WO1999053258A1 - Heat accumulator, especially a pcm device - Google Patents

Heat accumulator, especially a pcm device Download PDF

Info

Publication number
WO1999053258A1
WO1999053258A1 PCT/EP1999/002012 EP9902012W WO9953258A1 WO 1999053258 A1 WO1999053258 A1 WO 1999053258A1 EP 9902012 W EP9902012 W EP 9902012W WO 9953258 A1 WO9953258 A1 WO 9953258A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow paths
heat
spaces
storage
phase change
Prior art date
Application number
PCT/EP1999/002012
Other languages
German (de)
French (fr)
Inventor
Stephan HÖRZ
Gregory G. Hughes
Original Assignee
Modine Manufacturing Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modine Manufacturing Company filed Critical Modine Manufacturing Company
Priority to CA002286567A priority Critical patent/CA2286567A1/en
Priority to EP99917853A priority patent/EP0988499A1/en
Priority to JP55109299A priority patent/JP2002504219A/en
Publication of WO1999053258A1 publication Critical patent/WO1999053258A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to a heat store, in particular a latent heat store, with thermal insulation, with at least one inlet and one outlet and collecting spaces for the heat transfer medium, which are fluidly connected to the storage core surrounded by a housing, in which flow paths (pipes) are arranged and which has spaces between the flow paths in which there is a phase change material.
  • a heat store in particular a latent heat store, with thermal insulation, with at least one inlet and one outlet and collecting spaces for the heat transfer medium, which are fluidly connected to the storage core surrounded by a housing, in which flow paths (pipes) are arranged and which has spaces between the flow paths in which there is a phase change material.
  • Such a heat store is known from a whole series of documents, for example also from WO 89 / 09375.
  • the known heat store has inlet and outlet plenum spaces into which the flow paths (individual flat tubes) open.
  • the collection rooms mentioned take up a considerable space, as can be seen in particular from FIG. 5 of the document mentioned.
  • the latent heat accumulator known from the first-mentioned document can no longer be regarded as particularly suitable because of its collecting spaces which take up space, but also for manufacturing reasons.
  • this design has many solder joints that always pose a risk, many individual parts that have a negative impact on the manufacturing process, and a relationship between the flow spaces and the spaces in which the phase change material is accommodated, which needs to be improved.
  • Heat exchangers have also been proposed (DE 29 42 147 A1) which have meandering flow paths. Although this heat exchanger also has storage properties, it is unsuitable because it is complex to manufacture and disadvantageous in terms of performance, since the phase change material is housed in envelopes.
  • the flow paths each consist of two flat plates which are joined together and between which the flow paths are formed by means of inflation. The plates between the flow paths reduce the space for the phase change material and therefore lead to a reduced storage capacity.
  • the latent memory from DE 32 27 322 A1 consists of modules which are anode one above the other and surrounded by insulation. Spiral hollow bodies are arranged within the individual modules, which are enclosed by a housing, and communicate in the center. Spaces are provided within the housing in which the latent storage agent can expand during melting.
  • the latent storage described is intended for storage tanks to be set up in buildings, for which it is not important to provide storage with high loading and unloading dynamics in the smallest of spaces, but rather the most complete possible melting of the latent storage means should be achieved, for which purpose a complex and complicated flow through the hollow body and regulation of the heat transfer medium is provided.
  • the object of the invention is to better adapt the heat store described in the preamble to smaller and angled installation spaces while maintaining a high storage capacity, high loading and unloading dynamics and favorable manufacturing costs.
  • the flow paths are wavy or spiral through the storage core and the wave height and / or wavelength or the geometry of the turns can be irregular within a flow path and / or between several flow paths.
  • the flow paths are preferably flat tubes, e.g. Can have internal inserts.
  • the flat tubes are so-called multi-chamber tubes, as used for example in condensers or evaporators. Such tubes can be easily shaped without bending in the bends and provide the necessary turbulence of the heat transfer medium and a larger heat exchange surface within the flat tubes.
  • the geometry of the waves or the windings of the flow paths can be irregular. Where the wave height of the flow paths fluctuates, that is, becomes smaller or larger, or where the geometry of the windings is irregular, the housing of the storage core and of the entire heat accumulator is also drawn in or expanded accordingly. In this way, the heat accumulator can be adapted very cheaply to angled installation spaces, without this causing significant manufacturing costs, because the manufacturing technology for such undulating or spiral flow paths is available from the manufacturers of the heat exchange technology and the irregular wave height is simply a question of machine setting. In comparison with the prior art, in which individual flat tubes are provided, these would have to be cut to different lengths and inserted and connected into the openings of the tube sheets under complicated conditions. All of this is more complex overall.
  • the design according to the invention only requires small spaces, which can be referred to as collecting spaces, wherever a flow path enters the storage core and where it exits.
  • the space between the waves or between the windings of the flow paths and around the flow paths is used as space for accommodating the phase change material, whereby the ratio of the room sizes has been changed in favor of a larger space for the phase change material. This makes it possible to expect at least consistently high storage capacities, even in the case of smaller sizes of the heat store, which corresponds to the requirements in the best possible way.
  • phase change material is almost completely covered with corrugated sheets.
  • Such lamellae can also be arranged in the region of the bends of the flow paths. Because the phase change material is a poor heat conductor and therefore tends not to melt completely and therefore does not always reach its maximum heat storage capacity, the fullest possible occupancy of the rooms with the corrugated sheets is an essential contribution to increasing the storage capacity. Furthermore, the slats make a not negligible contribution to the stability of the heat accumulator.
  • a major advantage of the inventive heat store is that the temperature changes associated with tensile and compressive loads on the pipes can be withstood much better because the undulating or spiral flow paths are relatively long and therefore flexible and because they are only clamped on one side while they are firmly clamped on opposite sides in tube sheets in the prior art.
  • the load on the metallic connections of the flow paths with the housing of the storage core is substantially lower than in the prior art, so that the risk of breakage has been significantly reduced. It can therefore be assumed that the heat accumulator according to the invention has better fatigue strength, combined with fewer failures due to broken solder connections. Further possibly important features and advantageous effects result from the following description of exemplary embodiments which are illustrated in the accompanying drawings. The invention is in no way limited to these exemplary embodiments, since they only serve for better understanding and as an aid to interpretation.
  • the individual figures show: FIG. 1 Overall spatial view of a latent heat storage in principle, open at the front and top;
  • Fig. 2 principle of a trapezoidal heat accumulator in cross section
  • Fig. 4 heat storage with a constriction
  • FIG. 5 View A of Fig. 4; Fig. 6 heat storage with internal collection rooms; Fig. 7 and
  • FIG. 8 shows an exemplary basic illustration of a heat accumulator with different flow paths and shapes
  • Fig. 9 section B in Fig. 7
  • Fig. 10 spiral flow path
  • 11 heat accumulator with such flow paths
  • the latent heat store 1 is intended for installation in the engine compartment of a motor vehicle.
  • the cooling water of the engine is the heat transfer medium, which is guided by a cooling water pump in the circuit (not shown), in which the latent heat accumulator 1 is integrated with its inlet 2 and with its outlet 3.
  • the insulation 4 can be a highly effective vacuum insulation which makes it possible to keep the melted and heat-absorbing phase change material in this storage state for almost 50 hours, even under winter conditions.
  • the cooling water pump conveys the cold cooling water through the flow paths 5, within the storage core 6 of the latent heat store 1.
  • the cooling water then exchanges heat with the phase change material, which begins to crystallize and transfers its storage heat to the cooling water.
  • the rapidly heated cooling water shortens the engine's start-up phase and thus fuel consumption and can also be used to heat the passenger compartment.
  • the hot cooling water releases its heat to the phase change material, causing it to melt again and thereby store heat.
  • This interplay is repeated continuously, so that the entire heat store, but in particular the flow paths 5, which are formed here from flat multi-chamber tubes 7 and whose connections are exposed to enormous stresses.
  • the flow paths 5 are relatively long and flexible and the corrugated sheets 8 are not very rigid, the thermal stresses are largely compensated for. Breaks in soldered or welded connections are normally excluded.
  • the corrugated sheets 8 are arranged in the spaces 9 which are provided for the phase change material. These spaces 9 are located between the shafts 10 of the flow paths 5 and also between the individual flow paths 5. The arrangement of the corrugated sheets 8 is described in more detail below.
  • Both the inlet 2 and the outlet 3 each merge into a thermosiphon-shaped tube, which are arranged within the insulation 4, whereby in the idle state a stratification of the cooling liquid is established within the tubes in such a way that the cooling water has a higher temperature due to its lower density , remains above or within the insulation and does not mix with the cooling water in the pipes outside the insulation 4, which is colder and has a higher density.
  • the pipe end directed downward from the arc of the thermosiphon is the collecting space 12, into which, in the exemplary embodiment according to FIG. 1, the pipe ends of the four flow paths 5 open and are connected there, which need not be discussed in more detail here. Before the pipe ends open into the collecting spaces 12, they break through the housing 11 of the storage core 6.
  • the heat accumulator from Fig. 2 shows in addition, the outer housing 14 of the heat accumulator 1 and the insulation space 4 formed between the outer housing 14 and the housing 11 of the storage core 6, in which some supports 13 made of non-heat-conducting material are arranged.
  • the insulation space 4 is vacuum insulation and the supports 13 ensure that the inner housing 11 and the outer housing 14 do not touch in order to keep the insulation effect at a high level.
  • the thickness of the insulation 4 is only a few millimeters and thereby contributes to minimizing the outer dimension of the latent heat store 1.
  • FIG. 6 which consists in the fact that the collecting spaces 12 have been arranged within the storage core 6.
  • the collecting spaces 12 have been broken open so that the multi-chamber tubes 7 which open into the collecting spaces 12 can be seen.
  • the multi-chamber tubes 7 form the undulating flow paths 5, between which the undulating sheets 8 are located. 5 shows that the corrugated sheets 8 have a greater width than the large diameter of the multi-chamber tubes 7. This results in a protrusion 16 of the corrugated sheets
  • FIGS. 7, 8 and 9 show in a special way the various possibilities with regard to the shape of heat accumulators 1 and the design of the shape adapted to the respective shape
  • 7 shows that the waves 10 of the individual flow paths 5 have very different wave heights in order to be adapted to the shape of the reservoir 1 with constrictions 15 and bulges 17.
  • Multi-chamber pipes 7 have also been used here to form the flow paths 5.
  • the flow paths 5 are arranged approximately parallel to one another.
  • the collection rooms 12 were not drawn in these representations.
  • the basic representations in FIGS. 10 and 11 show a heat accumulator 1 with spiral flow paths 5.
  • corrugated plates 8 has only been indicated in FIG. 10. These are, as shown, between the turns 18 and also between the outer turn 18 and the housing 11, which was not drawn.
  • One collecting space 12 is located in the center of the heat accumulator 1 and the other collecting space 12 is arranged on the periphery of the storage core 6.
  • the arrangement of the collecting spaces 12 can also be variable. Accordingly, another exemplary embodiment, not shown, has both collecting spaces 12 on the periphery of the storage core 6, although the flow paths 5 are guided spirally through the storage core 6 (see, for example, FIG. 3 in DE 41 41 556).
  • the flow paths 5 can also be designed to be variable in terms of their height H, h, in order to thereby also meet the requirement for a diverse design of the heat accumulator 1.
  • These flow paths 5 should also preferably be formed from multi-chamber tubes 7.
  • the geometry of the turns 18 is different between the flow paths 5, but is identical within a flow path 5, that is, with a constant curvature.
  • Other exemplary embodiments, not shown, which have spiral flow paths 5 could, for. 4, can also be designed such that the windings 18 are formed with different curvatures within a flow path 5 in order to be adapted to a constriction 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The invention relates to a heat accumulator, especially a PCM device, provided with thermal insulation (4), at least one inlet (2) and one outlet (3), and collector areas (12) for the heat carrier medium that are fluidically connected to the storage core which is surrounded by a housing, whereby flow paths (tubes) (5) are arranged therein and the inventive device is provided with areas in between the flow paths where phase change material can be found. Such heat accumulators can be more easily adapted to small, angular installation areas while at the same time maintaining a storage capacity, high load and unload dynamic characteristics and can be produced inexpensively when the flow paths (5) are made of oval or flat tubes which are conducted through the storage core in a spiral or undulated form and the areas (9) for the phase change material are arranged between the individual flow paths (5) and the undulated shapes (10) or windings (18) of the individual flow paths (5) and are at least for the most part taken up by heat conducting elements (8) which are metallically connected to the flow paths (5). The heat conducting elements (8) are configured as undulated thin strips of sheet metal whose width is greater than the large diameter of the tubes that form the flow paths (5).

Description

Wärmespeicher, insbesondere LatentwärmespeicherHeat storage, in particular latent heat storage
Die Erfindung betrifft einen Wärmespeicher, insbesondere einen Latentwärmespeicher, mit einer Wärmeisolation, mit mindestens einem Einlaß und einem Auslaß und Sammelräumen für das Wärmeträgermedium, die mit dem von einem Gehäuse umgebenen Speicherkern fluidisch verbun- den sind, in dem Strömungswege (Rohre) angeordnet sind und der zwischen den Strömungswegen Räume aufweist, in denen sich ein Phasenwechselmaterial befindet.The invention relates to a heat store, in particular a latent heat store, with thermal insulation, with at least one inlet and one outlet and collecting spaces for the heat transfer medium, which are fluidly connected to the storage core surrounded by a housing, in which flow paths (pipes) are arranged and which has spaces between the flow paths in which there is a phase change material.
Ein solcher Wärmespeicher ist aus einer ganzen Reihe von Dokumenten bekannt, beispielsweise auch aus WO 89 / 09375. Der bekannte Wärmespeicher besitzt Eintritts-und Austrittssammel- räume, in die die Strömungswege (einzelne Flachrohre) münden. Die angesprochenen Sammelräume nehmen einen beachtlichen Raum ein, wie insbesondere aus der Fig. 5 des genannten Dokumentes hervorgeht.Such a heat store is known from a whole series of documents, for example also from WO 89 / 09375. The known heat store has inlet and outlet plenum spaces into which the flow paths (individual flat tubes) open. The collection rooms mentioned take up a considerable space, as can be seen in particular from FIG. 5 of the document mentioned.
Das schon vielfältig angesprochene Problem, daß die zur Verfügung gestellten Einbauräume für Wärmespeicher immer kleiner werden, aber gleichzeitig die Forderungen nach gleichbleibender oder gar steigender Wärmekapazität der Wärmespeicher, mit dem Blick auf erforderliche Energiereduzierungen durch verbesserte Speicherung von Verlustwärme, immer stärker betont werden, stellt die Industrie vor wachsende Herausforderungen. Einen Beitrag zur Lösung dieses Problems, bezogen auf den Einbauraum in Kraftfahrzeugen, leistet der durch DE 195 30 378 C1 bekannte Wärmespeicher, der jedoch kein Latentwärmespeicher ist, sondern ein Heißwasserspeicher. In diesem Dokument ist dargestellt, daß die Räume nicht nur vom Rauminhalt her kleiner werden, sondern auch mehr und mehr verzweigt sind, wodurch man den Einbauraum sozusagen komplett ausreizen will.The problem, which has already been raised in many different ways, is that the available installation space for heat storage devices is becoming ever smaller, but at the same time the demands for constant or even increasing heat capacity of the heat storage devices, with a view to the necessary energy reductions through improved storage of heat loss, are being emphasized more and more Industry faces growing challenges. The heat accumulator known from DE 195 30 378 C1, which is, however, not a latent heat accumulator but a hot water accumulator, makes a contribution to solving this problem, based on the installation space in motor vehicles. In this document it is shown that the rooms not only become smaller in terms of their volume, but are also more and more branched, so that one wants to fully exploit the installation space.
Unter diesen restriktiven Gesichtspunkten, kann der aus dem erstgenannten Dokument bekannte Latentwärmespeicher wegen seiner Raum beanspruchenden Sammelräume, aber auch aus fertigungstechnischen Gründen, nicht mehr als besonders geeignet angesehen werden. Beispielsweise hat diese Bauweise viele Lötverbindungen, die immer ein Risiko darstellen, viele Einzelteile, die den Fertigungsprozeß negativ beeinflussen und ein verbesserungsbedürftiges Verhältnis zwischen den Strömungsräumen und den Räumen, in denen das Phasenwechselmaterial untergebracht ist.From these restrictive points of view, the latent heat accumulator known from the first-mentioned document can no longer be regarded as particularly suitable because of its collecting spaces which take up space, but also for manufacturing reasons. For example, this design has many solder joints that always pose a risk, many individual parts that have a negative impact on the manufacturing process, and a relationship between the flow spaces and the spaces in which the phase change material is accommodated, which needs to be improved.
Es wurden auch schon Wärmeaustauscher vorgeschlagen, (DE 29 42 147 A1) die mäanderförmig geführte Strömungswege aufweisen. Dieser Wärmeaustauscher hat zwar auch Speichereigenschaften, ist aber ungeeignet, weil fertigungstechnisch aufwendig und leistungsmäßig nachteilig, da das Phasenwechselmaterial in Hüllen untergebracht ist. Die Strömungswege bestehen aus jeweils zwei flachen Platten, die zusammengefügt sind und zwischen denen die Strömungswege mittels Aufblasen ausgebildet werden. Die Platten zwischen den Strömungswegen reduzieren den Raum für das Phasenwechselmaterial und führen deshalb zu einer reduzierten Speicherkapazität. Der Latentspeicher aus der DE 32 27 322 A1 besteht aus Modulen die übereinander angeodnet und von einer Isolation umgeben sind. Innerhalb der einzelnen Module, die von einem Gehäuse eingeschlossen sind, sind spiralig verlaufende Hohlkörper angeordnet, die im Zentrum kommunizieren. Innerhalb der Gehäuse sind Räume vorgesehen, in denen sich das Latentspeichermittel beim Schmelzen ausdehnen kann. Der beschriebene Latentspeicher ist für in Gebäuden aufzustellende Speichertanks vorgesehen, bei denen es nicht darauf ankommt, auf engstem Raum einen Speicher mit hoher Be-und Entladedynamik zur Verfügung zu stellen, sondern es soll die möglichst vollständige Aufschmelzung des Latentspeichermittels erzielt werden, wozu eine aufwendige und komplizierte Durchströmung der Hohlkörper und Regelung des Wärmeträgermediums vorgesehen ist.Heat exchangers have also been proposed (DE 29 42 147 A1) which have meandering flow paths. Although this heat exchanger also has storage properties, it is unsuitable because it is complex to manufacture and disadvantageous in terms of performance, since the phase change material is housed in envelopes. The flow paths each consist of two flat plates which are joined together and between which the flow paths are formed by means of inflation. The plates between the flow paths reduce the space for the phase change material and therefore lead to a reduced storage capacity. The latent memory from DE 32 27 322 A1 consists of modules which are anode one above the other and surrounded by insulation. Spiral hollow bodies are arranged within the individual modules, which are enclosed by a housing, and communicate in the center. Spaces are provided within the housing in which the latent storage agent can expand during melting. The latent storage described is intended for storage tanks to be set up in buildings, for which it is not important to provide storage with high loading and unloading dynamics in the smallest of spaces, but rather the most complete possible melting of the latent storage means should be achieved, for which purpose a complex and complicated flow through the hollow body and regulation of the heat transfer medium is provided.
Die Aufgabe der Erfindung besteht darin, den im Oberbegriff beschriebenen Wärmespeicher, bei Beibehaltung einer hohen Speicherkapazität, einer hohen Be-und Entladedynamik und günstiger Fertigungskosten besser an kleinere und verwinkelte Einbauräume anzupassen. Die erfindungsgemäße Lösung ergibt sich aus den Patentansprüchen.The object of the invention is to better adapt the heat store described in the preamble to smaller and angled installation spaces while maintaining a high storage capacity, high loading and unloading dynamics and favorable manufacturing costs. The solution according to the invention results from the patent claims.
Sie sieht vor, daß die Strömungswege wellenförmig oder spiralförmig durch den Speicherkern geführt sind und die Wellenhöhe und/oder Wellenlänge bzw. die Geometrie der Windungen innerhalb eines Strömungsweges und/oder zwischen mehreren Strömungswegen unregelmäßig sein kann. Die Strömungswege sind vorzugsweise Flachrohe, die z.B. Inneneinsätze haben können. Besonders vorteilhaft ist es jedoch, wenn die Flachrohre sogenannte Mehrkammerrohre sind, wie man sie beispielsweise in Kondensatoren oder Verdampfern einsetzt. Solche Rohre lassen sich leicht in die jeweilige Form bringen, ohne in den Biegungen einzuknicken und stellen die notwendige Turbulenz des Wärmeträgermediums und eine größere Wärmetauschfläche innerhalb der Flachrohre zur Verfügung.It provides that the flow paths are wavy or spiral through the storage core and the wave height and / or wavelength or the geometry of the turns can be irregular within a flow path and / or between several flow paths. The flow paths are preferably flat tubes, e.g. Can have internal inserts. However, it is particularly advantageous if the flat tubes are so-called multi-chamber tubes, as used for example in condensers or evaporators. Such tubes can be easily shaped without bending in the bends and provide the necessary turbulence of the heat transfer medium and a larger heat exchange surface within the flat tubes.
Die Geometrie der Wellen bzw. der Windungen der Strömungswege kann unregelmäßig sein. Dort wo die Wellenhöhe der Strömungswege schwankt, das heißt kleiner oder größer wird, oder dort, wo die Geometrie der Windungen unregelmäßig ist, dort ist auch das Gehäuse des Speicherkernes und des gesamten Wärmespeichers entsprechend eingezogen oder erweitert. Auf diese Weise ist der Wärmespeicher sehr günstig an verwinkelte Einbauräume anzupassen, ohne, daß dies wesentliche Fertigungskosten verursachen würde, denn die Fertigungstechnik für solche wellenförmigen oder spiralförmigen Strömungswege ist bei den Herstellern der Wärmetauschtechnik vorhanden und die unregelmäßige Wellenhöhe lediglich eine Frage der Maschineneinstellung. Im Vergleich mit dem Stand der Technik, bei dem einzelne Flachrohre vorgesehen sind, müßten diese auf unterschiedliche Länge zugeschnitten und unter komplizierten Bedingungen in die Öffnungen der Rohrböden eingesetzt und verbunden werden. Dies alles ist insgesamt aufwendiger. Die erfindungsgemäße Bauweise benötigt nur kleine Räume, die als Sammelräume zu bezeichnen sind, immer dort, wo ein Strömungsweg in den Speicherkern eintritt und dort wo er wieder austritt. Der Raum zwischen den Wellen oder zwischen den Windungen der Strömungswege und um die Strömungswege herum, ist als Raum zur Unterbringung für das Phasenwechselmaterial ausgenutzt, wodurch das Verhältnis der Raumgrößen zugunsten eines größeren Raumes für das Phasenwechselmaterial verändert worden ist. Dies läßt sogar bei kleineren Baugrößen der Wärme- Speicher mindestens gleichbleibend hohe Speicherkapazitäten erwarten, was den Forderungen in bester Weise entspricht.The geometry of the waves or the windings of the flow paths can be irregular. Where the wave height of the flow paths fluctuates, that is, becomes smaller or larger, or where the geometry of the windings is irregular, the housing of the storage core and of the entire heat accumulator is also drawn in or expanded accordingly. In this way, the heat accumulator can be adapted very cheaply to angled installation spaces, without this causing significant manufacturing costs, because the manufacturing technology for such undulating or spiral flow paths is available from the manufacturers of the heat exchange technology and the irregular wave height is simply a question of machine setting. In comparison with the prior art, in which individual flat tubes are provided, these would have to be cut to different lengths and inserted and connected into the openings of the tube sheets under complicated conditions. All of this is more complex overall. The design according to the invention only requires small spaces, which can be referred to as collecting spaces, wherever a flow path enters the storage core and where it exits. The space between the waves or between the windings of the flow paths and around the flow paths is used as space for accommodating the phase change material, whereby the ratio of the room sizes has been changed in favor of a larger space for the phase change material. This makes it possible to expect at least consistently high storage capacities, even in the case of smaller sizes of the heat store, which corresponds to the requirements in the best possible way.
Der genannte Raum für das Phasenwechselmaterial ist nahezu komplett mit wellenförmigen Blechen belegt. Auch im Bereich der Biegungen der Strömungswege können solche Lamellen angeordnet sein. Weil das Phasenwechselmaterial ein schlechter Wärmeleiter ist und deshalb dazu neigt, nicht vollständig aufzuschmelzen und dadurch seine maximale Wärmespeicherfähigkeit nicht immer erreicht, ist die möglichst vollständige Belegung der Räume mit den wellenförmigen Blechen ein wesentlicher Beitrag zur Steigerung der Speicherkapazität. Ferner leisten die Lamellen einen nicht zu vernachlässigen Beitrag zur Stabilität des Wärmespeichers.The space mentioned for the phase change material is almost completely covered with corrugated sheets. Such lamellae can also be arranged in the region of the bends of the flow paths. Because the phase change material is a poor heat conductor and therefore tends not to melt completely and therefore does not always reach its maximum heat storage capacity, the fullest possible occupancy of the rooms with the corrugated sheets is an essential contribution to increasing the storage capacity. Furthermore, the slats make a not negligible contribution to the stability of the heat accumulator.
Ein wesentlicher Vorteil des erfinderischen Wärmespeichers besteht darin, daß den Temperaturwechseln, die mit Zug-und Druckbelastungen der Rohre einhergehen, viel besser zu widerstehen ist, weil die wellenförmigen oder spiralförmigen Strömungswege relativ lang und deshalb nachgiebig sind und weil sie nur einseitig eingespannt sind, während sie beim Stand der Technik auf gegenüberliegenden Seiten fest in Rohrböden eingespannt sind. Die Belastung der metallischen Verbindungen der Strömungswege mit dem Gehäuse des Speicherkemes ist wesentlich geringer als beim Stand der Technik, so daß die Gefahr von Brüchen deutlich gesenkt worden ist. Es kann deshalb davon ausgegangen werden, daß der erfinderische Wärmespeicher eine bessere Dauerfestigkeit aufweist, verbunden mit weniger Ausfällen durch gebrochene Lötverbindungen. Weitere gegebenenfalls wichtige Merkmale und vorteilhafte Wirkungen ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen, die in den beiliegenden Zeichnungen abgebildet sind. Auf diese Ausführungsbeispiele ist die Erfindung keinesfalls beschränkt, denn sie dienen lediglich dem besseren Verständnis und als Hilfe zur Auslegung. Die einzelnen Figuren zeigen: Fig. 1 Räumliche Gesamtansicht eines Latentwärmespeichers im Prinzip, vorne und oben offen gezeichnet;A major advantage of the inventive heat store is that the temperature changes associated with tensile and compressive loads on the pipes can be withstood much better because the undulating or spiral flow paths are relatively long and therefore flexible and because they are only clamped on one side while they are firmly clamped on opposite sides in tube sheets in the prior art. The load on the metallic connections of the flow paths with the housing of the storage core is substantially lower than in the prior art, so that the risk of breakage has been significantly reduced. It can therefore be assumed that the heat accumulator according to the invention has better fatigue strength, combined with fewer failures due to broken solder connections. Further possibly important features and advantageous effects result from the following description of exemplary embodiments which are illustrated in the accompanying drawings. The invention is in no way limited to these exemplary embodiments, since they only serve for better understanding and as an aid to interpretation. The individual figures show: FIG. 1 Overall spatial view of a latent heat storage in principle, open at the front and top;
Fig. 2 Prinzip eines im Querschnitt etwa trapezförmigen Wärmespeichers;Fig. 2 principle of a trapezoidal heat accumulator in cross section;
Fig. 3 Variante von Fig.2;Fig. 3 variant of Fig.2;
Fig. 4 Wärmespeicher mit einer Einschnürung;Fig. 4 heat storage with a constriction;
Fig. 5 Ansicht A von Fig. 4; Fig. 6 Wärmespeicher mit innenliegenden Sammelräumen; Fig. 7 undFig. 5 View A of Fig. 4; Fig. 6 heat storage with internal collection rooms; Fig. 7 and
Fig. 8 Beispielhafte Prinzipdarstellung eines Wärmespeichers mit unterschiedlichen Strömungswegen und Formen; Fig. 9 Schnitt B in Fig. 7; Fig. 10 Spiralförmiger Strömungsweg; Fig. 11 Wärmespeicher mit solchen Strömungswegen;8 shows an exemplary basic illustration of a heat accumulator with different flow paths and shapes; Fig. 9 section B in Fig. 7; Fig. 10 spiral flow path; 11 heat accumulator with such flow paths;
Der Latentwärmespeicher 1 ist zum Einbau in den Motorraum eines Kraftfahrzeuges bestimmt. In diesen Ausführungsbeispielen ist das Kühlwasser des Motors das Wärmeträgermedium, welches von einer Kühlwasserpumpe im Kreislauf (nicht gezeigt) geführt ist, in dem der Latentwärmespeicher 1 mit seinem Einlaß 2 und mit seinem Auslaß 3 eingebunden ist. Die Isolation 4 kann eine hochwirksame Vakuumisolation sein, die es ermöglicht, das aufgeschmolzene und dabei Wärme aufnehmende Phasenwechselmaterial über fast 50 Stunden hinweg, auch unter Winterbedingun- gen, in diesem Speicherzustand zu halten. Wird der Motor gestartet, fördert die Kühlwasserpumpe das kalte Kühlwasser durch die Strömungswege 5, innerhalb des Speicherkernes 6 des Latentwärmespeichers 1. Dabei tritt das Kühlwasser in Wärmeaustausch mit dem Phasenwechselmaterial, wobei dieses zu kristallisieren beginnt und seine Speicherwärme an das Kühlwasser überträgt. Das schnell erwärmte Kühlwasser verkürzt die Startphase des Motors und damit den Kraftstoffver- brauch und kann außerdem zur Erwärmung des Passagierraumes herangezogen werden.The latent heat store 1 is intended for installation in the engine compartment of a motor vehicle. In these exemplary embodiments, the cooling water of the engine is the heat transfer medium, which is guided by a cooling water pump in the circuit (not shown), in which the latent heat accumulator 1 is integrated with its inlet 2 and with its outlet 3. The insulation 4 can be a highly effective vacuum insulation which makes it possible to keep the melted and heat-absorbing phase change material in this storage state for almost 50 hours, even under winter conditions. When the engine is started, the cooling water pump conveys the cold cooling water through the flow paths 5, within the storage core 6 of the latent heat store 1. The cooling water then exchanges heat with the phase change material, which begins to crystallize and transfers its storage heat to the cooling water. The rapidly heated cooling water shortens the engine's start-up phase and thus fuel consumption and can also be used to heat the passenger compartment.
Im fortgeschrittenen Betriebszustand gibt das heiße Kühlwasser seine Wärme an das Phasenwechselmaterial ab, wodurch dasselbe wieder aufschmilzt und dabei Wärme speichert. Dieses Wechselspiel wiederholt sich ständig, so daß der gesamte Wärmespeicher, aber insbesondere die Strömungswege 5, die hier aus flachen Mehrkammerrohren 7 gebildet sind und deren Verbindun- gen, enormen Beanspruchungen ausgesetzt sind. Weil die Strömungswege 5 aber relativ lang und nachgiebig sind und auch die wellenförmigen Bleche 8 nicht sehr starr sind, werden die Wärmespannungen zum größten Teil kompensiert. Brüche von Löt-oder Schweißverbindungen sind normalerweise ausgeschlossen. Die wellenförmigen Bleche 8 sind in den Räumen 9 angeordnet, die für das Phasenwechselmate- rial vorgesehen sind. Diese Räume 9 befinden sich zwischen den Wellen 10 der Strömungswege 5 und auch zwischen den einzelnen Strömungswegen 5. Die Anordnung der wellenförmigen Bleche 8 wird weiter unten näher beschrieben.In the advanced operating state, the hot cooling water releases its heat to the phase change material, causing it to melt again and thereby store heat. This interplay is repeated continuously, so that the entire heat store, but in particular the flow paths 5, which are formed here from flat multi-chamber tubes 7 and whose connections are exposed to enormous stresses. However, because the flow paths 5 are relatively long and flexible and the corrugated sheets 8 are not very rigid, the thermal stresses are largely compensated for. Breaks in soldered or welded connections are normally excluded. The corrugated sheets 8 are arranged in the spaces 9 which are provided for the phase change material. These spaces 9 are located between the shafts 10 of the flow paths 5 and also between the individual flow paths 5. The arrangement of the corrugated sheets 8 is described in more detail below.
Sowohl der Einlaß 2 als auch der Auslaß 3 gehen in je ein thermosyphonartig geformtes Rohr über, die innerhalb der Isolation 4 angeordnet sind, wodurch sich im Ruhezustand innerhalb der Rohre eine Schichtung der Kühlflüssigkeit derart einstellt, daß das Kühlwasser höherer Temperatur, aufgrund seiner geringeren Dichte, oben bzw. innerhalb der Isolation verbleibt und sich nicht mit dem Kühlwasser in den Rohren außerhalb der Isolation 4 vermischt, welches kälter ist und eine höhere Dichte aufweist. Das vom Bogen des Thermosyphons abwärts gerichtete Rohrende ist der Sammelraum 12, in den, im Ausführungsbeispiel nach Fig. 1 , die Rohrenden der vier Strömungs- wege 5 einmünden und dort verbunden sind, worauf hier nicht näher eingegangen werden muß. Bevor die Rohrenden in die Sammelräume 12 einmünden durchbrechen sie das Gehäuse 11 des Speicherkernes 6.Both the inlet 2 and the outlet 3 each merge into a thermosiphon-shaped tube, which are arranged within the insulation 4, whereby in the idle state a stratification of the cooling liquid is established within the tubes in such a way that the cooling water has a higher temperature due to its lower density , remains above or within the insulation and does not mix with the cooling water in the pipes outside the insulation 4, which is colder and has a higher density. The pipe end directed downward from the arc of the thermosiphon is the collecting space 12, into which, in the exemplary embodiment according to FIG. 1, the pipe ends of the four flow paths 5 open and are connected there, which need not be discussed in more detail here. Before the pipe ends open into the collecting spaces 12, they break through the housing 11 of the storage core 6.
Die Fig. 2 und 3 sind insofern unterschiedlich, als sie eine verschiedene Anordnung der wellenförmigen Bleche 8 und der Sammelräume 12 aufweisen. Der Wärmespeicher aus Fig. 2 zeigt außerdem das äußere Gehäuse 14 des Wärmespeichers 1 und den zwischen dem äußeren Gehäuse 14 und dem Gehäuse 11 des Speicherkernes 6 ausgebildeten Isolationsraum 4, in dem einige AbStützungen 13 aus nicht wärmeleitendem Material angeordnet sind. Der Isolationsraum 4 ist eine Vakuumisolation und die AbStützungen 13 sorgen dafür, daß sich das innere Gehäuse 11 und das äußere Gehäuse 14 nicht berühren, um die Isolationswirkung auf hohem Niveau zu halten. Die Dicke der Isolation 4 beträgt nur wenige Millimeter und trägt dadurch zur Minimierung der äußeren Abmessung des Latentwärmespeichers 1 bei. In Fig. 3 wurden zur Minimierung der Anzahl der Bauteile längere wellenförmige Bleche 8 verwendet, die um die Biegungen der Strömungs wege 5 herumgelegt sind. Dagegen kann man in Fig. 2 sehen, daß zwischen jeder Welle 10 des Strömungsweges 5 einzelne wellenförmige Bleche 8 angeordnet sind. Zur weiteren Minimierung der Abmessung des Wärmespeichers 1 sind die Sammelräume 12, in Fig. 3, lediglich halbschalenförmig ausgebildet. Der sich anschließende thermosyphonartige Einlaß 2 und der Auslaß 3 wurden hier und auch in den folgenden Figuren nicht gezeichnet. Die Fig. 4 und 6 zeigen einen etwa trapezförmigen Querschnitt durch einen Wärmespeicher 1 , wobei die Fig. 4 eine Einschnürung 15 aufweist, die vorgesehen wurde, weil der Einbauraum dies erfordert. Die Wellen 10 der Strömungswege 5 sind an diese unregelmäßige Form angepaßt, indem sie eine an die Einschnürung 15 angepaßte Formgebung aufweisen. Dadurch kann auch eine solche - als unregelmäßig bezeichnete - Form des Wärmespeichers 1 bzw. des Speicherkernes 6 ziemlich einfach und möglichst vollständig mit Strömungswegen 5 und Räumen 9 für das Phasen- wechselmaterial ausgenutzt werden. Eine vorteilhafte Variante geht aus Fig. 6 hervor, die darin besteht, daß die Sammelräume 12 innerhalb des Speicherkernes 6 angeordnet worden sind. Auf diese Weise können einerseits Innenräume des Speicherkernes 6, die sich nicht besonders günstig mit wellenförmigen Blechen 8 belegen lassen, als Sammelraum 12 genutzt werden und andererseits kann der hier nicht gezeigte Isolationsraum 4 weiter reduziert werden. Die Fig. 5 ist nur im Prinzip eine Ansicht des Wärmespeichers 1 gemäß dem Pfeil A von Fig. 4. Jedoch wurden die Sammelräume 12 aufgebrochen, so daß man die Mehrkammerrohre 7 erkennen kann, die in den Sammelräumen 12 münden. Die Mehrkammerrohre 7 bilden die wellenförmigen Strömungswege 5, zwischen denen sich die wellenförmigen Bleche 8 befinden. Die Fig. 5 zeigt, daß die wellenförmigen Bleche 8 eine größere Breite aufweisen als der große Durchmesser der Mehrkammerrohre 7 beträgt. Dadurch ergibt sich ein Überstand 16 der wellenförmigen Bleche2 and 3 are different in that they have a different arrangement of the corrugated sheets 8 and the collecting spaces 12. The heat accumulator from Fig. 2 shows in addition, the outer housing 14 of the heat accumulator 1 and the insulation space 4 formed between the outer housing 14 and the housing 11 of the storage core 6, in which some supports 13 made of non-heat-conducting material are arranged. The insulation space 4 is vacuum insulation and the supports 13 ensure that the inner housing 11 and the outer housing 14 do not touch in order to keep the insulation effect at a high level. The thickness of the insulation 4 is only a few millimeters and thereby contributes to minimizing the outer dimension of the latent heat store 1. In Fig. 3 longer corrugated sheets 8 have been used to minimize the number of components, which are laid around the bends of the flow paths 5. In contrast, it can be seen in Fig. 2 that 5 individual corrugated sheets 8 are arranged between each shaft 10 of the flow path. To further minimize the size of the heat accumulator 1, the collecting spaces 12, in FIG. 3, are only half-shell-shaped. The subsequent thermosiphon-like inlet 2 and outlet 3 were not drawn here or in the following figures. 4 and 6 show an approximately trapezoidal cross section through a heat accumulator 1, FIG. 4 having a constriction 15, which was provided because the installation space requires this. The waves 10 of the flow paths 5 are adapted to this irregular shape by having a shape adapted to the constriction 15. As a result, such a shape - referred to as irregular - of the heat store 1 or of the storage core 6 can be used quite simply and as completely as possible with flow paths 5 and spaces 9 for the phase change material. An advantageous variant is shown in FIG. 6, which consists in the fact that the collecting spaces 12 have been arranged within the storage core 6. In this way, on the one hand, interiors of the storage core 6, which cannot be covered particularly cheaply with corrugated sheets 8, can be used as a collecting space 12, and on the other hand, the insulation space 4 (not shown here) can be further reduced. 5 is only in principle a view of the heat accumulator 1 according to the arrow A in FIG. 4. However, the collecting spaces 12 have been broken open so that the multi-chamber tubes 7 which open into the collecting spaces 12 can be seen. The multi-chamber tubes 7 form the undulating flow paths 5, between which the undulating sheets 8 are located. 5 shows that the corrugated sheets 8 have a greater width than the large diameter of the multi-chamber tubes 7. This results in a protrusion 16 of the corrugated sheets
8 über die Mehrkammerrohre 7, bzw. über die Strömungswege 5, was dazu führt, daß die Räume8 via the multi-chamber pipes 7, or via the flow paths 5, which leads to the rooms
9 für das Phasenwechselmaterial auch zwischen den einzelnen Strömungswegen 5 mit den wellenförmigen Blechen 8 belegt sind. Die wellenförmigen Bleche 8 sind an den Strömungswegen 5 und die außenliegenden Bleche 8 auch an dem inneren Gehäuse 11 fest angelötet. In Fig. 5, oben, wurde der Ansatz zum Thermosyphon eingezeichnet sowie Strömungspfeile, die anzeigen sollen, daß das Kühlwasser vom Einlaß 2 kommt und über den Auslaß 3 wieder ausströmt.9 for the phase change material between the individual flow paths 5 are also covered with the corrugated sheets 8. The wave-shaped plates 8 are soldered to the flow paths 5 and the outer plates 8 also to the inner housing 11. In Fig. 5, above, the approach to the thermosiphon was drawn in as well as flow arrows, which should indicate that the cooling water comes from inlet 2 and flows out again via outlet 3.
Die Fig. 7, 8 und 9 zeigen in besonderer weise die vielfältigen Möglichkeiten hinsichtlich der Formgestaltung von Wärmespeichern 1 und die an die jeweilige Form angepaßte Ausbildung der Strömungswege 5, die auch in diesem Ausführungsbeispiel wellenförmig angeordnet sind. Die Fig. 7 zeigt, daß die Wellen 10 der einzelnen Strömungswege 5 ganz unterschiedliche Wellenhöhen aufweisen, um an die Form des Speichers 1 mit Einschnürungen 15 und Ausbauchungen 17 angepaßt zu sein. Die Fig. 9, die den Schnitt B durch die Fig. 7 zeigt, macht deutlich, daß die Formgestaltung variabel in allen drei Dimensionen ausgeführt ist. Auch hier sind Mehrkammerrohre 7 eingesetzt worden, um die Strömungswege 5 auszubilden. Die Strömungswege 5 sind etwa parallel zueinander angeordnet. Die Sammelräume 12 wurden in diesen Darstellungen nicht gezeichnet. Die Prinzipdarstellungen in den Fig. 10 und 11 zeigen einen Wärmespeicher 1 mit spiralförmigen Strömungswegen 5. Die Anordnung von wellenförmigen Blechen 8 wurde in Fig. 10 nur angedeutet. Diese befinden sich, wie gezeigt, zwischen den Windungen 18 und auch zwischen der äußeren Windung 18 und dem Gehäuse 11 , was nicht gezeichnet wurde. Der eine Sammelraum 12 befindet sich im Zentrum des Wärmespeichers 1 und der andere Sammelraum 12 ist an der Peripherie des Speicherkernes 6 angeordnet. Wobei die Anordnung der Sammelräume 12 ebenfalls variabel er- folgen kann. Demnach hat ein anderes, nicht gezeigtes Ausführungsbeispiel beide Sammelräume 12 an der Peripherie des Speicherkernes 6, obwohl die Strömungswege 5 spiralförmig durch den Speicherkern 6 geführt sind, (siehe bspw. Fig. 3 in DE 41 41 556)7, 8 and 9 show in a special way the various possibilities with regard to the shape of heat accumulators 1 and the design of the shape adapted to the respective shape Flow paths 5, which are also arranged in a wave shape in this exemplary embodiment. 7 shows that the waves 10 of the individual flow paths 5 have very different wave heights in order to be adapted to the shape of the reservoir 1 with constrictions 15 and bulges 17. FIG. 9, which shows section B through FIG. 7, makes it clear that the design is variable in all three dimensions. Multi-chamber pipes 7 have also been used here to form the flow paths 5. The flow paths 5 are arranged approximately parallel to one another. The collection rooms 12 were not drawn in these representations. The basic representations in FIGS. 10 and 11 show a heat accumulator 1 with spiral flow paths 5. The arrangement of corrugated plates 8 has only been indicated in FIG. 10. These are, as shown, between the turns 18 and also between the outer turn 18 and the housing 11, which was not drawn. One collecting space 12 is located in the center of the heat accumulator 1 and the other collecting space 12 is arranged on the periphery of the storage core 6. The arrangement of the collecting spaces 12 can also be variable. Accordingly, another exemplary embodiment, not shown, has both collecting spaces 12 on the periphery of the storage core 6, although the flow paths 5 are guided spirally through the storage core 6 (see, for example, FIG. 3 in DE 41 41 556).
Aus der Fig. 11 geht anschaulich hervor, daß die Strömungswege 5 auch bezüglich ihrer Höhe H , h variabel ausgebildet sein können, um auch dadurch der Forderung nach vielfältiger Formgestal- tung des Wärmespeichers 1 zu entsprechen. Auch diese Strömungswege 5 sollten vorzugsweise aus Mehrkammerrohren 7 gebildet werden. Hier ist die Geometrie der Windungen 18 zwischen den Strömungswegen 5 unterschiedlich aber innerhalb eines Strömungsweges 5 identisch, d.h. mit gleichbleibender Krümmung, ausgebildet. Andere, nicht gezeigte Ausführungsbeispiele, die spiralförmige Strömungswege 5 aufweisen, könnten, z. B. in Anlehnung an die Fig. 4, auch so aus- gebildet sein, daß innerhalb eines Strömungsweges 5 die Windungen 18 mit unterschiedlichen Krümmungen ausgeformt sind, um an eine Einschnürung 15 angepaßt zu sein. 11 clearly shows that the flow paths 5 can also be designed to be variable in terms of their height H, h, in order to thereby also meet the requirement for a diverse design of the heat accumulator 1. These flow paths 5 should also preferably be formed from multi-chamber tubes 7. Here, the geometry of the turns 18 is different between the flow paths 5, but is identical within a flow path 5, that is, with a constant curvature. Other exemplary embodiments, not shown, which have spiral flow paths 5 could, for. 4, can also be designed such that the windings 18 are formed with different curvatures within a flow path 5 in order to be adapted to a constriction 15.
BezugszeichenlisteReference list
1 Wärmespeicher1 heat storage
2 Einlaß2 inlet
3 Auslaß3 outlet
4 Isolation4 isolation
5 Strömungswege5 flow paths
6 Speicherkern6 memory core
7 Mehrkammerrohr7 multi-chamber pipe
8 wärmeleitende Elemente (wellenförmige Bleche)8 heat-conducting elements (corrugated sheets)
9 Räume für das Phasenwechselmaterial9 rooms for the phase change material
10 Wellen10 waves
11 Gehäuse des Speicherkernes 611 Housing of the memory core 6
12 Sammelräume12 meeting rooms
13 AbStützungen13 supports
14 äußeres Gehäuse14 outer housing
15 Einschnürung15 constriction
16 Überstand16 supernatant
17 Ausbauchung17 bulge
18 Windungen18 turns
H Höhe der Strömungswege 5 bzw. der Mehrkammerrohre 7
Figure imgf000009_0001
h geringere Höhe als H
H Height of the flow paths 5 or the multi-chamber tubes 7
Figure imgf000009_0001
h lower height than H

Claims

Patentansprüche claims
1. Wärmespeicher, insbesondere Latentwärmespeicher, mit einer Wärmeisolation, mit mindestens einem Einlaß und einem Auslaß und Sammelräumen für das Wärmeträgermedium, die mit dem von einem Gehäuse umgebenen Speicherkern fluidisch verbunden sind, in dem Strömungswege (Rohre) angeordnet sind und der zwischen den Strömungswegen Räume aufweist, in denen sich ein Phasenwechselmaterial befindet, dadurch gekennzeichnet, daß die Strömungswege (5) aus etwa ovalen oder flachen Rohren bestehen, die wellenförmig durch den Speicherkern (6) geführt sind und daß die Räume (9) für das Phasenwechselmaterial zwischen den einzelnen Strömungswegen (5) und zwischen den Wellen (10) einzelner Strömungswege (5) ausgebildet und zumindest überwiegend mit wärmeleitenden Elementen (8) belegt sind, die mit den Strömungswegen (5) metallisch verbunden sind und die wellenförmige, dünne Blechstreifen sind, die eine Breite haben, die größer ist als der große Durchmesser der die Strömungswege (5) bildenden Rohre.1. Heat storage, in particular latent heat storage, with thermal insulation, with at least one inlet and one outlet and collecting spaces for the heat transfer medium, which are fluidically connected to the storage core surrounded by a housing, are arranged in the flow paths (pipes) and the spaces between the flow paths , in which there is a phase change material, characterized in that the flow paths (5) consist of approximately oval or flat tubes which are guided in a wave shape through the storage core (6) and in that the spaces (9) for the phase change material between the individual flow paths (5) and between the shafts (10) of individual flow paths (5) and are at least predominantly covered with heat-conducting elements (8) which are metallically connected to the flow paths (5) and which are wavy, thin sheet metal strips which have a width which is larger than the large diameter of the flow w ege (5) forming tubes.
2. Wärmespeicher, insbesondere Latentwärmespeicher, mit einer Wärmeisolation, mit mindestens einem Einlaß und einem Auslaß und Sammelräumen für das Wärmeträgermedium, die mit dem von einem Gehäuse umgebenen Speicherkern fluidisch verbunden sind, in dem Strömungswege (Rohre) angeordnet sind und der zwischen den Strömungswegen Räume aufweist, in denen sich ein Phasenwechselmaterial befindet, dadurch gekennzeichnet, daß die Strömungswege (5) aus etwa ovalen oder flachen Rohren bestehen, die spiralförmig durch den Speicherkern (6) geführt sind und daß die Räume (9) für das Phasenwechselmaterial zwischen den einzelnen Strömungswegen (5) und zwischen den Windungen (18) einzelner Strömungswege (5) ausgebildet und zumindest überwiegend mit wärmeleitenden Elementen (8) belegt sind, die mit den Strömungswegen (5) metallisch verbunden sind und die wellenförmige, dünne Blechstreifen sind, die eine Breite haben, die größer ist als der große Durchmesser der die Strömungswege (5) bildenden Rohre.2. Heat storage, in particular latent heat storage, with thermal insulation, with at least one inlet and one outlet and collecting spaces for the heat transfer medium, which are fluidically connected to the storage core surrounded by a housing, are arranged in the flow paths (pipes) and the spaces between the flow paths , in which there is a phase change material, characterized in that the flow paths (5) consist of approximately oval or flat tubes which are spirally guided through the storage core (6) and in that the spaces (9) for the phase change material between the individual flow paths (5) and between the windings (18) of individual flow paths (5) and are at least predominantly covered with heat-conducting elements (8) which are metallically connected to the flow paths (5) and which are wavy, thin sheet metal strips which have a width which is larger than the large diameter of the flow gswege (5) forming tubes.
3. Wärmespeicher, gemäß Anspruch 1 , dadurch gekennzeichnet, daß innerhalb eines Strömungsweges (5) und/oder zwischen mehreren Strömungswegen (5) unregelmäßige Wellenhöhen und/oder Wellenlängen vorgesehen sind.3. Heat accumulator, according to claim 1, characterized in that irregular wave heights and / or wavelengths are provided within a flow path (5) and / or between a plurality of flow paths (5).
4. Wärmespeicher, gemäß Anspruch 2, dadurch gekennzeichnet, daß innerhalb eines Strömungs- weges (5) und/oder zwischen mehreren Strömungswegen (5) die Geometrie der Windungen (18) unregelmäßig ist.4. Heat accumulator, according to claim 2, characterized in that the geometry of the turns (18) is irregular within a flow path (5) and / or between a plurality of flow paths (5).
5. Wärmespeicher, gemäß den vorstehenden Ansprüchen, dadurch gekennzeichnet, daß die Wellen (10) oder die Windungen (18) innerhalb eines Strömungsweges (5) vorzugsweise in einer5. Heat accumulator, according to the preceding claims, characterized in that the waves (10) or the windings (18) within a flow path (5) preferably in one
8 Ebene verlaufen und mehrere Strömungswege (5) vorzugsweise etwa parallel zueinander angeordnet sind.8th Run level and several flow paths (5) are preferably arranged approximately parallel to each other.
6. Wärmespeicher, gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Wärmespeicher (1) eine gleichmäßige äußere Form aufweist und die Strömungswege (5) an diese6. Heat accumulator, according to one of the preceding claims, characterized in that the heat accumulator (1) has a uniform outer shape and the flow paths (5) to it
Form angepaßt sind.Form are adapted.
7. Wärmespeicher gemäß einem den vorstehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Wärmespeicher (1) Ausbauchungen (17) oder Einschnürungen (15) aufweist oder eine andere, von der gleichmäßigen, beispielsweise zylindrischen oder quaderförmigen, Gestalt, abweichende Form besitzt und daß die Strömungswege (5) (Windungen und /oder Wellen) an die jeweilige Form des Wärmespeichers (1) angepaßt sind.7. Heat storage device according to one of the preceding claims 1 to 5, characterized in that the heat storage device (1) has bulges (17) or constrictions (15) or has a different shape from the uniform, for example cylindrical or cuboid, shape, and that the flow paths (5) (windings and / or waves) are adapted to the respective shape of the heat accumulator (1).
8. Wärmespeicher, gemäß den vorstehenden Ansprüchen , dadurch gekennzeichnet, daß die außenliegenden wärmeleitenden Elemente (8) mit dem Gehäuse (11) des Speicherkemes (6) metallisch verbunden sind.8. Heat storage device, according to the preceding claims, characterized in that the external heat-conducting elements (8) with the housing (11) of the storage core (6) are metallically connected.
9. Wärmespeicher, gemäß mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die die Strömungswege (5) bildenden Flachrohre Mehrkammerrohre (7) sind.9. Heat accumulator, according to at least one of the preceding claims, characterized in that the flat tubes forming the flow paths (5) are multi-chamber tubes (7).
10. Wärmespeicher, gemäß einem der vorstehenden Ansprüche , dadurch gekennzeichnet, daß die Sammelräume (12) etwa rohrartig ausgebildet sind.10. Heat store, according to one of the preceding claims, characterized in that the collecting spaces (12) are approximately tubular.
11. Wärmespeicher, gemäß einem der vorstehenden Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Sammelräume (12) etwa halbschalenartig ausgebildet sind.11. Heat store, according to one of the preceding claims 1 to 9, characterized in that the collecting spaces (12) are approximately half-shell-shaped.
12. Wärmespeicher, gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Sammelräume (12) entweder innerhalb der Isolation (4) oder innerhalb des Speicherkernes (6) angeordnet sind. 12. Heat storage device according to one of the preceding claims, characterized in that the collecting spaces (12) are arranged either within the insulation (4) or within the storage core (6).
PCT/EP1999/002012 1998-04-08 1999-03-24 Heat accumulator, especially a pcm device WO1999053258A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002286567A CA2286567A1 (en) 1998-04-08 1999-03-24 Heat accumulator, especially latent heat accumulator
EP99917853A EP0988499A1 (en) 1998-04-08 1999-03-24 Heat accumulator, especially a pcm device
JP55109299A JP2002504219A (en) 1998-04-08 1999-03-24 Heat storage, especially latent heat storage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19815777.0 1998-04-08
DE19815777A DE19815777A1 (en) 1998-04-08 1998-04-08 Heat storage, in particular latent heat storage

Publications (1)

Publication Number Publication Date
WO1999053258A1 true WO1999053258A1 (en) 1999-10-21

Family

ID=7864013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/002012 WO1999053258A1 (en) 1998-04-08 1999-03-24 Heat accumulator, especially a pcm device

Country Status (7)

Country Link
EP (1) EP0988499A1 (en)
JP (1) JP2002504219A (en)
KR (1) KR20010013477A (en)
CN (1) CN1256751A (en)
CA (1) CA2286567A1 (en)
DE (1) DE19815777A1 (en)
WO (1) WO1999053258A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10338318A1 (en) * 2003-08-15 2005-05-04 Thomas Freitag Latent heat storage device, comprises plastic capillary tubes preferably containing phase change material

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100353134C (en) * 2001-09-25 2007-12-05 本田技研工业株式会社 Heat accumulation unit and method of manufacturing the unit
DE10242463B4 (en) * 2002-09-11 2006-07-06 Webasto Ag Cold / heat storage for a climate device
FI20051018L (en) * 2005-10-10 2007-04-11 Mg Innovations Corp Heat exchanger that utilizes a solid change and a vortex tube
DE102006011327A1 (en) 2006-03-09 2007-09-13 Behr Gmbh & Co. Kg Heat exchanger with cold storage
DE102006021237A1 (en) * 2006-05-06 2007-11-15 Bayerische Motoren Werke Ag Heat exchanger for a motor vehicle
DE102009006788A1 (en) 2009-01-30 2010-08-12 Tutech Innovation Gmbh Heat accumulator with a phase change material and method for its production
DE102011112600A1 (en) * 2011-09-06 2013-03-07 Volkswagen Aktiengesellschaft Heat accumulator for vehicle, has storage core, outer cover surrounding storage core to form insulating chamber at distance and coupling element, by which storage core is held in insulation chamber
DE102011085722B4 (en) * 2011-11-03 2020-11-19 ZAE Bayern Bayerisches Zentrum für angewandte Energieforschung e.V. Latent heat storage device with a phase change material and a method for generating a phase change in the phase change material
JP6289814B2 (en) * 2013-03-28 2018-03-07 東芝ライフスタイル株式会社 Heat storage device and air conditioner
DE102017200524A1 (en) * 2017-01-13 2018-07-19 Siemens Aktiengesellschaft Cooling device with a heat pipe and a latent heat storage, method for producing the same and electronic circuit
CN110160181A (en) * 2019-05-28 2019-08-23 国网甘肃省电力公司经济技术研究院 Oval bend pipe cold-storage phase-change material device
CN113513935A (en) * 2020-09-29 2021-10-19 中山大学 Phase-change cold-storage heat exchanger

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2942147A1 (en) 1979-10-18 1981-06-11 Buderus Ag, 6330 Wetzlar Flat heat exchanger with internal passages - has coils forming two passages in same plane, each with feed and return connecting unions
DE3227322A1 (en) 1982-07-22 1984-01-26 Karsten 7148 Remseck Laing Latent heat store
JPS60149893A (en) * 1984-01-13 1985-08-07 Matsushita Electric Works Ltd Heat exchanger
JPS6321490A (en) * 1986-07-15 1988-01-29 Showa Alum Corp Latent heat storage device
WO1989009375A1 (en) 1988-03-26 1989-10-05 Nikolaos Malatidis Heat accumulator for storing latent heat of transformation based on the heat circulation principle, in particular for use as an automobile heating unit
US5109920A (en) * 1987-05-25 1992-05-05 Ice-Cel Pty. Limited Method of manufacturing heat exchangers
DE4141556A1 (en) 1991-12-17 1993-06-24 Behr Gmbh & Co Heat exchanger for exhaust system in motor vehicle - has casing with exchanger medium tube, with tube ends connected to intake and discharge outside casing
US5236336A (en) * 1990-12-05 1993-08-17 Sanden Corporation Heat exchanger
DE4213509A1 (en) * 1992-04-24 1993-10-28 Audi Ag Heat exchanger for condenser of vehicle air conditioning system - has parallel pairs of U=shaped tubes joined to tubular casing divided into inlet and outlet chambers
US5524453A (en) * 1994-08-01 1996-06-11 James; Timothy W. Thermal energy storage apparatus for chilled water air-conditioning systems
US5596877A (en) * 1995-08-16 1997-01-28 Baltimore Aircoil Company, Inc. Header and coil arrangement for cooling apparatus
DE19530376A1 (en) 1995-08-18 1997-02-20 Fresenius Ag Biosensor
DE19530378C1 (en) * 1995-08-18 1997-03-06 Laengerer & Reich Gmbh & Co Heat storage for a motor vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3910356C2 (en) * 1988-03-30 1998-11-19 Bayerische Motoren Werke Ag Latent heat storage

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2942147A1 (en) 1979-10-18 1981-06-11 Buderus Ag, 6330 Wetzlar Flat heat exchanger with internal passages - has coils forming two passages in same plane, each with feed and return connecting unions
DE3227322A1 (en) 1982-07-22 1984-01-26 Karsten 7148 Remseck Laing Latent heat store
JPS60149893A (en) * 1984-01-13 1985-08-07 Matsushita Electric Works Ltd Heat exchanger
JPS6321490A (en) * 1986-07-15 1988-01-29 Showa Alum Corp Latent heat storage device
US5109920A (en) * 1987-05-25 1992-05-05 Ice-Cel Pty. Limited Method of manufacturing heat exchangers
WO1989009375A1 (en) 1988-03-26 1989-10-05 Nikolaos Malatidis Heat accumulator for storing latent heat of transformation based on the heat circulation principle, in particular for use as an automobile heating unit
US5236336A (en) * 1990-12-05 1993-08-17 Sanden Corporation Heat exchanger
DE4141556A1 (en) 1991-12-17 1993-06-24 Behr Gmbh & Co Heat exchanger for exhaust system in motor vehicle - has casing with exchanger medium tube, with tube ends connected to intake and discharge outside casing
DE4213509A1 (en) * 1992-04-24 1993-10-28 Audi Ag Heat exchanger for condenser of vehicle air conditioning system - has parallel pairs of U=shaped tubes joined to tubular casing divided into inlet and outlet chambers
US5524453A (en) * 1994-08-01 1996-06-11 James; Timothy W. Thermal energy storage apparatus for chilled water air-conditioning systems
US5596877A (en) * 1995-08-16 1997-01-28 Baltimore Aircoil Company, Inc. Header and coil arrangement for cooling apparatus
DE19530376A1 (en) 1995-08-18 1997-02-20 Fresenius Ag Biosensor
DE19530378C1 (en) * 1995-08-18 1997-03-06 Laengerer & Reich Gmbh & Co Heat storage for a motor vehicle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 009, no. 316 (M - 438) 12 December 1985 (1985-12-12) *
PATENT ABSTRACTS OF JAPAN vol. 012, no. 227 (M - 713) 28 June 1988 (1988-06-28) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10338318A1 (en) * 2003-08-15 2005-05-04 Thomas Freitag Latent heat storage device, comprises plastic capillary tubes preferably containing phase change material
DE10338318B4 (en) * 2003-08-15 2005-09-08 Freitag, Thomas, Dipl.-Ing. Latent heat storage with a heat exchanger made of plastic-metal composite capillary tube

Also Published As

Publication number Publication date
DE19815777A1 (en) 1999-10-14
CN1256751A (en) 2000-06-14
CA2286567A1 (en) 1999-10-21
JP2002504219A (en) 2002-02-05
EP0988499A1 (en) 2000-03-29
KR20010013477A (en) 2001-02-26

Similar Documents

Publication Publication Date Title
DE69624984T2 (en) Heat exchange device with metal band provided with longitudinal holes
DE3752324T2 (en) capacitor
DE69209817T2 (en) Evaporator or evaporator / condenser
EP2567423B1 (en) Battery cooling device
EP1271085B1 (en) Device for cooling vehicle equipment, more particularly battery or fuel cell
DE112019003711B4 (en) Integrated liquid/air cooled condenser and low temperature cooler
EP0632245B1 (en) Water-air heat exchanger of aluminium for motor vehicles
EP0881447B1 (en) Heat exchanger and heat exchanging apparatus for vehicle
DE69924306T2 (en) heat exchangers
WO1999053258A1 (en) Heat accumulator, especially a pcm device
DE102009040544A1 (en) Heat exchanger with a cold storage
DE69708730T2 (en) Heat exchanger and process for its manufacture
WO2007022761A1 (en) Heat or cold reservoir
CH666118A5 (en) LATENT HEAT STORAGE, IN PARTICULAR FOR USE IN MOTOR VEHICLES.
DE102007028792A1 (en) heat exchangers
EP3143357B1 (en) Heat transfer device and use thereof
EP1411310B1 (en) Heat exhanger with serpentine structure
DE10242463B4 (en) Cold / heat storage for a climate device
DE102018106497A1 (en) Cold storage heat exchanger
EP1625298B1 (en) Fuel and fuel cooler with lamellar inner structures for connecting to the air-conditioning system
EP2167895B1 (en) Heat exchanger
DE1452809A1 (en) Heat exchanger and manufacturing process
EP2937658B1 (en) Internal heat exchanger
EP2398109A1 (en) Heat exchanger and method for operating and manufacturing same
DE102020000274A1 (en) Method of manufacturing a fin and plate heat exchanger

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99800202.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2286567

Country of ref document: CA

Ref document number: 2286567

Country of ref document: CA

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999917853

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09445406

Country of ref document: US

Ref document number: 1019997011481

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1999 551092

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999917853

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997011481

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999917853

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019997011481

Country of ref document: KR