EP3143357B1 - Dispositif d'échange de chaleur et son utilisation - Google Patents

Dispositif d'échange de chaleur et son utilisation Download PDF

Info

Publication number
EP3143357B1
EP3143357B1 EP15717147.1A EP15717147A EP3143357B1 EP 3143357 B1 EP3143357 B1 EP 3143357B1 EP 15717147 A EP15717147 A EP 15717147A EP 3143357 B1 EP3143357 B1 EP 3143357B1
Authority
EP
European Patent Office
Prior art keywords
heat transfer
transfer device
heat
textile structure
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15717147.1A
Other languages
German (de)
English (en)
Other versions
EP3143357A1 (fr
Inventor
Lena Schnabel
Eric Laurenz
Hannes Fugmann
Steffen Kaina
Thomas Studnitzky
Friedrich A. ROELL
Kurt HATTLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3143357A1 publication Critical patent/EP3143357A1/fr
Application granted granted Critical
Publication of EP3143357B1 publication Critical patent/EP3143357B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/122Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/022Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being wires or pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Definitions

  • the invention relates to a heat transfer device with channels for heat-absorbing media and channels for heat-emitting media, at least one of the channels having a textile structure with compressed and non-compressed areas. While the compressed areas are arranged in the transition areas between the channels to improve heat transfer on or over the channel wall, the non-compressed areas are arranged in the flow areas of the channels.
  • This structure enables a large heat transfer to the heat transfer surface with good heat conduction from the heat transfer surface to the separating surface.
  • the invention also relates to heat exchangers with such heat transfer devices.
  • the surface enlargement is of central importance in the phenomenon of heat transfer.
  • the increase in power density corresponds to the reduction in construction volume and / or the use of materials
  • the reduction in driving temperature differences corresponds to the reduction in construction volume and / or the use of materials
  • the reduction in pressure loss corresponds to the reduction in pressure loss
  • the increase in yield through reduced cycle times or a combination of these variables are of interest.
  • plugged or soldered finned heat exchangers consisting of copper tubes and attached copper, aluminum or stainless steel fins as well as flat tube-based aluminum coolers, in which folded fins are soldered with extruded fluid channels, are of particular importance.
  • Table 1 volume-specific area [m 2 / m 3 ] Contact surface to the fluid structure [m 2 / m 3 ] Type of contact Slats (flat, punched) 1250 55 Pressed Folded / corrugated slats 1340 65 Cohesive (soldered) Metallic short fibers 8,000-10,000 100 Soldered / sintered
  • Metallic short fiber structures are another possibility for producing large specific surfaces and a materially contacting the separating surface. These are poured onto one another, pressed and then soldered or sintered. A variation in density and porosity can be achieved by varying the fiber length and diameter. They achieve volume-specific surfaces of 8,000-10,000 m 2 / m 3 and volume-specific separating surfaces between the two media in the range of 100 m 2 / m 3 . However, the undefined orientation and arrangement of the fibers is disadvantageous for use in flowing media.
  • WO 98/31976 A1 describes a heat exchanger element in which the heat transfer is achieved by means of rod fins standing perpendicularly in the flow and equally spaced from one another.
  • the suitable cross-section is 4 mm 2 and the ratio of the rod diameter / length to 0.3.
  • woven and knitted fabrics are mentioned as the preferred material and are described both for the wall and for the production of the rod structure.
  • the rods are also conceivable in the form of loops.
  • WO 2012/141793 A1 describes a general hierarchically structured surface enlargement for heat exchangers with flat plates.
  • the surface enlargement forms channels in the flow direction of the fluid and becomes thicker with increasing distance from the plate.
  • WO 2011/137522 A1 describes a method for producing heat exchangers from disks that have been cut from a block of layered fabric. The surfaces of these disks are sealed using coating processes so that media separation is achieved without additional separating elements (plates, foils).
  • a heat transfer device is for example from the GB 909 142 A known.
  • the technical problem underlying the present invention exists in the non-optimal adaptation of available surface enlargements to the respective question and installation situation.
  • the demand for high heat transfer performance with small driving temperature differences and small pressure losses with little use of material in a small installation space has so far not been adequately met with the solutions known from the prior art. This is accompanied by an increased consumption of material and energy to overcome the pressure losses.
  • a heat transfer device which has at least one channel for a heat-absorbing medium and at least one channel for a heat-emitting medium. At least one of these channels has a textile structure at least in some areas, the textile structure having compressed areas at regular intervals, the compressed areas of the textile structure in the transition area between at least one channel for a heat-absorbing medium and at least one channel for a heat-emitting medium Production of a thermal contact between these channels are arranged. Furthermore, non-compressed areas of the textile structure are arranged in the flow area of at least one channel.
  • channel is also to be understood to mean those areas which are channel-shaped but, owing to the filling with a solid, e.g. PCM, no longer represent a channel or, e.g. with surface heating structures that are open to the environment.
  • a solid e.g. PCM
  • the textile structures used according to the invention enable very large heat transfer areas. These are aligned in such a way that a large heat transfer to the heat transfer surface and a good one Heat conduction from the heat transfer surface to the separating surface is achieved. When heat transfer devices flow through, the flow is only disturbed if possible to the extent that it serves to improve the heat transfer.
  • the advantage of the heat transfer device according to the invention is that, with the simultaneous use of material and construction volume, less energy has to be used for the same heat transfer. With the same use of energy and construction volume, less material has to be used for the heat transfer device according to the invention, and with the same use of energy and material, the construction volume can be reduced.
  • a preferred embodiment provides that the channels for the heat-absorbing media are separated from the channels for the heat-dissipating media by a partition, in particular a sheet, a film, a membrane or the outer surface of a tube or hose.
  • the compressed areas in the transition area of the channels are at least partially connected to the dividing wall, in particular by gluing, soldering, welding, sintering or casting.
  • a further embodiment according to the invention provides that the textile structure has a coating impermeable to the media at the compressed areas.
  • a further embodiment according to the invention relates to a heat transfer device for separating adjacent channels in at least one channel, an expandable hose or tube which is impermeable to the media and / or is arranged around at least one channel, a shrinkable hose or tube which is impermeable to the media, which is expanded and expanded / or allow shrinking to make contact with the textile structure.
  • the textile structure arranged in at least one channel can preferably be flowed through by a fluid, at least in regions, in a heat-transferring manner.
  • the textile structure can, at least in regions, be latently heat-storing, sorptive or catalytic fixed medium must be embedded.
  • a further preferred embodiment provides that the textile structures of adjacent channels have different wire lengths and / or distances between the wires in the parting plane.
  • the uncompressed areas can preferably be varied such that the flow resistance in the channel can be set via the wire lengths, wire diameters and / or distances between the wires.
  • This can be used, in particular, to generate structures with an inclined flow with secondary channels lying between them.
  • the flow velocity through the textile structure with which the oblique structures are flowed through is reduced.
  • the slower structures through which the flow flows more slowly lead to an advantageous reduced pressure loss with the same transmission density or to an advantageous higher transmission density with the same pressure loss.
  • the area flowed towards at an angle can generally include compressed and non-compressed textile structures and, if appropriate, separate heat-transfer media which flow in the plane of this area.
  • tissue structures are possible in particular if the structures are flat, i. H. be manufactured with a low flow depth.
  • These two-dimensional structures can be folded into the desired shape in a second manufacturing process.
  • the creation of a secondary, structure-free channel by appropriately folding the structure is not limited to textile structures. This can be replaced by other heat exchanger structures that can be flowed through, in particular lamellae, sponges, foams, sintered fiber structures or homogeneous textile structures. A comparable advantageous heat transfer behavior can thus be achieved.
  • the textile structure preferably consists of wires, technical fibers or yarns thereof with a preferred diameter of 10 ⁇ m to 2 ⁇ m, particularly preferably of 80 ⁇ m to 300 ⁇ m.
  • the wires, technical fibers or yarns thereof preferably point in the direction of flow a distance of 20 ⁇ m to 20 mm, preferably from 40 ⁇ m to 10 mm and particularly preferably from 100 ⁇ m to 4 mm.
  • the textile structure preferably has an inherent stiffness which enables the heat exchanger to be self-supporting.
  • the textile structure preferably consists of a woven, knitted or knitted structure or combinations thereof.
  • the fabric structure used has been galvanically coated with a solder and that the inherent stability of the structure and the integral connection at the nodes of the wires to one another and to the separating surface are implemented by melting the solder.
  • a preferred embodiment provides that lighting elements, in particular elements comprising optical fibers or LEDs, are integrated in the heat transfer device, preferably in the form of incorporated wires, fibers or yarns.
  • At least one heating wire in particular made of copper, copper-nickel alloys, nickel-chromium alloys, constantan, manganine, nickel-iron alloys or Kanthal, is integrated in the heat transfer device.
  • a heat exchanger which has a heat transfer device according to the invention, as described above was included.
  • the heat exchanger is preferably a plate heat exchanger, a tube bundle heat exchanger, a tube bundle-finned heat exchanger, a flat tube-finned heat exchanger or a coaxial heat exchanger.
  • the heat transfer devices according to the invention are used in particular in heat transfer to / from air or other gaseous media (for example recoolers, exhaust gas heat exchangers, convectors, ventilation devices, oil coolers, etc.), in heat transfer to / from water or other liquid media, in applications with phase change ( Evaporation, condensation, solid / liquid) as well as in combination with sorption materials or catalytic coatings.
  • air or other gaseous media for example recoolers, exhaust gas heat exchangers, convectors, ventilation devices, oil coolers, etc.
  • phase change Evaporation, condensation, solid / liquid
  • sorption materials or catalytic coatings for example recoolers, exhaust gas heat exchangers, convectors, ventilation devices, oil coolers, etc.
  • Fig. 1 will be on the left ( Fig. 1a ) a flat fabric made of wires is shown, which has non-compacted areas (1) and more closely made wire areas (2). Folding this structure creates a spacing structure that forms a flow channel and two top surfaces. Two examples of such a spacing structure are in Fig. 1a shown in the middle part and lower part. While in the middle part of the figure the wires of the uncompressed area are arranged obliquely, in the lower part the Figure 1a the wires are arranged parallel to each other and perpendicular to the wall surface formed. In Fig. 1b A comparable embodiment is shown, but in which the more narrowly manufactured areas (2) are larger than the areas with long wire gaps (1). At the in Fig.
  • the 1c shown embodiment leads the folding to tapered secondary channels.
  • the non-compressed areas of the textile structure located between the secondary channels are flowed through at a lower normal speed than the inflow speed, so that a lower pressure loss is achieved.
  • the wall surfaces formed can be connected to a partition wall by one of the abovementioned joining methods or can be coated directly impermeable.
  • the folded structure outlined above was contacted on the wall surfaces with a separating surface (3), which was designed as a sheet or foil, via solder connections (4).
  • a separating surface (3) which was designed as a sheet or foil, via solder connections (4).
  • the compressed areas of the textile structure (2) form a tubular shape, which is applied from the outside to a partition wall formed by pipes.
  • the non-compressed areas (1) thus form the surface-enlarging structure in the area between the pipes.
  • This structure can be flowed through, for example, perpendicular to pipes and wires in a heat-transferring manner.
  • the dimensioning of the flow structures can be flexibly adapted to the corresponding media or flow conditions separated by dividing surfaces (7). It is conceivable, for example, that the dimensions of the wire spacing and heights are different for the different sides of the heat exchanger.
  • Fig. 3b An application of this is with the embodiment in Fig. 3b shown.
  • one side is completely encased by the separating surface (8), so that flow-through flat tubes are formed, to which the medium is distributed via a collector (9).
  • the other medium flows vertically through the other folded structure located between the flat tubes.
  • the stabilizing spacer structures allow the use of very thin partition walls. Due to the folding technique but also with the textile manufacturing technique, different densities of defined structural areas can also be created in one medium ( Fig. 4a ), for example to compensate for uneven velocity distributions in the incoming medium, to control temperature gradients of the second medium in a targeted manner or to deal with complex geometric requirements.
  • the cover surfaces do not necessarily have to be parallel.
  • FIG. 5 A coaxial heat exchanger with a circumferential outer shell 6 is shown, the individual segments of the tube cross section being filled with the textile structure according to the invention.
  • the non-compressed areas 1 and the partition 2 on which the compressed areas are located can be seen.
  • the segments are alternately flowed through with one or the other medium in such a way that one medium flows in and the other medium flows out of the image plane.
  • the non-compressed wires (1) can be arranged at an angle to each other.
  • the connection to the top surface (5) can be achieved, for example, by knitting processes.
  • the inclined position of the wires increases the inherent stability of the structure. The reduction in production steps is also attractive here, but the thermal masses must be taken into account.
  • FIG. 7 an arrangement of the textile structures is shown as a heat exchanger.
  • the area of the textile structure is exemplified by the in Fig. 2 b) given structure given.
  • One of the heat transfer media flows first through the inflow area of the heat exchanger (10), then through the structure-free secondary channel area (11) to the textile structure (12).
  • the medium flows through this at lower speeds than in the inflow area, since the area to be flowed through was greatly increased by the folding of the structures.
  • the medium then flows through the structure-free channels (13) flowing out into the outflow area (14).
  • FIG. 8 Various exemplary embodiments of the structural surfaces are shown.
  • a uniformly distributed, low speed through the structure can, for example, be made possible by these different configurations (tapering ( Fig. 8a ), tapering hyperbolic ( Fig. 8b ), tapered sinusoidally ( Fig. 8c ).
  • a uniformly distributed speed through the structure is advantageous in order to optimally use all areas of the structure for heat transfer.
  • fewer and more densely compressed areas in the structure along the fabric structure ( Fig. 7 , (12)) vary and further promote equal distribution.
  • FIG. 8d An embodiment is shown with several folded structures connected in series. This allows a further increase in the heat exchanger area in a small installation space and thus an increase in the power density with a small increase in the pressure loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (15)

  1. Dispositif de transmission de chaleur contenant au moins un canal pour un milieu absorbant la chaleur et au moins un canal pour un milieu dégageant de la chaleur, dans lequel au moins un des canaux présente, au moins à certains endroits, une structure textile, caractérisé en ce que la structure textile comprend des zones compactées, les zones compactées de la structure textile étant disposées dans la zone de transition entre au moins un canal pour un milieu absorbant la chaleur et au moins un canal pour un milieu dégageant de la chaleur pour l'établissement d'un contact thermique et les zones non compactées de la structure textile sont disposées dans la zone d'écoulement d'au moins un canal.
  2. Dispositif de transmission de chaleur selon la revendication 1,
    caractérisé en ce que les canaux pour les milieux absorbant la chaleur sont séparés des canaux pour les milieux dégageant de la chaleur par une cloison, plus particulièrement une tôle, un film, une membrane ou une surface externe d'un tube ou d'une gaine.
  3. Dispositif de transmission de chaleur selon la revendication précédente,
    caractérisé en ce que les zones compactées sont reliées dans la zone de transition des canaux, au moins à certains endroits, par liaison de matière, plus particulièrement par collage, brasage, soudage, frittage ou moulage, avec la cloison.
  4. Dispositif de transmission de chaleur selon l'une des revendications précédentes,
    caractérisé en ce que, pour la séparation de canaux adjacents, dans au moins un canal est intégré une gaine ou un tube dilatable imperméable pour les milieux et/ou autour d'au moins un canal ou tube rétractable imperméable aux milieux, qui permettent un contact avec la structure textile par élargissement et/ou rétraction.
  5. Dispositif de transmission de chaleur selon l'une des revendications précédentes,
    caractérisé en ce que la structure textile est traversée, au moins à, certains endroits par un fluide avec une transmission de chaleur et/ou est intégrée dans un milieu stationnaire accumulant la chaleur de manière latente, capables de sorption ou catalytiques ou est revêtue avec celui-ci sur la surface, dans lequel les structures textiles de canaux d'écoulement adjacents entre eux comprennent des longueurs de fils et/ou des distances entre les fils différentes dans la direction d'écoulement.
  6. Dispositif de transmission de chaleur selon l'une des revendications précédentes,
    caractérisé en ce que les distances entre les zones compactées varient de façon à ce que la résistance à l'écoulement dans le canal d'écoulement peut être réglée par l'intermédiaire des longueurs de fils, des diamètres de fils et/ou distances entre les fils.
  7. Dispositif de transmission de chaleur selon l'une des revendications précédentes,
    caractérisé en ce que la structure textile est réalisée de manière plane et présente un pliage et contient de préférence, dans le plan de la surface, des canaux pour au moins un milieu, dans lequel la surface de la structure textile qui doit être traversée par un milieu est agrandie par rapport à la surface d'afflux, ce qui réduit la vitesse d'écoulement à travers la structure textile de l'au moins un milieu.
  8. Dispositif de transmission de chaleur selon l'une des revendications précédentes,
    caractérisé en ce que les fils, les fibres ou fils techniques de ceux-ci présentent un diamètre de 10 µm à 2 mm, de préférence de 80 µm à 300 µm et/ou présentent, dans la direction d'écoulement, une distance de 20 µm à 20 mm, de préférence de 40 µm à 10 mm et plus particulièrement de préférence de 100 µm à 4 mm.
  9. Dispositif de transmission de chaleur selon l'une des revendications précédentes,
    caractérisé en ce que les fils, les fibres ou fils techniques de ceux-ci sont sélectionnés dans le groupe constitué de :
    • matériaux métalliques et leurs alliages, plus particulièrement cuivre, aluminium ou acier inoxydable,
    • matériaux contenant du carbone, plus particulièrement des fibres de carbone, des fibres de charbon actif,
    • des fibres de verre ou de céramique,
    • des matériaux polymères, plus particulièrement du polypropylène (PP), du polyéthylène (PE), du polyamide (PA), du polyéthercétone (PEK), du polyester (PET) et
    • des composites de ceux-ci.
  10. Dispositif de transmission de chaleur selon l'une des revendications précédentes,
    caractérisé en ce que la structure textile présente une rigidité intrinsèque qui permet une construction auto-portante du dispositif de transmission de chaleur.
  11. Dispositif de transmission de chaleur selon l'une des revendications précédentes,
    caractérisé en ce que la structure textile est une structure tissée, maillée ou tricotée ou une combinaison de celle-ci.
  12. Dispositif de transmission de chaleur selon l'une des revendications précédentes,
    caractérisé en ce que la structure tissée utilisée a été revêtue de manière galvanique et, par fusion de la soudure, la stabilité intrinsèque de la structure et la liaison par liaison de matière au niveau des points nodaux des fils entre eux et au film de séparation sont mises en place.
  13. Dispositif de transmission de chaleur selon l'une des revendications précédentes,
    caractérisé en ce que, dans le dispositif de transmission de chaleur, sont intégrés des éléments d'éclairage, plus particulièrement des éléments comprenant des fibres optiques ou des LED, de préférence sous la forme de fils, de fibres ou fils intégrés, et/ou au moins un fil chauffant, plus particulièrement en cuivre, alliages de cuivre-nickel, alliages de nickel-chrome, constantan, manganin, alliages nickel-fer, kanthal.
  14. Échangeur thermique, plus particulièrement échangeur thermique à plaques, échangeur thermique à faisceau de tubes et lamelles, échangeur thermique à tubes plats et lamelles ou échangeur thermique coaxial contenant un dispositif de transmission de chaleur selon l'une des revendications précédentes.
  15. Utilisation du dispositif de transmission de chaleur selon l'une des revendications 1 à 13 dans la transmission de chaleur à de l'air ou à d'autres milieux gazeux, plus particulièrement dans des refroidisseurs de retour, des échangeurs thermiques de gaz d'échappement, des convecteurs, des appareils de ventilation ou des refroidisseurs à huile, dans la transmission de chaleur à de l'eau ou d'autres milieux liquides, dans des applications avec changement de phase (évaporation, condensation, solide/liquide) et des réactions chimiques ainsi qu'en combinaison avec des matériaux de sorption ou des revêtements catalytiques.
EP15717147.1A 2014-05-12 2015-04-13 Dispositif d'échange de chaleur et son utilisation Active EP3143357B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014208955.7A DE102014208955A1 (de) 2014-05-12 2014-05-12 Wärmeübertragungsvorrichtung und deren Verwendung
PCT/EP2015/057962 WO2015172954A1 (fr) 2014-05-12 2015-04-13 Dispositif d'échange de chaleur et son utilisation

Publications (2)

Publication Number Publication Date
EP3143357A1 EP3143357A1 (fr) 2017-03-22
EP3143357B1 true EP3143357B1 (fr) 2020-05-06

Family

ID=52988047

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15717147.1A Active EP3143357B1 (fr) 2014-05-12 2015-04-13 Dispositif d'échange de chaleur et son utilisation

Country Status (4)

Country Link
US (1) US10605543B2 (fr)
EP (1) EP3143357B1 (fr)
DE (1) DE102014208955A1 (fr)
WO (1) WO2015172954A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017216630B4 (de) * 2017-09-20 2023-04-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Wärmeübertragers
NL2019792B1 (en) * 2017-10-24 2019-04-29 Micro Turbine Tech B V Heat exchanger comprising a stack of cells and method of manufacturing such a heat exchanger
DE102018203548A1 (de) 2018-03-08 2019-09-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wärmeübertrager und Verfahren zu dessen Herstellung
US11391523B2 (en) * 2018-03-23 2022-07-19 Raytheon Technologies Corporation Asymmetric application of cooling features for a cast plate heat exchanger
FR3085744B1 (fr) 2018-09-06 2020-11-27 Esiee Paris Chambre De Commerce Et Dindustrie De Region Paris Ile De France Echangeur thermique flexible comprenant un assemblage de sondes thermiques flexibles
DE102018220858A1 (de) 2018-12-03 2020-06-04 Eberspächer Catem Gmbh & Co. Kg Elektrische Heizvorrichtung
PL242269B1 (pl) * 2020-02-24 2023-02-06 Krzysztof Bruzi Urządzenie wentylacyjne

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR788410A (fr) * 1934-07-12 1935-10-10 Perfectionnements aux échangeurs thermiques et notamment aux radiateurs à tubes etlames d'eau
US2595457A (en) * 1947-06-03 1952-05-06 Air Preheater Pin fin heat exchanger
GB909142A (en) * 1959-02-09 1962-10-24 Air Preheater Envelope for a plate type heat exchanger
US3313343A (en) 1964-03-26 1967-04-11 Trane Co Heat exchange apparatus
US3818984A (en) * 1972-01-31 1974-06-25 Nippon Denso Co Heat exchanger
DE2702337A1 (de) 1977-01-21 1978-07-27 Kabel Metallwerke Ghh Flaechenhafter, wickelbarer waermetauscher
DE3124379A1 (de) 1981-06-22 1983-02-03 Oleg 5000 Köln Stolz Waermeuebertrager geringen bauvolumens und gewichtes
DE3327659C2 (de) * 1983-07-30 1987-01-02 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Verfahren zur Herstellung eines Verbundkörpers
DE3427251A1 (de) 1984-02-09 1986-01-16 Reinhard Dipl.-Ing. Welle (FH), 7613 Hausach Gewebeaustauscher als heizkoerper und klimawand
DE29724557U1 (de) 1997-01-21 2001-12-06 Viessmann Werke GmbH & Co., 35108 Allendorf Wärmetauscherelement
GB0008897D0 (en) * 2000-04-12 2000-05-31 Cheiros Technology Ltd Improvements relating to heat transfer
DE10304692A1 (de) * 2003-02-06 2004-08-19 Modine Manufacturing Co., Racine Gewellter Einsatz für ein Wärmetauscherrohr
US7073573B2 (en) * 2004-06-09 2006-07-11 Honeywell International, Inc. Decreased hot side fin density heat exchanger
US7301770B2 (en) * 2004-12-10 2007-11-27 International Business Machines Corporation Cooling apparatus, cooled electronic module, and methods of fabrication thereof employing thermally conductive, wire-bonded pin fins
US7599626B2 (en) 2004-12-23 2009-10-06 Waytronx, Inc. Communication systems incorporating control meshes
DE102006022629A1 (de) 2006-05-12 2007-11-15 Spörl KG Wärmetauschvorrichtung für einen Wärmeaustausch zwischen Medien und Webstruktur
DE102008063700A1 (de) * 2008-12-19 2010-06-24 Behr Gmbh & Co. Kg Wärmetauscher
US8506242B2 (en) 2010-05-04 2013-08-13 Brayton Energy Canada, Inc. Method of making a heat exchange component using wire mesh screens
US10119771B2 (en) 2011-04-13 2018-11-06 Altex Technologies Corporation Non-isotropic structures for heat exchangers and reactors
US9377250B2 (en) * 2012-10-31 2016-06-28 The Boeing Company Cross-flow heat exchanger having graduated fin density

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3143357A1 (fr) 2017-03-22
WO2015172954A1 (fr) 2015-11-19
DE102014208955A1 (de) 2015-11-12
US10605543B2 (en) 2020-03-31
US20170089647A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
EP3143357B1 (fr) Dispositif d'échange de chaleur et son utilisation
EP3265739B1 (fr) Élément chauffant imprimé en 3d pour un échangeur de chaleur à plaques
DE69624984T2 (de) Wärmeaustauschvorrichtung mit, mit Längslöchern versehenem, Metallband
EP0356745B1 (fr) Dispositif d'échange de chaleur
DE102012013755B4 (de) Wärmetauscherplatteneinheit, Wärmetauscher und Verfahren zur Herstellung eines Wärmetauschers
EP2065658A1 (fr) Absorbeur solaire et son procédé de fabrication
DE2505015C2 (de) Wärmetauscher aus Kunststoff
DE69627511T2 (de) Wärmetauscher aus polymerenbändern
DE2007033C3 (de) Plattenwärmetauscher aus Polytetrafluorethylen
EP2678615B1 (fr) Échangeur de chaleur plat
DE102012110003A1 (de) Rohrwärmetauscher nach dem Gegenstromprinzip mit parallelen Strömungskanälen mit vergrösserter wärmeübertragender Oberfläche
DE202010000027U1 (de) Latentwärmespeicher
EP1895259B1 (fr) Transmetteur de chaleur à feuille pour liquides
EP2021594B1 (fr) Dispositif traversable par un fluid et formé en tant que récepteur solaire
WO1999053258A1 (fr) Accumulateur de chaleur, notamment regulateur thermique a changement d'etat
EP2418450A2 (fr) Échangeur de chaleur d'une structure textile tridimensionnelle, son procédé de fabrication et son utilisation
EP0843804B1 (fr) Bloc accumulateur pour echangeur thermique a regeneration
WO2018091567A1 (fr) Structure d'échangeur de chaleur, procédé de fabrication et utilisation
DE3339932A1 (de) Spaltwaermetauscher mit stegen
EP3405732A1 (fr) Nouvel échangeur de chaleur
EP2527761A2 (fr) Dispositif de transfert thermique
DE29600420U1 (de) Thermo-Element
EP4078048A1 (fr) Échangeur de chaleur et machine d'adsorption
DE102011053788A1 (de) Wärmetauscher-Wärmespeicher-Vorrichtung
EP2045544A2 (fr) Echangeur thermique, notamment absorbeur pour collecteurs solaires thermiques

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HATTLER, KURT

Inventor name: SCHNABEL, LENA

Inventor name: KAINA, STEFFEN

Inventor name: ROELL, FRIEDRICH A.

Inventor name: STUDNITZKY, THOMAS

Inventor name: LAURENZ, ERIC

Inventor name: FUGMANN, HANNES

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181206

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FUGMANN, HANNES

Inventor name: LAURENZ, ERIC

Inventor name: ROELL, FRIEDRICH A.

Inventor name: HATTLER, KURT

Inventor name: SCHNABEL, LENA

Inventor name: STUDNITZKY, THOMAS

Inventor name: KAINA, STEFFEN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHNABEL, LENA

Inventor name: HATTLER, KURT

Inventor name: KAINA, STEFFEN

Inventor name: ROELL, FRIEDRICH A.

Inventor name: FUGMANN, HANNES

Inventor name: STUDNITZKY, THOMAS

Inventor name: LAURENZ, ERIC

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1267449

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012523

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200907

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200906

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200807

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012523

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210413

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015012523

Country of ref document: DE

Owner name: TECHNISCHE UNIVERSITAET DRESDEN, DE

Free format text: FORMER OWNER: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015012523

Country of ref document: DE

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANG, DE

Free format text: FORMER OWNER: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015012523

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210413

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1267449

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150413

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230418

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240423

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240422

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506