WO1999049601A1 - Repeteur de transmission a multiplexage par repartition en longueur d'onde, systeme et procede de transmission a multiplexage par repartition en longueur d'onde - Google Patents

Repeteur de transmission a multiplexage par repartition en longueur d'onde, systeme et procede de transmission a multiplexage par repartition en longueur d'onde Download PDF

Info

Publication number
WO1999049601A1
WO1999049601A1 PCT/JP1999/001487 JP9901487W WO9949601A1 WO 1999049601 A1 WO1999049601 A1 WO 1999049601A1 JP 9901487 W JP9901487 W JP 9901487W WO 9949601 A1 WO9949601 A1 WO 9949601A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
signal lights
signal
wavelength
wdm transmission
Prior art date
Application number
PCT/JP1999/001487
Other languages
English (en)
French (fr)
Inventor
Shigeru Tanaka
Masayuki Nishimura
Masayuki Shigematsu
Yasunori Murakami
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to KR1020007010620A priority Critical patent/KR20010034668A/ko
Priority to EP99910682A priority patent/EP1081880B1/en
Priority to AU29575/99A priority patent/AU757003B2/en
Priority to DE69940883T priority patent/DE69940883D1/de
Priority to US09/380,503 priority patent/US6512613B1/en
Priority to CA002325580A priority patent/CA2325580C/en
Publication of WO1999049601A1 publication Critical patent/WO1999049601A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0206Express channels arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0213Groups of channels or wave bands arrangements

Definitions

  • WDM transmission repeater WDM transmission system, and WDM transmission method
  • the present invention relates to a WDM (Wavelength Division Multiplexing) transmission system for transmitting a plurality of signal lights having different wavelengths, a WDM transmission repeater provided in an optical transmission line of the WDM transmission system, and a WDM transmission system such as this.
  • WDM Widelength Division Multiplexing
  • the WDM transmission system enables high-speed and large-capacity optical communication by transmitting a WDM signal group including a plurality of signal lights having different wavelengths to an optical fiber line as a transmission line. Even when the existing single-mode optical fiber line network is used, large-capacity optical communication of 32 channels (using 32 signal light beams) is possible, for example, at 2.5013 / 3. For this reason, WDM transmission systems are being introduced to respond to the recent surge in demand for communications on the Internet and the like.
  • a relay base station having a WDM transmission relay may be provided in a transmission path from a transmitter in a transmission base station to a receiver in a reception base station.
  • the WDM transmission repeater includes an optical amplifier and an optical ADM (Add-Drop Multiplexer).
  • the optical amplifier functions to collectively amplify the WDM signal group propagating in the transmission line, and the optical ADM uses the WDM signal group to separate the first group of signal light and the second group of signal light which are different from each other. While receiving the second group of signal light by demultiplexing it with light, another third group of signal light is combined with the first group of signal light, and a new WDM signal group is transmitted again.
  • the WDM transmission repeater includes an optical amplifier and an optical ADM (Add-Drop Multiplexer).
  • the optical amplifier functions to collectively amplify the WDM signal group propagating in the transmission line, and the optical ADM uses the WDM signal group to separate the first group of signal light and the second group of signal light which are different from each other.
  • WDM transmission systems and WDM transmission repeaters are designed to be applicable to long-distance trunks.
  • the distance between adjacent repeaters is, for example, 6 It is as long as 0 km to 80 km. Therefore, the optical amplifier in the WDM transmission repeater has a wide band, a high gain, and a small gain in order to collectively compensate for the transmission loss of all signal light propagating between such long distance repeaters. Performance such as gain deviation (variation in gain between signal lights of each wavelength) is required.
  • gain deviation variation in gain between signal lights of each wavelength
  • the present invention has been made to solve the above-described problems, and is a WDM transmission system suitable as an optical communication means between city stations, and a WDM transmission repeater suitable for the WDM transmission system.
  • An object of the present invention is to provide a WDM transmission method in such a WDM transmission system.
  • the WDM transmission system includes a plurality of WDM transmission repeaters, and the distance between each of the WDM transmission repeaters is relatively short, less than 20 km. Enable communication. According to such a WDM transmission system, it is not necessary to use a wideband optical amplifier capable of amplifying all of a plurality of signal lights, and a narrow band capable of optically amplifying a small number of demultiplexed signal lights. Can be applied sufficiently.
  • the interval between the center wavelengths of each signal light is several nm or less. Specifically, there are transmission modes such as 1.6 nm, 0.8 nm, and 0.6 nm.
  • the number of WDM transmission repeaters that is, the number of optical amplifiers to be applied, will increase, and inexpensive products can be used for these optical amplifiers. It can be realized at low cost. Also, since the interval between repeaters is relatively short, less than 20 km, the applied optical amplifier does not need to have high output, and thus sufficient reliability is secured. In addition, since only a small number of demultiplexed signal lights of the WDM signal group propagating in the transmission path are optically amplified by each WDM transmission repeater, a failure of the optical amplifier occurs in one of the WDM transmission repeaters. Even then, there is little danger that simultaneous communication will not be possible for all channels (all signal lights).
  • the WDM transmission repeater has a structure suitable for the above-described WDM transmission system, and a WDM signal group including a plurality of signal lights having wavelengths within a used wavelength band and different wavelengths from each other propagates. Installed in the transmission path.
  • the WDM transmission repeater is divided into an incident end for taking in the WDM signal group from the transmission line and a WDM signal group taken in through the incident end, and each of the first end of one or more signal lights is provided.
  • the WDM transmission repeater includes the optical ADM and the first A first optical amplifier for amplifying a second group of signal light extracted from the port; and a second optical amplifier for the optical ADM. Amplifying signal light of the third group to be taken from over preparative For at least one of the second optical amplifiers.
  • the second group of signal light extracted is amplified by the first optical amplifier, so that a sufficient reception sensitivity level is ensured in the next-stage WDM transmission repeater.
  • the newly introduced third group of signal light is amplified by the second optical amplifier, so that the WDM signal group (mainly the first and third groups) transmitted from the WDM transmission repeater. (Including the signal light of the second group), the light intensity of the crosstalk component of each signal light of the second group that has not been demultiplexed can be relatively reduced. It becomes easy to determine that the signal light of the second group is a signal light having an allowable crosstalk level or less that is not received as a significant optical signal.
  • a WDM transmission repeater includes an input port optically connected to the first port of the optical ADM and for taking in a second group of signal lights from the first port; A duplexer that is prepared for each wavelength of the second group of signal light captured through the port and has one or more output ports for extracting the corresponding signal light (included in the wavelength separation element) ), One or more input ports provided for each third group of signal light to be newly introduced into the transmission line, and corresponding signal light, and the second port of the optical ADM. And an output port that is optically connected to the second port and transmits the third group of signal lights to the second port (included in the wavelength multiplexing element). .
  • the first port and the second port of the optical ADM may be directly connected to the input port of the demultiplexer and the output port of the multiplexer, respectively. They may be connected via a first optical amplifier and a second optical amplifier, respectively.
  • the demultiplexer and the demultiplexer include an output port selected from the output ports of the demultiplexer and the output port, in order to effectively cope with an increase or decrease in the number of connected subscribers.
  • each of the branch lines for optically connecting to the input port selected from the input ports of the multiplexer is provided with a structure for detachably attaching each end. In this case, the output port selected from the output ports of the duplexer is selected by the selected output port of the duplexer.
  • a first joint structure enabling detachment from a first end of a branch line for optically connecting the selected output port and an input port selected from the input ports of the multiplexer.
  • the selected input port of the multiplexer has a second joint structure that allows a detachable connection between a first end of the branch line and a second end facing the branch line.
  • the output port of the duplexer is Part of the extracted signal light (included in the second group) is taken into the multiplexer from the input port of the multiplexer via the bypass line, and becomes part of the third group of signal light.
  • the bypass line is removed from between the splitter and the multiplexer, the wave number of the signal light that can be received by the WDM transmission repeater and the signal light that can be transmitted will each increase. Therefore, for each relay base station, wave number control according to the increase / decrease of the number of subscribers can be easily performed by attaching / detaching the bypass line.
  • the WDM transmission repeater it is possible to provide a configuration that allows the propagation of the crosstalk component of the signal light (second group) to be extracted to a certain extent (a relatively low-cost low-demultiplexing performance).
  • Optical ADM can be used.
  • the WDM transmission repeater has a structure in which two or more optical ADMs having the same function are optically connected by a bridge line.
  • the port for introducing the third group of signal light is not used in the first-stage optical ADM that takes in the WDM signal group from the transmission line.
  • a port for extracting the second group of signal light from the captured WDM signal group is not used (in this case, The optical ADMs after the stage function as optical filters that block the signal light of the second group).
  • the crosstalk component of the signal light of the second group to be extracted is reduced to the next stage. It can be reduced below the reception sensitivity level of the WDM transmission repeater (ie, below the allowable crosstalk level).
  • a multiplexer / demultiplexer and a bypass line for optically connecting one selected output port of the duplexer to a selected input port of the multiplexer is possible to provide a structure that allows the duplexer and the multiplexer to be free.
  • a first optical amplifier for amplifying the extracted second group of signal light is provided between the duplexer and a port from which the second group of signal light is extracted.
  • a configuration in which a second optical amplifier for amplifying the third group of signal lights may be provided between the multiplexer and a port into which the third group of signal lights are taken.
  • a WDM transmission method has a structure suitable for a WDM transmission system that can be realized by the above-described various structures, and selects a WD selected from a plurality of WDM transmission repeaters in the WDM transmission system.
  • the M transmission repeater the first condition that the signal level of each of the second group of signal light exceeds the reception sensitivity level of the WDM transmission repeater at the incident end, and the downstream condition of the WDM transmission repeater At the input end of the adjacent next-stage WDM transmission repeater, it is individually adjusted so as to satisfy both of the second conditions of being below the reception sensitivity level of the next-stage WDM transmission repeater.
  • the signal level adjustment of the second group of signal lights be performed by a WDM transmission repeater (including a transmitting station) located upstream which amplifies the second group of signal lights. . That is, the WDM transmission repeater located upstream amplifies each of the second group of signal lights individually such that the signal level of each of the second group of signal lights satisfies both the first condition and the second condition.
  • the signal level of each of the second group of signal lights is adjusted according to the WDM transmission repeater (transmitting station, upstream WDM transmission repeater) that transmits the second group of signal lights. May be adjusted appropriately. Therefore, among the propagating WDM signal groups, the second group of signal light to be extracted at the WDM transmission repeater is reliably received because the signal level is higher than the reception sensitivity level of the WDM transmission repeater. Is done. In the second group of signal light to be extracted, the next stage WDM transmission repeater (either a receiving station or a downstream WDM transmission repeater may be used).
  • the signal light to be extracted from the first- and third-group signal lights is converted to the next-stage WD. Received reliably at the M transmission repeater.
  • the center wavelength of each of the third group of signal lights to be introduced is provided in the WDM transmission repeater selected from the plurality of WDM transmission repeaters in the WDM transmission system. Exists between the center wavelengths of two signal lights adjacent to each other among a plurality of signal lights included in the WDM signal group, and the two wavelengths are set to have a predetermined crosstalk suppression ratio or more for each of them. It is characterized by
  • the intensity of each of the first group of signal lights at the center wavelength of each of the third group of signal lights is smaller than the peak intensity of each of the first group of signal lights. It is preferably installed so as to be lower than 25 dB.
  • the center wavelength of each of the third group of signal lights is preferably set so as to be between the center wavelengths of two signal lights adjacent to each other in the second group of signal lights. It is preferable that the intensity of each of the second group of signal lights at the center wavelength of each of the signal lights be lower than the peak intensity of each of the second group of signal lights by 10 dB or more. In any of these cases, the effect on the system due to the crosstalk component of each signal light of the second group is avoided.
  • each of the third group of signal lights is the same as the center wavelength of each of the second group of signal lights, and completely different from the center wavelength of each of the second group of signal lights.
  • Light (included in the WDM signal group propagated in the transmission path) It may be between the respective central wavelengths.
  • each of the first, second, and third groups includes one or more signal lights.
  • FIG. 1 is a schematic configuration diagram showing the overall configuration of a WDM transmission system according to the present invention. You.
  • FIG. 2 is a diagram showing a schematic configuration of the first embodiment of the WDM transmission repeater according to the present invention.
  • FIG. 3 is a diagram showing a schematic configuration of a Mach-Zehnder interferometer composed of an optical fiber power bra and a fiber grating as a specific example of the optical ADM.
  • FIG. 4 is a diagram showing a schematic configuration of a second embodiment of the WDM transmission repeater according to the present invention.
  • 5A to 5C are diagrams for explaining the third group of signal lights transmitted from the WDM transmission repeater shown in FIG.
  • FIG. 6 is a diagram showing a schematic configuration of a third embodiment of the WDM transmission repeater according to the present invention.
  • FIG. 7 is a diagram showing a schematic configuration of a fourth embodiment of the WDM transmission repeater according to the present invention.
  • a WDM transmission system a WDM transmission repeater, and a WDM transmission method according to the present invention will be described with reference to FIGS.
  • the same components and the same elements are denoted by the same reference numerals, and redundant description will be omitted.
  • the WDM signal group transmitted by the WDM transmission system will be described as including a signal light of 32 waves (32 channels), but the same applies to other wave numbers.
  • FIG. 1 is a diagram showing a schematic configuration of such a WDM transmission system.
  • a WDM transmission system includes a transmitter 10 provided in a transmission base station, a receiver 20 provided in a reception base station, a transmitter 10 and a receiver 20.
  • a plurality of WDM transmission repeaters 31 to 34 provided between the WDM signals and a plurality of signal lights (in this embodiment, 32 to 1 person 32) WDM signals And optical fiber lines 41 to 45 through which the group propagates.
  • the transmitter 10 transmits each of the 32 WDM signal groups (persons 1 to 32) to the optical fiber line 41 at a predetermined signal level.
  • the WDM transmission repeater 31 captures a WDM signal group ( ⁇ ⁇ to 132) including 32 waves arriving from the transmitter 10 via the optical fiber line 41, and the first group of signal light (Person 9 to Person 32) and the second group of signal light (Persons 1 to 8). Then, the demultiplexed second group signal light is received by the WDM transmission repeater 31.
  • the WDM transmission repeater 31 multiplexes the first group of signal light and the third group of signal light not including the wavelength common to the first group of signal light, and forms a new WDM signal group.
  • the third group of signal lights is the same as the second group of signal lights.
  • the next-stage WDM transmission repeater 32 is composed of a WDM signal group including the 32 waves that arrived from the upstream-stage WDM transmission repeater 31 via the optical fiber line 42 (person 1 to person). ⁇ 32) is taken in and demultiplexed into the first group of signal lights (persons 1 to 18, 18, 17 to 32) and the second group of signal lights (persons 9 to 16). Then, the demultiplexed second group signal light is received by the WDM transmission repeater 32.
  • the WDM transmission repeater 32 combines the first group of signal lights and the third group of signal lights that do not include a wavelength common to the first group of signal lights, and forms a new WDM signal. The group is transmitted to the optical fiber line 42. In this embodiment, the third group of signal lights is the same as the second group of signal lights.
  • the WDM transmission repeater 33 includes a WDM signal group (31 to ⁇ 1) including 32 waves arriving via the optical fiber line 43 from the upstream WDM transmission repeater 32 located upstream. 32) is input, and the signal light is demultiplexed into the first group of signal lights (E1 to Input 16, person 25 to E32) and the second group of signal lights (E17 to E24). Then, the demultiplexed second group signal light is received by the WDM transmission repeater 33.
  • the WDM transmission repeater 33 combines the first group of signal light and the third group of signal light that does not include a wavelength common to the first group of signal light, and forms a new WDM signal. The group is transmitted to the optical fiber line 42.
  • the third group of signal lights is each the same as the second group of signal lights.
  • the WDM transmission repeater 34 receives a WDM signal group (e.g., 1 to 32) including 32 waves arriving via the optical fiber line 44 from the upstream WDM transmission repeater 33 located upstream.
  • the signal light is split into the signal light of the group ( ⁇ -person 24) and the signal light of the second group (person 25-32).
  • the demultiplexed second group signal light is received by the WDM transmission repeater.
  • the WDM transmission repeater 34 multiplexes the first group of signal lights and the third group of signal lights that do not include a wavelength common to the first group of signal lights, and forms a new WD ⁇ signal group.
  • the signal is transmitted to the optical fiber line 42.
  • the third group of signal lights is the same as the second group of signal lights.
  • the receiver 20 inputs a WDM signal group (e.g., 1 to 32) including 32 waves arriving from the WDM transmission repeater 34 via the optical fiber line 45, and receives each signal light.
  • eight signal lights (e 1 to in 8) of the WDM signal group (32 waves of person 1 to person 32) transmitted from the transmitter 10 are the first signal. It is received by the WDM transmission repeater 31 of the stage. Subsequently, the second stage WDM transmission repeater 32 receives eight signal lights (input 9 to person 16) of the arrived WDM signal group. The third stage WDM transmission repeater 33 receives eight signal lights (e17 to e24) of the arrived WDM signal group. Then, the fourth stage WDM transmission repeater 33 receives eight signal lights (25 to 32) of the arrived WDM signal group.
  • the eight-wave signal light transmitted from the WDM transmission repeater 31 (persons 1 to 8) and the eight-wave signal light transmitted from the WDM transmission repeater 32 (people 9 to 16), the eight signal lights (inputs 17 to 24) transmitted from the WDM transmission repeater 33 and the eight signal light (inputs 25 to 32) transmitted from the WDM transmission repeater 34 It will be received.
  • each of the WDM transmission repeaters 31 to 34 the third group of signal lights multiplexed with the signal light passing through each of the WDM transmission repeaters 31 to 34 is divided into the second group of signal lights. May not necessarily be the same.
  • each signal light of the WDM signal group transmitted by the WDM transmission system according to the present embodiment is used when an optical amplifier is provided. In such a case, it is necessary that the transmission loss is included in the amplification band of the optical amplifier and that the transmission loss in the optical fiber lines 41 to 45 is included in a small wavelength band.
  • the distance between the WDM transmission repeaters 31 to 34 that is, the length of the optical fiber lines 41 to 45 and the lengths LI to L5 thereof are compared with 20 km or less. It is designed to be short. Accordingly, since the transmission loss of the WDM signal group is small in each of the optical fiber lines 41 to 45, as described below, the WDM transmission repeater according to the present invention is different from the conventional WDM transmission repeater. The configuration is simpler and can be manufactured at lower cost.
  • FIG. 2 is a diagram showing a schematic configuration of a first embodiment of the WDM transmission repeater according to the present invention.
  • the first-stage WDM transmission repeater 31 (the portion indicated by A in FIG. 1) in the WDM transmission system shown in FIG. 1 will be described. The same applies to the configuration of the M transmission repeater.
  • the WDM transmission repeater 31 includes a demultiplexer 3 11, an optical amplifier 3 12, and a demultiplexer 3 1 3 (included in the wavelength separation element). ), A multiplexer 314 (included in the wavelength multiplexing element), an optical amplifier 315, a multiplexer 316, and an optical line connecting them.
  • the demultiplexer 311 is a group of 32 WDM signals (person 1 to person 32) input from the input end 101, which is optically connected to the optical fiber line 41 via the connector 105. Is demultiplexed into a first group of signal lights ( ⁇ 9 to person 32) and a second group of signal lights ( ⁇ 1 to person 8) different from each other. The second group of signal lights to be extracted is guided to the optical amplifier 312 via the output port 103. The optical amplifier 312 collectively amplifies the second group of signal lights demultiplexed from the demultiplexer 311. Further, the demultiplexer 3 13 takes in the second group of signal lights amplified by the optical amplifier 3 12 through the input port 3 13 a, and separates the second group of signal lights from each other.
  • Each output port 3 13 b has a photodetector such as a photodiode (see ) Are connected, and the second group of signal lights emitted from the respective output ports 3 13 b are detected by the corresponding photodetectors.
  • a photodetector such as a photodiode (see ) Are connected, and the second group of signal lights emitted from the respective output ports 3 13 b are detected by the corresponding photodetectors.
  • the multiplexer 314 takes in the third group of signal light (person 1 to person 8) from each corresponding input port 314b, multiplexes these signal lights, and outputs the output port 314a.
  • the light exits through the optical amplifier 315 through the optical amplifier.
  • the optical amplifier 315 collectively amplifies the third group of signal lights emitted from the multiplexer 314.
  • the multiplexer 316 takes in the first group of signal lights and also takes in the third group of signal lights amplified by the optical amplifier 315 via the input port 104, and multiplexes these.
  • a new WDM signal group of the signal light is emitted to the optical fiber line 42 via the emission end 102. Note that the emission end 102 is optically connected to the optical fiber line 42 via the connector 106.
  • the demultiplexer 311 and the multiplexer 316 are composed of an optical ADM 310 (Add-Drop Multiplexer).
  • the light ADM 310 for example, AWG (Arrayed Waveguide Grating), optical circuit, etc. can be applied.
  • the demultiplexer 311 and the multiplexer 316 of the optical ADM 310 in this embodiment include, for example, an optical fiber coupler 1 as shown in FIG.
  • An inexpensive mah-ender interferometer composed of a fiber grating 2 and a fiber grating 2 is employed.
  • a crosstalk problem may occur (for example,
  • the WDM transmission repeater according to the present embodiment solves this crosstalk problem as follows.
  • Each intensity of the 32 waves of the WDM signal group reaching the demultiplexer 3 1 1 of this WDM transmission repeater 3 1 is defined as P 0 (dBm), and each input port 3 of the multiplexer 3 1 4
  • Each intensity of the signal light of the third group input to 14 b is P 30 (dBm).
  • the input of the duplexer 3 1 1 Let ax (dB) be the transmission loss for the second group of signal light that crosstalks from the end 101 to the output end 102 of the multiplexer 316, from the input end 101 of the splitter 331
  • the transmission loss for the second group of signal light up to each output port 3 13 b of the demultiplexer 3 13 is assumed to be 2 (dB), and from each input port 3 1 4 b of the multiplexer 3 14 Let each transmission loss for the third group of signal light up to the emission end 102 of the multiplexer 3 16 be 3 (dB).
  • the intensity Px of the crosstalk component crosstalk from the demultiplexer 3 1 1 to the multiplexer 3 16 for each of the second group signal light (E 1 to person 8) is expressed by the following equation (1). expressed.
  • Each intensity P2 of the second group of signal lights (person 1 to person 8) emitted from each output port 3 13 b of the duplexer 3 13 is represented by the following equation (2).
  • each intensity ⁇ 3 of the third group of signal lights (e1 to e8) emitted from the multiplexer 316 is expressed by the following equation (3).
  • the respective intensities P2 of the second group of signal lights (persons 1 to 8) emitted to the respective output ports 3 13 b of the duplexer 3 13 are equal to the respective output ports 3 of the duplexer 3 13. It must be equal to or higher than the receiving sensitivity level of the photodetector connected to 13b /? (DBm). That is, the relationship of the following equation (4) needs to be satisfied between the intensity P2 and the reception sensitivity level / ?.
  • the second group of wavelength signal light crosstalk from the demultiplexer 311 to the multiplexer 316 (
  • Each intensity Px in E1 to E8) must be below the allowable crosstalk level (below the reception sensitivity level in the next stage WDM transmission repeater).
  • the crosstalk component of each signal light of the second group is It is necessary that the crosstalk suppression ratio a (dB) is smaller than the respective intensities P3 of the third group of signal lights (person 1 to person 8) emitted from the multiplexer 316. That is, the crosstalk components of each signal light in the second group must satisfy the relationship of the following equation (6).
  • the crosstalk suppression ratio is, for example, 25 dB.
  • each intensity P0 of the 32-wave signal light incident on the demultiplexer 3 11 of the WDM transmission repeater 3 1 are calculated by the above equations (5) and (7).
  • each intensity P0 of the 32 wave signal light incident on the demultiplexer 311 of the WDM transmission relay 31 is considered in consideration of the transmission loss in the optical fiber line 41.
  • the intensity of each of the 32 signal lights transmitted from the transmitter 10 is adjusted.
  • the optical amplification gains of the optical amplifiers 312 and 315 the values of the transmission losses H2 and H3 are adjusted, or the third group taken in from each input port 314b of the multiplexer 314.
  • the configuration may be such that each intensity P30 of the signal light is adjusted.
  • the problem of crosstalk can be solved by appropriately setting the intensity of each signal light.
  • an optical ADM including an inexpensive demultiplexer and a multiplexer as shown in FIG. 3 can be used, and an inexpensive optical amplifier can be used although the number of optical amplifiers is large. Further, in some cases, an optical amplifier is not required, so that the entire system is inexpensive.
  • Optical amplifiers are highly reliable because they do not require high gain, and do not amplify all WDM signal groups including 32 waves at once, but collectively amplify every eight waves. The risk of communication failure is small. Therefore, ⁇ It is preferably used between local stations.
  • FIG. 4 is a diagram showing a schematic configuration of a second embodiment of the WDM transmission repeater according to the present invention.
  • the third group of signal lights (from 33 to 40) input to each input port 314 b of the multiplexer 314 are separated by the demultiplexer 3 13 This is different from the signal light of the second group (E1 to In8) emitted from each output port 313b.
  • a structure for solving the problem of crosstalk is provided by appropriately setting the third group of signal lights (persons 33 to 40). If the intensity of the signal light is sufficient, it is not necessary to provide the optical amplifiers 312 and 315.
  • the crosstalk component of each signal light (e1 to person 8) that has propagated to is also emitted.
  • the third group of signal lights (persons 9 to 32) and the second group of signal lights (inputs 1 to 18) have the following relationship,
  • the signal light ( ⁇ 33 to 40) is set.
  • the applied optical ADM 310 has the structure shown in FIG.
  • FIGS. 5A to 5C are diagrams illustrating a third group of signal lights to be transmitted from the WDM transmission repeater according to the second embodiment shown in FIG.
  • Fig. 5A the positions of the center wavelengths of the signal light of the first group gl (persons 9 to 132) and the signal light of the second group (81 to person 8) are indicated by solid lines.
  • the position of the center wavelength of each signal light of group g3 (persons 33 to 140) is indicated by a dashed line.
  • the signal light of the third group g3 (input 33 to input 40) is composed of the signal light of the first group (person 9 to person 32) and the signal light of the second group (person 1 to input 30).
  • the setting is made so that there is no crosstalk problem between two adjacent wavelengths.
  • the interval (wavelength difference) between two adjacent wavelengths in the 100 GHz band is 0.78 nm to 0.82 nm.
  • the center wavelength of the signal light (persons 33 to 40) is set so that no crosstalk problem occurs between these wavelengths.
  • the intensity of the signal light of the first group g 1 (e 9 to input 32) is relatively strong, and the signal light of the second group g (person 1 to person 8) Each intensity is relatively weak. Therefore, taking this into account, specifically, the center wavelength of each signal light of the third group g3 (E 33 to In 40) is set as follows.
  • the wavelength spectrum of one of the signal lights of the first group g1 (humans 9 to 32) at the output end 102 of the multiplexer 316 is shown by a solid line.
  • the wavelength spectrum of one of the signal lights of the group g3 ( ⁇ 33 to input 40) is indicated by a broken line. Since the intensities of the signal lights of the first group g1 (e9 to in32) at the output end 102 of the multiplexer 316 are relatively strong, as shown in the figure, the third group g3
  • the center wavelength of the signal light of the first group gl is 25 d from the intensity (peak intensity) at the center wavelength of the signal light of the first group gl (human 9 to 132). The wavelength is set to be lower than B.
  • the wavelength spectrum of one of the signal lights (e1 to e8) of the second group g2 at the output end 102 of the multiplexer 316 is shown by a solid line.
  • the wavelength spectrum of one of the signal lights of the group g3 (33 to 40) is indicated by a dashed line. Since the intensities of the signal lights ( ⁇ ⁇ 18 18) of the second group g 2 at the output terminal 102 of the multiplexer 3 16 are relatively weak, as shown in the figure, the third group g 3
  • the center wavelength of the signal light (33 to 40) is 1 O d with respect to the intensity (peak intensity) of the signal light of the second group g2 (person 1 to 8) at the center wavelength.
  • the wavelength is set to be lower than B.
  • the WDM transmission system, WDM transmission repeater, and WDM transmission method according to the second embodiment can also solve the problem of crosstalk by appropriately setting the intensity of each signal light.
  • an optical ADM including an inexpensive demultiplexer and multiplexer as shown in FIG. 3 can be used, and an inexpensive optical amplifier can be used although the number of optical amplifiers is large. Further, in some cases, an optical amplifier is not required, so that the entire system is inexpensive. Optical amplifiers do not require high gain It is highly reliable and does not amplify all WDM signal groups including 32 waves at once, but collectively amplifies every eight waves. No. Therefore, ⁇ It is preferably used between local stations.
  • FIG. 6 is a diagram showing a schematic configuration of a third embodiment of the WDM transmission repeater according to the present invention.
  • the WDM transmission repeater according to the third embodiment will also be described below as a repeater at the position indicated by A in FIG.
  • the WDM transmission repeater 35 includes a demultiplexer 351, an optical amplifier 352, a demultiplexer 353 (included in a wavelength separation element), and a multiplexer. 3 5 4 (included in the wavelength multiplexing element), an optical amplifier 355 and a multiplexer 356 are provided.
  • the demultiplexer 35 1 and the multiplexer 35 54 are the same as the first embodiment in that the optical ADM 350 is configured, but the demultiplexer 35 1 and the multiplexer 35 4 has joint structures 35 3 c and 35 4 c for connecting the bypass lines 35 7 and 35 8 respectively. If the intensity of the signal light is sufficient, it is not necessary to provide the optical amplifiers 352 and 355.
  • the bypass line 357 is an output port for emitting the signal light person 7 of the second group of signal lights (persons 1 to 8) introduced from the demultiplexer 351 to the demultiplexer 3553. It is provided detachably between the 3 5 3 b and the corresponding input port 3 5 4 b of the multiplexer 3 5 4 via the joint structure 3 5 3 c and 3 5 4 c. The signal light person 7 propagates in the line 357. Similarly, the bypass line 358 outputs the signal light out of the second group of signal light (person 1 to person 8) introduced into the demultiplexer 353 from the demultiplexer 351. It is provided detachably between the port 3 5 3 b and the corresponding input port 3 5 4 b of the multiplexer 3 5 4, and the signal light person 8 propagates through this bypass line 3 5 8 .
  • the WDM transmission repeater 35 according to the first embodiment has the WDM transmission repeater 31 according to the first embodiment in a state where the bypass lines 365 and 358 are removed.
  • the bypass lines 357 and 358 when connected, they operate as follows.
  • the WDM signal group including the 32 waves that have arrived is taken into the optical ADM 350 through the incident end 201, and is split into the first group by the demultiplexer 35 1.
  • the signal light (persons 9 to 32) and the second group of signal lights (e1 to e8) are demultiplexed.
  • the incident end 201 is optically connected to the optical transmission line 41 via the connector 205.
  • the second group of signal lights demultiplexed in the demultiplexer 351 is guided to the optical amplifier 352 via the output port 203.
  • the optical amplifier 352 collectively amplifies the second group of signal lights, and outputs the amplified second group of signal lights to the duplexer 353 via the input port 353a. .
  • each signal light is demultiplexed and output to the corresponding output port 353b.
  • signal light input 1 to person 6 are received by a light receiving device or the like.
  • the signal light persons 7 and 8 are guided into the multiplexer 3 5 4 via the corresponding input ports 3 5 4 c of the multiplexer 3 5 4 via the bypass lines 3 5 7 and 3 5 8.
  • Light 7, person 8 and signal light to be newly transmitted Person 1 to person 6 are the third group of signal light Are combined by the multiplexer 354 and output to the optical amplifier 355 via the output port 354a.
  • the third group of signal lights that have been collectively optically amplified by the optical amplifier 355 are combined by the multiplexer 356 with the first group of signal lights emitted from the demultiplexer 351.
  • the light is transmitted through the output end 202 to the optical fiber line 42.
  • the emission end 202 is optically connected to the optical fiber line 42 via the connector 206.
  • the problem of crosstalk can be solved by appropriately setting the intensity of each signal light.
  • an optical ADM including an inexpensive demultiplexer and multiplexer as shown in FIG. 3 can be used, and an inexpensive optical amplifier can be used although the number of optical amplifiers is large. Furthermore, in some cases, no optical amplifier is needed Therefore, the whole system is inexpensive.
  • the wave number of the signal light received by each WDM transmission repeater and the wave number of the transmitted signal light can be increased or decreased as necessary by attaching and detaching a bypass line.
  • Optical amplifiers are highly reliable because they do not require high gain, and do not amplify all WDM signal groups including 32 waves at once, but collectively amplify every eight waves. The danger of the waves being unable to communicate at the same time is small. Therefore, ⁇ is preferably used between internal stations.
  • FIG. 7 is a diagram showing a schematic configuration of a fourth embodiment of the WDM transmission repeater according to the present invention.
  • the WDM transmission repeater according to the seventh embodiment will be described below as a repeater at the position indicated by A in FIG.
  • the WDM transmission repeater 36 includes a demultiplexer 361, an optical amplifier 362, a demultiplexer 363 (included in the wavelength separation element), and a multiplexer.
  • 3 6 4 optical amplifier 3 6 5, multiplexer 3 6 6, multiplexer 3 7 1, optical amplifier 3 7 2, multiplexer 3 7 3, multiplexer 3 7 4 (included in wavelength multiplexer) ),
  • the demultiplexer 36 1 and the multiplexer 36 6 constitute the first optical ADM 360
  • the demultiplexer 37 1 and the multiplexer 37 76 constitute the second optical ADM 37 0 I do.
  • the intensity of the signal light from the optical fiber line 41 is sufficient, it is not necessary to provide the optical amplifiers 36 2, 365 5, 37 2, and 37 5.
  • the demultiplexer 361 converts the 32 WDM signal group (input 1 to person 32) captured via the input end 301 into a first group of different signal lights ( ⁇ 9 to 32). The light is split into the second group of signal lights (input 1 to person 8). Note that the incident end 301 is optically connected to the optical fiber line 41 via the connector 305.
  • the optical amplifier 362 collectively amplifies the second group of signal lights guided from the duplexer 361 via the output port 303. Then, the amplified second group signal light is taken into the duplexer 363 through the input port 363a. In the duplexer 3 63, the amplified second group arrived from the duplexer 36 1 Are demultiplexed, and output via the corresponding output ports 365 b.
  • the demultiplexer 371 outputs the first group of signal lights (persons 9 to 32) arriving via the input port 401 to the multiplexer 376 as it is.
  • the optical amplifier 372 (optically connected to the output port 403) and the duplexer 373 of the portion C in the figure are not used.
  • the demultiplexer 371 also has a function of demultiplexing the first group of signal light and the second group of signal light, it also functions to block the second group of signal light.
  • the crosstalk component of each signal light of the second group from one optical ADM 360 can be cut off.
  • the input port 401 is optically connected to one end of a bridge line 500 via a connector 405, and the other end of the bridge line 500 is connected to the input of the multiplexer 366. It is optically connected to port 302 via connector 303.
  • the first light ADM 360 and the second light ADM 360 are optically connected to each other via the bridge line 500.
  • the multiplexer 374 inputs the third group of signal lights (person 1 to person 8) to the corresponding input ports 374 b, multiplexes them, and outputs them. Output to the optical amplifier 375 through 4a.
  • the optical amplifier 375 collectively amplifies the third group of signal lights emitted from the multiplexer 374.
  • the multiplexer 376 multiplexes the amplified third-group signal light taken in through the input port 404 with the first-group signal light passed through the demultiplexer 371 Then, the obtained new WDM signal group is transmitted to the optical fiber line 42 via the emission end 402.
  • the emission end 402 is optically connected to the optical fiber line 42 via the connector 406.
  • the output port 3 of the duplexer 36 3 that outputs the signal light person 7 of the second group of signal lights (input 1 to person 8) separated by the duplexer 36 1 6 3 b
  • the corresponding input port 3 7 4 b of the multiplexer 3 7 4 has a joint structure 3 6 3 c, 3 7 4 c that enables the detachment of the bypass line 3 6 7 (transmission path for the signal light 7). Each is provided.
  • the output ports 3 6 3b of the duplexer 36 3 that outputs the signal light person 8 out of the second group of signal lights (inputs 1 to 8) split by the duplexer 36 1
  • the joint structure 3 6 3 c, 3 7 4 c that enables the bypass line 3 6 8 (transmission line for the signal light 8) to be attached to and detached from the corresponding input port 3 7 4 b of the multiplexer 3 7 4 are provided respectively.
  • the WDM transmission repeater 36 operates as follows in a state where the bypass lines 365 and 368 are removed.
  • the WDM signal group including 32 waves (person :! to in 32) that arrived via the incident end 301 is converted into the first group of signal light (person 9 to 32) by the demultiplexer 361.
  • the second group of signal lights (person 1 to person 8).
  • the demultiplexed signal light of the second group is collectively optically amplified by the optical amplifier 362 and guided to the demultiplexer 363 via the input port 363a.
  • the second group of signal lights is output to the corresponding output ports 365 b respectively.
  • the output signal light is received by the photodetector individually connected to each of the output ports 365 b.
  • the first group of signal light passes through the multiplexer 366 and the duplexer 371, and reaches the multiplexer 376.
  • the third group of signal light (person 1 to 8) is taken in from each input port 374 b of the multiplexer 374, and the multiplexed third group of signal light is output to the output port 3 The light is led to the optical amplifier 3 7 5 through 7 4 a.
  • the signal light of the second group is collectively optically amplified by the optical amplifier 375, and then is taken into the multiplexer 376 via the input port 404.
  • a new WDM signal group including the first group of signal light and the third group of signal light is transmitted to the optical fiber line 42 via the emission end 402.
  • the cut end 402 is optically connected to the optical fiber line 42 via the connector 406.
  • a WDM signal group including 32 waves arriving via the input end 301 (person 1 to The input 32) is demultiplexed by the demultiplexer 361 into the first group of signal lights ( ⁇ 9 to person 32) and the second group of signal lights (person 1 to person 8).
  • the signal light of the second group is collectively optically amplified by the optical amplifier 362, and is then taken into the duplexer 363 via the input port 363a.
  • the signal light (E1 to person 6) is received by the corresponding light receiving detection element via the output port 363b.
  • the signal light persons 7 and 8 are guided to the input port 374b of the multiplexer 374 via the bypass lines 366 and 318.
  • the first group of signal lights split by the splitter 36 1 sequentially passes through the multiplexer 36 6 and the splitter 37 1, and reaches the multiplexer 37 6.
  • the signal light received from each input port 37 4 b of the multiplexer 37 4 and the signal light 7 and 8, and the signal light newly received through the input port 37 4 b (person 1 to 6 ) Are multiplexed by the multiplexer 374 as the third group of signal light.
  • the third group of signal lights is guided to the optical amplifier 375 through the output port 374a, and is collectively optically amplified by the optical amplifier 375.
  • the third group of signal light taken in through the input port 404 and the first group of signal light are multiplexed, and a new WDM signal group is output from the emitting end 400.
  • the signal is transmitted to the optical fiber line 42 through the line 2.
  • the emission end 402 is optically connected to the optical fiber line 42 via a connector 406.
  • the crosstalk component of each signal light of the second group that is output as crosstalk is cascaded.
  • the unnecessary crosstalk components of the second group are extremely weak because they pass through the two optical ADMs 360 and 370, and are finally transmitted from the output end 402 to the optical fiber line 42. Is eliminated.
  • the wave number of the WDM signal group transmitted from the WDM transmission repeater 36 can be increased.
  • a demultiplexer 3 7 3 is provided, and the wavelength of the signal light demultiplexed from the demultiplexer 3 7 1 to the demultiplexer 3 7 3 and the By making the wavelengths of the signal lights demultiplexed to the demultiplexer 36 3 different from each other, the wave number of the signal light received by the WDM transmission repeater 36 can be increased.
  • the WDM transmission system, the WDM transmission repeater, and the WDM transmission method according to the fourth embodiment can also solve the problem of crosstalk by cascading two optical ADMs.
  • an inexpensive optical ADM including a demultiplexer and a multiplexer as shown in FIG. 3 can be used.
  • an optical amplifier is not required, so that the entire system is inexpensive.
  • the wave number of the signal light received by each WDM transmission repeater and the wave number of the transmitted signal light can be increased or decreased as necessary by attaching and detaching a bypass line.
  • Optical amplifiers are highly reliable because they do not require high gain, and do not optically amplify the entire WDM signal group including 32 waves but collectively amplify them every eight waves. The danger of the waves being unable to communicate at the same time is small. Therefore, ⁇ is preferably used between local stations. Industrial applicability
  • the present invention since various configurations for effectively suppressing the propagation of the crosstalk component of each signal light received at each relay station are provided, the present invention is used for demultiplexing necessary signal light.
  • a relatively inexpensive optical device can be used as the optical ADM, and a WDM transmission system suitable for optical communication between local stations with a relatively short relay interval can be provided.
  • an optical amplifier is provided in each relay station having a short relay interval, all the waves are limited because only a part of the signal light propagating in the transmission path is amplified and a small gain is used. It is possible to provide a WDM transmission system in which the risk of communication failure at the same time is small and sufficient reliability can be obtained even with an inexpensive optical amplifier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

明糸田書
WDM伝送中継器、 WDM伝送システム、 及び WDM伝送方法 技術分野
この発明は、互いに波長の異なる複数の信号光を伝送する WDM (Wavelength Division Multiplexing) 伝送システム、 この WD M伝送システムの光伝送路中 に設けられる WDM伝送中継器、 及び、 このような WDM伝送システムにおける W D M伝送方法に関するものである。 背景技術
W D M伝送システムは、 伝送路として光ファイバ線路に互いに波長の異なる複 数の信号光を含む WDM信号群を伝送することにより高速 ·大容量の光通信を可 能にする。 既設のシングルモード光ファイバ線路網を用いた場合であっても、 例 えば 2. 5013/3で32チャネル (32波の信号光を利用) の大容量の光通信 が可能になる。 このため、 WDM伝送システムは、 近年のインターネット等にお ける通信需要の急増に対応すべくその導入が進められている。
このような W D M伝送システムでは、 送信基地局内の送信器から受信基地局内 の受信器までの伝送路の途中に、 WDM伝送中継器を有する中継基地局が設けら れる場合がある。 WDM伝送中継器は、 光増幅器や光 ADM (Add-Drop Multiplexer) 等を備えている。 光増幅器は、 伝送路を伝搬する WD M信号群を 一括して光増幅するよう機能し、 また、 光 ADMは、 該 WDM信号群を互いに異 なる第 1群の信号光と第 2群の信号光とに分波して第 2群の信号光を受信する一 方、 別の第 3群の信号光を第 1群の信号光と合波して、 新たな WDM信号群を再 度伝送路中へ送出するよう機能する。 発明の開示 以上のような構成を備えた従来の WD M伝送システムを検討した結果、 発明者 らは以下のような課題を発見した。
すなわち、 従来の WD M伝送システムや WD M伝送中継器は、 長距離幹線に適 用可能になるよう設計されており、 このような WD M伝送システムでは、 隣接す る中継器の間隔が例えば 6 0 k m〜 8 0 k m程度と長い。 したがって、 WD M伝 送中継器内の光増幅器は、 このような長距離の中継器間を伝搬する全信号光の伝 送損失を一括して補填すべく、 広帯域かつ高利得であって、 小さな利得偏差 (各 波長の信号光間における利得のバラツキ) を有する等の性能が要求される。 しか し、 このような高性能の光増幅器は、 高価であるだけでなく、 信頼性の確保も難 しい。
一方、 巿内局間伝送は、 隣接する中継器の間隔が数 k m〜十数 k m程度と比較 的短く、 各中継器における信号光の受信レベルが大きいことから、 高い利得を有 する光増幅器を利用する必要はないか、 あるいは光増幅器が不要であるケースも 多い。 また、 一般に、 中継器ごとに信号光の受信及び送信を行うことから、 互い に波長の異なる信号光全てを均一な利得で光増幅することも不要であるケースが 多い。 したがって、 高性能で高価な光増幅器を備える従来の長距離幹線用の WD M伝送中継器は、 巿内局間の WD M伝送システムに適用するにはコスト面や設備 面を考慮すると不向きであり、 巿内局間の WD M伝送システムに適用しても、 長 距離幹線の W D M伝送システムにおける場合ほどには経済的とはいえない。
この発明は、 上述のような課題を解決するためになされたものであり、 市内局 間の光通信手段として好適な WD M伝送システム、 この WD M伝送システムに好 適な WD M伝送中継器、 及び、 このような WD M伝送システムにおける WD M伝 送方法を提供することを目的としている。
この発明に係る WD M伝送システムは、複数の WD M伝送中継器を備えており、 これら各 WD M伝送中継器の間隔は 2 0 k m以下と比較的短い市内局間伝送に好 適な光通信を可能にする。 このような W D M伝送システムによれば、 複数の信号光全てを増幅することが できる広帯域の光増幅器を用いる必要がなく、 かつ分波された少数の信号光につ いて光増幅が可能な狭帯域の光増幅器が十分適用できる。 なお、 各信号光の中心 波長間の間隔は数 nm以下であり、 具体的には、 1. 6nm、 0. 8 nm、 0. 6 nm等の伝送形態がある。 これに伴い、 適用される WDM伝送中継器すなわち 光増幅器の個数は多くなる力、これら光増幅器には安価な製品が利用できるため、 また、 場合によっては光増幅器が不要となるため、 システム全体を低コストで実 現できる。 また、 中継器の間隔が 20 km以下と比較的短いため、 適用される光 増幅器は高出力を要求されず、 したがって十分な信頼性が確保される。 加えて、 伝送路中を伝搬する WDM信号群のうち分波された少数の信号光だけが各 WDM 伝送中継器で光増幅されるので、 いずれかの WDM伝送中継器において光増幅器 の故障が発生しても全チャネル (全信号光) について同時に通信不能になる危険 が小さい。
次に、 この発明に係る WDM伝送中継器は、 上述の WDM伝送システムに好適 な構造を備え、 使用波長帯域内の波長であって互いに異なる波長の複数の信号光 を含む WDM信号群が伝搬する伝送路中に設置される。当該 WDM伝送中継器は、 伝送路から WD M信号群を取り込むための入射端と、 該入射端を介して取り込ま れた WDM信号群から分けられかつそれぞれが 1又はそれ以上の信号光の第 1群 及び第 2群の信号光のうちから、 該第 2群の信号光を取り出すための第 1ポート と、 使用波長帯域内の 1又はそれ以上の信号光であって、 それそれが該第 1群の 信号光とは異なる波長の第 3群の信号光を取り込むための第 2ポートと、 該第 1 群の信号光と該第 2ポートを介して取り込まれた第 3群の信号光とを含む新たな WDM信号群を伝送路へ送出するための出力端とを有する光 ADMを備えている c また、 この発明に係る WDM伝送中継器は、 上記光 ADMとともに、 該光 AD Mの第 1ポートから取り出された第 2群の信号光を増幅するための第 1光増幅器 と、 上記光 ADMの第 2ポートから取り込まれるべき第 3群の信号光を増幅する ための第 2光増幅器の少なくともいずれかを備えるよう構成され得る。
以上のような構成において、 取り出される第 2群の信号光は上記第 1光増幅器 によって増幅されることにより、 次段の W D M伝送中継器において十分な受信感 度レベルが保障される。 一方、 新たに導入される第 3群の信号光が上記第 2光増 幅器によって増幅されることにより、 当該 W D M伝送中継器から送出される WD M信号群 (主に第 1群及び第 3群の信号光を含む) の光強度に対し、 分波されな かった第 2群の各信号光の漏話成分の光強度を相対的に低下させることができる c すなわち、 次段の W D M伝送中継器において係る第 2群の信号光が有意な光信号 として受信されない程度の許容漏話レベル以下の信号光であると判断し易くなる。 さらに、 この発明に係る W D M伝送中継器は、 上記光 A D Mの第 1ポートと光 学的に接続されるとともに該第 1ポートからの第 2群の信号光を取り込むための 入力ポートと、 該入力ポートを介して取り込まれた第 2群の信号光の各波長ごと に用意され、 それぞれに対応する信号光を取り出すための 1又はそれ以上の出力 ポートとを有する分波器 (波長分離素子に含まれる) と、 伝送路へ新たに導入さ れるべき第 3群の信号光ごとに用意され、 それそれに対応する信号光を取り込む ための 1又はそれ以上の入力ポートと、 上記光 A D Mの第 2ポートと光学的に接 続されるとともに該第 3群の信号光を該第 2ポートへ送出するための出力ポート とを有する合波器 (波長合波素子に含まれる) とを備えるよう構成され得る。 な お、 このような構成において、 上記光 A D Mの第 1ポート及び第 2ポートは、 そ れそれ分波器の入力ポート及び合波器の出力ポートに直接接続されてもよく、 ま た、 上記第 1光増幅器及び第 2光増幅器を介してそれぞれ接続されてもよい。 以上のような構成において、 上記分波器及び合波器は、 接続される加入者の増 減に効果的に対応すべく、該分波器の出力ポートのうち選択された出力ポートと、 該合波器の入力ポ一トのうち選択された入力ポートとを光学的に接続するための ブランチ線路の各端部を着脱自在にする構造をそれぞれ備えるのが好ましい。 こ の場合、 分波器の出力ポートのうち選択された出力ポートは、 該分波器の選択さ れた出力ポートと合波器の入力ポートのうち選択された入力ポ一トとを光学的に 接続するためのブランチ線路の第 1端との着脱を可能にする第 1ジョイント構造 を有する。 また、 合波器の選択された入力ポートは、 該ブランチ線路の第 1端と 対向する第 2端との着脱を可能にする第 2ジョイント構造を有する。
この構成によれば、 それぞれ選択された分波器の出力ポートの 1つと合波器の 入力ポートの 1つとがバイパス線路を介して光学的に接続された場合、 該分波器 の出力ポートから取り出された信号光 (第 2群に含まれる) の一部は、 バイパス 線路を経由して該合波器の入力ポートから合波器に取り込まれ、 第 3群の信号光 の一部となる。 一方、 このバイパス線路が分波器及び合波器の間から取り外され た場合、 この WD M伝送中継器で受信できる信号光の波数及び送出できる信号光 それぞれが増加する。 したがって、 各中継基地局ごとに、 加入者の増減に応じた 波数制御をこのバイパス線路の着脱により容易に実行することができる。
さらに、 この発明に係る WD M伝送中継器では、 取り出されるべき信号光 (第 2群) の漏話成分の伝搬をある程度許容し得る構成が可能である (分波性能の低 い比較的低価格の光 A D Mの使用が可能)。すなわち、 当該 WD M伝送中継器は、 同じ機能を有する 2つ以上の光 A D Mをそれぞれプリッジ線路で光学的に接続し た構造を備える。 この構成において、 伝送路から WD M信号群を取り込む初段の 光 A D Mでは、上記第 3群の信号光を導入するためのポートは使用しない。また、 新たな WD M信号群を伝送路中に送出する次段以降の光 A D Mでは、 取り込まれ た W D M信号群から上記第 2群の信号光を取り出すためのポートは使用しない (この場合、 次段以降の光 A D Mは該第 2群の信号光を遮断する光フィル夕とし て機能する)。 このようにプリッジ線路を介して光学的に接続された複数の光 A D Mを利用して光 A D M本来の機能を実現することにより、 取り出されるべき第 2群の信号光の漏話成分を、 次段の WD M伝送中継器における受信感度レベル以 下 (すなわち、 許容漏話レベル以下) に低減することができる。
なお、 上述のように複数の光 A D Mを備えた WD M伝送中継器においても、 上 記分波器及び合波器を備えるとともに、 該分波器の選択された出力ポートの 1つ と合波器の選択された入力ポートとを光学的に接続するためのバイパス線路の着 脱を自在にする構造をこれら分波器及び合波器に設けることが可能である。また、 当該 WD M伝送中継器は、 該分波器と第 2群の信号光が取り出されるポ一卜との 間に該取り出される第 2群の信号光を増幅する第 1光増幅器を設置する一方、 該 合波器と第 3群の信号光が取り込まれるポートとの間に該第 3群の信号光を増幅 する第 2光増幅器を設置する構成であってもよい。
次に、 この発明に係る WD M伝送方法は、 上述の種々の構造により実現可能な W D M伝送システムに好適な構造を備え、 該 W D M伝送システムにおける複数の WD M伝送中継器のうち選択された WD M伝送中継器において、 第 2群の信号光 おのおのの信号レベルが、 入射端において当該 WD M伝送中継器の受信感度レべ ルを越えるという第 1条件と、 当該 WD M伝送中継器の下流に隣接する次段の W D M伝送中継器の入射端において該次段の WD M伝送中継器の受信感度レベルを 下回るという第 2条件を共に満たすよう個別に調節されることを特徴としている。 なお、 上述ような構成において、 第 2群の信号光の信号レベル調整は、 該第 2 群の信号光を増幅する上流に位置する WD M伝送中継器 (送信局を含む) で行う のが好ましい。 すなわち、 上流に位置する WD M伝送中継器は、 第 2群の信号光 おのおの信号レベルが上記第 1条件及び第 2条件を共に満たすよう、 該第 2群の 信号光おのおのを個別に増幅する。
この WD M伝送方法によれば、 第 2群の信号光それぞれの信号レベルは、 その 第 2群の信号光を送出する WD M伝送中継器 (送信局、 上流に位置する WD M伝 送中継器のいずれでもよい) において適切に調整される。 したがって、 伝搬する WD M信号群のうち、 その WD M伝送中継器において取り出されるべき第 2群の 信号光それそれは、 信号レベルが当該 WD M伝送中継器の受信感度レベル以上で あるので確実に受信される。 また、 取り出されるべき第 2群の信号光のうち次段 の WD M伝送中継器 (受信局、 下流に位置する WD M伝送中継器のいずれでもよ レ、) に向かう漏話成分は、 該次段の WD M伝送中継において許容漏話レベル以下 であるので、 第 1群及び第 3群の信号光のうち取り出されるべき信号光は、 この 次段の WD M伝送中継器において確実に受信される。
さらに、 この発明に係る WD M伝送方法は、 上記 WD M伝送システムにおける 複数の WD M伝送中継器から選択された WD M伝送中継器において、 導入される 上記第 3群の信号光おのおのの中心波長が、 WD M信号群に含まれる複数の信号 光のうち互いに隣接する 2つの信号光の中心波長間に存在し、 該 2つの波長それ それに対して所定のクロストーク抑圧比以上となるよう設定されることを特徴と している。
具体的にこの発明に係る WD M伝送方法では、 第 3群の信号光おのおのの中心 波長における第 1群の信号光おのおのの強度は、 該第 1群の信号光おのおののピ ーク強度に対して 2 5 d B以上低くなるよう設置されるのが好ましい。 また、 第 3群の信号光おのおのの中心波長は、 第 2群の信号光のうち互いに隣接する 2つ の信号光の中心波長間に存在するよう設置されるのが好ましく、 この第 3群の信 号光おのおのの中心波長における第 2群の信号光おのおのの強度は、 該第 2群の 信号光おのおののピーク強度に対して 1 0 d B以上低くなるよう設置されるのが 好ましい。 これら何れの場合にも、 第 2群の各信号光の漏話成分によるシステム への影響は回避される。
なお、 上記第 3群の信号光それぞれの中心波長は、 第 2群の信号光それぞれの 中心波長と同一、 第 2群の信号光それぞれの中心波長と全く異なる、 また、 取り 込まれた各信号光 (伝送路中を伝搬した WD M信号群に含まれる) それぞれの中 心波長の間にあってもよい。 また、 第 1群、 第 2群及び第 3群おのおのは、 いず れも 1又はそれ以上の信号光を含む。 図面の簡単な説明
図 1は、 この発明に係る WD M伝送システムの全体構成を示す概略構成図であ る。
図 2は、 この発明に係る WDM伝送中継器の第 1実施例の概略構成を示す図で ¾る。
図 3は、 光 ADMの具体例として、 光ファイバ力ブラとファイバグレーティン グとで構成されたマッハツェンダー干渉計の概略構成を示す図である。
図 4は、 この発明に係る WD M伝送中継器の第 2実施例の概略構成を示す図で ある。
図 5 A〜図 5 Cは、 図 4に示された WDM伝送中継器から送出される第 3群の 信号光を説明するための図である。
図 6は、 この発明に係る WDM伝送中継器の第 3実施例の概略構成を示す図で め 。
図 7は、 この発明に係る WDM伝送中継器の第 4実施例の概略構成を示す図で め 。 発明を実施するための最良の形態
以下、 この発明に係る WDM伝送システム、 WDM伝送中継器、 及び WDM伝 送方法を図 1〜図 7を用いて説明する。 なお、 図中、 同一の構成、 同一の要素に は同一の符号を付して重複する説明を省略する。 また、 以下では、 WDM伝送シ ステムにより伝送される WDM信号群は 32波 (32チャネル) の信号光を含む ものとして説明するが、 他の波数でも同様である。
まず、 この発明に係る WDM伝送システムについて説明する。 図 1は、 係る W DM伝送システムの概略構成を示す図である。
この発明に係る WDM伝送システムは、 図 1に示されたように、 送信基地局に 設けられた送信器 10と、 受信基地局に設けられた受信器 20と、 送信器 10と 受信器 20との間に設けられた複数の WDM伝送中継器 3 1〜34と、 これらの 間を結んで複数の信号光 (この実施例では、 32波人1 〜人 32) の WDM信号 群が伝搬する光ファイバ線路 4 1〜4 5とを備えている。
送信器 1 0は、 3 2波の W D M信号群 (人 1 〜え 32) それぞれを所定の信号 レベルの状態で光ファイバ線路 4 1へ送出する。 WD M伝送中継器 3 1は、 送信 器 1 0から光ファイバ線路 4 1を経由して到達した 3 2波を含む WD M信号群 ( λ ΐ 〜 132) を取り込み、 これから第 1群の信号光 (入 9 〜人 32) と第 2群 の信号光 (人 1 〜え 8 ) とに分波する。 そして、 分波された第 2群の信号光が WD M伝送中継器 3 1に受信される。 一方、 この WD M伝送中継器 3 1は、 第 1 群の信号光と該第 1群の信号光と共通する波長を含まない第 3群の信号光を合波 し、 新たな WD M信号群を光ファイバ線路 4 2へ送出する。 なお、 この実施例で は第 3群の信号光は、 それそれ第 2群の信号光と同一とする。
次段の WD M伝送中継器 3 2は、 上流に位置する前段の WD M伝送中継器 3 1 から光ファイバ線路 4 2を経由して到達した 3 2波を含む WD M信号群 (人 1 〜 Λ 32) を取り込み、 これから第 1群の信号光 (人1 〜; 18 , え 17〜人 32) と第 2群の信号光 (人 9 〜人 16) とに分波する。 そして、 分波された第 2群の信号 光がこの WD M伝送中継器 3 2に受信される。 一方、 この WD M伝送中継器 3 2 は、 第 1群の信号光と該第 1群の信号光と共通する波長を含まない第 3群の信号 光とを合波し、 新たな WD M信号群を光ファイバ線路 4 2へ送出する。 なお、 こ の実施例では第 3群の信号光は、 第 2群の信号光と同一とする。
さらに、 WD M伝送中継器3 3は、 上流に位置する前段の WD M伝送中継器 3 2から光ファイバ線路 4 3を経由して到達した 3 2波を含む WD M信号群 (ぇ1 〜え 32) を入力し、 これから第 1群の信号光 (え 1 〜入 16, 人25〜え 32) と第 2群の信号光 (え 17〜え 24) とに分波する。 そして、 分波された第 2群の信号 光がこの WD M伝送中継器 3 3に受信される。 一方、 この WD M伝送中継器 3 3 は、 第 1群の信号光と該第 1群の信号光と共通する波長を含まない第 3群の信号 光とを合波し、 新たな WD M信号群を光ファイバ線路 4 2へ送出する。 なお、 こ の実施例では第 3群の信号光は、 おれそれ第 2群の信号光と同一とする。 WDM伝送中継器 34は、 上流に位置する前段の WDM伝送中継器 33から光 ファイバ線路 44を経由して到達した 32波を含む WDM信号群 (え 1 〜人 32) を入力し、 これから第 1群の信号光 (λΐ 〜人 24) と第 2群の信号光 (人 25〜 久 32) とに分波する。 そして、 分波された第 2群の信号光がこの WDM伝送中 継器に受信される。 一方、 この WDM伝送中継器 34は、 第 1群の信号光と該第 1群の信号光と共通する波長を含まない第 3群の信号光とを合波し、 新たな WD Μ信号群を光ファイバ線路 42へ送出する。 なお、 この実施例において第 3群の 信号光は、 それぞれ第 2群の信号光と同一とする。 そして、 受信器 20は、 この WDM伝送中継器 34から光ファイバ線路 45を経由して到達した 32波を含む WDM信号群 (え 1 〜人 32) を入力して各信号光を受信する。
したがって、 この実施例に係る WDM伝送システムでは、 送信器 10から送出 された WDM信号群 (人 1 〜人 32の 32波) のうち 8波の信号光 (え 1 〜入 8 ) が、 第 1段目の WDM伝送中継器 31により受信される。 続いて、 第 2段目の W DM伝送中継器 32では、 到達した WDM信号群のうち 8波の信号光 (入 9 〜 人 16) が受信される。 第 3段目の WDM伝送中継器 33では、 到達した WDM 信号群のうち 8波の信号光 (え 17〜え 24) が受信される。 そして、 第 4段目の WDM伝送中継器 33では、 到達した WDM信号群のうち 8波の信号光 (え 25 〜入 32) が受信される。 最終的に受信器 20では、 WDM伝送中継器 3 1から 送出された 8波の信号光 (人 1 〜え 8 )、 WDM伝送中継器 32から送出された 8波の信号光 (人 9 〜え 16)、 WDM伝送中継器 33から送出された 8波の信号 光 (入17〜え 24)、 及び WDM伝送中継器 34から送出された 8波の信号光 (入 25〜人 32) が、 それそれ受信される。
なお、 WDM伝送中継器 31〜34それそれにおいて、 該各 WDM伝送中継器 31〜34を通過する信号光と合波される第 3群の信号光は、 分波された第 2群 の信号光と必ずしも同一でなくてもよい。 ただし、 この実施例に係る WDM伝送 システムにより伝送される WDM信号群の各信号光は、 光増幅器が設けられる場 合には該光増幅器の増幅帯域に含まれ、 また、 光ファイバ線路 4 1〜4 5におけ る伝送損失が小さい波長帯域に含まれることが必要である。
この実施例に係る WD M伝送システムでは、 各 WD M伝送中継器 3 1〜3 4の 間隔、 すなわち光ファイバ線路 4 1〜4 5それそれの長さ L I 〜L 5 が 2 0 k m以下と比較的短く設計されている。 したがって、 光ファイバ線路 4 1〜4 5そ れそれでは WD M信号群の伝送損失は小さいので、 以下に述べるように、 この発 明に係る WD M伝送中継器は、 従来の WD M伝送中継器と比較して構成が簡易で ありかつ安価に製造することができる。
(WD M伝送中継器の第 1実施例)
図 2は、 この発明に係る WD M伝送中継器の第 1実施例の概略構成を示す図で ある。 なお、 以下の説明では、 図 1に示された WD M伝送システムにおける第 1 段目の WD M伝送中継器 3 1 (図 1中、 Aで示された部分) について説明するが、 他の WD M伝送中継器の構成も同様である。
第 1実施例に係る WD M伝送中継器 3 1は、 図 2に示されたように、 分波器 3 1 1、 光増幅器 3 1 2、 分波器 3 1 3 (波長分離素子に含まれる)、 合波器 3 1 4 (波長合波素子に含まれる)、 光増幅器 3 1 5、 合波器 3 1 6、 及び、 これら の間を結ぶ光線路を備えて構成される。
分波器 3 1 1は、 コネクタ 1 0 5を介して光ファイバ線路 4 1と光学的に接続 された入射端 1 0 1から入射された 3 2波の W D M信号群 (人 1 〜人 32) を、 互いに異なる第 1群の信号光 (ぇ9 〜人 32) と第 2群の信号光 (ぇ1 〜人 8 ) とに分波する。 なお、 取り出されるべき第 2群の信号光は出力ポート 1 0 3を介 して光り増幅器 3 1 2へ導かれる。 光増幅器 3 1 2は、 分波器 3 1 1から分波さ れた第 2群の信号光を一括して光増幅する。 さらに、 分波器 3 1 3は、 光増幅器 3 1 2で増幅された第 2群の信号光を入力ポート 3 1 3 aを介して取り込む一方、 その第 2群の信号光それそれを互いに分波して各出力ポート 3 1 3 bへ導く。 な お、 各出力ポート 3 1 3 bには、 例えば、 フォトダイオード等の光検出素子 (図 示せず) が接続されており、 各出力ポート 3 1 3 bから出射された第 2群の信号 光それぞれは対応する各光検出素子により検出される。
合波器 3 1 4は、 第 3群の信号光 (人 1 〜人 8 ) それぞれを対応する各入力 ポート 3 1 4 bから取り込み、 これら信号光を合波して出力ポート 3 1 4 aを介 して光増幅器 3 1 5へ出射する。 光増幅器 3 1 5は、 合波器 3 1 4から出射され た第 3群の信号光を一括して光増幅する。 合波器 3 1 6は、 第 1群の信号光を取 り込むとともに光増幅器 3 1 5で増幅された第 3群の信号光を入力ポート 1 0 4 を介して取り込み、 合波されたこれら信号光の新たな W D M信号群を光ファイバ 線路 4 2へ出射端 1 0 2を介して出射する。 なお、 出射端 1 0 2はコネクタ 1 0 6を介して光ファイバ線路 4 2と光学的に接続されている。
なお、 上記分波器 3 1 1及び合波器 3 1 6は、 光 A D M 3 1 0 (Add-Drop Multiplexer) により構成される。 この光 A D M 3 1 0としては、 例えば AW G (Arrayed Waveguide Grating ) や光サーキユレ一夕などが適用可能である。 しかしながら、 これら光学デバイスは高価であるので、 この実施例における光 A D M 3 1 0の分波器 3 1 1及び合波器 3 1 6には、 例えば図 3に示されたように 光ファイバカプラ 1とファイバグレーティング 2とで構成された安価なマヅハヅ エンダー干渉計が採用される。 しかし、 分波器 3 1 1及び合波器 3 1 6を上記マ ッハツヱンダー干渉計で構成すると漏話の問題が生じる場合がある (例えば、 1
9 9 5年電子情報通信学会通信ソサイエティ大会 S B— 9— 5を参照)。 すなわ ち、 第 2群の信号光 (人 1 〜人 8 ) の大部分は分波器 3 1 1により分波されて 光増幅器 3 1 2へ出力されるものの、 その一部は分波器 3 1 1から合波器 3 1 6 へ漏話する場合がある。 そこで、 この実施例に係る WD M伝送中継器は、 この漏 話の問題を以下のようにして解決している。
この WD M伝送中継器 3 1の分波器 3 1 1に到達した WD M信号群の 3 2波の 各強度を P 0 ( d B m) とし、 合波器 3 1 4の各入力ポート 3 1 4 bに入力する 第 3群の信号光の各強度を P 30 ( d B m) とする。 また、 分波器 3 1 1の入射 端 1 0 1から合波器 3 1 6の出射端 1 0 2へ漏話する第 2群の信号光に対する各 伝送損失を ax (dB) とし、 分波器 3 1 1の入射端 1 0 1から分波器 3 1 3の 各出力ポー ト 3 1 3 bまでの第 2群の信号光に対する各伝送損失をひ 2 (dB) とし、 合波器 3 1 4の各入力ポート 3 1 4 bから合波器 3 1 6の出射端 1 0 2ま での第 3群の信号光に対する各伝送損失をひ 3 (dB) とする。
このとき、 第 2群の信号光 (え 1 〜人 8 ) それそれについて、 分波器 3 1 1 から合波器 3 1 6へ漏話する漏話成分の強度 Px は、 以下の式 (1)で表される。
Px 二 P0 — ax —(1)
分波器 3 1 3の各出力ポート 3 1 3 bから出射される第 2群の信号光 (人 1 〜 人 8 ) の各強度 P2 は、 以下の式 (2)で表される。
P2 = P0 — α2 ·'·(2)
また、 合波器 3 1 6から出射される第 3群の信号光 (え 1 〜え 8 ) の各強度 Ρ3 は、 以下の式 (3)で表される。
Ρ3 = Ρ30 - ひ 3 -(3)
分波器 3 1 3の各出力ポ一ト 3 1 3 bに出射される第 2群の信号光 (人 1 〜 え 8 ) の各強度 P2 は、 分波器 3 1 3の各出力ポート 3 1 3 bに接続される光 検出素子の受信感度レベル/? (dBm) 以上である必要がある。 すなわち、 強度 P 2と受信感度レベル/?との間には、 以下の式 (4)の関係が満たされる必要があ る。
P2 ≥ ? …(
さらに、上記 式 (2)を考慮すれば、以下の式 (5)の関係が満たされる必要もある。
P0 ≥ 2 + β … )
また、 この実施例では、 第 3群の信号光は第 2群の信号光と同一であるので、 分波器 3 1 1から合波器 3 1 6へ漏話する第 2群の波長信号光 (え 1 〜え 8 ) の各強度 Px は、 許容漏話レベル以下 (次段の WDM伝送中継器における受信 感度レベル以下) である必要がある。 また、 第 2群の各信号光の漏話成分は、 そ れそれ合波器 3 16から出射される第 3群の信号光 (人 1 〜人 8 ) の各強度 P3 と比べてクロストーク抑圧比ァ (dB) よりも小さい強度である必要がある。 す なわち、 第 2群の各信号光の漏話成分は、 それぞれ以下の式 (6)の関係を満たす 必要がある。
Px ^ P3 — ァ ·'·(6)
さらに、 上記式 (1)及び式 (3)を考慮すれば、 以下の式 (7)の関係が満たされる必 要がある。
Ρ0 ≤ Ρ30 - ひ 3 + αχ -7 -(7)
上記クロストーク抑圧比ァは例えば 25 dBである。
したがって、 WDM伝送中継器 3 1の分波器 3 1 1に入射される 32波の信号 光 (WDM信号群に含まれる) の各強度 P0 は、 上記式 (5)及び式 (7)の双方を満 たす範囲にある必要がある。 そこで、 これら条件を満たすために、 WDM伝送中 継器 3 1の分波器 3 1 1に入射される 32波の信号光の各強度 P0、 すなわち、 光ファイバ線路 41における伝送損失を考慮して送信器 10から送出される 32 波の信号光の各強度が調整される。 また、 光増幅器 312, 3 15それぞれの光 増幅利得を調整することにより伝送損失ひ 2、 ひ 3 の値を調整し、 あるいは合波 器 3 14の各入力ポート 3 14 bから取り込まれる第 3群の信号光の各強度 P 30が調整される構成であってもよい。
以上のように、 この第 1実施例に係る WDM伝送システム、 WDM伝送中継器 及び WDM伝送方法によれば、 各信号光の強度を適切に設定することにより漏話 の問題を解消できる。 また、 図 3に示されたような安価な分波器及び合波器から なる光 A DMを用いることができ、 光増幅器の個数は多くなるものの安価な光増 幅器を用いることができる。さらに、場合によっては光増幅器が不要となるので、 システム全体としても安価となる。 光増幅器は、 高利得を要求されないので信頼 性が高く、 32波を含む WDM信号群の全てを一括して光増幅するのではなく 8 波ごとに一括して光増幅するので、 全波が同時に通信不能になる危険が小さい。 したがって、 巿内局間で好適に用いられる。
(WD M伝送中継器の第 2実施例)
図 4は、 この発明に係る WD M伝送中継器の第 2実施例の概略構成を示す図で ある。 この第 2実施例に係る WDM伝送中継器では、 合波器 3 14の各入力ポー ト 3 14 bに入力する第 3群の信号光 (え 33〜人 40) は、 分波器 3 1 3の各出 力ポート 3 1 3 bから出射される第 2群の信号光 (え 1 〜入 8 ) と異なる。 こ の第 2実施例では、 第 3群の信号光 (人 33〜え 40) を適切に設定することによ り漏話の問題を解消させる構造を備える。 なお、 信号光の強度が充分である場合 には光増幅器 3 1 2, 3 1 5を備える必要はない。
この第 2実施例に係る WDM伝送中継器 3 1において、 合波器 3 1 6からは、 分波器 3 1 1で分波された第 1群の信号光 (人 9 〜人 32)、 及び合波器 3 14の 各入力ポート 3 14 bから取り込まれた第 3群の信号光 (人 33〜人 40) が出射 されるとともに、さらに、分波器 3 1 1から合波器 3 1 6に伝搬した各信号光(え 1 〜人 8 ) の漏話成分も出射される。 そこで、 この第 2実施例では、 第 1群の 信号光 (人 9 〜え 32) 及び第 2群の信号光 (入 1 〜 18 ) に対して以下の関係 を有するように、 第 3群の信号光 (ぇ33〜え 40) が設定される。 なお、 この第 2実施例において、適用された光 ADM3 10は、図 3に示された構造を備える。 図 5 A〜図 5 Cは、 図 4に示された第 2実施例に係る WD M伝送中継器から送 出されるべき第 3群の信号光を説明する図である。 図 5 Aには、 第 1群 g lの信 号光 (人 9 〜 132) や第 2群の信号光 (ぇ1 〜人 8 ) それそれの中心波長の位 置が実線で示され、 第 3群 g 3の信号光 (人 33〜 140) それぞれの中心波長の 位置が波線で示されている。 図に示されたように、 第 3群 g 3の信号光 (入 33 〜入 40) は、 第 1群の信号光 (人9 〜人 32) 及び第 2群の信号光 (人 1 〜入 8 ) のうち互いに隣接する 2波長の間であって漏話の問題が生じないように設定され る。 例えば、 I TU規格の ANNEX— Aによれば、 100GHz帯において隣 接する 2波長の間隔 (波長差) は 0. 78 nm〜0. 82 nmであり、 第 3群の 信号光 (人 33〜え 40) の中心波長は、 この波長間に漏話の問題が生じないよう に設定される。
ただし、 合波器 3 1 6の出力端 1 0 2において、 第 1群 g 1の信号光 (え 9〜 入 32) の各強度は比較的強く、 第 2群の信号光 (人 1 〜人 8 ) の各強度は比較 的弱い。 したがって、 これを考慮して具体的には、 第 3群 g 3の信号光 (え 33 〜入 40) それそれの中心波長は以下のように設定される。
図 5 Bには、 合波器 3 1 6の出力端 1 0 2における第 1群 g 1の信号光 (人 9 〜え 32) のうちの 1つの波長スペク トルが実線で示され、 第 3群 g 3の信号光 ( λ 33〜入 40) のうちの 1つの波長スペクトルが波線で示されている。 合波器 3 1 6の出力端 1 0 2における第 1群 g 1の信号光 (え 9 〜入 32) の各強度は 比較的強いので、 図に示されたように、 第 3群 g 3の信号光 (え 33〜人 40) の 各中心波長は、 第 1群 g lの信号光 (人 9 〜; 132) の各強度がその中心波長に おける強度 (ピーク強度) に対して 2 5 d B以上低くなる波長に設定される。 図 5 Cには、 合波器 3 1 6の出力端 1 0 2における第 2群 g 2の信号光 (え 1 〜え 8 ) のうちの 1つの波長スペク トルが実線で示され、 第 3群 g 3の信号光 (え 33〜え 40) のうちの 1つの波長スペクトルが波線で示されている。 合波器 3 1 6の出力端 1 0 2における第 2群 g 2の信号光 (λ ΐ 〜 18 ) の各強度は 比較的弱いので、 図に示されたように、 第 3群 g 3の信号光 (入 33〜人 40) の 各中心波長は、 第 2群 g 2の信号光 (人 1 〜人 8 ) の各強度がその中心波長に おける強度 (ピーク強度) に対して 1 O d B以上低くなる波長に設定される。 以上のように、 この第 2実施例に係る WD M伝送システム、 WD M伝送中継器 及び W D M伝送方法によっても、 各信号光の強度を適切に設定することにより漏 話の問題を解消できる。 また、 図 3に示されたような安価な分波器及び合波器か らなる光 A D Mを用いることができ、 光増幅器の個数は多くなるものの安価な光 増幅器を用いることができる。 さらに、 場合によっては光増幅器が不要となるの で、 システム全体としても安価となる。 光増幅器は、 高利得を要求されないので 信頼性が高く、 3 2波を含む WD M信号群の全てを一括して光増幅するのではな く 8波ごとに一括して光増幅するので、 全波が同時に通信不能になる危険が小さ い。 したがって、 巿内局間で好適に用いられる。
(WD M伝送中継器の第 3実施例)
次に、 図 6は、 この発明に係る WD M伝送中継器の第 3実施例の概略構成を示 す図である。 なお、 この第 3実施例に係る WD M伝送中継器も、 図 1中、 Aで示 された位置の中継器として以下説明する。
この図において、 第 3実施例に係る WD M伝送中継器 3 5は、 分波器 3 5 1、 光増幅器 3 5 2、 分波器 3 5 3 (波長分離素子に含まれる)、 合波器 3 5 4 (波 長合波素子に含まれる)、 光増幅器 3 5 5及び合波器 3 5 6を備える。 分波器 3 5 1及び合波器 3 5 4が光 A D M 3 5 0を構成する点では上述の第 1実施例と同 様であるが、 これら分波器 3 5 1及び合波器 3 5 4は、 それそれバイパス線路 3 5 7 , 3 5 8を接続するためのジョイント構造 3 5 3 c、 3 5 4 cを備えている。 なお、 信号光の強度が充分である場合には、 光増幅器 3 5 2、 3 5 5を備える必 要はない。
バイパス線路 3 5 7は、 分波器 3 5 1から分波器 3 5 3に導入された第 2群の 信号光 (人 1 〜え 8 ) のうち信号光人 7 を出射する出力ポ一ト 3 5 3 bと合波 器 3 5 4の対応する入力ポート 3 5 4 bとの間にジョイント構造 3 5 3 c、 3 5 4 cを介して着脱自在に設けられたものであり、 このバイパス線路 3 5 7中を信 号光人 7 が伝搬する。 同様に、 バイパス線路 3 5 8は、 分波器 3 5 1から分波 器 3 5 3に導入される第 2群の信号光 (人 1 〜人 8 ) のうち信号光人 8 を出射 する出力ポート 3 5 3 bと合波器 3 5 4の対応する入力ポート 3 5 4 bとの間に 着脱自在に設けられたものであり、 このバイパス線路 3 5 8中を信号光人 8 が 伝搬する。
したがって、 この第 3実施例に係る WD M伝送中継器 3 5は、 バイパス線路 3 5 7、 3 5 8が取り外された状態では、 第 1実施例に係る WD M伝送中継器 3 1 と同様に作用するが、 バイパス線路 3 5 7、 3 5 8が接続された状態では以下の ように作用する。
すなわち、 到達した 3 2波を含む WD M信号群 (え 1 〜人 32) は、 入射端 2 0 1を介して光 A D M 3 5 0内に取り込まれ、 分波器 3 5 1により第 1群の信号 光 (人 9 〜え 32) と第 2群の信号光 (え 1 〜え 8 ) とに分波される。 なお、 入 射端 2 0 1はコネクタ 2 0 5を介して光り伝送線路 4 1と光学的に接続されてい る。 分波器 3 5 1において分波された第 2群の信号光は、 出力ポート 2 0 3を介 して光増幅器 3 5 2に導かれる。 光増幅器 3 5 2はこの第 2群の信号光を一括し て光増幅し、 この増幅された第 2群の信号光を入射ポート 3 5 3 aを介して分波 器 3 5 3に出射する。 分波器 3 5 3では、 各信号光はそれぞれ分波されて対応す る各出力ポート 3 5 3 bに出力される。 そのうち、 信号光入 1 〜人 6 は受光デ バイス等で受信される。 一方、 信号光人 7 、 人 8 はバイパス線路 3 5 7 , 3 5 8を経由して合波器 3 5 4の対応する入力ポート 3 5 4 cを介して合波器 3 5 4 内へ導かれる。 合波器 3 5 4の各入力ポート 3 5 4 bを介して取り込まれた信号 光え 7 、 人 8 と、 新たに送出されるべき信号光人 1 〜人 6 は、 第 3群の信号光 として合波器 3 5 4により合波され出力ポート 3 5 4 aを介して光増幅器 3 5 5 に出射される。 そして、 この光増幅器 3 5 5により一括して光増幅された第 3群 の信号光は、 分波器 3 5 1から出射された第 1群の信号光とともに、 合波器 3 5 6により合波され、 出射端 2 0 2を介して光りファイバ線路 4 2へ送出される。 なお、 出射端 2 0 2はコネクタ 2 0 6を介して光りファイバ線路 4 2と光学的に 接続されている。
以上のように、 この第 3実施例に係る WD M伝送システム、 WD M伝送中継器 及び WD M伝送方法によっても、 各信号光の強度を適切に設定することにより漏 話の問題を解消できる。 また、 図 3に示されたような安価な分波器及び合波器か らなる光 A D Mを用いることができ、 光増幅器の個数は多くなるものの安価な光 増幅器を用いることができる。 さらに、 場合によっては光増幅器が不要となるの で、 システム全体としても安価となる。 また、 各 WD M伝送中継器で受信される 信号光の波数及び送出される信号光の波数を必要に応じてバイパス線路の着脱に より増減することができる。 光増幅器は、 高利得を要求されないので信頼性が高 く、 3 2波を含む WD M信号群の全てを一括して光増幅するのではなく 8波ごと に一括して光増幅するので、 全波が同時に通信不能になる危険が小さい。 したが つて、 巿内局間で好適に用いられる。
(WD M伝送中継器の第 4実施例)
図 7は、 この発明に係る WD M伝送中継器の第 4実施例の概略構成を示す図で ある。 なお、 この第 7実施例に係る WD M伝送中継器も、 図 1中、 Aで示された 位置の中継器として以下説明する。
この図において、 第 7実施例に係る WD M伝送中継器 3 6は、 分波器 3 6 1、 光増幅器 3 6 2、 分波器 3 6 3 (波長分離素子に含まれる)、 合波器 3 6 4、 光 増幅器 3 6 5、 合波器 3 6 6、 分波器 3 7 1、 光増幅器 3 7 2、 分波器 3 7 3、 合波器 3 7 4 (波長合波素子に含まれる)、 光増幅器 3 7 5、 合波器 3 7 6を備 えるとともに、 バイパス線路 3 6 7、 3 6 8の着脱を可能にする構造を備えてい る。 なお、 分波器 3 6 1及び合波器 3 6 6は第 1光 A D M 3 6 0を構成し、 分波 器 3 7 1及び合波器 3 7 6は第 2光 A D M 3 7 0を構成する。 なお、 光ファイバ 線路 4 1から信号光の強度が充分である場合には、 光増幅器 3 6 2, 3 6 5 , 3 7 2、 3 7 5を備える必要はない。
分波器 3 6 1は、入射端 3 0 1を介して取り込まれた 3 2波の WD M信号群(入 1 〜人 32) を互いに異なる第 1群の信号光 (ぇ9〜 32) と第 2群の信号光 (入 1 〜人 8 ) とに分波する。 なお、 入射端 3 0 1はコネクタ 3 0 5を介して光り ファイバ線路 4 1と光学的に接続されている。 光増幅器 3 6 2は、 分波器 3 6 1 から出力ポート 3 0 3を介して導かれた第 2群の信号光一括して光増幅する。 そ して、 増幅された第 2群の信号光が入力ポート 3 6 3 aを介して分波器 3 6 3に 取り込まれる。 分波器 3 6 3では、 分波器 3 6 1から到達した増幅された第 2群 の信号光それぞれ分波し、 対応する各出力ポート 3 6 3 bを介して出射する。 なお、 この実施例では合波器 3 6 4の各入力ポートへの入力は無いものとし、 図中の部分 Bで示された合波器 3 6 4及び光増幅器 3 6 5は本来の合波や光増幅 手段としては機能しない。 また、 合波器 3 6 6の入力ポート 3 0 4には、 光増幅 器 3 6 5からの入力はない。
分波器 3 7 1は、 入力ポート 4 0 1を介して到達した第 1群の信号光 (人9 〜 え 32) をそのまま合波器 3 7 6へ出力する。 なお、 この実施例では図中の部分 Cの光増幅器 3 7 2 (出力ポート 4 0 3と光学的に接続されている) 及び分波器 3 7 3は使用していない。 しかし、 この分波器 3 7 1も第 1群の信号光と第 2群 の信号光とを分波する機能を有するため、 第 2群の信号光を遮断するよう機能す るので、 少なくとも第 1光 A D M 3 6 0からの第 2群の各信号光の漏話成分を遮 断することができる。 また、 入力ポート 4 0 1はコネクタ 4 0 5を介してブリツ ジ線路 5 0 0の一端と光学的に接続されており、 このプリッジ線路 5 0◦の他端 が合波器 3 6 6の入力ポート 3 0 2とコネクタ 3 0 6を介して光学的に接続され ている。 このように、 第 4実施例では第 1光 A D M 3 6 0と第 2光 A D M 3 7 0 とがプリッジ線路 5 0 0を介して互いに光学的に接続される。
一方、 合波器 3 7 4は、 第 3群の信号光 (人 1 〜人 8 ) をそれそれ対応する 入力ポート 3 7 4 bに入力し、 これらを合波して出力ポ一ト 3 7 4 aを介して光 増幅器 3 7 5へ出力する。 光増幅器 3 7 5は、 合波器 3 7 4から出射された第 3 群の信号光を一括して光増幅する。 合波器 3 7 6は、 入力ポート 4 0 4を介して 取り込まれた、 増幅された第 3群の信号光と、 分波器 3 7 1を通過した第 1群の 信号光とを合波し、 得られた新たな W D M信号群を出射端 4 0 2を介して光ファ ィバ線路 4 2へ送出する。 なお、 この出射端 4 0 2はコネクタ 4 0 6を介して光 ファイバ線路 4 2と光学的に接続されている。
さらに、 この実施例では、 分波器 3 6 1により分波された第 2群の信号光 (入 1 〜人 8 ) のうち信号光人 7 を出力する分波器 3 6 3の出力ポート 3 6 3 bと、 合波器 3 7 4の対応する入力ポート 3 7 4 bには、 バイパス線路 3 6 7 (信号光 人 7 の伝送路) の着脱を可能にするジョイント構造 3 6 3 c、 3 7 4 cがそれそ れ設けられている。 同様に、 分波器 3 6 1により分波された第 2群の信号光 (入 1 〜え 8 ) のうち信号光人 8 を出力する分波器 3 6 3の出力ポート 3 6 3 bと、 合波器 3 7 4の対応する入力ポート 3 7 4 bにも、 バイパス線路 3 6 8 (信号光 人 8 の伝送路) の着脱を可能にするジョイント構造 3 6 3 c、 3 7 4 cがそれぞ れ設けられている。
したがって、 この第 4実施例に係る WD M伝送中継器 3 6は、 バイパス線路 3 6 7 , 3 6 8が取り外された状態では以下のように動作する。
すなわち、 入射端 3 0 1を介して到達した 3 2波を含む WD M信号群 (人:! 〜 入 32) は、 分波器 3 6 1により第 1群の信号光 (人 9 〜え 32) と第 2群の信号 光 (人 1 〜人 8 ) とに分波される。 分波された第 2群の信号光は、 光増幅器 3 6 2により一括して光増幅され、 入力ポート 3 6 3 aを介して分波器 3 6 3に導 かれる。 そして、 該第 2群の信号光はそれぞれ対応する各出力ポート 3 6 3 bに 出力される。 この出力された信号光は、 該各出力ポート 3 6 3 bに個別に接続さ れた光検出素子により受信される。 一方、 第 1群の信号光は、 合波器 3 6 6及び 分波器 3 7 1を通過して合波器 3 7 6に到達する。 また、 合波器 3 7 4の各入力 ポート 3 7 4 bからは第 3群の信号光 (人 1 〜え 8 ) が取り込まれ、 合波され た第 3群の信号光は、 出力ポート 3 7 4 aを介して光増幅器 3 7 5に導かれる。 そして、 この第 2群の信号光は光増幅器 3 7 5により一括して光増幅された後、 入力ポート 4 0 4を介して合波器 3 7 6に取り込まれる。 合波器 3 7 6では、 第 1群の信号光及び第 3群の信号光からなる新たな WD M信号群が出射端 4 0 2を 介して光ファイバ線路 4 2へ送出される。 なお、 この取捨端 4 0 2はコネクタ 4 0 6を介して光ファイバ線路 4 2と光学的に接続されている。
一方、 バイパス線路 3 6 7、 3 1 8が接続された状態では以下のように作用す る。すなわち、入射端 3 0 1を介して到達した 3 2波を含む WD M信号群(人 1 〜 入 32) は、 分波器 3 6 1により第 1群の信号光 (ぇ9 〜人 32) と第 2群の信号 光 (人 1 〜人 8 ) とに分波される。 第 2群の信号光は、 光増幅器 3 6 2により 一括して光増幅された後、 入力ポート 3 6 3 aを介して分波器 3 6 3に取り込ま れる。 分波器 3 6 3では、 取り込まれた第 2群の信号光のうち、 信号光 (え 1 〜 人 6 ) は出力ポート 3 6 3 bを介して対応する各受光検出素子で受信される一 方、 信号光人 7、 ぇ8 はバイパス線路 3 6 7、 3 1 8を経由して合波器 3 7 4の 入力ポート 3 7 4 bに導かれる。 分波器 3 6 1で分派された第 1群の信号光は、 合波器 3 6 6及び分波器 3 7 1を順次通過して合波器 3 7 6に到達する。 合波器 3 7 4の各入力ポート 3 7 4 bから取り込まれた信号光人 7、 え 8 と、 新たに入 力ポート 3 7 4 bを介して取り込まれた信号光 (人 1 〜え 6 ) は、 第 3群の信 号光として合波器 3 7 4により合波される。 そして、 この第 3群の信号光は出力 ポート 3 7 4 aを介して光増幅器 3 7 5に導かれ、 この光増幅器 3 7 5により一 括して光増幅される。 合波器 3 7 6では、 入力ポート 4 0 4を介して取り込まれ た第 3群の信号光と、 第 1群の信号光とが合波され、 新たな WD M信号群として 出射端 4 0 2を介して光ファイバ線路 4 2へ送出される。 なお、 この出射端 4 0 2はコネクタ 4 0 6を介して光ファイバ線路 4 2と光学的に接続されている。 この第 4実施例では、 バイパス線路 3 6 7、 3 1 8が接続されているか否かに 拘わらず、 漏話して出力される第 2群の各信号光の漏話成分は、 縦続接続された 2つの光 A D M 3 6 0 , 3 7 0を通過して最終的に出射端 4 0 2から光ファイバ 線路 4 2へ送出されるため、 第 2群の不要な漏話成分は極めて弱くなり、 漏話の 問題が解消される。 また、 合波器 3 7 4に加えて合波器 3 6 4を備えることによ り、 この WD M伝送中継器 3 6から送出される WD M信号群の波数を増加するこ とができる。 さらに、 分波器 3 6 3に加えて分波器 3 7 3を備え、 分波器 3 7 1 から分波器 3 7 3へ分波される信号光の波長と分波器 3 6 1から分波器 3 6 3へ 分波される信号光の波長とを互いに異なるものとすることにより、 この W D M伝 送中継器 3 6で受信される信号光の波数を増加することができる。 以上のように、 この第 4実施例に係る WD M伝送システム、 WD M伝送中継器 及び WD M伝送方法によっても、 2つの光 A D Mを縦続接続することにより漏話 の問題を解消できる。 また、 図 3に示されたような安価な分波器及び合波器から なる光 A D Mを用いることができ、 場合によっては光増幅器が不要となるので、 システム全体としても安価となる。 また、 各 WD M伝送中継器で受信される信号 光の波数及び送出される信号光の波数を必要に応じてバイパス線路の着脱により 増減することができる。 光増幅器は、 高利得を要求されないので信頼性が高く、 3 2波を含む WD M信号群の全てを一括して光増幅するのではなく 8波ごとに一 括して光増幅するので、全波が同時に通信不能になる危険が小さい。 したがって、 巿内局間で好適に用いられる。 産業上の利用可能性
以上のようにこの発明によれば、 各中継局において受信される各信号光の漏話 成分の伝搬を効果的に抑制等する種々の構成を備えたので、 必要な信号光の分波 に利用される光 A D Mとして比較的安価な光学デバイスを利用でき、 比較的中継 間隔の短い巿内局間の光通信に好適な W D M伝送システムが提供できる。 また、 中継間隔の短い各中継局に光増幅器を設ける場合には、 伝送路中を伝搬する信号 光のうち一部の信号光に限定しかつ僅かな利得で光増幅を行うため、 全波が同時 に通信不能になる危険が小さく、 また、 安価な光増幅器でも十分な信頼性が得ら れる WD M伝送システムを提供することができる。

Claims

請求の範囲
1 . 所定の一波長帯域内に存在する波長であって互いに異なる波長の複 数の信号光を取り込み、 該複数の信号光を第 1群の信号光と第 2群の信号光とに 分波する分波器と、
前記所定の一波長帯域内に含まれる波長であって該第 1群の信号光の波長とは 異なる波長の複数の信号光からなる第 3群の信号光と該第 1群の信号光とを合波 する合波器と、
前記分波器からの前記第 2群の信号光を各波長の信号光に分離する波長分離素 子と、
前記合波器に入力されるべき前記第 3群の信号光を合波する波長合波素子と、 前記波長合波素子と前記合波器との間、 及び、 前記波長分離素子と前記分波器 との間の少なくともいずれかに配置された光増幅器とを備えた WD M伝送中継器 c
2 . 前記波長分離素子は、 前記第 2群の信号光を各波長ごとに出力す る複数の出力ポートを有し、
前記波長合波素子は、 前記第 3群の信号光を各波長ごとに取り込む複数の入力 ポートを有し、
当該 WD M伝送中継器は、 さらに、 前記複数の出力ポートの 1つと前記複数の 入力ポートの 1つを連絡するバイパス線路を備えるとともに、 該バイパス線路の 両端は、 前記複数の出力ポートの 1つと前記複数の入力ポートの 1つに対し着脱 自在となる構造を有することを特徴とする請求項 1記載の WD M伝送中継器。
3 . 所定の一波長帯域内に存在する波長であって互いに異なる波長の 複数の信号光を取り込み、 該複数の信号光を第 1群の信号光と第 2群の信号光と に分波し、 そして、 該第 2群の信号光の一部を漏話させる分波器と、
前記所定の一波長帯域内に含まれる波長であって該第 1群の信号光の波長とは 異なる波長の複数の信号光からなる第 3群の信号光と該第 1群の信号光とを合波 する合波器と、 前記分波器からの前記第 2群の信号光を各波長に分離する波長分離素子と、 前記合波器に入力されるべき前記第 3群の信号光を合波する波長合波素子と、 前記第 3群の信号光を送出する送信器及び光増幅器のいずれかとを備え、 前記漏話した第 2群の信号光の一部に対し、 前記第 3群の信号光のクロストー ク抑圧比が所定値以上である WD M伝送中継器。
4 . 所定の一波長帯域内に存在する波長であって互いに異なる波長の 複数の信号光を取り込み、 該複数の信号光を第 1群の信号光と第 2群の信号光と に分波し、 そして、 該第 2群の信号光の一部を漏話させる分波器と、
前記所定の一波長帯域内に含まれる波長であって該第 1群の信号光の波長とは 異なる波長の複数の信号光からなる第 3群の信号光と該第 1群の信号光とを合波 する一方、 前記第 2群の信号光の漏話成分の一部をさらに漏話させる合波器と、 前記分波器からの前記第 2群の信号光を各波長に分離する波長分離素子と、 前記合波器に入力されるべき前記第 3群の信号光を合波する波長合波素子と、 前記第 3群の信号光を送出する送信器とを備え、
前記合波器を通過する前記第 2群の信号光の漏話成分に対し、 前記第 3群の信 号光のクロストーク抑圧比が所定値以上である WD M伝送中継器。
5 . 2 0 k m以下の間隔で複数の中継器が配置され、 所定の一波長帯 域内存在する波長であって互いに異なる波長の複数の信号光を伝送する W D M中 伝送システムであって、
前記複数の中継器のうち少なくとも一つは、
前記複数の信号光を第 1群の信号光と第 2群の信号光とに分波する分波器と、 前記所定の一波長帯域内に含まれる波長であって該第 1群の信号光の波長とは 異なる波長の複数の信号光からなる第 3群の信号光と該第 1群の信号光とを合波 する一方、 前記第 2群の信号光の一部を漏話させる合波器と、
前記分波器からの前記第 2群の信号光を各波長の信号光に分離する波長分離素 子と、 前記合波器に入力されるべき前記第 3群の信号光を合波する波長合波素子と、 前記波長合波素子と前記合波器との間に配置された光増幅器とを備えた WD M 中継伝送システム。
6 . 2 0 k m以下の間隔で複数の中継器が配置され、 所定の一波長帯 域内に存在する波長であって互いに異なる波長の複数の信号光を伝送する W D M 中継伝送システムであって、
前記複数の中継器それぞれは、
前記複数の信号光を第 1群の信号光と第 2群の信号光とに分波する分波器と、 前記所定の一波長帯域内に含まれる波長であって該第 1群の信号光の波長とは 異なる波長の複数の信号光からなる第 3群の信号光と該第 1群の信号光とを合波 する一方、 前記第 2群の信号光の一部を漏話させる合波器と、
前記分波器からの前記第 2群の信号光を各波長の信号光に分離する波長分離素 子と、
前記合波器に入力されるべき前記第 3群の信号光を合波する波長合波素子と、 前記波長合波素子と前記合波器との間、 及び、 前記波長分離素子と前記分波器 との間の少なくともいずれかに配置された光増幅器とを有する WD M中継伝送シ ステム。
7 . 中継器において、 所定の一波長帯域に含まれる波長であって互い に異なる波長の複数の信号光を取り込み、 その複数の信号光を互いに異なる波長 の第 1群の信号光と第 2群の信号光とに分波して前記第 2群の信号光を受信し、 前記第 1群の信号光と共通する波長の信号光を含まず前記所定の一波長帯域に含 まれる第 3群の信号光と前記第 1群の信号光と漏話された前記第 2群の信号光の 一部とを合波し、
前記第 3群の信号光それぞれの中心波長は、 前記複数の信号光それぞれの中心 波長のうちの隣り合う 2波長の間にあって、 該 2波長それぞれに対して所定のク ロストーク抑圧比を満たす波長であることを特徴とする WD M伝送方法。
8 . 前記中継器の前段側の中継器で前記第 2群の信号光を増幅する場 合は、 前記第 2群の信号光それそれの強度を増幅後の出力レベルとすることを特 徴とする請求項 7記載の W D M伝送方法。
9 . 中継器において、 所定の一波長帯域に含まれる波長であって互い に異なる波長の複数の信号光を取り込み、 その複数の信号光を互いに異なる波長 の第 1群の信号光と第 2群の信号光とに分波して前記第 2群の信号光を受信し、 前記第 1群の信号光と共通する波長の信号光を含まず前記所定の一波長帯域に含 まれる第 3群の信号光と前記第 1群の信号光と漏話された前記第 2群の信号光の 一部とを合波し、
前記中継器で受信される前記第 2群の信号光それぞれの波長の強度が当該中継 器の受信感度レベル以上であって、 該第 2群の信号光それぞれについて当該中継 器からの漏話成分それぞれの強度が当該中継器の下流に位置する中継器の許容漏 話レベル以下になるように、 当該中継器に到達する前記複数の信号光のうちの該 第 2群の信号光それぞれの強度が送信元において調整されることを特徴とする W D M伝送方法。
1 0 . 中継器において、 所定の一波長帯域に含まれる波長であって互 いに異なる波長の複数の信号光を取り込み、 その複数の信号光を互いに異なる波 長の第 1群の信号光と第 2群の信号光とに分波することにより該第 2群の信号光 を受信し、 前記第 1群の信号光と共通する波長の信号光を含まず前記所定の一波 長帯域に含まれる第 3群の信号光と前記第 1群の信号光と漏話された前記第 2群 の信号光の一部とを合波して出力する WD M伝送方法であって、
前記第 3群の信号光それぞれの中心波長は、 前記複数の信号光それぞれの中心 波長のうちの隣り合う 2波長の間にあって、 該 2波長それそれに対して所定のク ロストーク抑圧比を満たす波長であることを特徴とする WD M伝送方法。
1 1 . 前記第 3群の信号光それぞれの中心波長は、 前記第 1群の信号 光それぞれの強度が中心波長における強度に対して 2 5 d B以上低くなる波長で あることを特徴とする請求項 10記載の波長多重伝送方法。
12. 前記第 3群の信号光それぞれの中心波長は、 前記第 2群の信号 光それそれの中心波長のうちの隣り合う 2波長の間にある波長であることを特徴 とする請求項 10記載の WDM伝送方法。
13. 前記第 3群の信号光それそれの中心波長は、 前記第 2群の信号 光それそれの強度が中心波長における強度に対して 10 dB以上低くなる波長で あることを特徴とする請求項 12記載の WDM伝送方法。
PCT/JP1999/001487 1998-03-24 1999-03-24 Repeteur de transmission a multiplexage par repartition en longueur d'onde, systeme et procede de transmission a multiplexage par repartition en longueur d'onde WO1999049601A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020007010620A KR20010034668A (ko) 1998-03-24 1999-03-24 Wdm 전송 중계기, wdm 전송 시스템, 및 wdm 전송방법
EP99910682A EP1081880B1 (en) 1998-03-24 1999-03-24 Wdm transmission repeater, wdm transmission system and wdm transmission method
AU29575/99A AU757003B2 (en) 1998-03-24 1999-03-24 WDM transmission repeater, WDM transmission system and WDM transmission method
DE69940883T DE69940883D1 (de) 1998-03-24 1999-03-24 Wdm übertragungszwischenverstärker, wdm übertragungssystem und wdm übertragungsverfahren
US09/380,503 US6512613B1 (en) 1998-03-24 1999-03-24 WDM transmission repeater, WDM transmission system and WDM transmission method
CA002325580A CA2325580C (en) 1998-03-24 1999-03-24 Wdm transmission repeater, wdm transmission system and wdm transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7570498 1998-03-24
JP10/75704 1998-03-24

Publications (1)

Publication Number Publication Date
WO1999049601A1 true WO1999049601A1 (fr) 1999-09-30

Family

ID=13583884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001487 WO1999049601A1 (fr) 1998-03-24 1999-03-24 Repeteur de transmission a multiplexage par repartition en longueur d'onde, systeme et procede de transmission a multiplexage par repartition en longueur d'onde

Country Status (8)

Country Link
US (1) US6512613B1 (ja)
EP (1) EP1081880B1 (ja)
KR (1) KR20010034668A (ja)
CN (1) CN1276600C (ja)
AU (1) AU757003B2 (ja)
CA (1) CA2325580C (ja)
DE (1) DE69940883D1 (ja)
WO (1) WO1999049601A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353497B1 (en) 2000-03-03 2002-03-05 Optical Coating Laboratory, Inc. Integrated modular optical amplifier
US6885824B1 (en) 2000-03-03 2005-04-26 Optical Coating Laboratory, Inc. Expandable optical array
US7254333B2 (en) 2001-03-26 2007-08-07 Fujitsu Limited Low-cost WDM terminal device accommodating plurality of client signal

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2790160B1 (fr) * 1999-02-19 2001-05-04 Cit Alcatel Systeme de transmission regenere wdm
KR20020019689A (ko) * 2000-09-06 2002-03-13 윤종용 양방향 애드/드롭 다중화기
EP1241913A1 (en) * 2001-03-16 2002-09-18 Alcatel Optical packet node and optical packet add drop multiplexer
US20030002104A1 (en) * 2001-06-29 2003-01-02 Caroli Carl A. Wavelength-selective add/drop arrangement for optical communication systems
US6999681B2 (en) * 2002-01-23 2006-02-14 Pts Corporation Method of seamless migration from static to agile optical networking
GB0203037D0 (en) * 2002-02-08 2002-03-27 Marconi Comm Ltd Telecommunications networks
US7269356B2 (en) * 2003-07-09 2007-09-11 Lucent Technologies Inc. Optical device with tunable coherent receiver
US20070058986A1 (en) * 2005-09-09 2007-03-15 David Butler Optical network regenerator bypass module and associated method
CN110521142A (zh) * 2017-04-18 2019-11-29 日本电气株式会社 双向光传输系统和双向光传输方法
US20220286221A1 (en) * 2019-09-06 2022-09-08 Telefonaktiebolaget Lm Ericsson (Publ) Optical Node and Optical Transceiver for Auto Tuning of Operational Wavelength

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102928A (ja) * 1991-10-07 1993-04-23 Nippon Telegr & Teleph Corp <Ntt> 光通信方式
JPH05100254A (ja) * 1991-10-07 1993-04-23 Nippon Telegr & Teleph Corp <Ntt> 光周波数分岐挿入回路
JPH09261175A (ja) * 1996-01-19 1997-10-03 Nippon Telegr & Teleph Corp <Ntt> 光信号処理回路およびそれを用いたネットワーク
JPH1013382A (ja) * 1996-06-21 1998-01-16 Toshiba Corp 光分岐挿入多重ノード装置
JPH1013356A (ja) * 1996-06-21 1998-01-16 Toshiba Corp 波長多重光伝送システム
JPH1013357A (ja) * 1996-06-24 1998-01-16 Nec Corp 光増幅器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2571002B2 (ja) * 1993-11-25 1997-01-16 日本電気株式会社 海中分岐装置
GB9516017D0 (en) * 1995-08-04 1995-10-04 Stc Submarine Systems Ltd Optical level control in wavelength add-drop multiplexing branching units
GB2311430B (en) * 1995-08-24 1998-02-25 Mitsubishi Electric Corp Wavelength multiplexed light transfer unit and wavelength multiplexed light transfer system
JPH1032562A (ja) * 1996-07-16 1998-02-03 Fujitsu Ltd 光アッド/ドロップ回路
JP3006519B2 (ja) * 1996-11-22 2000-02-07 日本電気株式会社 光通信システム
JP3022359B2 (ja) * 1996-11-29 2000-03-21 日本電気株式会社 光分波合波装置
US6069719A (en) * 1997-07-30 2000-05-30 Ciena Corporation Dynamically reconfigurable optical add-drop multiplexers for WDM optical communication systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102928A (ja) * 1991-10-07 1993-04-23 Nippon Telegr & Teleph Corp <Ntt> 光通信方式
JPH05100254A (ja) * 1991-10-07 1993-04-23 Nippon Telegr & Teleph Corp <Ntt> 光周波数分岐挿入回路
JPH09261175A (ja) * 1996-01-19 1997-10-03 Nippon Telegr & Teleph Corp <Ntt> 光信号処理回路およびそれを用いたネットワーク
JPH1013382A (ja) * 1996-06-21 1998-01-16 Toshiba Corp 光分岐挿入多重ノード装置
JPH1013356A (ja) * 1996-06-21 1998-01-16 Toshiba Corp 波長多重光伝送システム
JPH1013357A (ja) * 1996-06-24 1998-01-16 Nec Corp 光増幅器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1081880A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353497B1 (en) 2000-03-03 2002-03-05 Optical Coating Laboratory, Inc. Integrated modular optical amplifier
US6885824B1 (en) 2000-03-03 2005-04-26 Optical Coating Laboratory, Inc. Expandable optical array
US7254333B2 (en) 2001-03-26 2007-08-07 Fujitsu Limited Low-cost WDM terminal device accommodating plurality of client signal

Also Published As

Publication number Publication date
EP1081880B1 (en) 2009-05-13
KR20010034668A (ko) 2001-04-25
CA2325580A1 (en) 1999-09-30
EP1081880A1 (en) 2001-03-07
AU757003B2 (en) 2003-01-30
DE69940883D1 (de) 2009-06-25
US6512613B1 (en) 2003-01-28
EP1081880A4 (en) 2006-06-28
AU2957599A (en) 1999-10-18
CN1294796A (zh) 2001-05-09
CN1276600C (zh) 2006-09-20
CA2325580C (en) 2008-12-02

Similar Documents

Publication Publication Date Title
US6411407B1 (en) Method for providing a bidirectional optical supervisory channel
KR100334432B1 (ko) 하나의도파관열격자다중화기를이용한양방향애드/드롭광증폭기모듈
JPS62245740A (ja) 波長多重光伝送方式
JP4294452B2 (ja) 双方向光通信用の光装置
CN109075857B (zh) 信号回送回路和信号回送方法
WO1999049601A1 (fr) Repeteur de transmission a multiplexage par repartition en longueur d&#39;onde, systeme et procede de transmission a multiplexage par repartition en longueur d&#39;onde
EP1065811B1 (en) Optical amplifiers
US10567081B2 (en) Transmission system and transmission method
US6552834B2 (en) Methods and apparatus for preventing deadbands in an optical communication system
US20030123137A1 (en) Optical in-line amplifier and wavelength-division multiplexer
US6327062B1 (en) Optical communication system
JPH09326520A (ja) 光フィルタモジュールおよびそれを用いた光増幅装置
JP4588257B2 (ja) ラマン増幅を用いる光増幅システム
EP0967752A2 (en) WDM transmission system
JPH10322286A (ja) 双方向波長多重伝送装置
KR100317133B1 (ko) 양방향애드/드롭다중화기를구비한양방향파장분할다중방식자기치유광통신망
JP3308148B2 (ja) 波長多重通信方式用光海底ケーブル分岐装置およびそれを用いた波長多重光海底ケーブルネットワーク
EP1249956A2 (en) In-line hub amplifier structure
JP3039430B2 (ja) 光分岐挿入回路及び光伝送方法
JP2000151521A (ja) 遠隔励起光伝送システム
JPH1022919A (ja) 光分岐装置
JP2001007767A (ja) 光通信システム、光受信器および光通信方法
JP2000236303A (ja) 光伝送システム
AU2002100257A4 (en) In-line hub amplifier structure
JP2000082997A (ja) Wdm伝送システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99804325.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 09380503

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2325580

Country of ref document: CA

Ref document number: 2325580

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020007010620

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999910682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 29575/99

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1999910682

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007010620

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 29575/99

Country of ref document: AU

WWR Wipo information: refused in national office

Ref document number: 1020007010620

Country of ref document: KR