsitz aufgrund der oben beschriebenen Eindrücke Undichtigkeiten entstanden sind, verhindert, daß Kraftstoff unkontrolliert in den Brennraum der Brennkraftmaschine abströmen kann. Es wird auch bei auf andere Weise entstandenen Lecks beliebiger Größe - auch sehr großen Lecks - ein unkontrolliertes Abströmen von Kraftstoff in den Brennraum der Brennkraftmaschine verhindert .
Eine vorteilhafte Ausführungsform sieht dabei vor, daß das Dichtelement bei Einspritzvorgängen erst nach Zurücklegen eines vorgegebenen Axialhubwegs öffnet . Hierdurch wird nicht nur eine gute Abdichtung während der Einspritzpausen und eine definierte Einspritzung bei Einspritzvorgängen erzielt. Es wird darüber hinaus auch eine optimale Vermischung von Luft und Kraftstoff vor einem Einspritzvorgang ermöglicht. Das Dichtelement bewirkt nämlich bei einem Aufwärtshub anfänglich eine Druckabsenkung im Ringspalt, in dem sich das Ventilglied bewegt, so daß komprimierte Luft aus dem Brennraum der Brennkraftmaschine in das Innere des Kraftstoffein- spritzventils eindringen kann. Diese Luft tritt zusammen mit Kraftstoff in einem ersten Teil der Einspritzung aus und bewirkt so eine geringe aber gut aufbereitete Menge eingespritzten Kraftstoffs und eingespritzter Luft während des Zündverzuges. Das reduziert die NOx-Emission und das Geräusch der Brennkraftmaschine .
Hinsichtlich der Ausbildung des Dichtelements sind rein prinzipiell die unterschiedlichsten Ausfuhrungsformen denkbar. Eine vorteilhafte Ausfuhrungsform sieht vor, daß das Dichtelement eine Schieberdichtung mit im wesentlichen kreiszylinderförmiger Gestalt ist, welche an ihrem Zylinderumfang wenigstens eine Ausnehmung aufweist. Diese Ausnehmung öffnet den Druckraum bei einer Ventilgliedhubbewegung ventilsitzseitig, so daß Kraftstoff aus dem Druckraum zum Ventilsitz abströmen kann.
Zur Erhöhung der eingespritzen Menge ist dabei vorteilhafterweise eine Mehrzahl von Ausnehmungen vorgesehen, die über den Umfang mit gleichen Winkeln winkelversetzt zueinander angeordnet sind.
Um einen optimalen Strömungsverlauf des eingespritzten Kraftstoffs zu ermöglichen, ist ferner vorteilhafterweise vorgesehen, daß die Ausnehmungen auf ihrer dem Druckraum zugewandten Seite strömungsdynamisch optimierte, vorzugsweise abgerundete Flächen aufweisen. Dabei kann rein prinzipiell durch Ausbildung der stromungsdynamisch optimierten Flächen auch eine druckgesteuerte Einspritzverlaufsformung realisiert werden.
Das Dichtelement könnte rein prinzipiell ein separates Teil sein, welches mit dem Ventilglied verbunden ist. Eine besonders vorteilhafte Ausfuhrungsform sieht vor, daß das Dichtelement einstückig mit dem Ventilglied ausgebildet ist.
Zeichnung
Weitere Merkmale und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung sowie der zeichnerischen Darstellung eines Ausführungsbeispiels.
In der Zeichnung zeigen:
Fig. 1 eine Schnittdarstellung des brennraumseitigen Teils des Ventilkörpers eines erfindungsgemäßen Kraftstoffeinspritzventils und
Fig. 2 eine in Fig. 1 entlang der Linie II-II geschnittene Schnittdarstellung eines Dicht - elements eines erfindungsgemäßen Kraftstoff- einspritzventils .
Beschreibung der Ausführungsbeispiele
Ein in Fig. 1 dargestelltes Kraftstoffeinspritzventil für Brennkraftmaschinen weist einen Ventilkörper 1 auf, der auf an sich bekannte und beispielsweise aus der DE 197 29 843.5 hervorgehenden Weise unter Zwischenlage einer Zwischenscheibe mittels einer hülsenförmigen Spannmutter axial an einem Ventilhaltekörper verspannt ist (nicht dargestellt) .
Der Ventilkörper 1 weist eine axiale Bohrung 9 auf, in der ein kolbenförmiges Ventilglied 11 axial verschiebbar geführt ist, welches an seinem einen Ende mit einem nach innen gekehrten Ventilsitz 13 in einer brennraumseitigen Kuppe 15 zusammenwirkt, in der stromabwärts hinter dem Ventilsitz 13 mehrere Einspritzδffnungen 17 angeordnet sind.
Der Ventilkörper 1 ist ein rotationssymmetrisches Bauteil mit einem oberen dicken Abschnitt 19 und einem unteren, schlanken Schaftteil 21, dessen brennraumseitiges Ende durch die Kuppe 15 verschlossen ist. Der im oberen Abschnitt 19 angeordnete Teil der Bohrung 9 ist als Führungsbohrung 23 für den Führungsteil 25 des Ventil - glieds ausgebildet.
Der im Ventilkörperschaft 21 verlaufende Teil der Bohrung 9 begrenzt zusammen mit dem Schaft des Ventilgliedes 11 einen bis zum Ventilsitz 13 reichenden Ringspalt 27. Im oberen Abschnitt 19 ist nahe dem unteren Schaftteil 21 zwischen der Führungsbohrung 23 und dem Ringspalt 27 der Bohrung 9 ein im Durchmesser erweiterter, hinterschnitte- ner Druckraum 29 angeordnet, dessen äußere Begrenzung 31 vorzugsweise gewölbt ist. Eine in einer Sackbohrung des Ventilhaltekörpers eingesetzte Feder hält das Ventilglied 11 über einen Federteller auf an sich bekannte Weise bei geschlossenem Einspritzventil in Anlage am Ventilsitz 13 (nicht dargestellt) .
Zum Zuführen von Kraftstoff verläuft im oberen dickeren Abschnitt 19 des Ventilkörpers 1, ausgehend von dessen oberer Stirnfläche benachbart zu der Führungsbohrung 23 ein Zulaufkanal 37 zum Druckraum 29. Der Zulaufkanal 37 schneidet den Druckraum 29 seitlich an.
Zwischen dem Führungsteil 25 und dem Ventilglied 11 ist einstückig mit dem Ventilglied 11 und dem Führungsteil 25 ein Dichtelement 40 vorgesehen. Das Dichtelement 40 hat eine im wesentlichen kreiszylinderförmige Gestalt (siehe Fig. 2) . Am Umfang des Kreiszylinders sind Einschnitte 41 vorgesehen, welche beispielsweise wie in Fig. 2 dargestellt, jeweils um Winkel von 90° zueinander versetzt angeordnet sind. Die Einschnitte 41 weisen auf ihrer dem Druckraum 29 zugewandten Seite strömungsdynamisch optimierte, beispielsweise wie in Fig. 1 dargestellt, abgerundete Flächen 42 auf, die ein optimales Strömen des Kraftstoffs in den Ringspalt 27 ermöglichen.
Die Funktion des Dichtelements 40 wird im folgenden beschrieben. Während der Einspritzpausen, d.h. bei geschlossenem Einspritzventil , dichtet das zylinderförmige, paßgenau in die Bohrung 9 eingefügte Dichtelement 40 den Druckraum gegenüber dem Ringspalt 27 ab.
Bei einem Einspritzvorgang, d.h. dann, wenn das Ventil - glied 11 von dem Ventilsitz 13 aufgrund einer Ventil - gliedhubbewegung abhebt, vollführt das Dichtelement 40 zusammen mit dem Ventilglied 11 eine Hubbewegung. Zunächst durchläuft das Dichtelement 40 dabei einen Weg der Länge d, währenddessen der Druckraum 29 gegenüber dem Ringspalt 27 abgedichtet ist. Erst nach Zurücklegen dieses vorgegebenen Axialhubweges überfahren die Ausnehmungen 41 die ventilsitzseitige untere Kante des Druckraums 29, wodurch der Druckraum 29 gegenüber dem Ringspalt 27 geöffnet wird. Die Länge d entspricht dem Abstand zwischen der unteren ventilsitzseitigen Kante des Druckraums 29 und der oberen druckraumseitigen Kante der Ausnehmungen 41 oder mit anderen Worten der axialen Länge, entlang welcher der nicht mit Einschnitten 41 versehene zylinderförmige Bereich des Dichtelements 40 den Ventilkörper 1 unterhalb der ventilsitzseitigen Kante des Druckraums 29 überlappt. Hierdurch wird wie beschrieben eine Verbindung zwischen Druckraum 29 und Ringspalt 27 oder eine Öffnung des Druckraums 29 erst nach Zurücklegen eines vorgegebenen Ventilgliedhubwegs ermöglicht. Dies hat den großen Vorteil, daß in der Zeit, in der das Ventilglied eine Hubbewegung ausführt, ohne daß der Druckraum 29 geöffnet ist, in dem Ringspalt 27 ein Unterdruck entsteht, welcher Luft aus dem Brennraum in den Ringspalt 27 einzieht. Das Ventilglied 11 wirkt so gewissermaßen als Pumpe. Diese Luft wird mit dem darauf eingeführten Kraftstoff vermischt und ermöglicht so eine gut aufbereitete Menge während des Zündverzuges. Dies ermöglicht niedrigere NOx- Emissionen und ein geringeres Geräusch der Brennkraftmaschine .
Bei vollständig geöffnetem Ventil strömt der Kraftstoff vom Druckraum 29 über die Ausnehmungen 41 in den Ringspalt 27 und von dort über die Ausspritzöffnungen 17 in den Brennraum der Brennkraftmaschine. Durch die stromungsdynamisch optimierten Flächen 42 der Ausnehmungen 41 wird daher eine optimale Strömungscharakteristik des Kraftstoffs ermöglicht, wobei durch entsprechende Ausbildung der Ausnehmungen 41 und insbesondere der Flächen 42 dabei auch ein Einspritzverlaufs-Formungs- effekt erzielbar ist. 10
Das oben beschriebene Dichtelement ermöglicht eine sehr wirkungsvolle Abdichtung des Kraftstoffeinspritzventils während der Einspritzpausen, so daß verhindert wird, daß insbesondere auch bei größeren Lecks unkontrolliert Kraftstoff in den Brennraum der Brennkraftmaschine einströmen kann.
In Ergänzung zu dem oben beschriebenen Kraftstoffein- spritzventil können zur Detektion von insbesondere kleineren Leckagen des weiteren HC-Sensoren im Auspufftrakt eingesetzt werden.

Claims

11Patentansprüche
1. Kraftstoffeinspritzventil für Brennkraftmaschinen, mit einem an einem Ventilhaltekörper durch eine Spannmutter verspannten Ventilkörper (1) , in dem ein Ventilglied (11) in einer Bohrung (9) axial verschiebbar geführt ist, wobei die Bohrung (9) einen radial erweiterten Druckraum (29) aufweist, in den wenigstens ein neben der Bohrung (9) verlaufender Zulaufkanal (37) mündet, dadurch gekennzeichnet , daß ein durch eine Ventilgliedhubbewegung axial verschiebliches Dichtelement (40) vorgesehen ist, welches den Druckraum (29) während der Einspritzpausen ventilsitzseitig verschließt und während der Einspritzvorgänge öffnet.
2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß das Dichtelement (40) bei Einspritzvorgängen erst nach Zurücklegen eines vorgegebenen Axialhubwegs (d) öffnet.
3. Kraftstoffeinspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Dichtelement eine Schieberdichtung mit im wesentlichen kreiszylin- 12
drischer Gestalt ist, welche an ihrem Zylinderumfang wenigstens eine Ausnehmung (41) aufweist.
4. Kraftstoffeinspritzventil nach Anspruch 3, dadurch gekennzeichnet, daß eine Mehrzahl von Ausnehmungen
(41) über den Umfang mit gleichen Winkeln winkelversetzt zueinander angeordnet sind.
5. Kraftstoffeinspritzventil nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Ausnehmungen (41) auf ihrer ' dem Druckraum (29) zugewandten Seite strömungsdynamisch optimierte, vorzugsweise abgerundete Flächen (42) aufweisen.
6. Kraftstoffeinspritzventil nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß das Dichtelement (40) einstückig mit dem Ventilglied
(11) ausgebildet ist.
PCT/DE1998/003581 1998-04-23 1998-12-07 Kraftstoffeinspritzventil WO1999056015A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP55347799A JP2002507269A (ja) 1998-04-23 1998-12-07 燃料噴射弁
EP98966197A EP1003964B1 (de) 1998-04-23 1998-12-07 Kraftstoffeinspritzventil
DE59811392T DE59811392D1 (de) 1998-04-23 1998-12-07 Kraftstoffeinspritzventil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19818200.7 1998-04-23
DE19818200A DE19818200A1 (de) 1998-04-23 1998-04-23 Kraftstoffeinspritzventil

Publications (1)

Publication Number Publication Date
WO1999056015A1 true WO1999056015A1 (de) 1999-11-04

Family

ID=7865590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/003581 WO1999056015A1 (de) 1998-04-23 1998-12-07 Kraftstoffeinspritzventil

Country Status (4)

Country Link
EP (1) EP1003964B1 (de)
JP (1) JP2002507269A (de)
DE (2) DE19818200A1 (de)
WO (1) WO1999056015A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036811A2 (en) * 1999-11-17 2001-05-25 Stanadyne Corporation Compact fuel injection nozzle
DE102004002084A1 (de) 2004-01-15 2005-08-04 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmschinen
DE102007032741A1 (de) * 2007-07-13 2009-01-15 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
JP5251695B2 (ja) * 2009-04-14 2013-07-31 トヨタ自動車株式会社 燃料噴射弁
DE102013209251A1 (de) * 2013-05-17 2014-11-20 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082224A (en) * 1976-10-07 1978-04-04 Caterpillar Tractor Co. Fuel injection nozzle
US4540126A (en) * 1982-04-08 1985-09-10 Nissan Motor Co., Ltd. Fuel injection nozzle
US5020500A (en) * 1990-03-28 1991-06-04 Stanadyne Automotive Corp. Hole type fuel injector and injection method
DE4414242A1 (de) 1994-04-23 1995-10-26 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
US5497947A (en) * 1993-12-01 1996-03-12 Robert Bosch Gmbh Fuel injection nozzle for internal combustion engines
DE19729843A1 (de) 1997-07-11 1999-01-14 Bosch Gmbh Robert Kraftstoffeinspritzventil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082224A (en) * 1976-10-07 1978-04-04 Caterpillar Tractor Co. Fuel injection nozzle
US4540126A (en) * 1982-04-08 1985-09-10 Nissan Motor Co., Ltd. Fuel injection nozzle
US5020500A (en) * 1990-03-28 1991-06-04 Stanadyne Automotive Corp. Hole type fuel injector and injection method
US5497947A (en) * 1993-12-01 1996-03-12 Robert Bosch Gmbh Fuel injection nozzle for internal combustion engines
DE4414242A1 (de) 1994-04-23 1995-10-26 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE19729843A1 (de) 1997-07-11 1999-01-14 Bosch Gmbh Robert Kraftstoffeinspritzventil

Also Published As

Publication number Publication date
DE59811392D1 (de) 2004-06-17
JP2002507269A (ja) 2002-03-05
DE19818200A1 (de) 1999-10-28
EP1003964A1 (de) 2000-05-31
EP1003964B1 (de) 2004-05-12

Similar Documents

Publication Publication Date Title
EP2812559B1 (de) Brennstoffeinspritzventil und vorrichtung zum einspritzen von brennstoff
DE19547423B4 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP2394049B1 (de) Brennstoffeinspritzventil für verbrennungskraftmaschinen
EP1395744B1 (de) Kraftstoff-einspritzvorrichtung für brennkraftmaschinen, insbesondere common-rail-injektor, sowie kraftstoffsystem und brennkraftmaschine
DE102006009070A1 (de) Brennstoffeinspritzventil
DE10246974A1 (de) Kraftstoffeinspritzvorrichtung für eine Brennkraftmaschine
WO2013026611A1 (de) Injektor für ein fluid mit einer fluidzuführung
DE10112143A1 (de) Brennstoffeinspritzventil
DE102011086339A1 (de) Kraftstoffinjektor, insbesondere Common-Rail-Injektor
DE10100390A1 (de) Einspritzventil
EP1003964B1 (de) Kraftstoffeinspritzventil
EP1574701A1 (de) Common-Rail Injektor
EP1296054B1 (de) Einspritzventil für eine Brennkraftmaschine
DE10131617A1 (de) Kraftstoffinjektor-Schaltventil zur Druckentlastung/Belastung eines Steuerraumes
WO2004104406A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1527272B1 (de) Kraftstoffinjektor mit hochdruckfestem anschlussbereich
DE10158337C1 (de) Kraftstoff-Einspritzvorrichtung, insbesondere Injektor für Brennkraftmaschinen mit Direkteinspritzung, sowie Kraftstoffsystem und Brennkraftmaschine
WO2003074865A1 (de) Einrichtung zur druckmodulierten formung des einspritzverlaufes
DE102008041167A1 (de) Kraftstoffinjektor
EP1624181A1 (de) Common-Rail-Injektor
DE10148350A1 (de) Kraftstoff-Einspritzvorrichtung, insbesondere Injektor für Brennkraftmaschinen mit Direkteinspritzung, sowie Kraftstoffsystem und Brennkraftmaschine
DE10160490B4 (de) Kraftstoff-Einspritzvorrichtung, Kraftstoffsystem sowie Brennkraftmaschine
WO2004057180A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10164395A1 (de) Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
EP1673532B1 (de) Hochdruckzulauf für einen common rail injektor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1998966197

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09445897

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998966197

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998966197

Country of ref document: EP