WO1999050314A1 - Procede pour evacuer des substances volatiles depuis une composition a base de solution polymere - Google Patents

Procede pour evacuer des substances volatiles depuis une composition a base de solution polymere Download PDF

Info

Publication number
WO1999050314A1
WO1999050314A1 PCT/JP1999/001576 JP9901576W WO9950314A1 WO 1999050314 A1 WO1999050314 A1 WO 1999050314A1 JP 9901576 W JP9901576 W JP 9901576W WO 9950314 A1 WO9950314 A1 WO 9950314A1
Authority
WO
WIPO (PCT)
Prior art keywords
devolatilization
polymerization
devolatilizer
polymer solution
stage
Prior art date
Application number
PCT/JP1999/001576
Other languages
English (en)
French (fr)
Inventor
Toshihisa Fujitaka
Koji Hirashima
Hideki Ono
Keiichi Hayashi
Original Assignee
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Priority to DE69903296T priority Critical patent/DE69903296T2/de
Priority to KR1020007010664A priority patent/KR20010034690A/ko
Priority to US09/646,574 priority patent/US6353088B1/en
Priority to EP99910738A priority patent/EP1086958B1/en
Publication of WO1999050314A1 publication Critical patent/WO1999050314A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • C08F6/10Removal of volatile materials, e.g. solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • C08F6/003Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile

Definitions

  • the present invention relates to a method for devolatilizing a polymerization liquid composition, and more particularly, to a method for controlling a volatile substance such as a monomer contained in an aromatic vinyl polymer to a very low level. It relates to a method of devolatilizing to Japan.
  • Polystyrene packaging 3 ⁇ 4t has spread rapidly due to its simplicity and versatility, and has been widely used for foaming ⁇ S trays, drinking water containers and the like. There is a strong demand for extremely low levels of monomer and solvent remaining in styrene.
  • the devolatilization of polystyrene resin produced by fcc, continuous bulk mixing or solution polymerization is carried out by flash type, extruder type, four-film type, etc. Have been coming.
  • Japanese Patent Application Laid-Open No. Sho 59-66506 discloses that volatile There is disclosed a method for separating the sexual components in three steps.
  • a foaming agent is added in a state where the content of volatile components in the polymerization solution is reduced to 1% or less before being inserted into the third stage.
  • it is necessary to raise the temperature of the resin to be transferred to the final-stage devolatilizer so that not only the operating efficiency is poor, but also the dispersion of the polymerization liquid and the foaming agent is poor.
  • the effect of adding the blowing agent was impaired, and the amount of volatile substances was not satisfactory enough.
  • Japanese Patent Publication No. 6-8227 discloses a two-stage devolatilization method using a heating device directly connected to the devolatilization tank, the amount of unreacted monomer and solvent, the heating temperature, and the degree of vacuum.
  • a method has been proposed to finely control the residence time at the bottom of the devolatilization tank and the residence time from the first devolatilization tank to the second devolatilization tank. With this method, even with this method, even though this method could prevent the generation of low molecular weight substances, the amount of volatile substances was not satisfactory.
  • the purpose of the present invention is to provide a method for devolatilizing an aromatic vinyl resin in a relatively simple and economical manner. To provide a method for reducing the content of certain volatile substances.
  • the present inventors have conducted intensive studies to achieve the above-mentioned object, and as a result, when devolatilizing the aromatic vinyl resin, a multi-stage devolatilization method was used to perform devolatilization in the final stage. By specifying the conditions, a method was found that could reduce the amount of residual volatile substances such as monomers to an extremely low level, and completed the present invention. .
  • the present invention relates to an aromatic vinyl monomer alone or an aromatic vinyl monomer and an aromatic vinyl monomer in the presence or absence of a rubbery polymer component.
  • An unreacted monomer from a polymer solution obtained by continuous bulk polymerization or continuous solution polymerization of an aromatic vinyl monomer mixture obtained by mixing other monomers copolymerizable with In the devolatilization method to remove the body and other volatile substances, the devolatilization method is performed by multi-stage devolatilization using two or more flash-type devolatilization tanks.
  • the composition of the polymer solution was supplied to the inlet of the devolatilizer from the devolatilizer before the last stage.
  • 0.5 to 4 parts by weight of a blowing agent was added to the entire polymer solution composition, and then the final devolatilization equipment was added.
  • the pressure of the polymerization liquid in the process from the mouth force to the pressure adjusting device is controlled by the pressure adjusting device provided in the final devolatilizer or at the inlet of the final devolatilizer.
  • the temperature of the polymerization solution composition is passed through the process in the range of 190 to 260 ° C., and then the polymerization solution composition.
  • This is a method for devolatilizing a polymer liquid composition, which is characterized in that the liquid is fed into a gas-liquid separation tank maintained at a vacuum pressure of 20 T 0 rr or less to foam it.
  • the polymer liquid composition to which the method of the present invention is applied may be an aromatic vinyl monomer alone or an aromatic vinyl monomer in the presence or absence of a rubber-like polymer component.
  • a vinyl monomer mixture obtained by mixing an aromatic vinyl monomer and a copolymerizable monomer with the aromatic vinyl monomer was subjected to continuous # ⁇ bulk polymerization or solution polymerization.
  • the polymerization liquid composition which refers to the polymerization liquid composition, is obtained from a polymerization process for producing a styrene-based resin, and is added to unreacted monomers or during polymerization.
  • a polymer liquid composition containing a volatile substance such as a solvent.
  • styrene-based resin produced by bulk polymerization or solution weighing at the A port, for example, polystyrene (GPPS), Modified polystyrene ( ⁇ IPS), styrene-acrylonitrile copolymer (SAN), acrylonitrile
  • GPPS polystyrene
  • ⁇ IPS Modified polystyrene
  • SAN styrene-acrylonitrile copolymer
  • acrylonitrile-based resin for example, polystyrene (GPPS), Modified polystyrene ( ⁇ IPS), styrene-acrylonitrile copolymer (SAN), acrylonitrile
  • ABS resin styrene-methyl methacrylate copolymer
  • MS methyl methacrylate
  • MVS distyrene copolymer
  • aromatic vinyl monomer examples include styrene, ⁇ -methyl styrene, m-methyl styrene, and p-methyl styrene. , ⁇ -Chlorone styrene, p — Chronolestylen, etc. These may be used alone or in combination of two or more.
  • Examples of the monomer copolymerizable with the aromatic vinyl monomer include, for example, acrylonitrile, metaacrylonitrile, methacrylonitrile, and methacrylonitrile. Examples include methyl acrylate, methyl methacrylate, methyl acrylate, ethyl acrylate, and the like. These may be used alone or in combination of two or more.o
  • Examples of the rubbery polymer component include polybutadiene, styrene-butadiene copolymer, polyisoprene, and natural rubber. These may be used alone or in combination of two or more.
  • an inert hydrocarbon organic solvent such as aromatic hydrocarbons such as toluene, xylene, and ethylbenzene may be used.
  • the solution viscosity of the polymerization liquid can be reduced by blending hydrogen alone or in a mixture of two or more kinds.
  • a polymerization initiator or a chain transfer agent may be added.
  • a radical initiator such as an organic peroxide may be blended. Is preferred.
  • the used polymerization initiator include benzoin oleoxide, azobisisobuty ore, and benzoylone oleoxide. Etc., and these may be used alone or 2 More than one species can be used in combination.
  • the chain transfer agent include, for example, menolecabutanes, methylenol styrene dimers, monodentide molecular weight regulators (tapipione). Noren).
  • the polymerization reaction device for producing the polymerization solution composition of the present invention known reactor types such as a tank type and a plug flow type can be adopted. Then, in addition to the styrene-based polymer, unreacted monomers and solvents as volatile substances are contained in the polymerization liquid composition flowing out of the reactor at the final stage. Usually, it contains 10 to 30% by weight of a volatile substance. If the content of the volatile substance in the polymerization liquid composition flowing out of the reactor at the final stage is 30% by weight or more, a low-molecular-weight polymer is easily generated in the devolatilization step, and 10% by weight. If the polymerization is carried out until the following conditions, it becomes difficult to handle the polymerization solution composition in the devolatilization step.
  • the polymerization liquid composition containing a volatile substance is introduced into two or more multi-stage devolatilizers communicating with the polymerization step.
  • the devolatilizer other than the last stage may be a conventionally known devolatilizer, but the structure is such that the polymerization liquid is heated in the heating step and then devolatilized in the gas-liquid separation tank. Those with high devolatilization efficiency are preferred.
  • the last-stage devolatilizer is particularly preferable because it has a structure in which the polymerization liquid is heated in the heating step and then devolatilized in a gas-liquid separation tank because the devolatilization efficiency is high.
  • the pressure of the polymerization liquid in the process from the inlet of the final devolatilization device to the pressure adjusting device is controlled in the final devolatilization device or the final devolatilization device.
  • the final stage of the pressure regulator is generally a valve.However, for devolatilization equipment with a devolatilizer entrance or a heating process, a method of providing multiple small-diameter holes in the heating section There is also. In particular, when heat transfer tubes are used in the heating process, it is preferable to provide an orifice for each heat transfer tube from the viewpoint of simplicity.
  • the method of attaching the orifice is not particularly limited, but the shape to be inserted or screwed into the heat transfer tube is Preferred because it is easy to install and replace.
  • the diameter of multiple small holes and orifices at the entrance to the devolatilization unit can be determined according to the required pressure.
  • the heat exchanger used here is the one normally used as a heat exchanger for high-viscosity fluids. I like it.
  • a heat exchanger a vertical shell-and-tube heat exchanger, a plate heat exchanger, and the like can be used, and the heat exchanger is not particularly limited.
  • the vertical multi-tube heat exchanger is more preferred because of its simple structure, pressure-resistant structure, and low cost.
  • the polymerization liquid is transferred to the gas-liquid separation tank by a method in which a heating device is directly connected to the gas-liquid separation tank, a method in which the heating device is placed inside the gas-liquid separation tank, or a method in which the transfer device transfers the polymerization liquid to the gas-liquid separation tank. It is not particularly limited. The number of heat transfer sections and the size of the heating area can be appropriately changed depending on the type of the polymerization solution to be applied, the volatile substance concentration, and the like. Taking as an example the case where the polymerization liquid is introduced into the first-stage devolatilizer, the inlet temperature of the heating zone is
  • the liquid temperature is almost the same as the liquid temperature in the last stage of the reactor, and the liquid temperature at the outlet of the devolatilizer in the first stage is usually 200 to 300 ° C.
  • the polymerization liquid composition taken out from the outlet of the devolatilization unit before the last stage needs to be adjusted to have a solid content of more than 97%, which is preferable. Or more than 98%, more preferably more than 99%. If the solid content is less than 97%, the devolatilization efficiency will be poor and the amount of volatile substances will not be satisfactory, and the resin will be transferred to the final devolatilization unit and Low molecular weight substances are generated during the heating process, and product quality is reduced. Getting worse .
  • the heating in the devolatilization step can be controlled by appropriately controlling the temperature of the heating tube of the apparatus, the flow rate of the reaction solution, and the vacuum pressure in the gas-liquid separation tank.
  • the polymerization liquid composition fed into the final stage devolatilizer is added with 0.5 to 4 parts by weight, preferably 1 to 4 parts by weight, of a foaming agent based on the entire polymerization liquid composition. Is necessary. If the amount of the foaming agent is less than 0.5 part by weight, the effect of accelerating foaming and lowering the partial pressure is small, and the amount of the residual monomer cannot be satisfied. Even if the foaming agent is added in an amount of more than 4% by weight, the actual effect will level off and problems such as poor dispersion of foaming will occur, which will have the opposite effect.
  • the foaming agent used in the present invention is incompatible with polymers produced such as water and alcohols and has the same volatility as the volatile substances in the polymerization solution composition. Preference is given to water, and among these, water, which facilitates the recovery of the blowing agent and has a high foaming effect, is most preferred.
  • the blowing agent is added by an optional method in the process of feeding the polymerization liquid from the outlet of the devolatilizer before the last stage to the inlet of the devolatilizer at the last stage.
  • the means for adding the foaming agent is not particularly limited, but the stationary means is used so that a specified amount can be added and dispersed in the polymerization liquid fed to the final stage devolatilizer.
  • a possible method is to install a mold mixer, extruder, etc., and add and disperse. From the standpoint of equipment costs, running costs, and maintenance and inspection, it is preferable to install a static mixer and use it to disperse and add. .
  • the pressure of the polymerization solution in the process from the entrance of the final devolatilizer to the pressure regulator is adjusted by the pressure regulator installed in the final devolatilizer. More than 10 kg / cm 2 is required, preferably 20 kg / cm 2 or more, more preferably 30 kg / cm 2 or more. No. If the pressure of the polymerization solution is lower than 10 kg / cm 2 , the dispersion of the polymerization solution and the blowing agent is poor, the effect of the addition of the blowing agent is impaired, and the amount of the volatile substance can be satisfied. And cannot be reduced.
  • the upper limit of this pressure is not particularly limited, but is preferably 150 kg / cm 2 or less from the viewpoint of equipment manufacturing cost.
  • the temperature of the polymerization solution composition in the process from the entrance of the final devolatilization device to the pressure adjusting device of the polymerization solution composition inserted into the devolatilization device of the last stage is 190 to It must be in the range of 260 ° C, preferably in the range of 200 to 250 ° C, and more preferably in the range of 220 to 240 ° C Range is good. If the temperature of the polymerization solution is lower than 190 ° C, the equilibrium concentration does not drop sufficiently and the amount of volatile substances does not decrease. If the temperature of the polymerization liquid is higher than 260 ° C, a low molecular weight polymer is easily generated even if the solid content is adjusted to exceed 97% in the previous step, Product quality is degraded.
  • the vacuum pressure in the gas-liquid separation tank of the last-stage devolatilizer needs to be lower than 20 T0 rr, preferably lower than 1 OT orr. It's better to comb. If the vacuum pressure is higher than 20T0rr, the equilibrium concentration will not be sufficiently reduced, and the amount of volatile substances cannot be reduced.
  • a heating device is installed in the final-stage devolatilizer.
  • the heating temperature of the heating device is preferably in the range of 210 to 280 ° C, and more preferably in the range of 230 to 260 ° C. This is more preferable. If the heating temperature of the heating device is lower than 210 ° C., the foaming of the polymer solution is not sufficiently promoted, the equilibrium concentration is not sufficiently lowered, and the amount of volatile components can be reduced. Absent. If the heating temperature of the heating device is higher than 280 ° C, the resin will be decomposed and the amount of residual monomer will not be satisfactory, or low molecular weight substances will be easily generated. As a result, the quality of the product deteriorates.
  • a resin modifying additive or the like may be appropriately added and kneaded in any step of the resin production process.
  • the step of adding these additives includes, for example, a method of installing an extruder or the like and adding the additives after devolatilization is completed.
  • resin modifying additives include liquid release agents such as liquid paraffin, low molecular weight polyethylene wax, and zinc stearate. Examples include a powdery release agent, an antioxidant, an antistatic agent, a plasticizer, and other various additives.
  • FIG. 1 is an explanatory diagram showing an example of a two-stage devolatilization apparatus for performing the devolatilization treatment method of the present invention.
  • FIG. 2 is a diagram illustrating the inside of the devolatilization tank shown in FIG. There is a partially enlarged view of the connection between the orifice used as a pressure regulator and the multi-tube heat exchanger.
  • the two-stage devolatilizer shown in Fig. 1 is composed of a first-stage devolatilizer and a second-stage devolatilizer, and each devolatilizer is a heating step of the polymer solution. It is composed of vertical multitubular heat exchangers 1 and 12 and gas-liquid separation tanks 2 and 15 directly connected below them.
  • the vertical multi-tubular heat exchanger 1 of the first devolatilizer communicates with the polymerization process outlet line 6, and at the inlet of the heat transfer tube 3, a pressure regulating device and Then, an orifice 4 is installed, and the outside of the heat transfer tube 3 is a heating area 5 in which a heat medium circulates.
  • a volatile substance recovery device 7 communicating with a vacuum pump (not shown) is connected to the gas-liquid separation tank 2 at the top, and devolatilization is performed at the bottom.
  • the polymer transport device 8 for extracting the polymer is connected.
  • the mixed liquid composition from the first-stage devolatilization device outlet to the second-stage devolatilization device inlet it is necessary to add a foaming agent.
  • the water is fed into the static mixer 10 by a blowing agent adding pump (not shown) which communicates with the static mixer 10 and is dispersed therein.
  • the polymerization liquid composition passed through the static mixer 10 is charged into the vertical multi-tube heat exchanger 12 of the second-stage devolatilizer through the transfer pipe 11.
  • the configuration of the second-stage devolatilizer may be the same as or different from the first-stage devolatilizer.
  • the orifices provided as pressure adjusting devices provided for the respective devices have different orifice gaps because the required pressures are different.
  • the orifice size is generally smaller in the second-stage devolatilizer.
  • a volatile substance recovery device 16 communicating with a vacuum pump (not shown) is connected to the upper part of the upper part, and a lower part for extracting the devolatilized polymer is connected to the lower part.
  • the united transfer device 17 is connected.
  • the temperature of the heat transfer tube 3 is kept constant by flowing the heat medium in the heating area 5 in the heat exchanger 1.
  • the polymerization liquid introduced into the heat exchanger 1 from the polymerization process outlet line 6 first passes through the orifice 4 as a pressure adjusting device, and passes through the heat transfer tube 3.
  • the mixture is heated to a predetermined temperature while foaming.
  • the polymerization liquid composition in the process from the entrance of the devolatilization unit in the end plate to Orifice 4 as a pressure adjusting device depends on the pressure loss of Orifice 4. It is in a state of being uniformly dispersed.
  • the polymer solution heated to the predetermined temperature is ejected from the outlet of the heat transfer tube 3 into the gas-liquid separation tank 2, which has been reduced to a predetermined pressure, and is discharged from the polymer solution.
  • Volatile substances such as unreacted monomers and solvents, are vaporized at once, and are separated into gas and liquid by flashing.
  • the volatile substances thus separated are collected by a volatile substance recovery device 7 communicating with the upper part of the gas-liquid separation tank 2, and the devolatilized polymer is subjected to gas-liquid separation. It is withdrawn from the polymer transport device 8 connected to the lower part of the separation tank 2, transferred to the stationary mixer 10 through the transfer pipe 9, where the foaming agent is added and dispersed. After passing through the transfer pipe 11, it is introduced into the heat exchanger 12 of the second-stage devolatilizer.
  • the polymer solution composition that has passed through the orifice 13 is heated by the heated transfer medium located inside the heating area 18. While passing through the heat tube 14, it is heated to a predetermined temperature while foaming.
  • the polymerization liquid composition from the inlet of the devolatilization device in the end plate to the orifice 13 as a pressure regulator is the pressure loss of the orifice 13 It is in a state of being more uniformly dispersed.
  • the polymerization liquid composition heated to the predetermined temperature is ejected from the outlet of the heat transfer tube 14 into the gas-liquid separation tank 15, which is reduced to a predetermined pressure, and polymerized.
  • Volatile substances such as unreacted monomers and solvents in the liquid evaporate at once, and are separated into gas and liquid by so-called flushing.
  • the volatile substances separated in this way are recovered by a volatile substance recovery device 16 communicating with the upper part of the gas-liquid separation tank 15, and the devolatilized heavy
  • the coalesced mixture is extracted as a polymer from which volatile components have been almost completely removed by a polymer transfer device 17 which is in contact with the lower part of the gas-liquid separation tank 15.
  • the polymerization liquid composition having a solid content of 80% by weight obtained by the polymerization is continuously charged into a two-stage devolatilization apparatus shown in Fig. 1, and a volatilization mainly containing unreacted monomer is performed.
  • the volatile substances were devolatilized using water as a blowing agent. Table 1 shows the operating conditions of the final-stage devolatilizer and the results of analysis of the obtained pellets.
  • the devolatilization process was performed in the same manner as in Example 1, except that the solid content of the polymerization liquid charged to the final-stage devolatilizer was 98% by weight, and the amount of the foaming agent was 3%. I did.
  • Table 1 shows the operating conditions of the final-stage devolatilizer and the analysis results of the obtained pellets.
  • the devolatilization treatment was performed in the same manner as in Example 1 except that the temperature of the polymerization liquid charged into the final-stage devolatilization apparatus was set at 215, and the amount of the blowing agent was set at 3%.
  • Table 1 shows the operating conditions of the final-stage devolatilizer and the analysis results of the pellets obtained.
  • the devolatilization process was performed in the same manner as in Example 1 except that the heating temperature of the heat transfer tube of the final-stage devolatilizer was set to 270 ° C and the amount of the blowing agent was set to 3%.
  • Table 1 shows the operating conditions of the final-stage devolatilizer and the analysis results of the obtained pellets.
  • the devolatilization process was performed in the same manner as in Example 1 except that the solid content of the polymerization liquid charged to the final-stage devolatilizer was 95% by weight. I got it.
  • Table 2 shows the operating conditions of the final-stage devolatilizer and the analysis results of the obtained pellets.
  • the devolatilization was performed in the same manner as in Example 1 except that the temperature of the polymerization solution charged into the final-stage devolatilization apparatus was set to 180 ° C.
  • Table 2 shows the operating conditions of the final-stage devolatilizer and the results of analysis of the obtained pellets.
  • the devolatilization was performed in the same manner as in Example 1 except that the temperature of the polymerization solution charged into the final-stage devolatilization apparatus was set at 270 ° C.
  • Table 2 shows the operating conditions of the final-stage devolatilizer and the results of analysis of the obtained pellets.
  • the devolatilization was performed in the same manner as in Example 1 except that the vacuum pressure of the final-stage devolatilizer was set to 25 Torr.
  • Final stage The operating conditions of the devolatilizer and the analysis results of the obtained pellets
  • the devolatilization treatment was performed in the same manner as in Example 1 except that the foaming agent was not added to the polymerization liquid charged into the final-stage devolatilization apparatus.
  • Table 3 shows the operating conditions of the final-stage devolatilizer and the analysis results of the obtained pellets.
  • the devolatilization was carried out in the same manner as in Example 3 except that the amount of the foaming agent added to the polymerization liquid to be charged into the final-stage devolatilizer was 5%. Operating conditions of the final-stage devolatilizer and the pellets obtained Table 3 shows the results of the analysis.
  • the devolatilization process was performed in the same manner as in Example 1 except that the orifice 13 was not installed at the inlet of the heat transfer tube of the final-stage devolatilizer.
  • Table 3 shows the operating conditions of the final-stage devolatilizer and the analysis results of the obtained pellets.
  • the content of the remaining volatile substances can be reduced.
  • the aromatic vinyl resin produced based on the present invention is a material particularly suitable for packaging containers for food use such as foamed PS trays and drinking water containers. Can be widely used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

明 細 書
重合液組成物の脱揮処理方法
技 術 分 野
本発明 は、 重合液組成物の脱揮処理方法 に関 し 、 さ ら に詳 し く は芳香族 ビニル系重合体 に含 ま れ る 単量体等の 揮発性物質を き わめて低い レベルに ま で脱揮す る 方法 に 関す る も のであ る 。
背 細シ 技 術
ポ リ ス チ レ ン製の包装 ¾tは、 そ の手軽 さ 、 汎用 性か ら 急速 に普及 し 、 発泡 Ρ S ト レ ー 、 飲料水容器等幅広 く 使用 さ れて い る が、 近年 ポ リ ス チ レ ン 中 に残留 し て い る 単量体や溶剤量を極度に少な く す る こ と 力く要求 さ れて い る 。 fcc 、 連続塊状 合又 は溶液重合 に よ り 製造 さ れ る ポ リ ス チ レ ン系樹脂の脱揮処理は、 フ ラ ッ シ ュ 式ゃ 押 出機式、 4膜式な どで行われて き て い る 。
こ れま で提案 さ れた脱 処理方法の一つ に、 特公昭 5 4 - 3 0 4 2 8 号公報 に 示 さ れた技術力くあ る 。 こ の公 報に は、 加熱ェ程におけ る 挿入温度や圧力、 挿入状態や 速度、 滞留時間、 熱父換効率、 出 口 温度 と 圧力、 減圧下 の気液分離ェ程で フ フ ッ ュ 蒸発 さ せ る 際の温度や減圧 度な ど種 々 の操業条件を か く 制御す る こ と が開示 さ れ てい る 。 し 力、 し なが ら 、 の方法で は、 操業条件の設定 が難 し く 、 操業が不安定 な る た め に、 実質的 に低分子 量物の発生を防止す る こ と が難 し い と い う 問題があ り 、 同様 に揮発性物質の 足す る も ので は な か つ た。
そ こ で、 特開昭 5 9 一 6 6 5 0 6 号公報 に は 、 揮発 性成分を 3 段階で分離す る 方法が開示 さ れて い る 。 こ の 脱揮方式にお いて は、 重合液中の揮発性成分の含有量を 3 段 目 に挿入す る 前 に 1 %以下 と 少な く し た状態で発泡 剤を添加す る 方法であ る が、 こ の方法で は、 最終段脱揮 装置へ移送す る 樹脂の温度を高 く す る 必要があ り 、 運転 効率が悪い ばか り でな く 、 重合液や発泡剤の分散 も悪 く 発泡剤を添加 し た効果が損な われ、 揮発性物質の量 も 十 分満足で き る も ので は な 力、 つ た。
ま た、 特公平 6 — 8 2 7 号公報 に は、 脱揮槽に直結 し た加熱装置 に よ る 2 段脱揮方式で、 未反応単量体や溶剤 量の量、 加熱温度、 真空度、 脱揮槽底部の滞留時間、 第 1 脱揮槽か ら 2 段 目 脱揮槽ま での滞留 時間な どを細か く 制御す る 方法が提案 さ れて い る 。 し 力、 し な力く ら、 こ の方 法で も 、 低分子量物の発生を防止す る こ と はで き て も 、 揮発性物質の量は満足で き る も ので は なか っ た。
ま た、 フ ラ ッ シ ュ 式の改造方法 と し て、 樹脂加熱部 に プ レ ー ト 熱交換器を用 いて高効率 に樹脂を加熱す る 方法 が考案 さ れて い る が、 残留 し て い る 単量体や溶剤分が十 分に 除去 さ れてい る と は言えず、 さ ら に少な く す る に は 真空度を極度 に低 く す る 必要があ り 、 巨大な真空装置を 必要 と し 、 実質上実現は困難であ る 。
さ ら に、 押 出機、 特に二軸押 出機を脱揮装置に用 い る 方法 は、 残留 し て い る単量体や溶剤分を極度 に除去 し た 例が報告 さ れて い る が、 設備 コ ス ト 、 ラ ンニ ン グ コ ス ト が高 く 、 巨大な真空装置を必要 と す る ほか、 運転の容易 性、 保守点検性等の問題を有 し て い る 。 ま た、 薄膜式 も 同様 に攪拌装置を有 し て い る ので ラ ンニ ン グ コ ス ト 力く高 い う え に、 運転の容易性、 保守点検性な どの問題を有 し て い る 。
し たが つ て、 本発明の 目 的 は、 かか る 現状に鑑み、 芳 香族 ビニル系樹脂を脱揮処理す る に 当 た り 、 比較的簡易 で経済的な方法で、 残留 し て い る 揮発性物質の含有量を 低減 さ せ る方法を提供す o し と に め る 。
本発明者等 は、 上記 目 的 を達成す る た め に鋭意検討 し た結果、 芳香族 ビニル系樹脂を脱揮処理す る に 当 た り 、 多段脱揮方式で、 最終段での脱揮条件を特定す る こ と に よ り 残留 して い る 単量体等の揮発性物質の含有量を極度 に少な く で き る方法を見出 し 、 本発明 を完成す る に至 つ た。
発 明 の 開 示
すなわ ち 、 本発明 は、 ゴム状重合体成分の存在下又は 非存在下に、 芳香族 ビニル系単里体単独又 は芳香族 ビニ ル系単量体 と 該芳香族 ビニ ル系単量体 と 共重合可能な他 の単量体を混合 し た芳香族 ビ二 ル系単量体混合物を、 連 続塊状重合又 は連続溶液重合 し得 ら れた重合液組成物か ら未反応単量体そ の他の揮発性物質を除去す る 脱揮処理 方法 にお いて、 脱揮処理方法が 2 以上の フ ラ ッ シ ュ 式脱 揮槽を用 い た複数段脱揮処理に よ り 行われ、 最終段前の 脱揮装置 出 口 での重合液組成物の固形分が 9 7 %を超え 、 最終段前の脱揮装置 出 ロ カヽ ら最終段脱揮装置入 口 に重 合液組成物を送 り 込むェ程で、 全重合液組成物 に対 し て 発泡剤を 0 . 5 〜 4 重量部添加 し た後、 最終脱揮装置入 口部力、 ら圧力調整機器に至 る ま での工程での重合液の圧 力を、 最終脱揮装置 内又 は最終脱揮装置の入 口 に設け ら れた圧力調整機器に よ り 1 0 k g / c m 2以上 に保持す る と と も に、 重合液組成物の液温を 1 9 0 〜 2 6 0 °Cの範囲で 該工程を通過 さ せ、 そ の後、 重合液組成物を 2 0 T 0 r r 以下の真空圧力 に保持 し た気液分離槽内へ送 り 込み発 泡 さ せ る こ と を特徵 と す る 重合液組成物の脱揮処理方法 で あ 。
以下、 本発明 を詳細 に説明す る
本発明の方法が適用 さ れ る 重合液組成物 と し て は、 ゴ ム 状重合体成分の存在下又 は非存在下 に 、 芳香族 ビ二 ル 系単量体単独又 は芳香族 ビ二ル系単 と 該芳香族 ビニ ル系単量体 と 共重合可能な単量体を混合 し た芳香族 ビニ ル系単量体混合物を、 連 #Ε塊状重合又 は溶液重合 し 得 ら れた重合液組成物を言 う の重合液組成物 は ス チ レ ン 系樹脂を製造す る た めの重合ェ程力、 ら 得 ら れ、 未反応単 量体や重合の際 に添加 さ れ る 溶剤等の揮発性物質を含む 重合液組成物であ り 、 塊状重合や溶液重 A口 に ck つ て製造 さ れ る ス チ レ ン系樹脂、 例えばポ リ ス チ レ ン ( G P P S ) 、 ゴ ム変性ポ リ ス チ レ ン ( Η I P S ) 、 ス チ レ ン ー ァ ク リ ロ ニ ト リ ル共重合体 ( S A N ) 、 ァ ク リ ロ 二 ト リ ル
― ブ 夕 ジ ェ ン ー ス チ レ ン共重合体 ( A B S 樹脂 ) 、 ス チ レ ン ー メ タ ク リ ル酸 メ チ ル共重合体 ( M S ) 、 メ タ ク リ ル酸 メ チル ブ タ ジ ェ ン ス チ レ ン 共重合体 ( M B S ) 等の重合工程か ら 得 ら れ る 重合液な どを挙げ る こ と がで さ る 。 で、 芳香族 ビ二ル系単量体 と し て は、 例えば ス チ レ ン 、 α — メ チ ノレ ス チ レ ン 、 m — メ チ ノレ ス チ レ ン 、 p — メ チ ル ス チ レ ン 、 ο 一 ク ロ ノレ ス チ レ ン 、 p — ク ロ ノレ ス チ レ ン な どが挙げ ら れ る 。 こ れ ら は単独で使用 し て も よ い し 、 2 種以上を併用 し て も よ い。
ま た、 該芳香族 ビ二ル系単量体 と 共重合可能な単量体 と して は、 例え ばァ ク リ ロ ニ ト リ ノレ 、 メ タ ァ ク リ ロ ニ ト U ノレ、 メ タ ク リ ル酸 メ チ ノレ、 メ タ ク リ ノレ酸ェチ ノレ、 ァ ク リ ル酸 メ チ ル、 ァ ク リ ル酸ェ チ ルな どが挙げ ら れ る 。 こ れ ら は単独で使用 して も よ い し 、 2 種以上を併用 し て も よ い o
ゴ ム状重合体成分 と し て は、 例え ば ポ リ ブ タ ジ エ ン、 ス チ レ ン一ブ タ ジ ェ ン共重合体、 ポ リ イ ソ プ レ ン 、 天然 ゴ ム な どが挙げ ら れ る o ι_ れ は単独で使用 し て も よ い し 、 2 種以上を併用 し て も よ い。
本発明で い う 連続塊状重合や連続溶液重合 にお いて は 、 必要に応 じ て不活性炭化水素有機溶剤、 例えば 卜 ルェ ン、 キ シ レ ン 、 ェ チ ルベ ン ゼ ン等の芳香族炭化水素類を 単独又は 2 種以上の混合物な どを配合す る こ と に よ っ て 重合液の溶液粘度を低減す る こ と も で き る 。
ま た、 必要 に応 じて、 重合開始剤や連鎖移動剤を添加 し て も よ い ο 重合開始剤 と し て は、 有機過酸化物等の ラ ジ 力 ル開始剤を配合す る こ と が好ま し い。 用 い ら れ る 重 合開始剤 と し て は、 例え ばベ ン ゾイ ノレ パ 一 ォ キサ イ ド、 ァ ゾ ビ ス イ ソ ブ チ 口 二 ト リ ノレ、 ラ ゥ ロ イ ノレパ一 キサ イ ド な どが挙げ ら れ、 こ れ ら を単独で使用 し て も よ い し 、 2 種以上を併用 す る こ と も で き る 。 ま た、 連鎖移動剤 と し て は 、 例え ば メ ノレ カ ブ タ ン類、 ー メ チ ノレ ス チ レ ン ダ イ マ 一 、 モ ノ テ ルぺ ノ ィ ド系分子量調節剤 ( タ 一 ピ ノ 一 レ ン) な どが挙げ ら れ る 。
本発明の重合液組成物を生成 さ せ る た めの重合反応装 置 は、 槽型、 プ ラ グ フ ロ ー型な ど公知の反応器の形式が 採用 で き る 。 そ して、 最終段の反応器か ら 流出す る 重合 液組成物中 に は、 ス チ レ ン系重合体の他に、 揮発性物質 と して未反応単量体や溶剤な どが含 ま れ、 通常、 揮発性 物質が 1 0 ~ 3 0 重量%含有 さ れて い る 。 最終段の反応 器か ら流出す る 重合液組成物の揮発性物質の含有量が、 3 0 重量%以上で は脱揮工程で低分子量重合体が発生 し 易 く な り 、 1 0 重量%以下 に な る ま で重合す る と 、 脱揮 工程での重合液組成物の取 り 扱いが困難に な る 。
揮発性物質を含有す る 重合液組成物 は、 重合工程 と 連 通す る 2 以上の複数段の脱揮装置 に導入 さ れ る 。 こ の場 合、 最終段以外の脱揮装置 は、 従来か ら 公知の脱揮装置 で差 し支え な いが、 加熱工程で重合液を加熱 し た後に気 液分離槽で脱揮す る 構造の も のが、 脱揮効率が高 く 好 ま し い。 ま た、 最終段の脱揮装置 は、 加熱工程で重合液を 加熱 し た後に気液分離槽で脱揮す る 構造の も のが、 脱揮 効率が高 く 特に好ま し い。 本発明 は、 最終段の脱揮装置 において、 最終脱揮装置入 口部か ら 圧力調整機器に至 る ま での工程での重合液の圧力 を、 最終脱揮装置内又は最 終脱揮装置の入 口 に設け ら れた圧力調整機器に よ り 1 0 k g / c m 2以上に保持す る こ と よ り 、 や け 、 コ ン タ ミ 及びゲ ノレ等の生成に よ る 製品への異物混入を回避す る こ と がで き 、 かつ重合液や添加 し た発泡剤の分散 も よ く す る こ と がで き 、 その結果、 製造 さ れ る 製品中 に残留す る 単量体 の量 も 低減す る こ と 力' <J さ ^ 。
本発明 にお いて、 少な く と も 2 段の脱揮装置を設置す る 必要があ る 。 脱揮装置が 3 段以上であ っ て も 差 し 支え な いが、 設備 に多 く の費用 を要す る ので好 ま し く な い。 脱揮装置を 1 段だけ し か設置 し な い と 、 脱揮槽に入 る 重 合液組成物の固形分を 9 7 % を超え た状態 にす る こ と が 必要で あ り 、 実質上困難であ る
最終段の圧力調整機器は、 弁が一般的であ る が、 脱揮 装置の入 口 や加熱工程を有す る 脱揮装 にお いて は、 加 熱部 に小径の孔を複数設け る 方法 も あ る 。 特に、 加熱ェ 程に伝熱管を用 い る場合 は、 各伝熱管 に ォ リ フ ィ ス を設 け る 方法が簡便 さ の観点か ら好 ま し い。 ォ リ フ ィ ス の取 付け方法 は、 特 に限定 さ れ る も ので は な いが、 伝熱管の 内側 に差込む形状又 はね じ込む形状 と し た も のが、 伝熱 管への取付け や交換が容易であ る ので好 ま し い。 脱揮装 置の入口 に複数設け る 小径穴やオ リ フ イ ス の 口 径 は、 要 求 さ れ る 圧力 に よ っ て決め る こ と がで き る 。 な お、 加熱 工程を有す る 脱揮装置の圧力調整機器の設置場所 は、 加 熱装置の入口 、 出 口 、 途中 な ど重合液の圧力 を 1 0 k g / c m 2以上に保持 し 、 重合液や発泡剤の分散を均一にで き る 場所であれば、 特に限定 さ れ る も ので は な いが、 圧力調 整機器を加熱装置の入口 に設置 し た ほ カロ熱装置全体 を圧力構 te にす る 必要がな く 、 設備費用 の面か ら 好 ま し い。 な お、 最終脱揮装置以外 に も 、 同様の方法で圧力調 整装置を設け、 重合液の分散を よ く して も か ま わ な い。
各段の脱揮装置 に加熱工程を必要 と す る 場合、 そ こ で 使用 す る 熱交換器 と し て は、 高粘度流体用 の熱交換器 と して通常用 い ら れ る も のが好 ま し い。 こ の よ う な熱交換 器に は、 縦型多管式熱交換器、 プ レ ー ト 式熱交換器な ど を用 い る こ と がで き 、 特に限定 さ れ る も ので は な いが、 プ レ ー ト 式 に比べて、 構造が簡単で耐圧構造を と れかつ 安価であ る こ と か ら 、 縦型多管式熱交換器が よ り 好ま し い
ま た、 気液分離槽への重合液移送は、 加熱装置を気液 分離槽 と 直結 し た方式、 気液分離槽内部 に配置 し た方式 、 移送管で気液分離槽へ移送す る 方式な ど特 に限定 さ れ る も ので は な い。 伝熱部の数や加熱領域の大 き さ は、 適 用 さ れる 重合液の種類や揮発性物質濃度等に よ っ て適宜 変更で き る も のであ る 。 第 1 段の脱揮装置 に重合液を導 入す る 場合を例 に し て説明す る と 、 加熱帯の入 口温度 は
、 反応装置最終段の液温 と ほぼ同程度であ り 、 第 1 段の 脱揮装置 出 口 での液温は通常 2 0 0 〜 3 0 0 °Cであ る 。
最終段前の脱揮装置出 口 か ら取 り 出 さ れた重合液組成 物は、 そ の固形分を 9 7 % を超え る よ う に調整す る こ と が必要であ り 、 好ま し く は 9 8 %以上、 よ り 好ま し く は 9 9 %以上に調整す る こ と がよ い。 固形分が 9 7 % よ り 少な い と 、 脱揮効率が悪 く 揮発性物質の量 も 満足で き な いばか り でな く 、 最終脱揮装置への樹脂移送中や最終脱 揮装置の加熱工程で低分子量物が発生 し 、 製品の品質が 悪化す る 。 重合液組成物の固形分が 9 7 % を超え る よ う に調整す る に は、 最終段前の脱揮槽に入 る 重合液組成物 の固形分の割合、 該脱揮工程での加熱装置の加熱管温度 、 反応液の流量、 気液分離槽内 の真空圧力 を適宜制御す る こ と に よ っ て行 う こ と 力 で き る 。
最終段の脱揮装置 に送入 さ れ る 重合液組成物 に は、 全 重合液組成物 に対 して発泡剤を 0 . 5 〜 4 重量部、 好ま し く は 1 〜 4 重量部添加 し てお く こ と が必要であ る 。 発 泡剤の添加量が 0 . 5 重量部 よ り 少な い と 、 発泡促進、 分圧の引 下げ効果が少な く 、 残留単量体の量 も 満足で き る も の に な ら な い。 発泡剤を 4 重量% よ り 多 く 添加 して も 、 実際の効果 は頭打ち と な り 、 発泡の分散不良等の問 題が生 じ逆効果 と な る 。 本発明で用 い る 発泡剤 と しては 、 水、 ア ル コ ー ル類な ど生成す る 重合体 と 非相溶で重合 液組成物中の揮発性物質 と 同程度の揮発性を有す る も の が好ま し く 、 こ れ ら の 中で も 発泡剤の回収が容易で、 発 泡効果の高 い水が最 も 好 ま し い。
ま た、 発泡剤 は、 最終段前の脱揮装置 出 口 か ら最終段 脱揮装置入口 に重合液を送 り 込む工程で、 任意の方法で 添加す る 。 発泡剤を添加す る 手段 は、 特に 限定 さ れ る も ので はな いが、 最終段の脱揮装置 に送入 さ れ る 重合液に 、 規定量を添加分散で き る よ う に、 静止型混合器や押出 機等を設置 し添加分散 さ せ る 方法が考え ら れ る 。 装置の 設備 コ ス ト や ラ ンニ ン グ コ ス ト 、 保守点検性の観点か ら す る と 静止型混合器を設置 し 、 こ れを用 いて添加分散 さ せ る こ と が好 ま し い。 本発明 にお いて は、 最終脱揮装置入 口部か ら圧力調整 機器 に至 る ま での工程での重合液の圧力を、 最終脱揮装 置内 に設 け ら れた圧力調整機器に よ り 1 0 kg/cm2以上に 保持す る こ と が必要であ り 、 好 ま し く は 2 0 kg/cm 2以上 、 よ り 好 ま し く は 3 0 kg/cm2以上がよ い。 こ の重合液の 圧力が 1 0 kg/cm2よ り 低い と 、 重合液や発泡剤の分散が 悪 く 発泡剤を添加 し た効果が損なわれ、 揮発性物質の量 も 満足で き る ま で に低減で き な い。 ま た、 こ の圧力 の上 限 は、 特に 限定 さ れ る も ので はな いが、 装置製作費用 の 面か ら 1 5 0 kg/cm2以下が好 ま し い。
ま た、 最終段の脱揮装置 に挿入 さ れた重合液組成物の 最終脱揮装置入口 か ら圧力調整機器に至 る ま での工程で の重合液組成物の温度は、 1 9 0 〜 2 6 0 °Cの範囲であ る こ と が必要であ り 、 好ま し く は 2 0 0 〜 2 5 0 °Cの範 囲、 よ り 好ま し く は 2 2 0 〜 2 4 0 °Cの範囲がよ い。 重 合液の温度が 1 9 0 °C よ り 低い と 、 平衡濃度が十分に下 が ら ず、 揮発性物質の量が低下 し な い。 重合液の温度が 2 6 0 °C よ り 高 い と 、 前工程でた と え固形分を 9 7 % を 超え る よ う に調整 し て も 低分子量重合体が発生 し 易 く な り 、 製品の品質が悪化す る 。
本発明 にお いて、 最終段脱揮装置の気液分離槽内での 真空圧力 は、 2 0 T 0 r r よ り 低 く す る 必要があ り 、 好 ま し く は 1 O T o r r よ り 低 く す る こ と がよ い。 真空圧 が 2 0 T 0 r r よ り 高い と 、 平衡濃度が十分に下が ら ず、 揮発性物質の量が低減で き な い。
本発明 にお いて、 最終段脱揮装置 に加熱装置を設置す る 場合そ の加熱装置 に よ る 加熱温度は、 2 1 0 ~ 2 8 0 °Cの範囲 にす る こ と が好 ま し く 、 2 3 0 〜 2 6 0 °Cの範 囲 にす る こ と がよ り 好ま し い。 加熱装置の加熱温度が、 2 1 0 °C よ り 低い と 、 重合液の発泡が十分 に促進 さ れず 、 ま た平衡濃度 も十分 に下が らず、 揮発性成分の量が低 減で き な い。 加熱装置の加熱温度が、 2 8 0 °C よ り 高い と 、 樹脂の分解が発生 し 、 残留 モ ノ マ ー の量は満足で き な い ばか り か、 低分子量物が発生 し易 く な り 、 製品の品 質が悪化す る 。
本発明 にお いて は、 樹脂製造過程の任意の工程で樹脂 改質用添加剤等を適宜添加混練 して も よ い。 こ れ ら の添 加剤を添加す る 工程 と し て は、 例えば、 脱揮終了後、 押 出機等を設置 し添加剤を添加す る 方法が挙げ ら れ る 。 樹 脂改質用添加剤 と し て は、 例え ば流動パ ラ フ ィ ン等の液 体状離型剤、 低分子量ポ リ エチ レ ン ワ ッ ク ス、 ス テ ア リ ン酸亜鉛等の粉体状離型剤、 酸化防止剤、 帯電防止剤、 可塑剤、 そ の他の各種添加剤が挙げ ら れ る 。
図面の簡単な説明
図 1 は、 本発明の脱揮処理方法を実施す る た めの 2 段 脱揮装置の一例を示す説明図であ り 、 図 2 は、 図 1 にお け る 脱揮槽内部 に設け ら れた圧力調整機器 と し て使用 す る ォ リ フ ィ ス と 多管式熱交換器の接続部分の部分拡大図 あ る 。
発明 を実施す る た めの最良の形態 以下、 本発明 に よ る 重合液組成物の脱揮処理方法を添 付図面に基づいて具体的 に説明す る 。 図 1 に示す 2 段脱揮装置 は、 1 段 目 の脱揮装置 と 2 段 目 の脱揮装置 と で構成さ れ、 それぞれの脱揮装置 は、 重 合液組成物の加熱工程であ る 縦型多管式熱交換器 1 、 1 2 と そ の下方に 直結 さ れた気液分離槽 2 、 1 5 と で構成 さ れて い る 。
こ の 1 段 目 の脱揮装置の縦型多管式熱交換器 1 は、 重 合工程出 口 ラ イ ン 6 に連通 し、 そ の伝熱管 3 の入 口側 に は、 圧力調整機器 と して、 オ リ フ ィ ス 4 が設置 さ れ、 伝 熱管 3 の外側 は熱媒体が循環す る 加熱領域 5 と な っ てい る 。 気液分離槽 2 に は、 そ の上部 に図示 さ れて い な い真 空 ポ ン プ に連通す る 揮発性物質回収装置 7 が接続 さ れ、 そ の下部 に は脱揮処理さ れた重合体を抜出 すた めの重合 体搬送装置 8 が接続 さ れてい る 。
1 段 目 の脱揮装置 出 口 か ら 2 段 目 の脱揮装置入 口 に重 合液組成物を送 り 込む工程で は、 発泡剤を添加す る 必要 があ る が、 こ の発泡剤は、 静止型混合器 1 0 に連通 し図 示 さ れて い な い発泡剤添加用 ポ ン プ に よ り 静止型混合器 1 0 に送 り 込ま れ、 分散さ れ る 。 静止型混合器 1 0 を経 由 し た重合液組成物 は、 移送管 1 1 を通 じ て 2 段 目 の脱 揮装置の縦型多管式熱交換器 1 2 に装入 さ れ る 。
2 段 目 の脱揮装置の構成は、 1 段 目 の脱揮装置 と 同 じ で も 異な っ て も よ い。 同 じ構成 と し た場合、 そ れぞれに 設け ら れた圧力調整機器 と し ての オ リ フ ィ ス は、 要求 さ れ る 圧力が異な る ため、 オ リ フ ィ ス間隙が異な っ た も の と な り 、 一般的 に はオ リ フ ィ ス サ イ ズ は 2 段 目 脱揮装置 の方がよ り 小 さ く な る 。 ま た、 気液分離槽 1 5 に は、 そ の上部 に 図示 さ れて い な い真空 ポ ン プに連通す る 揮発性 物質回収装置 1 6 が接続 さ れ、 そ の下部 に は脱揮処理さ れた重合体を抜出すた めの重合体搬送装置 1 7 が接続さ れて い る 。
1 段 目 の脱揮装置 にお いて、 熱交換器 1 中の加熱領域 5 は、 熱媒体を流通 さ せ る こ と に よ り 伝熱管 3 の温度は 一定に保たれて い る 。 重合工程出 口 ラ イ ン 6 か ら 熱交換 器 1 内 に導入 さ れた重合液 は、 ま ず圧力調整機器 と して の オ リ フ ィ ス 4 を抜け 、 伝熱管 3 内 を通過す る 間 に発泡 し なが ら 所定の温度 に加熱 さ れ る 。 鏡板内 の脱揮装置入 口 部か ら 圧力調整機器 と し てのォ リ フ イ ス 4 に至 る ま で の工程での重合液組成物 は、 オ リ フ ィ ス 4 の圧損 に よ り 均一 に分散 し た状態であ る 。
次 いで、 所定の温度 に加熱 さ れた重合液 は、 伝熱管 3 の 出 口 か ら所定の圧力 に減圧 さ れて い る 気液分離槽 2 内 に 向 けて噴出 し 、 重合液中 の未反応モ ノ マ ー や溶剤等の 揮発性物質 は そ こ で一気に気化 し 、 いわ ゆ る フ ラ ッ シ ュ し て気液分離さ れ る 。 こ の よ う に して分離 さ れた揮発性 物質 は、 気液分離槽 2 の上部 に連通す る 揮発性物質回収 装置 7 で回収 さ れ、 脱揮処理 さ れた重合体は、 気液分離 槽 2 の下部 に接続さ れた重合体搬送装置 8 に よ り 抜出 さ れ、 移送管 9 を通 り 静止型混合器 1 0 へ移送 さ れ、 こ こ で発泡剤を添加 し分散 さ れた後、 移送管 1 1 を通 り 、 2 段 目 脱揮装置の熱交換器 1 2 へ導入 さ れる 。
2 段 目 脱揮装置で、 オ リ フ ィ ス 1 3 を通過 し た重合液 組成物は、 加熱領域 1 8 の 内側 に位置す る 加熱さ れた伝 熱管 1 4 を通過す る 間 に発泡 し なが ら所定の温度に加熱 さ れ る 。 鏡板内 の脱揮装置入 口部か ら 圧力調整機器 と し てのオ リ フ ィ ス 1 3 に至 る ま でのェ程での重合液組成物 は、 オ リ フ ィ ス 1 3 の圧損 に よ り 均一に分散 し た状態で あ る 。 次いで、 所定の温度 に加熱 さ れた重合液組成物 は 、 伝熱管 1 4 の 出 口 か ら所定の圧力 に減圧 さ れてい る 気 液分離槽 1 5 内 に 向 けて噴 出 し 、 重合液中の未反応モ ノ マ — や溶剤等の揮発性物質 は そ こ で一気に気化 し 、 いわ ゆ る フ ラ ッ ン ュ し て気液分離 さ れ る 。 こ の よ う に し て分 離 さ れた揮発性物質 は、 気液分離槽 1 5 の上部 に連通す る 揮発性物質回収装置 1 6 で回収 さ れ、 ま た脱揮処理 さ れた重合体は、 気液分離槽 1 5 の下部 に接 さ れた重合 体搬送装置 1 7 に よ り 揮発性成分が ほは 兀全 に除去 さ れ た重合体 と して抜出 さ れ る 。
以下に具体的な実施例を挙げて本発明 を さ ら に詳細 に 説明す る が、 本発明 は こ れ ら の実施例 に何 ら 限定 さ れ る も ので は な い。 なお、 実施例等に お け る 樹脂の分析方法 は次の と お り であ る 。
( 1 ) 揮発性物質量の測定
料 ジ メ チ ルホ ルム ア ミ ドで溶解後、 ガ ス ク ロ マ ト グ ラ フ ィ —で定量す る
( 2 ) 低分子量物量の測定
式料を メ チルェ チルケ ト ン に溶解後、 多量の メ タ ノ ー ルを加え、 ポ リ マ ー を析出 さ せ、 低分子量物の量を定量 す る 。
実施例 単量体に ス チ レ ンを使用 し、 ス チ レ ン 9 5 重量% に 5 重量%の ェ チ ルベ ン ゼ ンを添加 し た単量体混合物を原料 と して、 こ れを連続塊状重合を して得 られた固形分が 8 0 重量%の重合液組成物を、 図 1 に示す 2 段脱揮装置に 連続的に装入 し、 未反応モ ノ マ ーを主成分 と する揮発性 物質の脱揮処理を発泡剤 と して水を用 いて行 っ た。 最終 段脱揮装置の運転条件及び得 られたペ レ ツ 卜 の分析結果 を表 1 に示す
実施例 2
最終段脱揮装置へ装入す る重合液の固形分を 9 8 重量 % と し、 発泡剤の量を 3 % と し た以外は、 実施例 1 と 同 様の方法で脱揮処理を行 っ た。 最終段脱揮装置の運転条 件及び得 られたペ レ ツ 卜 の分析結果を表 1 に示す。
実施例 3
最終段脱揮装置へ装入する重合液の温度を 2 1 5 で と し、 発泡剤の量を 3 % と した以外は、 実施例 1 と 同様の 方法で脱揮処理を行 っ た。 最終段脱揮装置の運転条件及 び得 られたぺ レ ツ 卜 の分析結果を表 1 に示す。
実施例 4
最終段脱揮装置の伝熱管の加熱温度を 2 7 0 °C と し、 発泡剤の量を 3 % と し た以外は、 実施例 1 と 同様の方法 で脱揮処理を行っ た。 最終段脱揮装置の運転条件及び得 られたペ レ ッ 卜 の分析結果を表 1 に示す。
比較例 1
最終段脱揮装置へ装入す る重合液の固形分を 9 5 重量 % と し た以外は、 実施例 1 と 同様の方法で脱揮処理を行 つ た。 最終段脱揮装置の運転条件及 び得 ら れたペ レ ツ ト の分析結果を表 2 に示す。
比較例 2
最終段脱揮装置へ装入す る 重合液の温度を 1 8 0 °C と し た以外 は、 実施例 1 と 同様の方法で脱揮処理を行 っ た 。 最終段脱揮装置の運転条件及び得 ら れたペ レ ツ 卜 の分 析結果を表 2 に示す。
比較例 3
最終段脱揮装置へ装入す る 重合液の温度を 2 7 0 °C と し た以外 は、 実施例 1 と 同様の方法で脱揮処理を行 っ た 。 最終段脱揮装置の運転条件及び得 ら れたペ レ ツ 卜 の分 析結果を表 2 に示す。
比較例 4
最終段脱揮装置の真空圧力 を 2 5 T o r r と し た以外 は、 実施例 1 と 同様の方法で脱揮処理を行 っ た。 最終段 脱揮装置の運転条件及び得 ら れたペ レ ツ 卜 の分析結果を
2¾ ^ (こ /]^す 0
比較例 5
最終段脱揮装置へ装入す る 重合液 に発泡剤を添加 し な か っ た以外 は、 実施例 1 と 同様の方法で脱揮処理を行 つ た。 最終段脱揮装置の運転条件及び得 ら れたペ レ ツ 卜 の 分析結果を表 3 に示す。
比較例 6
最終段脱揮装置へ装入す る 重合液の発泡剤の添加量を 5 % と し た以外 は、 実施例 3 と 同様の方法で脱揮処理を 行 っ た。 最終段脱揮装置の運転条件及び得 ら れたペ レ ツ 卜 の分析結果を表 3 に示す。
比較例 7
最終段脱揮装置の伝熱管入 口 部 にオ リ フ ィ ス 1 3 を設 置 し な か っ た以外は、 実施例 1 と 同様の方法で脱揮処理 を行 っ た。 最終段脱揮装置の運転条件及び得 ら れたペ レ ッ ト の分析結果を表 3 に示す。
【表 1 】 実 施 例
最終段脱揮条件
1 2 3 4 オリフィス ( ø X L ) 3 X 30 3 X 30 3 X 30 3 X 30 固形分 (重量%) 99 98 99 99 伝熱管入口 重合 35 32 44 35 液圧力 (kg/cm2)
伝熱管入 口重合 230 230 215 230 液温度 ( °C )
伝熱管加熱温度 250 250 250 270 ( °C )
真空圧力 (Torr) 8 8 8 8 発泡剤添加量 2 3 3 3 (重量% )
揮発性物質量 70 95 80 70 P P m )
低分子量物量 1. 1 1. 3 1. 2 1. 2 (重量% ) 【表 2 】 比 較 例
最終段脱揮条件
1 2 3 4 オリフィス ( ø X L ) 3 x 30 3 x 30 3 X 30 3 x 30 固形分 黄鼋% ) Q Q Q 9 Q 9 Q 伝埶管人 口 重合 35 65 15 35 液圧力 (kg/cm2)
伝執答 人 □ 审 205 180 270 230 液温度 ( °C )
ィ 1云 執管 ¾ /力J ΠW 執 rf ? ijm /!^ 250 250 250 250
( c )
直 FF力 (Torr) 8 8 8 25 発泡剤添加量 2 2 2 2 (重量% )
揮発性物質量 1000 350 300 400
P m )
低分子量物量 2. 2 1. 7 1. 8 1. 7 (重量% )
【表 3 】
Figure imgf000021_0001
産業上の利用可能性
本発明 に よ れば、 多段脱揮方式で最終段脱揮方法を特 定す る こ と に よ り 、 残留 し てい る 揮発性物質の含有量を
1 0 0 p p m 以下の レ べノレに ま で少な く す る こ と がで き る 。 し たが っ て、 本発明 に基づ き 製造 さ れた芳香族 ビニル 系樹脂 は、 特 に発泡 P S ト レ 一、 飲料水容器等の食品用 途の包装容器に適 し た材料 と して広 く 使用 す る こ と がで き る 。

Claims

請 求 の 範 囲
(1) ゴ ム状重合体成分の存在下又 は非存在下に、 芳香 族 ビニル系単量体単独又 は芳香族 ビニ ル系単量体 と 該芳 香族 ビニ ル系単量体 と 共重合可能な他の単量体を混合 し た芳香族 ビニル系単量体混合物を、 連続塊状重合又 は連 続溶液重合 し得 ら れた重合液組成物か ら未反応単量体そ の他の揮発性物質を除去す る 脱揮処理方法 に お いて、 脱 揮処理方法が 2 以上の フ ラ ッ シ ュ 式脱揮槽を用 い た複数 段脱揮処理に よ り 行われ、 最終段前の脱揮装置 出 口 での 重合液組成物の固形分が 9 7 % を超え、 最終段前の脱揮 装置 出 口 か ら最終段脱揮装置入 口 に重合液組成物を送 り 込む工程で、 全重合液組成物 に対 して発泡剤を 0 . 5 〜 4 重量部添加 し た後、 最終脱揮装置入 口 部か ら圧力調整 機器に至 る ま での工程での重合液の圧力 を、 最終脱揮装 置内又は最終脱揮装置の入 口 に設け ら れた圧力調整機器 に よ り 1 0 k g / c m 2以上に保持す る と と も に、 重合液組成 物の液温を 1 9 0 ~ 2 6 0 °Cの範囲で該工程を通過 さ せ 、 そ の後、 重合液組成物を 2 0 T o r r 以下の真空圧力 に保持 し た気液分離槽内へ送 り 込み発泡 さ せ る こ と を特 徴 と す る 重合液組成物の脱揮処理方法。
(2) 最終段の脱揮装置 は、 加熱装置 と 気液分離槽が順 次配置 さ れた構造を し てお り 、 該加熱装置 は重合液流通 管 と 熱媒体流通管 と を備え た縦型多管式熱交換器で構成 さ れ、 加熱装置 に よ る 加熱温度力く 2 1 0 〜 2 8 0 °Cであ る 請求項 1 記載の重合液組成物の脱揮処理方法。
PCT/JP1999/001576 1998-03-27 1999-03-26 Procede pour evacuer des substances volatiles depuis une composition a base de solution polymere WO1999050314A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69903296T DE69903296T2 (de) 1998-03-27 1999-03-26 Verfahren zur entfernung von flüchtigen stoffen aus der zusammensezuing einer polymerlösung
KR1020007010664A KR20010034690A (ko) 1998-03-27 1999-03-26 중합액 조성물의 탈휘발 처리 방법
US09/646,574 US6353088B1 (en) 1998-03-27 1999-03-26 Method for removing volatile matter from polymer solution composition
EP99910738A EP1086958B1 (en) 1998-03-27 1999-03-26 Method for removing volatile matter from polymer solution composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP08193498A JP4108819B2 (ja) 1998-03-27 1998-03-27 重合液組成物の脱揮処理方法
JP10/81934 1998-03-27

Publications (1)

Publication Number Publication Date
WO1999050314A1 true WO1999050314A1 (fr) 1999-10-07

Family

ID=13760323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001576 WO1999050314A1 (fr) 1998-03-27 1999-03-26 Procede pour evacuer des substances volatiles depuis une composition a base de solution polymere

Country Status (8)

Country Link
US (1) US6353088B1 (ja)
EP (1) EP1086958B1 (ja)
JP (1) JP4108819B2 (ja)
KR (1) KR20010034690A (ja)
CN (1) CN1128159C (ja)
DE (1) DE69903296T2 (ja)
ES (1) ES2180286T3 (ja)
WO (1) WO1999050314A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1201693A2 (en) * 2000-10-24 2002-05-02 Toyo Engineering Corporation Oil-resistant rubber modified polystyrene composition
CN101838354B (zh) * 2009-03-20 2012-11-21 中国石油化工股份有限公司 一种芳香族乙烯基类聚合物脱挥方法
CN111035952A (zh) * 2019-12-19 2020-04-21 张家港威迪森化学有限公司 一种节能高效的苯丙共聚树脂的脱挥方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10031766A1 (de) * 2000-06-29 2002-01-10 Bayer Ag Kautschukfreie Copolymerisate mit niedrigen Monomerrestgehalten und Verfahren und Vorrichtung zu ihrer Herstellung
GB0018162D0 (en) * 2000-07-26 2000-09-13 Dow Corning Sa Polymerisation reactor and process
US6608133B2 (en) * 2000-08-09 2003-08-19 Mitsubishi Engineering-Plastics Corp. Thermoplastic resin composition, molded product using the same and transport member for electric and electronic parts using the same
KR20020048628A (ko) * 2000-12-18 2002-06-24 안복현 열가소성 니트릴계 공중합체 및 그 제조방법
US7332058B2 (en) * 2003-07-31 2008-02-19 Fina Technology, Inc. Heat exchanger and process for devolatilizing polymers using same
US7247765B2 (en) * 2004-05-21 2007-07-24 Exxonmobil Chemical Patents Inc. Cracking hydrocarbon feedstock containing resid utilizing partial condensation of vapor phase from vapor/liquid separation to mitigate fouling in a flash/separation vessel
US7220887B2 (en) 2004-05-21 2007-05-22 Exxonmobil Chemical Patents Inc. Process and apparatus for cracking hydrocarbon feedstock containing resid
CA2571176C (en) * 2004-06-28 2013-05-28 Consolidated Engineering Company, Inc. Method and apparatus for removal of flashing and blockages from a casting
JP5089030B2 (ja) * 2005-08-25 2012-12-05 テクノポリマー株式会社 積層体
WO2007023865A1 (ja) * 2005-08-25 2007-03-01 Techno Polymer Co., Ltd. ゴム強化樹脂、制電性樹脂組成物、成形体及び積層体
DE102005054151A1 (de) * 2005-11-14 2007-05-16 Basf Ag Rohrbündelwärmeübertrager und Verfahren zur Entfernung von gelösten Stoffen aus einer Polymerlösung
EP2255859A1 (de) 2009-05-30 2010-12-01 Bayer MaterialScience AG Vorrichtung und Verfahren zum Entgasen von lösungshaltigen Polycarbonatlösungen
EP2255860A1 (de) 2009-05-30 2010-12-01 Bayer MaterialScience AG Vorrichtung und Verfahren zum Entgasen von lösungsmittelhaltigen Polycarbonatlösungen
CN101693767B (zh) * 2009-09-25 2012-09-05 博爱新开源制药股份有限公司 可溶性高分子聚合物的脱挥方法及其装置
CN102309868B (zh) * 2010-07-07 2015-02-11 杰智环境科技股份有限公司 有机溶剂冷凝回收装置
JP2015168802A (ja) * 2014-03-10 2015-09-28 東洋スチレン株式会社 ゴム変性スチレン系樹脂およびこれを使用してなるシート、食品容器、食品容器蓋材
JP7075450B2 (ja) * 2020-07-27 2022-05-25 三菱エンジニアリングプラスチックス株式会社 車両内装部品用ポリブチレンテレフタレート樹脂組成物
CN114437253B (zh) * 2020-10-21 2024-07-02 中国石油化工股份有限公司 聚合物脱除挥发性组分的方法及其装置与应用
CN114917852B (zh) * 2022-06-28 2024-01-16 桂林电子科技大学 一种本体法连续生产石墨可发泡聚苯乙烯的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134781A (en) * 1975-05-20 1976-11-22 Mitsui Toatsu Chem Inc Method for removing volatile matters from a polymerization liquid comp osition
JPS59166506A (ja) * 1983-03-14 1984-09-19 Mitsui Toatsu Chem Inc 重合液組成物の連続的脱揮発方法
JPH06345810A (ja) * 1993-06-10 1994-12-20 Idemitsu Petrochem Co Ltd スチレン系重合体からの揮発性物質の除去方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668161A (en) * 1969-06-09 1972-06-06 Union Carbide Corp Devolatilization of liquid polymer compositions
US4550149A (en) * 1982-09-24 1985-10-29 Cosden Technology, Inc. Process for producing styrenic/alkenylnitrile copolymers
JPH06827B2 (ja) 1985-04-01 1994-01-05 三井東圧化学株式会社 重合反応液混合物の連続的処理方法
CA1265289A (en) * 1985-12-16 1990-01-30 Viney Pal Aneja Method and apparatus for devolatilizing polymer solutions
JPH01134781A (ja) 1987-11-19 1989-05-26 Nec Corp 磁気テープアクセス方式
US4952672A (en) * 1988-08-11 1990-08-28 The Dow Chemical Company Method for the devolatilization of thermoplastic materials
US4934433A (en) * 1988-11-15 1990-06-19 Polysar Financial Services S.A. Devolatilization
US4994217A (en) * 1988-12-29 1991-02-19 General Electric Company Low odor polyphenylene ether/polystyrene process
US4954303A (en) * 1989-02-10 1990-09-04 The Dow Chemical Company Apparatus and process for devolatilization of high viscosity polymers
US5442041A (en) * 1995-01-19 1995-08-15 Arco Chemical Technology, L.P. Removal of volatile substances from thermoplastic resins
JPH09166506A (ja) 1995-12-18 1997-06-24 Yaskawa Electric Corp 磁歪式歪センサー
US5691445A (en) * 1996-03-28 1997-11-25 Novacor Chemicals (International) S.A. Devolatilization
US5861474A (en) * 1996-07-23 1999-01-19 The Dow Chemical Company Polymer devolatilization
US5874525A (en) * 1997-01-24 1999-02-23 Nova Chemicals Inc. Devolatilizer tray array
US5932691A (en) * 1997-12-05 1999-08-03 Union Carbide Chemicals & Plastics Technology Corporation Process for devolatilization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134781A (en) * 1975-05-20 1976-11-22 Mitsui Toatsu Chem Inc Method for removing volatile matters from a polymerization liquid comp osition
JPS59166506A (ja) * 1983-03-14 1984-09-19 Mitsui Toatsu Chem Inc 重合液組成物の連続的脱揮発方法
JPH06345810A (ja) * 1993-06-10 1994-12-20 Idemitsu Petrochem Co Ltd スチレン系重合体からの揮発性物質の除去方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1086958A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1201693A2 (en) * 2000-10-24 2002-05-02 Toyo Engineering Corporation Oil-resistant rubber modified polystyrene composition
EP1201693A3 (en) * 2000-10-24 2003-03-19 Toyo Engineering Corporation Oil-resistant rubber modified polystyrene composition
US6657010B2 (en) 2000-10-24 2003-12-02 Toyo Engineering Corporation Oil-resistant rubber modified polystyrene composition
KR100448307B1 (ko) * 2000-10-24 2004-09-10 도오요오엔지니아링구가부시키가이샤 내유성 고무 변성 폴리스티렌 조성물
CN101838354B (zh) * 2009-03-20 2012-11-21 中国石油化工股份有限公司 一种芳香族乙烯基类聚合物脱挥方法
CN111035952A (zh) * 2019-12-19 2020-04-21 张家港威迪森化学有限公司 一种节能高效的苯丙共聚树脂的脱挥方法

Also Published As

Publication number Publication date
DE69903296D1 (de) 2002-11-07
ES2180286T3 (es) 2003-02-01
EP1086958B1 (en) 2002-10-02
EP1086958A1 (en) 2001-03-28
EP1086958A4 (en) 2001-08-08
CN1128159C (zh) 2003-11-19
KR20010034690A (ko) 2001-04-25
DE69903296T2 (de) 2003-08-14
US6353088B1 (en) 2002-03-05
JP4108819B2 (ja) 2008-06-25
JPH11279219A (ja) 1999-10-12
CN1295583A (zh) 2001-05-16

Similar Documents

Publication Publication Date Title
WO1999050314A1 (fr) Procede pour evacuer des substances volatiles depuis une composition a base de solution polymere
KR890002928B1 (ko) 중합체 조성물의 연속적 처리방법
US6211331B1 (en) Polymer devolatilization apparatus
US5739219A (en) Continuous preparation of polymers
JPH07233204A (ja) グラフト、転相および架橋を制御したabsグラフトコポリマー製造用多段塊状プロセス
WO2009107765A1 (ja) 熱可塑性共重合体の製造方法
KR970006337A (ko) 중합체의 연속 제조 방법 및 이를 위한 장치
JPH0130848B2 (ja)
EP0905149B1 (en) Method for removing volatile materials from a polymer composition
US4417030A (en) Mass polymerization process for ABS polyblends
JP2762139B2 (ja) スチレン系樹脂組成物の製造方法
JP2004277702A (ja) ポリマーから揮発成分を分離する方法
US4419492A (en) Process for preparing ABS polymeric polyblends
US6410683B1 (en) Polymer devolatilization process
JP2009191096A (ja) 熱可塑性樹脂組成物の製造方法
EP0096555B1 (en) Rubber-modified thermoplastic resins and production thereof
WO1990010653A1 (en) Method or removing volatile substances and apparatus therefor
EP0007238B1 (en) An improved method for preparing abs type resin
JP3236056B2 (ja) ゴム変性スチレン系樹脂の製造方法
JP3020926B2 (ja) 重合体組成物からの揮発性物質の除去方法
US4598124A (en) Mass polymerization process for ABS polyblends
JPH0718014A (ja) α−メチルスチレン系重合体の製造方法
JPH04142303A (ja) 揮発性物質の除去方法
JPS6259726B2 (ja)
JPS6364447B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99804530.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09646574

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007010664

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999910738

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999910738

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007010664

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999910738

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020007010664

Country of ref document: KR