EP3143357B1 - Heat transfer device and use thereof - Google Patents

Heat transfer device and use thereof Download PDF

Info

Publication number
EP3143357B1
EP3143357B1 EP15717147.1A EP15717147A EP3143357B1 EP 3143357 B1 EP3143357 B1 EP 3143357B1 EP 15717147 A EP15717147 A EP 15717147A EP 3143357 B1 EP3143357 B1 EP 3143357B1
Authority
EP
European Patent Office
Prior art keywords
heat transfer
transfer device
heat
textile structure
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15717147.1A
Other languages
German (de)
French (fr)
Other versions
EP3143357A1 (en
Inventor
Lena Schnabel
Eric Laurenz
Hannes Fugmann
Steffen Kaina
Thomas Studnitzky
Friedrich A. ROELL
Kurt HATTLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3143357A1 publication Critical patent/EP3143357A1/en
Application granted granted Critical
Publication of EP3143357B1 publication Critical patent/EP3143357B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/122Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/022Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being wires or pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Definitions

  • the invention relates to a heat transfer device with channels for heat-absorbing media and channels for heat-emitting media, at least one of the channels having a textile structure with compressed and non-compressed areas. While the compressed areas are arranged in the transition areas between the channels to improve heat transfer on or over the channel wall, the non-compressed areas are arranged in the flow areas of the channels.
  • This structure enables a large heat transfer to the heat transfer surface with good heat conduction from the heat transfer surface to the separating surface.
  • the invention also relates to heat exchangers with such heat transfer devices.
  • the surface enlargement is of central importance in the phenomenon of heat transfer.
  • the increase in power density corresponds to the reduction in construction volume and / or the use of materials
  • the reduction in driving temperature differences corresponds to the reduction in construction volume and / or the use of materials
  • the reduction in pressure loss corresponds to the reduction in pressure loss
  • the increase in yield through reduced cycle times or a combination of these variables are of interest.
  • plugged or soldered finned heat exchangers consisting of copper tubes and attached copper, aluminum or stainless steel fins as well as flat tube-based aluminum coolers, in which folded fins are soldered with extruded fluid channels, are of particular importance.
  • Table 1 volume-specific area [m 2 / m 3 ] Contact surface to the fluid structure [m 2 / m 3 ] Type of contact Slats (flat, punched) 1250 55 Pressed Folded / corrugated slats 1340 65 Cohesive (soldered) Metallic short fibers 8,000-10,000 100 Soldered / sintered
  • Metallic short fiber structures are another possibility for producing large specific surfaces and a materially contacting the separating surface. These are poured onto one another, pressed and then soldered or sintered. A variation in density and porosity can be achieved by varying the fiber length and diameter. They achieve volume-specific surfaces of 8,000-10,000 m 2 / m 3 and volume-specific separating surfaces between the two media in the range of 100 m 2 / m 3 . However, the undefined orientation and arrangement of the fibers is disadvantageous for use in flowing media.
  • WO 98/31976 A1 describes a heat exchanger element in which the heat transfer is achieved by means of rod fins standing perpendicularly in the flow and equally spaced from one another.
  • the suitable cross-section is 4 mm 2 and the ratio of the rod diameter / length to 0.3.
  • woven and knitted fabrics are mentioned as the preferred material and are described both for the wall and for the production of the rod structure.
  • the rods are also conceivable in the form of loops.
  • WO 2012/141793 A1 describes a general hierarchically structured surface enlargement for heat exchangers with flat plates.
  • the surface enlargement forms channels in the flow direction of the fluid and becomes thicker with increasing distance from the plate.
  • WO 2011/137522 A1 describes a method for producing heat exchangers from disks that have been cut from a block of layered fabric. The surfaces of these disks are sealed using coating processes so that media separation is achieved without additional separating elements (plates, foils).
  • a heat transfer device is for example from the GB 909 142 A known.
  • the technical problem underlying the present invention exists in the non-optimal adaptation of available surface enlargements to the respective question and installation situation.
  • the demand for high heat transfer performance with small driving temperature differences and small pressure losses with little use of material in a small installation space has so far not been adequately met with the solutions known from the prior art. This is accompanied by an increased consumption of material and energy to overcome the pressure losses.
  • a heat transfer device which has at least one channel for a heat-absorbing medium and at least one channel for a heat-emitting medium. At least one of these channels has a textile structure at least in some areas, the textile structure having compressed areas at regular intervals, the compressed areas of the textile structure in the transition area between at least one channel for a heat-absorbing medium and at least one channel for a heat-emitting medium Production of a thermal contact between these channels are arranged. Furthermore, non-compressed areas of the textile structure are arranged in the flow area of at least one channel.
  • channel is also to be understood to mean those areas which are channel-shaped but, owing to the filling with a solid, e.g. PCM, no longer represent a channel or, e.g. with surface heating structures that are open to the environment.
  • a solid e.g. PCM
  • the textile structures used according to the invention enable very large heat transfer areas. These are aligned in such a way that a large heat transfer to the heat transfer surface and a good one Heat conduction from the heat transfer surface to the separating surface is achieved. When heat transfer devices flow through, the flow is only disturbed if possible to the extent that it serves to improve the heat transfer.
  • the advantage of the heat transfer device according to the invention is that, with the simultaneous use of material and construction volume, less energy has to be used for the same heat transfer. With the same use of energy and construction volume, less material has to be used for the heat transfer device according to the invention, and with the same use of energy and material, the construction volume can be reduced.
  • a preferred embodiment provides that the channels for the heat-absorbing media are separated from the channels for the heat-dissipating media by a partition, in particular a sheet, a film, a membrane or the outer surface of a tube or hose.
  • the compressed areas in the transition area of the channels are at least partially connected to the dividing wall, in particular by gluing, soldering, welding, sintering or casting.
  • a further embodiment according to the invention provides that the textile structure has a coating impermeable to the media at the compressed areas.
  • a further embodiment according to the invention relates to a heat transfer device for separating adjacent channels in at least one channel, an expandable hose or tube which is impermeable to the media and / or is arranged around at least one channel, a shrinkable hose or tube which is impermeable to the media, which is expanded and expanded / or allow shrinking to make contact with the textile structure.
  • the textile structure arranged in at least one channel can preferably be flowed through by a fluid, at least in regions, in a heat-transferring manner.
  • the textile structure can, at least in regions, be latently heat-storing, sorptive or catalytic fixed medium must be embedded.
  • a further preferred embodiment provides that the textile structures of adjacent channels have different wire lengths and / or distances between the wires in the parting plane.
  • the uncompressed areas can preferably be varied such that the flow resistance in the channel can be set via the wire lengths, wire diameters and / or distances between the wires.
  • This can be used, in particular, to generate structures with an inclined flow with secondary channels lying between them.
  • the flow velocity through the textile structure with which the oblique structures are flowed through is reduced.
  • the slower structures through which the flow flows more slowly lead to an advantageous reduced pressure loss with the same transmission density or to an advantageous higher transmission density with the same pressure loss.
  • the area flowed towards at an angle can generally include compressed and non-compressed textile structures and, if appropriate, separate heat-transfer media which flow in the plane of this area.
  • tissue structures are possible in particular if the structures are flat, i. H. be manufactured with a low flow depth.
  • These two-dimensional structures can be folded into the desired shape in a second manufacturing process.
  • the creation of a secondary, structure-free channel by appropriately folding the structure is not limited to textile structures. This can be replaced by other heat exchanger structures that can be flowed through, in particular lamellae, sponges, foams, sintered fiber structures or homogeneous textile structures. A comparable advantageous heat transfer behavior can thus be achieved.
  • the textile structure preferably consists of wires, technical fibers or yarns thereof with a preferred diameter of 10 ⁇ m to 2 ⁇ m, particularly preferably of 80 ⁇ m to 300 ⁇ m.
  • the wires, technical fibers or yarns thereof preferably point in the direction of flow a distance of 20 ⁇ m to 20 mm, preferably from 40 ⁇ m to 10 mm and particularly preferably from 100 ⁇ m to 4 mm.
  • the textile structure preferably has an inherent stiffness which enables the heat exchanger to be self-supporting.
  • the textile structure preferably consists of a woven, knitted or knitted structure or combinations thereof.
  • the fabric structure used has been galvanically coated with a solder and that the inherent stability of the structure and the integral connection at the nodes of the wires to one another and to the separating surface are implemented by melting the solder.
  • a preferred embodiment provides that lighting elements, in particular elements comprising optical fibers or LEDs, are integrated in the heat transfer device, preferably in the form of incorporated wires, fibers or yarns.
  • At least one heating wire in particular made of copper, copper-nickel alloys, nickel-chromium alloys, constantan, manganine, nickel-iron alloys or Kanthal, is integrated in the heat transfer device.
  • a heat exchanger which has a heat transfer device according to the invention, as described above was included.
  • the heat exchanger is preferably a plate heat exchanger, a tube bundle heat exchanger, a tube bundle-finned heat exchanger, a flat tube-finned heat exchanger or a coaxial heat exchanger.
  • the heat transfer devices according to the invention are used in particular in heat transfer to / from air or other gaseous media (for example recoolers, exhaust gas heat exchangers, convectors, ventilation devices, oil coolers, etc.), in heat transfer to / from water or other liquid media, in applications with phase change ( Evaporation, condensation, solid / liquid) as well as in combination with sorption materials or catalytic coatings.
  • air or other gaseous media for example recoolers, exhaust gas heat exchangers, convectors, ventilation devices, oil coolers, etc.
  • phase change Evaporation, condensation, solid / liquid
  • sorption materials or catalytic coatings for example recoolers, exhaust gas heat exchangers, convectors, ventilation devices, oil coolers, etc.
  • Fig. 1 will be on the left ( Fig. 1a ) a flat fabric made of wires is shown, which has non-compacted areas (1) and more closely made wire areas (2). Folding this structure creates a spacing structure that forms a flow channel and two top surfaces. Two examples of such a spacing structure are in Fig. 1a shown in the middle part and lower part. While in the middle part of the figure the wires of the uncompressed area are arranged obliquely, in the lower part the Figure 1a the wires are arranged parallel to each other and perpendicular to the wall surface formed. In Fig. 1b A comparable embodiment is shown, but in which the more narrowly manufactured areas (2) are larger than the areas with long wire gaps (1). At the in Fig.
  • the 1c shown embodiment leads the folding to tapered secondary channels.
  • the non-compressed areas of the textile structure located between the secondary channels are flowed through at a lower normal speed than the inflow speed, so that a lower pressure loss is achieved.
  • the wall surfaces formed can be connected to a partition wall by one of the abovementioned joining methods or can be coated directly impermeable.
  • the folded structure outlined above was contacted on the wall surfaces with a separating surface (3), which was designed as a sheet or foil, via solder connections (4).
  • a separating surface (3) which was designed as a sheet or foil, via solder connections (4).
  • the compressed areas of the textile structure (2) form a tubular shape, which is applied from the outside to a partition wall formed by pipes.
  • the non-compressed areas (1) thus form the surface-enlarging structure in the area between the pipes.
  • This structure can be flowed through, for example, perpendicular to pipes and wires in a heat-transferring manner.
  • the dimensioning of the flow structures can be flexibly adapted to the corresponding media or flow conditions separated by dividing surfaces (7). It is conceivable, for example, that the dimensions of the wire spacing and heights are different for the different sides of the heat exchanger.
  • Fig. 3b An application of this is with the embodiment in Fig. 3b shown.
  • one side is completely encased by the separating surface (8), so that flow-through flat tubes are formed, to which the medium is distributed via a collector (9).
  • the other medium flows vertically through the other folded structure located between the flat tubes.
  • the stabilizing spacer structures allow the use of very thin partition walls. Due to the folding technique but also with the textile manufacturing technique, different densities of defined structural areas can also be created in one medium ( Fig. 4a ), for example to compensate for uneven velocity distributions in the incoming medium, to control temperature gradients of the second medium in a targeted manner or to deal with complex geometric requirements.
  • the cover surfaces do not necessarily have to be parallel.
  • FIG. 5 A coaxial heat exchanger with a circumferential outer shell 6 is shown, the individual segments of the tube cross section being filled with the textile structure according to the invention.
  • the non-compressed areas 1 and the partition 2 on which the compressed areas are located can be seen.
  • the segments are alternately flowed through with one or the other medium in such a way that one medium flows in and the other medium flows out of the image plane.
  • the non-compressed wires (1) can be arranged at an angle to each other.
  • the connection to the top surface (5) can be achieved, for example, by knitting processes.
  • the inclined position of the wires increases the inherent stability of the structure. The reduction in production steps is also attractive here, but the thermal masses must be taken into account.
  • FIG. 7 an arrangement of the textile structures is shown as a heat exchanger.
  • the area of the textile structure is exemplified by the in Fig. 2 b) given structure given.
  • One of the heat transfer media flows first through the inflow area of the heat exchanger (10), then through the structure-free secondary channel area (11) to the textile structure (12).
  • the medium flows through this at lower speeds than in the inflow area, since the area to be flowed through was greatly increased by the folding of the structures.
  • the medium then flows through the structure-free channels (13) flowing out into the outflow area (14).
  • FIG. 8 Various exemplary embodiments of the structural surfaces are shown.
  • a uniformly distributed, low speed through the structure can, for example, be made possible by these different configurations (tapering ( Fig. 8a ), tapering hyperbolic ( Fig. 8b ), tapered sinusoidally ( Fig. 8c ).
  • a uniformly distributed speed through the structure is advantageous in order to optimally use all areas of the structure for heat transfer.
  • fewer and more densely compressed areas in the structure along the fabric structure ( Fig. 7 , (12)) vary and further promote equal distribution.
  • FIG. 8d An embodiment is shown with several folded structures connected in series. This allows a further increase in the heat exchanger area in a small installation space and thus an increase in the power density with a small increase in the pressure loss.

Description

Die Erfindung betrifft eine Wärmeübertragungsvorrichtung mit Kanälen für wärmeaufnehmende Medien und Kanälen für wärmeabgebende Medien, wobei mindestens einer der Kanäle eine textile Struktur mit verdichteten und nicht-verdichteten Bereichen aufweist. Während die verdichteten Bereiche in den Übergangsbereichen zwischen den Kanälen zur Verbesserung des Wärmeübergangs an oder über die Kanalwand angeordnet sind, sind die nicht-verdichteten Bereich in den Strömungsbereichen der Kanäle angeordnet. Dieser Aufbau ermöglicht einen großen Wärmeübergang an die Wärmeübertragungsfläche bei gleichzeitig guter Wärmeleitung von der Wärmeübertragungsfläche zur Trennfläche. Die Erfindung betrifft ebenso Wärmeübertrager mit derartigen Wärmeübertragungsvorrichtungen.The invention relates to a heat transfer device with channels for heat-absorbing media and channels for heat-emitting media, at least one of the channels having a textile structure with compressed and non-compressed areas. While the compressed areas are arranged in the transition areas between the channels to improve heat transfer on or over the channel wall, the non-compressed areas are arranged in the flow areas of the channels. This structure enables a large heat transfer to the heat transfer surface with good heat conduction from the heat transfer surface to the separating surface. The invention also relates to heat exchangers with such heat transfer devices.

Die Oberflächenvergrößerung ist bei dem Phänomen der Wärmeübertragung von zentraler Bedeutung.The surface enlargement is of central importance in the phenomenon of heat transfer.

Hierbei stehen beispielsweise folgende Zielsetzungen im Vordergrund:

  • Ausgleich stark unterschiedlicher Wärmeübergangskoeffizienten, indem in dem Medium auf der Seite mit dem geringeren Wärmeübergangskoeffizienten (z.B. Luft) eine vergrößerte Oberfläche zur Wärmeübertragung zur Verfügung gestellt wird,
  • Erhöhung der Leistungsdichte von Wärmeübertragern durch kompaktere Bauweise,
  • Erhöhung des Wärmeübergangs bei Siedeprozessen,
  • Optimierung der Wärme- und Stofftransportkinetik bei Sorptionsprozessen/chemischen Reaktionen oder katalytischen Prozessen,
  • Unterstützung kapillarer Transportvorgänge, und
  • Be- und Entfeuchtung von Luft und anderen Gasen.
The following objectives are in the foreground:
  • Compensation of very different heat transfer coefficients by providing an enlarged surface for heat transfer in the medium on the side with the lower heat transfer coefficient (eg air)
  • Increasing the power density of heat exchangers through a more compact design,
  • Increase in heat transfer during boiling processes,
  • Optimization of heat and mass transfer kinetics in sorption processes / chemical reactions or catalytic processes,
  • Support of capillary transport processes, and
  • Humidification and dehumidification of air and other gases.

Je nach Anwendung ist die Erhöhung der Leistungsdichte (entspricht der Reduzierung des Bauvolumens und/oder des Materialeinsatzes), die Reduzierung der treibenden Temperaturdifferenzen, die Reduzierung des Druckverlusts, die Erhöhung der Ausbeute durch reduzierte Zyklenzeiten oder eine Kombination dieser Größen von Interesse.Depending on the application, the increase in power density (corresponds to the reduction in construction volume and / or the use of materials), the reduction in driving temperature differences, the reduction in pressure loss, the increase in yield through reduced cycle times or a combination of these variables are of interest.

Für Wärmeübertrager mit großen spezifischen Oberflächen sind heute vor allem gesteckte oder verlötete Lamellenwärmeübertrager bestehend aus Kupferrohren und aufgesteckten Kupfer-, Aluminium- oder Edelstahllamellen sowie flachrohrbasierte Aluminiumkühler, in denen gefaltete Lamellen mit stranggepressten Fluidkanälen verlötet sind, von Bedeutung.For heat exchangers with large specific surfaces, plugged or soldered finned heat exchangers consisting of copper tubes and attached copper, aluminum or stainless steel fins as well as flat tube-based aluminum coolers, in which folded fins are soldered with extruded fluid channels, are of particular importance.

Zur Realisierung einer energieeffizienten, bauteilkompakten und materialsparenden Wärmeübertragung in strömenden Medien ist es von zentraler Bedeutung, eine hohe volumenspezifische Oberfläche sowie eine möglichst große und möglichst stoffschlüssige Kontaktfläche zwischen der Trennfläche und der Oberflächenvergrößerung zu erreichen. Gleichzeitig gilt es die Wege der Wärmeleitung durch die Oberflächenvergrößerungsstruktur möglichst kurz und direkt zu gestalten. Durch entsprechende Schlitze, Beulen, Wellen etc. in der Oberflächenvergrößerungsstruktur wird versucht einen möglichst hohen flächenspezifischen Wärmeübergang zu erzielen ohne den zu überwindenden Druckverlust unverhältnismäßig zu erhöhen. Die Größen, die hier von den aktuell verfügbaren Wärmeübertragern erreicht werden, sind in Tabelle 1 zusammengefasst. Tabelle 1: volumenspezifische Fläche [m2/m3] Kontaktfläche zur Fluidstruktur [m2/m3] Art der Kontaktierung Lamellen (flach, gestanzt) 1250 55 Gepresst Gefalzte/gewellte Lamellen 1340 65 Stoffschlüssig (gelötet) Metallische Kurzfasern 8.000-10.000 100 Gelötet/gesintern To achieve an energy-efficient, compact and material-saving heat transfer in flowing media, it is of central importance to achieve a high volume-specific surface as well as a contact surface between the separating surface and the surface enlargement that is as large as possible and as integral as possible. At the same time, the ways of heat conduction through the surface enlargement structure must be as short and direct as possible. Appropriate slots, dents, waves, etc. in the surface enlargement structure attempt to achieve the highest possible surface-specific heat transfer without disproportionately increasing the pressure loss to be overcome. The sizes that are currently achieved by the currently available heat exchangers are summarized in Table 1. Table 1: volume-specific area [m 2 / m 3 ] Contact surface to the fluid structure [m 2 / m 3 ] Type of contact Slats (flat, punched) 1250 55 Pressed Folded / corrugated slats 1340 65 Cohesive (soldered) Metallic short fibers 8,000-10,000 100 Soldered / sintered

Eine weitere Möglichkeit zur Erzeugung großer spezifischer Oberflächen und einer stoffschlüssigen Kontaktierung zur Trennfläche stellen metallische Kurzfaserstrukturen dar. Diese werden aufeinander geschüttet, verpresst und anschließend verlötet bzw. versintert. Durch Variation von Faserlänge und -durchmesser ist eine Variation von Dichte und Porosität erreichbar. Sie erreichen volumenspezifische Oberflächen von 8.000-10.000 m2/m3 und volumenspezifische Trennflächen zwischen den beiden Medien im Bereich von 100 m2/m3. Für den Einsatz in strömenden Medien ist allerdings die nicht definierte Orientierung und Anordnung der Fasern von Nachteil.Metallic short fiber structures are another possibility for producing large specific surfaces and a materially contacting the separating surface. These are poured onto one another, pressed and then soldered or sintered. A variation in density and porosity can be achieved by varying the fiber length and diameter. They achieve volume-specific surfaces of 8,000-10,000 m 2 / m 3 and volume-specific separating surfaces between the two media in the range of 100 m 2 / m 3 . However, the undefined orientation and arrangement of the fibers is disadvantageous for use in flowing media.

Die Kombination von Gewebematten und Rohren stellt ebenfalls eine Möglichkeit dar, Oberflächen zu vergrößern.The combination of fabric mats and pipes is also an opportunity to enlarge surfaces.

In der DE 27 02 337 A1 wird die Kombination von flexiblen Rohren und Gewebematten beschrieben, um z.B. Flächenheizungen zu realisieren. Der Fokus der Erfindung liegt aber auf der flexiblen Rohrverlegung, das Gewebe wird lediglich als Trägerstruktur und nicht als gezielt ausgelegte Wärmeübertragerstruktur definiert.In the DE 27 02 337 A1 the combination of flexible pipes and fabric mats is described, for example to implement surface heating. However, the focus of the invention is on flexible pipe laying, the fabric is only defined as a support structure and not as a specifically designed heat exchanger structure.

In der DE 31 24 379 A1 wird ein Drahtgewebe beschrieben, das entweder durch Verlöten mit Rohren oder durch Einweben von durchströmbaren Röhrchen zu einem Wärmeübertrager verarbeitet wird. Das Gewebe ist dabei gleichmäßig strukturiert, eine Geometriegestaltung erfolgt durch punktuelles Verarbeiten dickerer Drähte oder durch Auffalten der Gewebematte. Eine schmutzabweisende Beschichtung durch Teflon wird erwähnt. Drahtabstände und Durchmesser werden nicht näher spezifiziert.In the DE 31 24 379 A1 describes a wire mesh that is processed either by soldering with tubes or by weaving through flowable tubes into a heat exchanger. The fabric is evenly structured, the geometry is created by processing thicker wires or by unfolding the fabric mat. A dirt-repellent coating by Teflon is mentioned. Wire spacing and diameter are not specified in more detail.

Ähnlich dazu wird in der DE 34 27 251 A1 ein Gewebe mit eingewebten Kupferröhrchen beschrieben. Die Struktur wird zur Verwendung als Niedertemperaturheizkörper vorgeschlagen. Die Verbindungstechnik, Drahtabstände und Durchmesser werden nicht näher spezifiziert.Similarly, in the DE 34 27 251 A1 described a fabric with woven copper tubes. The structure is proposed for use as a low temperature radiator. The connection technology, wire spacing and diameter are not specified in more detail.

In der DE 10 2006 022 629 A1 wird eine Wärmetauschvorrichtung für einen Wärmeaustausch zwischen Medien vorgeschlagen, mit welchen die Wärmetauschvorrichtung beaufschlagt ist, wobei die Medien nicht in Kontakt miteinander kommen und wenigstens eine Röhre für ein Medium vorgesehen ist. Die Erfindung zeichnet sich dadurch aus, dass die Röhre in einer Webstruktur integriert ist.In the DE 10 2006 022 629 A1 proposes a heat exchange device for heat exchange between media with which the heat exchange device is acted upon, the media not coming into contact with one another and at least one tube being provided for a medium. The invention is characterized in that the tube is integrated in a weave structure.

In der WO 98/31976 A1 wird ein Wärmeübertragerelement beschrieben, bei dem die Wärmeübertragung durch senkrecht in der Strömung stehenden, untereinander gleich beabstandeten Stabrippen erreicht wird. Als geeignete Abmessungen werden der Stabquerschnitt mit 4 mm2 und das Verhältnis von Stabdurchmesser/ -länge mit 0,3 angegeben. In der Beschreibung zur Umsetzung werden Gewebe und Gewirke als bevorzugtes Material erwähnt und sowohl für die Wand als auch für die Erzeugung der Stabstruktur beschrieben. So sind die Stäbe z.B. auch in Form von Schlaufen vorstellbar.In the WO 98/31976 A1 describes a heat exchanger element in which the heat transfer is achieved by means of rod fins standing perpendicularly in the flow and equally spaced from one another. The suitable cross-section is 4 mm 2 and the ratio of the rod diameter / length to 0.3. In the description of the implementation, woven and knitted fabrics are mentioned as the preferred material and are described both for the wall and for the production of the rod structure. For example, the rods are also conceivable in the form of loops.

In der US 3,313,343 A wird eine Oberflächenvergrößerung durch ein aufgefaltetes unstrukturiertes schräg-gewebtes Metallsieb beschrieben. Das Metallgewebe ist zwischen zwei das Fluid führende ebene Platten platziert, sodass vom gefalteten Gewebe Fluidkanäle gebildet werden.In the US 3,313,343 A describes an increase in surface area by means of a folded, unstructured, diagonally-woven metal sieve. The metal mesh is placed between two flat plates carrying the fluid, so that fluid channels are formed by the folded tissue.

In der WO 2012/141793 A1 wird eine allgemeine hierarchisch strukturierte Oberflächenvergrößerung für Wärmeübertrager mit ebenen Platten beschrieben. Die Oberflächenvergrößerung formt Kanäle in Strömungsrichtung des Fluids und wird mit zunehmendem Abstand zur Platte dicker.In the WO 2012/141793 A1 describes a general hierarchically structured surface enlargement for heat exchangers with flat plates. The surface enlargement forms channels in the flow direction of the fluid and becomes thicker with increasing distance from the plate.

In der WO 2011/137522 A1 wird ein Verfahren zur Herstellung von Wärmeübertragern aus Scheiben beschrieben, die aus einem Block geschichteter Gewebe geschnitten wurden. Die Oberflächen dieser Scheiben werden durch Beschichtungsverfahren versiegelt, so dass eine Medientrennung ohne zusätzliche Trennelemente (Platen, Folien) erreicht wird.In the WO 2011/137522 A1 describes a method for producing heat exchangers from disks that have been cut from a block of layered fabric. The surfaces of these disks are sealed using coating processes so that media separation is achieved without additional separating elements (plates, foils).

Eine Wärmeübertragungsvorrichtung gemäss dem Oberbegriff des Patentanspruchs 1 ist zum Beispiel aus der GB 909 142 A bekannt.A heat transfer device according to the preamble of claim 1 is for example from the GB 909 142 A known.

Das der vorliegenden Erfindung zugrunde liegende technische Problem besteht in der nicht optimalen Anpassung verfügbarer Oberflächenvergrößerungen an die jeweilige Fragestellung und Einbausituation. Die Forderung nach hoher Wärmeübertragungsleistung bei kleinen treibenden Temperaturdifferenzen und kleinen Druckverlusten mit geringem Materialeinsatz auf kleinem Bauraum wird mit den aus dem Stand der Technik bekannten Lösungen bislang nicht ausreichend erfüllt. Damit geht ein erhöhter Verbrauch an Material und Energie zur Überwindung der Druckverluste einher.The technical problem underlying the present invention exists in the non-optimal adaptation of available surface enlargements to the respective question and installation situation. The demand for high heat transfer performance with small driving temperature differences and small pressure losses with little use of material in a small installation space has so far not been adequately met with the solutions known from the prior art. This is accompanied by an increased consumption of material and energy to overcome the pressure losses.

Es war somit Aufgabe der vorliegenden Erfindung Vorrichtungen zur Wärmeübertragung bereitzustellen, die eben diese Anforderungen nach reduziertem Material- und Energieverbrauch bei gleichzeitig hoher Wärmeübertragungsleistung erfüllen und gleichzeitig einfach und kostengünstig herstellbar sind.It was therefore an object of the present invention to provide devices for heat transfer which meet precisely these requirements for reduced material and energy consumption while at the same time having high heat transfer capacity and at the same time are simple and inexpensive to produce.

Diese Aufgabe wird durch die Wärmeübertragungsvorrichtung mit den Merkmalen des Anspruchs 1 und dem Wärmeübertrager mit den Merkmalen des Anspruchs 19 gelöst. In Anspruch 21 werden erfindungsgemäße Verwendungen angegeben. Die weiteren abhängigen Ansprüche zeigen vorteilhafte Weiterbildungen auf.This object is achieved by the heat transfer device with the features of claim 1 and the heat exchanger with the features of claim 19. In claim 21 uses according to the invention are given. The further dependent claims show advantageous developments.

Erfindungsgemäß wird eine Wärmeübertragungsvorrichtung bereitgestellt, die mindestens einen Kanal für ein wärmeaufnehmendes Medium und mindestens einen Kanal für ein wärmeabgebendes Medium aufweist. Mindestens einer dieser Kanäle weist dabei zumindest bereichsweise eine textile Struktur auf, wobei die textile Struktur in regelmäßigen Abständen verdichtete Bereiche aufweist, wobei die verdichteten Bereiche der textilen Struktur im Übergangsbereich zwischen mindestens einem Kanal für ein wärmeaufnehmendes Medium und mindestens einem Kanal für ein wärmeabgebendes Medium zur Herstellung eines thermischen Kontaktes zwischen diesen Kanälen angeordnet sind. Weiterhin sind im Strömungsbereich mindestens eines Kanals nicht-verdichtete Bereiche der textilen Struktur angeordnet.According to the invention, a heat transfer device is provided which has at least one channel for a heat-absorbing medium and at least one channel for a heat-emitting medium. At least one of these channels has a textile structure at least in some areas, the textile structure having compressed areas at regular intervals, the compressed areas of the textile structure in the transition area between at least one channel for a heat-absorbing medium and at least one channel for a heat-emitting medium Production of a thermal contact between these channels are arranged. Furthermore, non-compressed areas of the textile structure are arranged in the flow area of at least one channel.

Unter der Bezeichnung Kanal sind im Rahmen der vorliegenden Erfindung auch solche Bereiche zu verstehen, die kanalförmig ausgebildet sind, aber aufgrund der Füllung mit einem Feststoff, z.B. PCM, keinen Kanal mehr darstellen oder, wie z.B. bei Flächenheizstrukturen, zur Umgebung hin offen sind.Within the scope of the present invention, the term channel is also to be understood to mean those areas which are channel-shaped but, owing to the filling with a solid, e.g. PCM, no longer represent a channel or, e.g. with surface heating structures that are open to the environment.

Die erfindungsgemäß eingesetzten textilen Strukturen ermöglichen sehr große Wärmeübertragungsflächen. Diese sind so ausgerichtet, dass gleichzeitig ein großer Wärmeübergang an die Wärmeübertragungsfläche und eine gute Wärmeleitung von der Wärmeübertragungsfläche zur Trennfläche erreicht wird. Bei durchströmten Wärmeübertragungsvorrichtungen wird die Strömung dabei möglichst nur soweit gestört, wie es der Verbesserung der Wärmeübertragung dient.The textile structures used according to the invention enable very large heat transfer areas. These are aligned in such a way that a large heat transfer to the heat transfer surface and a good one Heat conduction from the heat transfer surface to the separating surface is achieved. When heat transfer devices flow through, the flow is only disturbed if possible to the extent that it serves to improve the heat transfer.

Mit der erfindungsgemäßen Wärmeübertragungsvorrichtung ist der Vorteil verbunden, dass bei gleichzeitigem Einsatz von Material und Bauvolumen weniger Energie für den gleichen Wärmeübergang aufgewendet werden muss. Bei gleichem Einsatz von Energie und Bauvolumen muss für die erfindungsgemäße Wärmeübertragungsvorrichtung weniger Material eingesetzt und bei gleichem Einsatz von Energie und Material kann das Bauvolumen reduziert werden.The advantage of the heat transfer device according to the invention is that, with the simultaneous use of material and construction volume, less energy has to be used for the same heat transfer. With the same use of energy and construction volume, less material has to be used for the heat transfer device according to the invention, and with the same use of energy and material, the construction volume can be reduced.

Eine bevorzugte Ausführungsform sieht vor, dass die Kanäle für die wärmeaufnehmendes Medien von den Kanälen für die wärmeabgebende Medien durch eine Trennwand, insbesondere ein Blech, eine Folie, eine Membran oder die Mantelfläche eines Rohres oder Schlauchs, separiert sind.A preferred embodiment provides that the channels for the heat-absorbing media are separated from the channels for the heat-dissipating media by a partition, in particular a sheet, a film, a membrane or the outer surface of a tube or hose.

Dabei ist es bevorzugt, dass die verdichteten Bereiche im Übergangsbereich der Kanäle mit der Trennwand zumindest bereichsweise stoffschlüssig verbunden sind, insbesondere durch Kleben, Löten, Schweißen, Sintern oder Gießen.It is preferred that the compressed areas in the transition area of the channels are at least partially connected to the dividing wall, in particular by gluing, soldering, welding, sintering or casting.

Eine weitere erfindungsgemäße Ausführungsform sieht vor, dass die textile Struktur an den verdichteten Bereichen eine für die Medien undurchlässige Beschichtung aufweist.A further embodiment according to the invention provides that the textile structure has a coating impermeable to the media at the compressed areas.

Eine weitere erfindungsgemäße Ausführungsform betrifft eine Wärmeübertragungsvorrichtung zur Trennung benachbarter Kanäle in mindestens einem Kanal ein für die Medien undurchlässiger, expandierbarer Schlauch oder Rohr integriert und/oder um mindestens einen Kanal ein für die Medien undurchlässiger, schrumpfbarer Schlauch oder Rohr angeordnet ist, die durch Aufweiten und/oder Schrumpfen eine Kontaktierung zur textilen Struktur ermöglichen.A further embodiment according to the invention relates to a heat transfer device for separating adjacent channels in at least one channel, an expandable hose or tube which is impermeable to the media and / or is arranged around at least one channel, a shrinkable hose or tube which is impermeable to the media, which is expanded and expanded / or allow shrinking to make contact with the textile structure.

Die in mindestens einem Kanal angeordnete textile Struktur kann vorzugsweise zumindest bereichsweise von einem Fluid wärmeübertragend durchströmt werden. In einer weiteren Variante kann die textile Struktur zumindest bereichsweise in ein latent wärmespeicherndes, sorptives oder katalytisches ortsfestes Medium eingebettet sein.The textile structure arranged in at least one channel can preferably be flowed through by a fluid, at least in regions, in a heat-transferring manner. In a further variant, the textile structure can, at least in regions, be latently heat-storing, sorptive or catalytic fixed medium must be embedded.

Eine weitere bevorzugte Ausführungsform sieht vor, dass die textilen Strukturen von zueinander benachbarten Kanälen sich unterscheidende Drahtlängen und/oder Abstände der Drähte in Trennflächenebene aufweisen.A further preferred embodiment provides that the textile structures of adjacent channels have different wire lengths and / or distances between the wires in the parting plane.

Die nicht verdichteten Bereiche können dabei vorzugsweise so variiert werden, dass der Strömungswiderstand im Kanal über die Drahtlängen, Drahtdurchmesser und/oder Abstände der Drähte einstellbar ist. Dies kann insbesondere dazu genutzt werden, schräg angeströmte Strukturen mit zwischenliegenden Sekundärkanälen zu erzeugen. Im Vergleich zur Anströmgeschwindigkeit ist die Strömungsgeschwindigkeit durch die textile Struktur, mit der die schrägen Strukturen durchströmt werden, verringert. Bei der Umströmung der erfindungsgemäßen textilen Strukturen mit geringen Faser-, Garn oder Drahtdurchmessern werden bereits bei kleinen Strömungsgeschwindigkeiten große Wärmeübergänge erzielt. So führen die langsamer durchströmten schrägen Strukturen zu einem vorteilhaften reduzierten Druckverlust bei gleicher Übertragungsdichte oder zu einer vorteilhaften höheren Übertragungsdichte bei gleichem Druckverlust. Der schräg angeströmte Bereich kann im Allgemeinen verdichtete und nicht-verdichtete textile Strukturen sowie ggf. getrennte wärmeübertragende Medien, die in der Ebene dieses Bereichs strömen, mit einschließen.The uncompressed areas can preferably be varied such that the flow resistance in the channel can be set via the wire lengths, wire diameters and / or distances between the wires. This can be used, in particular, to generate structures with an inclined flow with secondary channels lying between them. In comparison to the inflow velocity, the flow velocity through the textile structure with which the oblique structures are flowed through is reduced. When flowing around the textile structures according to the invention with small fiber, yarn or wire diameters, large heat transfers are achieved even at low flow velocities. The slower structures through which the flow flows more slowly lead to an advantageous reduced pressure loss with the same transmission density or to an advantageous higher transmission density with the same pressure loss. The area flowed towards at an angle can generally include compressed and non-compressed textile structures and, if appropriate, separate heat-transfer media which flow in the plane of this area.

Eine solche Anordnung der Gewebestrukturen ist insbesondere möglich, wenn die Strukturen flächig, d. h. mit einer geringen Durchströmungstiefe hergestellt werden. Eine Faltung dieser flächigen Strukturen in die gewünschte Form kann in einem zweiten Herstellungsprozess erfolgen. Die Erzeugung eines sekundären, strukturfreien Kanals durch entsprechende Faltung der Struktur ist nicht beschränkt auf textile Strukturen. Diese kann durch andere durchströmbare Wärmeübertragerstrukturen, insbesondere Lamellen, Schwämme, Schäume, gesinterte Faserstrukturen oder homogene textile Strukturen ersetzt werden. Damit kann ein vergleichbares vorteilhaftes Wärmeübertragungsverhalten erzielt werden.Such an arrangement of the tissue structures is possible in particular if the structures are flat, i. H. be manufactured with a low flow depth. These two-dimensional structures can be folded into the desired shape in a second manufacturing process. The creation of a secondary, structure-free channel by appropriately folding the structure is not limited to textile structures. This can be replaced by other heat exchanger structures that can be flowed through, in particular lamellae, sponges, foams, sintered fiber structures or homogeneous textile structures. A comparable advantageous heat transfer behavior can thus be achieved.

Die textile Struktur besteht dabei vorzugsweise aus Drähten, technischen Fasern oder Garnen hiervon mit einem bevorzugten Durchmesser von 10 µm bis 2 µm, besonders bevorzugt von 80 µm bis 300 µm. Die Drähte, technischen Fasern oder Garne hiervon weisen dabei in Strömungsrichtung vorzugsweise einen Abstand von 20 µm bis 20 mm, bevorzugt von 40 µm bis 10 mm und besonders bevorzugt von 100 µm bis 4 mm auf.The textile structure preferably consists of wires, technical fibers or yarns thereof with a preferred diameter of 10 µm to 2 µm, particularly preferably of 80 µm to 300 µm. The wires, technical fibers or yarns thereof preferably point in the direction of flow a distance of 20 µm to 20 mm, preferably from 40 µm to 10 mm and particularly preferably from 100 µm to 4 mm.

Die Drähte, technischen Fasern oder Garne hiervon sind vorzugsweise ausgewählt aus der Gruppe bestehend aus

  • metallischen Materialien und deren Legierungen, insbesondere Kupfer, Aluminium oder Edelstahl,
  • kohlenstoffhaltigen Materialien, insbesondere Kohlefasern, Aktivkohlefasern,
  • Glas- und Keramikfasern,
  • Polymermaterialien, insbesondere Polypropylen (PP), Polyethylen (PE), Polyamid (PA), Polyetherketone (PEK), Polyester (PET) und
  • Verbundstoffe hiervon.
The wires, technical fibers or yarns thereof are preferably selected from the group consisting of
  • metallic materials and their alloys, in particular copper, aluminum or stainless steel,
  • carbon-containing materials, in particular carbon fibers, activated carbon fibers,
  • Glass and ceramic fibers,
  • Polymer materials, especially polypropylene (PP), polyethylene (PE), polyamide (PA), polyether ketones (PEK), polyester (PET) and
  • Composites thereof.

Die textile Struktur weist vorzugsweise eine Eigensteifigkeit auf, die eine selbsttragende Bauweise des Wärmeübertragers ermöglicht.The textile structure preferably has an inherent stiffness which enables the heat exchanger to be self-supporting.

Bevorzugt besteht die textile Struktur aus einer Web-, Strick- oder Wirkstruktur oder Kombinationen hiervon.The textile structure preferably consists of a woven, knitted or knitted structure or combinations thereof.

Weiterhin ist es bevorzugt, dass die verwendete Gewebestruktur galvanisch mit einem Lot beschichtet wurde und durch Aufschmelzen des Lots die Eigenstabilität der Struktur und die stoffschlüssige Verbindung an den Knotenpunkten der Drähte untereinander und zur Trennfläche umgesetzt wird.It is further preferred that the fabric structure used has been galvanically coated with a solder and that the inherent stability of the structure and the integral connection at the nodes of the wires to one another and to the separating surface are implemented by melting the solder.

Eine bevorzugte Ausführungsform sieht vor, dass in die Wärmeübertragungsvorrichtung Beleuchtungselemente, insbesondere Lichtleitfasern oder LEDs aufweisende Elemente, integriert sind, bevorzugt in Form von eingearbeiteten Drähten, Fasern oder Garnen.A preferred embodiment provides that lighting elements, in particular elements comprising optical fibers or LEDs, are integrated in the heat transfer device, preferably in the form of incorporated wires, fibers or yarns.

Ebenso ist es möglich, dass in der Wärmeübertragungsvorrichtung mindestens ein Heizdraht, insbesondere aus Kupfer, Kupfer-Nickel-Legierungen, Nickel-Chrom-Legierungen, Konstantan, Manganin, Nickel-Eisen-Legierungen oder Kanthal integriert ist.It is also possible that at least one heating wire, in particular made of copper, copper-nickel alloys, nickel-chromium alloys, constantan, manganine, nickel-iron alloys or Kanthal, is integrated in the heat transfer device.

Erfindungsgemäß wird ebenso ein Wärmeübertrager bereitgestellt, der eine erfindungsgemäße Wärmeübertragungsvorrichtung, wie sie zuvor beschrieben wurde, enthält. Beim Wärmeübertrager handelt es sich dabei vorzugsweise um einen Plattenwärmeübertrager, einen Rohrbündelwärmeübertrager, einen Rohrbündel-Lamellen-Wärmeübertrager, einen Flachrohr-Lamellen-Wärmeübertrager oder einen Koaxialwärmeübertrager.According to the invention, a heat exchanger is also provided, which has a heat transfer device according to the invention, as described above was included. The heat exchanger is preferably a plate heat exchanger, a tube bundle heat exchanger, a tube bundle-finned heat exchanger, a flat tube-finned heat exchanger or a coaxial heat exchanger.

Verwendung finden die erfindungsgemäßen Wärmeübertragungsvorrichtungen insbesondere in der Wärmeübertragung an/von Luft oder andere gasförmige Medien (z.B. Rückkühler, Abgaswärmetauscher, Konvektoren, Lüftungsgeräte, Ölkühler, etc.), in der Wärmeübertragung an/von Wasser oder andere flüssige Medien, in Anwendungen mit Phasenwechsel (Verdampfung, Kondensation, fest/flüssig) sowie in Kombination mit Sorptionsmaterialien oder katalytischen Beschichtungen.The heat transfer devices according to the invention are used in particular in heat transfer to / from air or other gaseous media (for example recoolers, exhaust gas heat exchangers, convectors, ventilation devices, oil coolers, etc.), in heat transfer to / from water or other liquid media, in applications with phase change ( Evaporation, condensation, solid / liquid) as well as in combination with sorption materials or catalytic coatings.

Anhand der nachfolgenden Figuren soll der erfindungsgemäße Gegenstand näher erläutert werden, ohne diesen auf die hier gezeigten spezifischen Ausführungsformen einschränken zu wollen.

  • Fig. 1 zeigt die erfindungsgemäße textile Struktur anhand zweier Ausführungsformen (Fig. 1a und 1b) im flachen wie im gefalzten Zustand.
  • Fig. 2 zeigt eine erste flache Ausführungsform (Fig. 2a) und eine zweite rohrförmige Ausführungsform (Fig. 2b) der erfindungsgemäßen Wärmeübertragungsvorrichtung.
  • Fig. 3 zeigt eine Variante einer erfindungsgemäßen Wärmeübertragungsvorrichtung mit einer Kombination verschiedener textiler Strukturen (Fig. 3a) und in Kombination mit einem Sammler (Fig. 3b).
  • Fig. 4 zeigt eine Variante der textilen Struktur mit unterschiedlichen Drahtabständen (Fig. 4a) und Drahtlängen (Fig. 4b) im durchströmten Bereich.
  • Fig. 5 zeigt eine erfindungsgemäße Variante eines Koaxialwärmeübertragers unter Nutzung der zuvor (Fig 4b) gezeigten Elemente.
  • Fig. 6 zeigt eine weitere Ausführungsform einer erfindungsgemäßen textilen Struktur.
  • Fig. 7 zeigt eine weitere Ausführungsform der erfindungsgemäßen textilen Struktur dargestellt.
  • Fig. 8 zeigt erfindungsgemäße Beispiele für Strukturflächen.
The subject according to the invention is intended to be explained in more detail with reference to the following figures, without wishing to restrict it to the specific embodiments shown here.
  • Fig. 1 shows the textile structure according to the invention using two embodiments ( 1a and 1b ) flat as well as folded.
  • Fig. 2 shows a first flat embodiment ( Fig. 2a ) and a second tubular embodiment ( Fig. 2b ) the heat transfer device according to the invention.
  • Fig. 3 shows a variant of a heat transfer device according to the invention with a combination of different textile structures ( Fig. 3a ) and in combination with a collector ( Fig. 3b ).
  • Fig. 4 shows a variant of the textile structure with different wire distances ( Fig. 4a ) and wire lengths ( Fig. 4b ) in the flow area.
  • Fig. 5 shows an inventive variant of a coaxial heat exchanger using the previously ( Fig. 4b ) shown elements.
  • Fig. 6 shows a further embodiment of a textile structure according to the invention.
  • Fig. 7 shows a further embodiment of the textile according to the invention Structure shown.
  • Fig. 8 shows examples of structural surfaces according to the invention.

In Fig. 1 wird auf der linken Seite (Fig. 1a) ein flaches Gewebe aus Drähten dargestellt, das nicht-verdichtete Bereiche (1) und enger gefertigte Drahtbereiche (2) aufweist. Durch Falzen dieser Struktur entsteht eine Abstandsstruktur, die einen Strömungskanal und zwei Deckflächen ausbildet. Zwei Beispiele solcher Abstandsstruktur sind in Fig. 1a im mittleren Teil und unteren Teil dargestellt. Während im mittleren Teil der Figur sind die Drähte des nicht verdichteten Bereichs schräg angeordnet, sind im unteren Teil der Figur 1a die Drähte parallel zueinander und senkrecht zur gebildeten Wandfläche angeordnet. In Fig. 1b ist eine vergleichbare Ausführungsform dargestellt, in der aber die enger gefertigten Bereiche (2) gegenüber den Bereichen mit langen Drahtabständen (1) größer ausfallen. Bei der in Fig. 1c gezeigten Ausführungsform führt das Falzen zu zulaufenden Sekundärkanälen. Die zwischen den Sekundärkanälen befindlichen nicht-verdichteten Bereiche der textilen Struktur werden so mit einer im Vergleich zur Anströmgeschwindigkeit geringeren Normalgeschwindigkeit durchströmt, so dass ein geringerer Druckverlust erreicht wird. Die gebildeten Wandflächen können durch eines der oben genannten Fügeverfahren mit einer Trennwand verbunden werden oder direkt undurchlässig beschichtet werden.In Fig. 1 will be on the left ( Fig. 1a ) a flat fabric made of wires is shown, which has non-compacted areas (1) and more closely made wire areas (2). Folding this structure creates a spacing structure that forms a flow channel and two top surfaces. Two examples of such a spacing structure are in Fig. 1a shown in the middle part and lower part. While in the middle part of the figure the wires of the uncompressed area are arranged obliquely, in the lower part the Figure 1a the wires are arranged parallel to each other and perpendicular to the wall surface formed. In Fig. 1b A comparable embodiment is shown, but in which the more narrowly manufactured areas (2) are larger than the areas with long wire gaps (1). At the in Fig. 1c shown embodiment leads the folding to tapered secondary channels. The non-compressed areas of the textile structure located between the secondary channels are flowed through at a lower normal speed than the inflow speed, so that a lower pressure loss is achieved. The wall surfaces formed can be connected to a partition wall by one of the abovementioned joining methods or can be coated directly impermeable.

Bei der in Fig. 2a gezeigten flachen Ausführungsform wurde die oben skizzierte gefalzte Struktur an den Wandflächen mit einer Trennfläche (3), die als Blech oder Folie ausgeführt wurde, über Lötverbindungen (4) kontaktiert. Auf der anderen Seite der Trennwand befindet sich die gleiche textile Struktur um 90° gedreht, so dass dieses Element beispielsweise in einem Kreuzstrom-Plattenwärmeübertrager zum Einsatz kommen kann.At the in Fig. 2a shown flat embodiment, the folded structure outlined above was contacted on the wall surfaces with a separating surface (3), which was designed as a sheet or foil, via solder connections (4). On the other side of the partition there is the same textile structure rotated by 90 ° so that this element can be used in a cross-flow plate heat exchanger, for example.

Bei der in Fig. 2b gezeigten rohrförmigen Ausführungsform bilden die verdichteten Bereiche der textilen Struktur (2) eine schlauchartige Form aus, die von außen auf eine von Rohren ausgebildete Trennwand aufgebracht wird. Die nicht verdichteten Bereiche (1) bilden so im Bereich zwischen den Rohren die oberflächenvergrößernde Struktur. Diese Struktur kann beispielsweise senkrecht zu Rohren und Drähten wärmeübertragend durchströmt werden.At the in Fig. 2b As shown in the tubular embodiment, the compressed areas of the textile structure (2) form a tubular shape, which is applied from the outside to a partition wall formed by pipes. The non-compressed areas (1) thus form the surface-enlarging structure in the area between the pipes. This structure can be flowed through, for example, perpendicular to pipes and wires in a heat-transferring manner.

Wie in Fig. 3a angedeutet, kann die Dimensionierung der Strömungsstrukturen an die entsprechenden über Trennflächen (7) getrennten Medien oder Strömungsbedingungen flexibel angepasst werden. So ist z.B. vorstellbar, dass die Abmessungen der Drahtabstände und -höhen für auf den verschiedenen Seiten des Wärmeübertragers unterschiedlich sind.As in Fig. 3a indicated, the dimensioning of the flow structures can be flexibly adapted to the corresponding media or flow conditions separated by dividing surfaces (7). It is conceivable, for example, that the dimensions of the wire spacing and heights are different for the different sides of the heat exchanger.

Eine Anwendungsmöglichkeit hiervon ist mit der Ausführungsform in Fig. 3b gezeigt. Hier wird die eine Seite von der Trennfläche (8) vollständig umhüllt, so dass durchströmbare Flachrohre ausgebildete werden, auf die über einen Sammler (9) das eine Medium verteilt wird. Das andere Medium strömt senkrecht durch die zwischen den Flachrohren befindliche andere gefalzte Struktur. Als Vorteil gegenüber konventionellen Flachrohren, erlauben die stabilisierenden Abstandsstrukturen den Einsatz von sehr dünnen Trennwänden. Aufgrund der Falztechnik aber auch mit der textilen Fertigungstechnik können auch in einem Medium unterschiedlich dichte definierte Strukturbereiche erzeugt werden (Fig. 4a), z.B. um ungleiche Geschwindigkeitsverteilungen im anströmenden Medium auszugleichen, Temperaturgradienten des zweiten Mediums gezielt zu steuern oder auf komplexe geometrische Anforderungen einzugehen. Wie in Fig. 4b gezeigt, müssen die Deckflächen dabei nicht zwangsläufig parallel sein.An application of this is with the embodiment in Fig. 3b shown. Here, one side is completely encased by the separating surface (8), so that flow-through flat tubes are formed, to which the medium is distributed via a collector (9). The other medium flows vertically through the other folded structure located between the flat tubes. As an advantage over conventional flat tubes, the stabilizing spacer structures allow the use of very thin partition walls. Due to the folding technique but also with the textile manufacturing technique, different densities of defined structural areas can also be created in one medium ( Fig. 4a ), for example to compensate for uneven velocity distributions in the incoming medium, to control temperature gradients of the second medium in a targeted manner or to deal with complex geometric requirements. As in Fig. 4b shown, the cover surfaces do not necessarily have to be parallel.

In Fig. 5 ist ein Koaxialwärmeüberträger mit umlaufender Außenhülle 6 dargestellt, wobei die einzelnen Segmente des Rohrquerschnitts mit der erfindungsgemäßen textilen Struktur ausgefüllt sind. Hier sind die nicht-verdichteten Bereiche 1 und die Trennwand 2, an der sich die verdichteten Bereiche befinden, zu erkennen. Dabei werden die Segmente abwechselt mit dem einen oder dem anderen Medium so durchströmt, dass das eine Medium in und das andere Medium aus der Bildebene strömt.In Fig. 5 A coaxial heat exchanger with a circumferential outer shell 6 is shown, the individual segments of the tube cross section being filled with the textile structure according to the invention. Here the non-compressed areas 1 and the partition 2 on which the compressed areas are located can be seen. The segments are alternately flowed through with one or the other medium in such a way that one medium flows in and the other medium flows out of the image plane.

Fertigungstechnisch möglich ist auch die Erzeugung von Strömungsstrukturen, die in einem Fertigungsschritt erzeugt werden (siehe Fig. 6), dabei können die nicht-verdichteten Drähte (1) schräg zu einander angeordnet. Die Verbindung zur Deckfläche (5) kann beispielsweise durch Wirkverfahren erreicht werden. Durch die schräge Stellung der Drähte wird eine erhöhte Eigenstabilität der Struktur erreicht. Attraktiv ist hieran auch die Reduzierung der Fertigungsschritte, zu beachten sind aber die thermischen Massen.In terms of production technology, it is also possible to create flow structures that are generated in one production step (see Fig. 6 ), the non-compressed wires (1) can be arranged at an angle to each other. The connection to the top surface (5) can be achieved, for example, by knitting processes. The inclined position of the wires increases the inherent stability of the structure. The reduction in production steps is also attractive here, but the thermal masses must be taken into account.

In Fig. 7 ist eine Anordnung der textilen Strukturen als Wärmeübertrager dargestellt. Der Bereich der textilen Struktur ist beispielhaft durch die in Fig. 2 b) dargestellte Struktur gegeben. Eines der wärmeübertragenden Medien strömt zunächst durch den Einströmbereich des Wärmeübertragers (10), dann durch den strukturfreien sekundären Kanalbereich (11) zur textilen Struktur (12). Diese wird durch das Medium mit geringeren Geschwindigkeiten als im Einströmbereich durchströmt, da die zu durchströmende Fläche durch die Faltung der Strukturen stark erhöht wurde. Das Medium strömt anschließend durch die ausströmenden strukturfreien Kanäle (13) in den Ausströmbereich (14).In Fig. 7 an arrangement of the textile structures is shown as a heat exchanger. The area of the textile structure is exemplified by the in Fig. 2 b) given structure given. One of the heat transfer media flows first through the inflow area of the heat exchanger (10), then through the structure-free secondary channel area (11) to the textile structure (12). The medium flows through this at lower speeds than in the inflow area, since the area to be flowed through was greatly increased by the folding of the structures. The medium then flows through the structure-free channels (13) flowing out into the outflow area (14).

In Fig. 8 sind verschiedene Ausführungsbeispiele der Strukturflächen dargestellt. Eine gleichverteilte, niedrige Geschwindigkeit durch die Struktur kann beispielsweise durch diese verschiedenen Konfigurationen ermöglicht werden (spitz zulaufend (Fig. 8a), hyperbolisch zulaufend (Fig. 8b), sinusförmig zulaufend (Fig. 8c). Eine gleichverteilte Geschwindigkeit durch die Struktur ist vorteilhaft, um alle Bereiche der Struktur optimal für den Wärmeübergang zu nutzen. Je nach Anordnung können weniger und stärker verdichtete Bereiche in der Struktur entlang der Gewebestruktur (Fig. 7, (12)) variieren und eine Gleichverteilung weiter fördern.In Fig. 8 Various exemplary embodiments of the structural surfaces are shown. A uniformly distributed, low speed through the structure can, for example, be made possible by these different configurations (tapering ( Fig. 8a ), tapering hyperbolic ( Fig. 8b ), tapered sinusoidally ( Fig. 8c ). A uniformly distributed speed through the structure is advantageous in order to optimally use all areas of the structure for heat transfer. Depending on the arrangement, fewer and more densely compressed areas in the structure along the fabric structure ( Fig. 7 , (12)) vary and further promote equal distribution.

In Fig. 8d ist ein Ausführungsbeispiel mit mehreren hintereinander geschalteten gefalteten Strukturen dargestellt. Dadurch ist eine weitere Erhöhung der Wärmeübertragerfläche auf kleinem Bauraum realisierbar und somit eine Steigerung der Leistungsdichte, bei einem geringen Anstieg des Druckverlusts.In Fig. 8d An embodiment is shown with several folded structures connected in series. This allows a further increase in the heat exchanger area in a small installation space and thus an increase in the power density with a small increase in the pressure loss.

Claims (15)

  1. Heat transfer device comprising at least one channel for a heat-absorbing medium and at least one channel for a heat-emitting medium, at least one of the channels having a textile structure, at least in regions,
    characterized in that
    the textile structure having regions compressed at regular spacings, the compressed regions of the textile structure being disposed in the transition region between at least one channel for a heat-absorbing medium and at least one channel for a heat-emitting medium for the production of a thermal contact and the non-compressed regions of the textile structure being disposed in the flow region of at least one channel.
  2. Heat transfer device according to claim 1,
    characterised in that the channels for the heat-absorbing media are separated from the channels for the heat-emitting media by a separating wall, in particular a metal sheet, a foil, a membrane or an outer surface of a tube or hose.
  3. Heat transfer device according to the preceding claim, characterised in that the compressed regions in the transition region of the channels are connected integrally to the separating wall, at least in regions, in particular by gluing, soldering, welding, sintering or casting.
  4. Heat transfer device according to one of the preceding claims, characterised in that, for separation of adjacent channels, in at least one channel, an expandable hose or tube which is impermeable for the media is integrated and/or, around at least one channel, a shrinkable hose or tube which is impermeable for the media is disposed, which enable contacting to the textile structure by widening and/or shrinking.
  5. Heat transfer device according to one of the preceding claims, characterised in that the textile structure is permeated, at least in regions, by a fluid for heat exchange and/or the textile structure is embedded, at least in regions, in a latently heat-storing, sorptive or catalytic stationary medium or is coated therewith on the surface, wherein the textile structures of flow channels adjacent to each other have different wire lengths and/or spacings of the wires in the flow direction.
  6. Heat transfer device according to one of the preceding claims, characterised in that the spacings of the compressed regions are varied such that the flow resistance in the flow channel is adjustable via the wire lengths, wire diameters and/or spacings of the wires.
  7. Heat transfer device according to one of the preceding claims, characterised in that the textile structure is configured to be planar and has a fold and preferably comprises channels for at least one medium in the plane of the surface, the surface of the textile structure to be permeated by at least one medium being increased relative to the inflow surface, as a result of which the flow rate through the textile structure of the at least one medium is reduced.
  8. Heat transfer device according to one of the preceding claims, characterised in that the wires, technical fibres or yarns hereof have a diameter of 10 µm to 2 mm, preferably of 80 µm to 300 µm and/or have, in flow direction, a spacing of 20 µm to 20 mm, preferably of 40 µm to 10 mm, and particularly preferably of 100 µm to 4 mm.
  9. Heat transfer device according to one of the preceding claims, characterised in that the wires, technical fibres or yarns hereof are selected from the group consisting of
    • metallic materials and the alloys thereof, in particular copper, aluminium or stainless steel,
    • carbon-containing materials, in particular carbon fibres, activated carbon fibres,
    • glass- or ceramic fibres,
    • polymer materials, in particular polypropylene (PP), polyethylene (PE), polyamide (PA), polyether ketones (PEK), polyester (PET) and
    • composite materials hereof.
  10. Heat transfer device according to one of the preceding claims, characterised in that the textile structure has an intrinsic rigidity which enables a self-supporting construction of the heat exchanger.
  11. Heat transfer device according to one of the preceding claims, characterised in that the textile structure is a woven, knitted or warp-knitted structure or a combination hereof.
  12. Heat transfer device according to one of the preceding claims, characterised in that the fabric structure used was coated galvanically and, by melting the solder, the intrinsic stability of the structure and the integral connection at the node points of the wires is implemented to each other and to the separating foil.
  13. Heat transfer device according to one of the preceding claims, characterised in that, in the heat transfer device, lighting elements, in particular optical fibres or elements having LEDs, preferably in the form of incorporated wires, fibres or yarns, and/or at least one heating wire, in particular made of copper, copper-nickel alloys, nickel-chromium alloys, constantan, manganin, nickel-iron alloys, kanthal, are integrated.
  14. Heat exchanger in particular a plate heat exchanger, a tubular heat exchanger, a tubular lamellar heat exchanger, a flat tube lamellar heat exchanger or a coaxial heat exchanger comprising a heat transfer device according to one of the preceding claims.
  15. Use of the heat transfer device according to one of the claims 1 to 13 in heat transfer to air or other gaseous media, in particular in recirculation coolers, exhaust gas heat exchangers, convectors, ventilation devices or oil coolers, in heat transfer to water or other liquid media, in applications with phase change (evaporation, condensation, solid/liquid) and chemical reactions and also in combination with sorption materials or catalytic coatings.
EP15717147.1A 2014-05-12 2015-04-13 Heat transfer device and use thereof Active EP3143357B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014208955.7A DE102014208955A1 (en) 2014-05-12 2014-05-12 Heat transfer device and its use
PCT/EP2015/057962 WO2015172954A1 (en) 2014-05-12 2015-04-13 Heat transfer device and use thereof

Publications (2)

Publication Number Publication Date
EP3143357A1 EP3143357A1 (en) 2017-03-22
EP3143357B1 true EP3143357B1 (en) 2020-05-06

Family

ID=52988047

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15717147.1A Active EP3143357B1 (en) 2014-05-12 2015-04-13 Heat transfer device and use thereof

Country Status (4)

Country Link
US (1) US10605543B2 (en)
EP (1) EP3143357B1 (en)
DE (1) DE102014208955A1 (en)
WO (1) WO2015172954A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017216630B4 (en) * 2017-09-20 2023-04-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for manufacturing a heat exchanger
NL2019792B1 (en) * 2017-10-24 2019-04-29 Micro Turbine Tech B V Heat exchanger comprising a stack of cells and method of manufacturing such a heat exchanger
DE102018203548A1 (en) 2018-03-08 2019-09-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Heat exchanger and method for its production
US11391523B2 (en) * 2018-03-23 2022-07-19 Raytheon Technologies Corporation Asymmetric application of cooling features for a cast plate heat exchanger
FR3085744B1 (en) 2018-09-06 2020-11-27 Esiee Paris Chambre De Commerce Et Dindustrie De Region Paris Ile De France FLEXIBLE THERMAL EXCHANGER INCLUDING AN ASSEMBLY OF FLEXIBLE THERMAL PROBES
DE102018220858A1 (en) 2018-12-03 2020-06-04 Eberspächer Catem Gmbh & Co. Kg Electric heater

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR788410A (en) * 1934-07-12 1935-10-10 Improvements to heat exchangers and in particular to tube radiators and waterblades
US2595457A (en) * 1947-06-03 1952-05-06 Air Preheater Pin fin heat exchanger
GB909142A (en) 1959-02-09 1962-10-24 Air Preheater Envelope for a plate type heat exchanger
US3313343A (en) 1964-03-26 1967-04-11 Trane Co Heat exchange apparatus
US3818984A (en) * 1972-01-31 1974-06-25 Nippon Denso Co Heat exchanger
DE2702337A1 (en) 1977-01-21 1978-07-27 Kabel Metallwerke Ghh Flat flexible adaptable heat exchanger - has parallel profiled tubes on flexible material and tube end connectors
DE3124379A1 (en) 1981-06-22 1983-02-03 Oleg 5000 Köln Stolz Heat exchanger with a small overall volume and weight
DE3327659A1 (en) * 1983-07-30 1985-02-14 MTU Motoren- und Turbinen-Union München GmbH, 8000 München METHOD FOR PRODUCING A COMPOSITE BODY FROM CERAMIC OR FIBER-REINFORCED CERAMIC, AND A SANDWICH PRODUCTION PRODUCED BY THIS METHOD
DE3427251A1 (en) 1984-02-09 1986-01-16 Reinhard Dipl.-Ing. Welle (FH), 7613 Hausach Fabric exchanger as heater and air-conditioning wall
DE29724557U1 (en) 1997-01-21 2001-12-06 Viessmann Werke Kg Heat exchanger element
GB0008897D0 (en) * 2000-04-12 2000-05-31 Cheiros Technology Ltd Improvements relating to heat transfer
DE10304692A1 (en) * 2003-02-06 2004-08-19 Modine Manufacturing Co., Racine Corrugated insert for a heat exchanger tube
US7073573B2 (en) * 2004-06-09 2006-07-11 Honeywell International, Inc. Decreased hot side fin density heat exchanger
US7301770B2 (en) * 2004-12-10 2007-11-27 International Business Machines Corporation Cooling apparatus, cooled electronic module, and methods of fabrication thereof employing thermally conductive, wire-bonded pin fins
US7599626B2 (en) 2004-12-23 2009-10-06 Waytronx, Inc. Communication systems incorporating control meshes
DE102006022629A1 (en) 2006-05-12 2007-11-15 Spörl KG Heat exchange device for heat exchange between media and web structure
DE102008063700A1 (en) * 2008-12-19 2010-06-24 Behr Gmbh & Co. Kg Heat exchanger has flow channels for medium and other flow channels for another medium, where heat exchange wall separates former flow channels from latter flow channels
US8506242B2 (en) 2010-05-04 2013-08-13 Brayton Energy Canada, Inc. Method of making a heat exchange component using wire mesh screens
US10119771B2 (en) * 2011-04-13 2018-11-06 Altex Technologies Corporation Non-isotropic structures for heat exchangers and reactors
US9377250B2 (en) * 2012-10-31 2016-06-28 The Boeing Company Cross-flow heat exchanger having graduated fin density

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20170089647A1 (en) 2017-03-30
DE102014208955A1 (en) 2015-11-12
WO2015172954A1 (en) 2015-11-19
EP3143357A1 (en) 2017-03-22
US10605543B2 (en) 2020-03-31

Similar Documents

Publication Publication Date Title
EP3143357B1 (en) Heat transfer device and use thereof
EP3265739B1 (en) 3d printed heating surface element for a plate heat exchanger
DE102012013755B4 (en) Heat exchanger plate assembly, heat exchanger and method of manufacturing a heat exchanger
DE2505015C2 (en) Plastic heat exchangers
EP2065658A1 (en) Solar absorber and method for manufacturing the same
DE69627511T2 (en) HEAT EXCHANGER MADE OF POLYMER STRAPS
DE2007033C3 (en) Plate heat exchanger made of polytetrafluoroethylene
DE102012110003A1 (en) Heat exchanger for e.g. gaseous heat-exchange process for low-energy and passive home, has channels formed with plates by layers provided one above other, where layers are provided with plates that are fixed in mirror image to one another
DE202010000027U1 (en) Latent heat storage
EP2678615B1 (en) Flat heat exchanger
EP1895259B1 (en) Film heat transformer for fluids
EP2021594B1 (en) Device suitable for a fluid through-flow formed as a solar receiver
EP2418450B1 (en) Heat exchanger of three-dimensional textile structure, use of same and method for producing same
WO1999053258A1 (en) Heat accumulator, especially a pcm device
DE19721657A1 (en) Heat exchanger for solar collectors for heating and cooling systems
EP0843804B1 (en) Storage block for regenerative heat exchangers
WO2018091567A1 (en) Heat exchanger structure and method for the production and use thereof
DE3339932A1 (en) Gap-type heat exchanger having webs
EP3405732A1 (en) New type of heat exchanger
EP2527761A2 (en) Heat transfer device
EP4078048A1 (en) Heat exchanger and adsorption machine
DE102011053788A1 (en) Heat storage device for planar heat exchanger used for e.g. underfloor heating system used in household applications, enables thermal contact of hollow chamber passing the heat storage medium and duct passing the heat transfer medium
EP2045544A2 (en) Heat exchanger, in particular absorber for thermal solar collectors
DE102018203548A1 (en) Heat exchanger and method for its production
DE2633466C2 (en) Network-type heat exchanger

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HATTLER, KURT

Inventor name: SCHNABEL, LENA

Inventor name: KAINA, STEFFEN

Inventor name: ROELL, FRIEDRICH A.

Inventor name: STUDNITZKY, THOMAS

Inventor name: LAURENZ, ERIC

Inventor name: FUGMANN, HANNES

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181206

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FUGMANN, HANNES

Inventor name: LAURENZ, ERIC

Inventor name: ROELL, FRIEDRICH A.

Inventor name: HATTLER, KURT

Inventor name: SCHNABEL, LENA

Inventor name: STUDNITZKY, THOMAS

Inventor name: KAINA, STEFFEN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHNABEL, LENA

Inventor name: HATTLER, KURT

Inventor name: KAINA, STEFFEN

Inventor name: ROELL, FRIEDRICH A.

Inventor name: FUGMANN, HANNES

Inventor name: STUDNITZKY, THOMAS

Inventor name: LAURENZ, ERIC

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1267449

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012523

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200907

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200906

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200807

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012523

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210413

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015012523

Country of ref document: DE

Owner name: TECHNISCHE UNIVERSITAET DRESDEN, DE

Free format text: FORMER OWNER: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015012523

Country of ref document: DE

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANG, DE

Free format text: FORMER OWNER: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015012523

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210413

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1267449

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150413

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230417

Year of fee payment: 9

Ref country code: DE

Payment date: 20230418

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 9