WO1999043703A1 - Technique de dosage immunochimique de l'anticorps anti-hm1.24 - Google Patents

Technique de dosage immunochimique de l'anticorps anti-hm1.24 Download PDF

Info

Publication number
WO1999043703A1
WO1999043703A1 PCT/JP1999/000885 JP9900885W WO9943703A1 WO 1999043703 A1 WO1999043703 A1 WO 1999043703A1 JP 9900885 W JP9900885 W JP 9900885W WO 9943703 A1 WO9943703 A1 WO 9943703A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
soluble
antigen
protein
antigen protein
Prior art date
Application number
PCT/JP1999/000885
Other languages
English (en)
French (fr)
Other versions
WO1999043703A8 (fr
Inventor
Yasuko Ozaki
Yasuo Koishihara
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Priority to AU26403/99A priority Critical patent/AU2640399A/en
Priority to EP99906489A priority patent/EP1059533A4/en
Priority to JP2000533453A priority patent/JP3609026B2/ja
Publication of WO1999043703A1 publication Critical patent/WO1999043703A1/ja
Publication of WO1999043703A8 publication Critical patent/WO1999043703A8/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/734Complement-dependent cytotoxicity [CDC]

Definitions

  • the present invention relates to a method for immunochemical measurement of an anti-HM1.24 antibody.
  • the present invention also relates to a method for immunochemically measuring soluble HM1.24 antigen protein. Further, the present invention relates to a soluble HM1.24 antigen protein and a DNA encoding the same.
  • mice have reported a mouse monoclonal antibody 1.24 that recognizes an antigen with a molecular weight of 22-39 kDa, specifically expressed in the B cell lineage, obtained by immunizing human plasma cells. (Blood (1994) 84, 1922-1930).
  • This mouse anti-HMl.24 antibody shows in vivo antitumor effect in mice transplanted with human plasma cells and in vitro antitumor effect on human plasma cells by ADCC (anti body-dependent cellular cytotoxicity) activity (Ozaki, S et al., Blood, (1997) 90, 3179-3189) o
  • the anti-HM1.24 antibody and its antigen, the HM1.24 antigen protein expressed on the cell membrane, have already been reported as described above.
  • methods for detecting or measuring soluble HM1.24 antigen protein or low concentrations of soluble HM1.24 antigen protein or anti-HM1.24 antibody have not been known.
  • the present invention provides a simple method for detecting or measuring a low concentration of soluble HM1.24 antigen protein or anti-HM1.24 antibody.
  • the present invention provides (1) an anti-HM1.:24 antibody bound to a soluble HM1.24 antigen protein by reacting a soluble HM1.24 antigen protein with an anti-HM1.24 antibody contained in a test sample. And a method for immunochemically measuring an anti-HM1.24 antibody, comprising the step of detecting or measuring
  • the soluble HM1.24 antigen protein is preferably fused to another peptide or polypeptide.
  • the soluble HM1.24 antigen protein is preferably associated with a support.
  • the support is preferably a bead or a plate.
  • the soluble HM1.24 antigen protein is preferably supported by antibodies to other peptides or polypeptides fused to soluble HM1.24 antigen protein or soluble HM1.24 antigen protein. Is combined with
  • the present invention also provides (2) detecting or measuring an anti-HM1.24 antibody bound to a soluble HM1.24 antigen protein with a primary antibody against the anti-HM1.24 antibody.
  • the present invention is also characterized in that (3) detecting or measuring the anti-HM1.24 antibody bound to the soluble HM1.24 antigen protein using a primary antibody against the anti-HM1.24 antibody and a secondary antibody against the primary antibody.
  • the method for immunochemical measurement according to the above (1) or (2) is provided.
  • the primary or secondary antibody is preferably labeled with a radioisotope, an enzyme, piotin avidin or a fluorescent substance.
  • the present invention also provides (4) a method of reacting an anti-HM1.24 antibody with a soluble HM1.24 antigen protein contained in a test sample to form a soluble HM1.24 antigen protein bound to the anti-HM1.24 antibody.
  • a method for immunochemically measuring a soluble HM1.24 antigen protein comprising a step of detecting or measuring a protein.
  • the soluble HM1.24 antigen protein is preferably fused to another peptide or polypeptide.
  • the HM1.24 antibody is preferably bound to a support.
  • the support is preferably a bead or a plate.
  • the anti-HM1.24 antibody is bound to the support, preferably by an antibody against the anti-HM1.24 antibody.
  • the present invention also provides (5) another peptide obtained by fusing a soluble HM1.24 antigen protein bound to an anti-HM1.24 antibody with a primary antibody against the soluble HM1.24 antigen protein or a soluble HM1.24 antigen protein.
  • the present invention provides the immunochemical measurement method according to the above (4), which is detected or measured by a primary antibody against the polypeptide.
  • the present invention also provides (6) a soluble HM1.24 antigen protein bound to an anti-HM1.24 antibody, a primary antibody against the soluble HM1.24 antigen protein or another peptide or polypeptide fused to the soluble HM1.24 antigen protein.
  • the primary antibody or the secondary antibody is preferably labeled with a radioisotope, an enzyme, piotin / avidin or a fluorescent substance.
  • the present invention also provides (7) an amino acid sequence represented by SEQ ID NO: 1. To provide a soluble HM1.24 antigen protein.
  • the present invention also provides (8) a fusion protein of the soluble HM1.24 antigen protein described in (7) above and another peptide or polypeptide.
  • fusion proteins of the soluble HM1.24 antigen protein and other peptides or polypeptides are described in SEQ ID NOs: 3 and 4.
  • the present invention further provides (9) a fusion protein of the soluble HM1.24 antigen protein or the soluble HM1.24 antigen protein described in (7) or (8) above and another peptide or polypeptide.
  • the DNA encoding the fusion protein of the HM1.24 antigen protein or the soluble HM1.24 antigen protein and another peptide or polypeptide has the sequence shown in SEQ ID NO: 1.
  • Other specific examples are the nucleotide sequences shown in SEQ ID NOs: 3 and 4.
  • FIG. 1 is a schematic diagram showing the range in which the base sequence of the vector CGM / HA into which the gene expressing the HA tag is inserted has been decoded.
  • FIG. 2 is a schematic diagram showing a sandwich ELISA system using an HA-tagged soluble antigen.
  • Figure 3 is a graph showing a standard curve of a humanized anti-HM1.24 antibody in a sandwich ELISA system using a culture supernatant of COS-7 cells transiently expressing an HA-tagged soluble antigen. .
  • FIG. 4 is a graph showing a standard curve of a humanized anti-HM1.24 antibody in a sandwich ELISA system using a culture supernatant of CH0 cells stably producing a HA-tagged soluble antigen.
  • Figure 5 shows the changes in the serum antibody concentration of rhesus monkeys administered chimeric anti-HM1.24 antibody by sandwich ELISA using HA-tagged soluble antigen. It is the graph which showed the measurement result.
  • Figure 6 shows that in the sandwich ELISA system using the HA-tagged soluble antigen, the humanized anti-HM1.24 antibody showed the HA of biotin-labeled mouse anti-HM1.24 antibody in the same manner as the chimeric anti-HM1.24 antibody. It is a graph which shows that binding to a tagged soluble antigen is inhibited in a concentration-dependent manner.
  • Figure 7 shows that the fluorescence intensity of mouse anti-HM1.24 antibody (left half panel) and anti-HA antibody (right half panel) in FCM analysis using CH0 cells stably producing HA-tagged soluble antigen It is a graph showing that there is a shift as compared to the control antibody (indicated by a dashed line).
  • # 1 is the CH0 cell line selected with G418, and #A is the CH0 cell line selected with 5 nM MTX using # 1 cells as the parent line.
  • Figure 8 shows that the culture supernatant and the cell lysate from the CH0 cells stably producing the HA-tagged soluble antigen were subjected to SDS-polyacrylamide gel electrophoresis in a reduced state, followed by western blotting using the mouse HM1.24 antibody.
  • 17 is a drawing-substitute photograph showing the results of detecting HM1.24 antigen by blotting.
  • # 1 is the CH0 cell line selected with G418, #A, #B, and #C are the CH0 cell lines selected with 5 nM MTX using # 1 cells as the parent line, and the KPMM2 cell lysate was HM1 It is a positive control for the .24 antigen.
  • Figure 9 shows the results of SDS-polyacrylamide gel electrophoresis of reduced and non-reduced culture supernatants and cell lysates from the CH0 cell #C line that stably produced the HA-tagged soluble antigen.
  • 17 is a photograph substituted for a drawing, showing the results of detection of HM1.24 antigen by western blotting using mouse HM1.24 antibody.
  • the #C strain is a CH0 cell line selected with 5 nM MTX, and the KPMM2 cell lysate is a positive control for the HM1.24 antigen.
  • FIG. 10 is a schematic diagram showing the range in which the nucleotide sequence of the HA-tagged C-terminal deleted soluble HM1.24 antigen expression vector CGM / HA-HM164 was decoded.
  • Figure 1i shows the standard curve of a humanized anti-HM1.24 antibody in a sandwich ELISA system using culture supernatant of COS-7 cells expressing soluble HM1.24 antigen with HA-tagged C-terminal deletion.
  • FIG. 10 is a schematic diagram showing the range in which the nucleotide sequence of the HA-tagged C-terminal deleted soluble HM1.24 antigen expression vector CGM / HA-HM164 was decoded.
  • Figure 1i shows the standard curve of a humanized anti-HM1.24 antibody in a sandwich ELISA system using culture supernatant of COS-7 cells expressing soluble HM1.24 antigen with HA-tagged C-terminal deletion.
  • FIG. 10 is a schematic diagram showing the range in which the nucleotide sequence
  • Fig. 12 shows the standard curve of humanized anti-HM1.24 antibody in a sandwich ELISA system using culture supernatant of CH 0 cells expressing HA-tagged C-terminal deleted soluble HM1.24 antigen. It is a graph.
  • FIG. 13 shows culture supernatants and cell lysates from COS-7 cells or CH0 cells (# 2, # 21, # 28) that produced soluble HM1.24 antigen with HA-tagged C-terminal deletion.
  • FIG. 4 presents a photographic diagram showing the result of detecting SDS-polyacrylamide gel electrophoresis in a reduced state and performing western blot with a mouse HM1.24 antibody to detect the HM1.24 antigen.
  • CHO / sHM is a CH0 cell expressing HA-tagged soluble HM1.24 antigen, and the culture supernatant is used as a positive control for HM1.24 antigen.
  • FIG. 14 is a diagram showing the nucleotide sequence of cDNA encoding the HM1.24 antigen protein and the corresponding amino acid sequence.
  • FIG. 15 is a diagram showing the nucleotide sequence of cDNA encoding the HM1.24 antigen protein and the corresponding amino acid sequence.
  • FIG. 16 is a schematic diagram of the clone P3.19 isolated using the Panning method and the five clones (IS1 to IS5) isolated by the immunoscreening method.
  • FIG. 17 is a diagram showing the results of flow cytometry analysis using an anti-HM-24 antibody (A; CHOZNEO, B; CHO / HM).
  • the histogram of the anti-HM1.24 antibody is shown by a solid line, and the histogram of the isotype-matched control antibody (UPC10) is shown by a wavy line.
  • the horizontal axis indicates the fluorescence intensity, and the vertical axis indicates the number of cells.
  • Figure 18 shows the immunoprecipitation of HM1.24 antigen in various cell lines and HM1.24 expressing CH0 cells using anti-HM1.24 antibody. • A drawing substitute photo showing the results of detection by the Western plotting method. After immunoprecipitation using anti-HM1.24 antibody-conjugated Sepharose 4B (lanes 1 to 6) or unconjugated Sepharose 4B (lanes 7 and 8), Western blotting was performed using the HM1.24 antibody to detect the HM1.24 antigen (shown on the right). (*; Anti-HM1.24 antibody heavy chain)
  • FIG. 19 is a graph showing a standard curve of a humanized anti-HM1.24 antibody in the ELISA system using GST-added soluble HM1.24 antigen expressed by Escherichia coli.
  • the soluble HM1.24 antigen protein of the present invention includes an amino acid sequence consisting of Asn at the amino acid position 1 to Gin at the amino acid position 132 in the amino acid sequence shown in SEQ ID NO: 1. Any protein may be used as long as it has a amino acid sequence and has the biological activity of the soluble HM1.24 antigen protein.
  • the biological activity of the soluble HM1.24 antigen protein is specifically bound to the anti-HM1.24 antibody, is not bound to the cell membrane, is free from the cell membrane, is soluble, and is a dimer. is there.
  • the soluble HM1.24 antigen protein of the present invention has the biological activity of the soluble HM1.24 antigen protein, and has one or more amino acids corresponding to the amino acid sequence shown in SEQ ID NO: 1. It may be a soluble HM1.24 antigen protein having an amino acid sequence modified by substitution, deletion and / or addition of amino acid residues. More specifically, the soluble HM1.24 antigen protein of the present invention has the following amino acid sequence as shown in SEQ ID NO: 1 as long as it has the biological activity of the soluble HM1.24 antigen protein. Alternatively, it may have an amino acid substituted with 2 or more, preferably 1 or 24 or less, more preferably 1 or 12 or less amino acid residues.
  • amino acid sequence shown in SEQ ID NO: 1 or more preferably 1 or 42 or less, more preferably 1 or 17 or less amino acid residues are deleted. It may have a modified amino acid.
  • amino acid sequence shown in SEQ ID NO: 1, 1 or 2 or more preferably 1 or 50 or less, more preferably 1 or 14 or less amino acid residues are added. It may have a modified amino acid.
  • the soluble HM-24 antigen protein used in the present invention may also be modified by substitution, deletion and / or addition of the above amino acid at the same time.
  • the soluble HM1.24 antigen protein of the present invention comprises an amino acid sequence from amino acid A sn at position 1 to amino acid Arg at position 90 in SEQ ID NO: 1. Or one or more amino acid residues in the amino acid sequence from amino acid A sn at position 1 to amino acid Ar at position 90, substitution, deletion and And / or a soluble HM1.24 antigen protein having an amino acid sequence modified by addition.
  • the soluble HM1.24 antigen protein has an amino acid sequence from amino acid Arg at position 90 to amino acid Gin at position 132 in SEQ ID NO: 1 as long as it has the biological activity.
  • Soluble HM1 having an amino acid sequence modified by substitution, deletion and Z or addition of one or more amino acid residues with respect to this amino acid sequence. It may be 24 antigen protein.
  • Soluble HM1.24 antigen protein having an amino acid sequence modified by substitution, deletion and Z or addition of one or more amino acid residues to the amino acid sequence shown in 1
  • the soluble HM1.24 antigen proteins having the amino acid sequences shown in SEQ ID NOs: 3 and 4 I can do it.
  • a protein having an amino acid sequence modified by substitution, deletion and / or addition of one or more amino acid residues to a certain amino acid sequence maintains its biological activity (Mark, DF et al., Proc. Natl. Acad. Sci. USA (1984) 81, 5662-5666; Zoller, MJ & Smith, M. Nucleic Acids Research (1982)). 10, 6487-6500, Wang, A. et al., Science 224, 1431-1433, Dalbadie-McFarland, G. et al., Proc. Natl. Acad. Sci. USA (1982) 79, 6409-6413).
  • the soluble HM1.24 antigen protein of the present invention may have an amino acid sequence, a molecular weight, an isoelectric point, presence or absence of glycosylation, and glycosylation depending on the species from which it is derived, the host that produces them, and / or the purification method. Position, sugar chain structure, phosphorylation state, and presence or absence of di- or disulfide bond.
  • the protein may have any structure as long as it can be suitably used in the present invention. Humans are the preferred species from which proteins are derived.
  • Examples of the DNA encoding the soluble HM1.24 antigen protein of the present invention include a base sequence consisting of base adenine at position 1 to base guanine at position 396 of the base sequence shown in SEQ ID NO: 1.
  • the DNA encoding the soluble HM1.24 antigen protein of the present invention may be any DNA as long as it has the nucleotide sequence shown in SEQ ID NO: 1.
  • Examples of such DNA include dienomic DNA, cDNA, and synthetic DNA. These may be cDNA libraries obtained from various cells, tissues or organs or a species other than human, DNA obtained from the genetic library, or commercially available DNA libraries. It may be a Lee.
  • the vector used in these libraries may be any vector such as plasmid, bacteriophage, YAC vector and the like.
  • the DNA encoding the soluble HM1.24 antigen protein of the present invention may also be a DNA that hybridizes to the nucleotide sequence shown in SEQ ID NO: 1 and has a biological activity of the soluble HM1.24 antigen protein. It may be a DNA encoding a polypeptide having the same.
  • the conditions under which the DNA encoding the soluble HM1.24 antigen protein can hybridize include DNA that hybridizes under appropriate stringency conditions. For example, low stringency conditions can be mentioned.
  • Low stringency conditions include, for example, the cleaning conditions provided by 42 ° C, 5X SSC, 0.1% sodium dodecyl sulfate, and 50% formamide. is there. More preferably, high stringency conditions are included.
  • high stringency X washing conditions include washing conditions provided by, for example, 60 ° C., 0.1 ⁇ SSC, and 0.1% sodium dodecyl sulfate. It is already known that a protein encoded by a DNA that hybridizes under appropriate conditions to a nucleotide sequence encoding a certain protein has the same biological activity as the protein.
  • the soluble HM1.24 antigen protein of the present invention is coded by the above-mentioned "hybridizing DNA", and also includes a protein having the biological activity of the soluble HM1.24 antigen protein.
  • SEQ ID NO: 16 The amino acid sequence of the human HM1.24 antigen protein expressed on the cell membrane is shown in SEQ ID NO: 16.
  • the soluble HM1.24 antigen protein of the present invention may also be the above protein fused with another peptide or polypeptide as long as it has the biological activity of the soluble HM1.24 antigen protein.
  • Known methods can be used for producing these fusion proteins.
  • the other peptide or polypeptide to be fused with the protein may be any peptide or polypeptide as long as it is effectively used in the present invention.
  • peptides include FLAG (Hopp, T. ⁇ . Et al., BioTechnology (1988) 6, 1204-1210), 6XHis and 10XHis consisting of 6 His (histidine) residues.
  • Influenza agglutinin human c-myc fragment, VSV-GP fragment, pl8HIV fragment, T7-tag, HSV-tag, E-tag, SV40T antigen fragment, lck tag, a- Known peptides such as tubulin fragment, B-tag and Protein C fragment are used.
  • polypeptides examples include GST (glutathione S-transferase), HA, imnoglobulin constant region, b-galactosidase, MBP (maltose binding protein) and the like. Is mentioned. These can be used commercially available ones.
  • the DNA encoding the protein of the present invention can be constructed from the above-described DNA by a commercially available kit using a known method. For example, it can be constructed by digestion with a restriction enzyme, addition of a linker, insertion of an initiation codon (ATG) and / or a termination codon (ATT, TGA or TAG) and the like.
  • the expression vector for the protein of the present invention may be any expression vector that is suitably used in the present invention.
  • expression vectors include mammalian-derived expression vectors, such as pEF, pCDM8, insect cell-derived expression vectors, such as pBacPAK8, and plant-derived expression vectors.
  • Expression vectors such as ⁇ 1, pMH2, animal virus-derived expression vectors, such as pHSV, pMV, yeast-derived expression vectors, such as pNVll, Bacillus subtilis-derived expression vectors, such as pPL608, pKTH50, an expression vector derived from Escherichia coli, for example, pGEX, pGEEX.pMAL p2.
  • the protein expression vector of the present invention can be produced by, for example, ligating a DNA encoding a soluble HM1.24 antigen protein downstream of the promoter and introducing it into an expression vector.
  • the mouth motor / enhancer is a mammalian promoter
  • Enhancers such as EFl- ⁇ promoters, Z enhancers, actin promoters, enhancers from insect viruses, Z enhancers, such as polynuclear (polyhedrin) Viral motor Z-enhancer, plant-derived promoter Z-enhancer-for example, Tanoku's Comozyak virus promoter-Z-enhancer, animal virus-derived promoter Z-enhancer, for example, SV40 motor-Z motor Non-motor, human CMV promoter / enhancer, yeast derived motor / enhancer, e.g., alcohol dehydrogenase promoter Z-enhancer, E. coli-derived promoter Z enhancer, e.g., Lac promoter / enhancer, T rp promo overnight / enhancer, TAC promoter / en The noise is the best.
  • Z enhancers such as polynuclear (polyhedrin) Viral motor Z-enhancer, plant-derived promoter Z-enhancer-for example, Tanoku's Com
  • a signal sequence suitable for a host used for expression may be added and used.
  • the signal sequence include a signal sequence of a secretory protein.
  • the signal sequence of the secretory protein include, for example, a signal sequence of a secretory protein derived from a mammal, for example, a signal sequence of an immnoglin.
  • the signal sequence of the secretory protein include a signal sequence of a secretory protein derived from E. coli, for example, a periplasmic secretory signal sequence such as OmpA.
  • the expression vector thus prepared can be introduced into a host by a known method. Methods for introduction into a host include, for example, electroporation, calcium phosphate method, and ribosome method.
  • the protein used in the present invention can be obtained as a recombinant protein produced using a gene recombination technique as described above.
  • a recombinant protein is produced by cloning the nucleotide sequence of the gene described herein from a cell, tissue, or organ that expresses the gene, incorporating the clone into an appropriate vector, and introducing this into a host. Let it. In the present invention, this recombinant protein can be used.
  • mRNA encoding the gene is isolated from cells, tissues or organs expressing the protein used in the present invention.
  • mRNA can be isolated by known methods, for example, guanidine ultracentrifugation (Chirgwin, JM et al., Biochemistry (1979) 18, 5294-5299), AGPC method (Chomczynski, P. and Sacchi, N. , Anal. Biochem. (19 87) 162, 156-159), etc., and purify mRNA from total RNA using mRNA Purification Kit (Pharmacia).
  • mRNA can also be directly prepared by using mRNA Purification Kit (Pharmacia).
  • the cDNA of the gene is synthesized from the obtained mRNA using reverse transcriptase.
  • cDNA can also be synthesized using AMV Reverse Transcri- tase First-strand cDNA Synthesis Kit (Seikagaku Corporation) or the like.
  • AMV Reverse Transcri- tase First-strand cDNA Synthesis Kit (Seikagaku Corporation) or the like.
  • To synthesize and amplify cDNA the 5'-RACE method (Frohm an, MA et al.) Using Marathon cDNA Amplification kit (manufactured by CLONTECH) and polymerase chain reaction (PCR) was used.
  • PCR polymerase chain reaction
  • a target DNA fragment is prepared from the obtained PCR product and ligated to the vector-DNA. Furthermore, a recombinant vector is prepared from this, introduced into E. coli, etc., and a colony is selected to prepare a desired recombinant vector.
  • the nucleotide sequence of the target DNA is confirmed by a known method, for example, a didoxynucleotide-digestion luminescence method.
  • expression can be carried out using a commonly used and useful promoter, a gene to be expressed, a DNA having a polyA signal operably linked to its 3 'downstream, or a vector containing the same. it can.
  • a promoter / enhancer human cytomegalovirus immediate early promoter / enhancer can be mentioned.
  • other promoters / ennosensors that can be used for protein expression include retrovirus, polymowinores, adenowinores, and simianwinores 40 (SV40).
  • Ui Roh-less promoter one / Enha Nsa Ya human E b Nge shea Yo Nfu ⁇ Selector Selector one 1 a may be used promoter Z Enhansa one from mammalian cells (HEF1 a) and the like.
  • HEF1 a mammalian cells
  • the method of Mulligan et al. (Nature (1979) 277, 108)
  • the method of Mizushima et al. Nucleic Acids Res. (1990) 18, 5322.
  • promoters include the lacZ promoter and the araB promoter.
  • the lacZ promoter the method of Ward et al. (Nature (1098) 341, 544-546; FASEB J. (1992) 6, 2422-2427), and when the araB promoter is used, the method of Better et al. (Science (1988) 240, 1041-1043).
  • the pelB signal sequence (Lei, SP, et al J. Bacteriol. (1987) 169, 4379) may be used as a signal sequence for protein secretion when the protein is produced by the periplasm of Escherichia coli.
  • the expression vector is used as a selection marker, such as the aminoglycoside phosphotransferase (APH) gene, the thymidine kinase (TK) gene, and the large intestine.
  • APH aminoglycoside phosphotransferase
  • TK thymidine kinase
  • Ecogpt Bacterial xanthinguanine phosphoribosyltransferase
  • dhfr dihydrofolate reductase
  • any production system can be used for protein production.
  • Production systems for protein production include in vitro and in vivo production systems.
  • the in vitro production system include a production system using eukaryotic cells and a production system using prokaryotic cells.
  • eukaryotic cells there are production systems using animal cells, plant cells, and fungal cells.
  • animal cells include (1) mammalian cells such as CH0 (J. Exp. Med.
  • CH0 cells include dhfr-CHO (Pro atl. Acad. Sci. USA (1980) 77, 4216-4220) and CHO Kl (Proc. Natl. Acad. Sci. USA (1968) 60, 1275) can be suitably used.
  • yeasts such as Saccharomyces and Saccharomyces
  • Seschar's Saccharomyces cerev is iae
  • filamentous fungi such as Asperglus.
  • Aspergillus niger is known.
  • prokaryotic cells there are production systems using bacterial cells.
  • Escherichia coli (E. coli) and Bacillus subtilis are known as bacterial cells.
  • DMEM fetal calf serum
  • FCS fetal calf serum
  • the pH during culturing is preferably about 6-8. Culture is usually performed at about 30 to 40 ° C. for about 15 to 200 hours, and if necessary, the medium is replaced, aerated, and agitated.
  • examples of in vivo production systems include production systems using animals and production systems using plants.
  • the desired DNA is introduced into these animals or plants, and proteins are produced and recovered in the animals or plants.
  • mice When using animals, there are production systems using mammals and insects. Goats, pigs, sheep, mice, and mice are used as mammals. (Vicki Glaser, SPECTRUM Biotechnology Applications, 1993). When using mammals, transgenic animals can be used.
  • a DNA of interest is inserted into a gene encoding a protein produced in milk, such as goat / 5 casein, to produce a fusion gene.
  • the DNA fragment containing the fusion gene with the inserted DNA is injected into a goat embryo, and the embryo is introduced into a female goat.
  • Protein is obtained from the milk produced by the transgenic Zygonia goat born from the goat that has received the embryo or its offspring.
  • Hormones may be used in transgenic geese as appropriate to increase the amount of protein-containing milk produced by transgenic geese. (Ebert,.. Et al., Bio / Technology (1994) 12, 699-702).
  • silkworms can be used as insects, for example.
  • baculovirus into which the target DNA is inserted is infected to the silkworms, and desired protein is obtained from the body fluid of the silkworms (Susumu, M. et al., Nature (1985) 315, 592-594).
  • tobacco When using a plant, for example, tobacco can be used.
  • the target DNA is introduced into a plant expression vector, for example, ⁇ 530, and this vector is inserted into a vector such as Agrobacterium tumefaciens (Agrobacterium tumefaciens). Introduce to the terrier.
  • This bacterium is infected with tobacco, for example, Nicotiana tabacum, to obtain the desired protein from the leaves of the present coconut tree (Julian, K.-C. Ma et al., Eur. J. Immunol (1994) 24, 131-138).
  • the gene is introduced into these animals or plants as described above, and proteins are produced and recovered in the animals or plants.
  • the protein expressed and produced as described above can be separated from the host inside and outside the cell and from the host and purified to homogeneity.
  • the separation and purification of the protein used in the present invention may be carried out by using the separation and purification methods used for ordinary proteins, and is not limited at all.
  • chromatographic columns such as affinity chromatography, filters, ultrafiltration, salting out, dialysis, SDS polyacrylamide gel electrophoresis, isoelectric focusing, etc. Proteins can be separated and purified by appropriately selecting and combining (Shinsei Kagaku Experimental Course 1 (1990) Tokyo Chemical Doujin).
  • chromatography examples include affinity chromatography, ion-exchange chromatography, hydrophobic chromatography, gel filtration, reverse-phase chromatography, and the like.
  • Adsorption Chromatography —% Strongly Elevated (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marsak et al., Cold Spring Harbor Laboratory Press, 1996) 0 Chromatography can be performed using liquid chromatography such as HPLC and FPLC.
  • the concentration of the protein can be measured using a known method. For example, measurement of absorbance or Bradford method may be used.
  • the present invention provides a method of detecting or measuring an anti-HM1.24 antibody bound to a soluble HM1.24 antigen protein by reacting a soluble HM1.24 antigen protein with an anti-HM1.24 antibody contained in a test sample.
  • HM1.24 antibody Immunochemical measurement method
  • the immunochemical measurement method provided in the present invention is performed as an in Vro assay system.
  • the atsey system of invitro is performed in a non-cell system. Specifically, a soluble HM1.24 antigen protein is bound to a support, a test sample containing an anti-HM1.24 antibody is added to the protein, the mixture is incubated, washed, and bound to the support. The binding of the anti-HM1.24 antibody to the soluble HM1.24 antigen protein may be detected or measured. Alternatively, specifically, an anti-HM1.24 antibody is bound to a support, a test sample containing a soluble HM1.24 antigen protein is added to this protein, the mixture is incubated, washed, and washed. What is necessary is just to detect or measure the binding of the soluble HM1.24 antigen protein to the anti-HM1.24 antibody bound to.
  • Soluble HM1.24 antigen protein or anti-HM1.24 antibody can be obtained from cells that specifically express them, cells transfected with the DNA encoding them, or animals or plants transfected with the DNA encoding them.
  • the protein can be used in a purified state or in a partially purified state.
  • a purified or partially purified soluble HM1.24 antigen protein or an anti-HM1.24 antibody protein can be used as a support. To be combined. When binding the protein to the support, the protein can be immobilized on the support by a standard method.
  • Supports for binding proteins include, for example, insoluble polysaccharides, such as agarose, dextran, cellulose, synthetic resins, such as polystyrene, and polyacrylamide. And silicon.
  • beads and plates manufactured using them as raw materials are used.
  • a column or the like filled with these may be used.
  • a multi-well plate eg, a 96-well multi-well plate
  • a biosensor chip can be used.
  • the bond between the protein and the support may be a conventional method such as chemical bonding or physical adsorption.
  • an antibody that specifically recognizes a protein can be bound to a support in advance by the above-described method, and the antibody can be bound to the protein to bind.
  • the binding of the soluble HM1.24 antigen protein and the anti-HM1.24 antibody which can be bound via avidin-Z biotin, is usually performed in a buffer.
  • a buffer for example, a phosphate buffer, a Tris buffer, or the like is used. Incubation is performed under conditions that are already commonly used, such as incubation at 4 ° C to room temperature for 1 hour to 24 hours. The post-incubation washing may be any as long as it does not hinder the binding between the soluble HM1.24 antigen protein and the anti-HM1.24 antibody.
  • a buffer containing a surfactant is used.
  • the surfactant for example, 0.05 ween 20 is used.
  • Test samples containing the soluble HM1.24 antigen protein or anti-HM1.24 antibody measured in the present invention include human body fluids (blood, serum, urine, joint fluid, etc.), cell cultures, and the like. Supernatants, animal secretions (milk, etc.), pharmaceutical preparations and the like can be mentioned.
  • a control group may be provided together with a group in which the test sample is brought into contact with the protein.
  • the control group includes a negative control group containing no test sample or a positive control group containing a purified soluble HM1.24 antigen protein or anti-HM1.24 antibody sample. A group or both groups can be placed.
  • the bound protein can be detected by the immunochemical measurement method of the present invention.
  • the bound protein can be quantitatively measured.
  • the binding between the soluble HM1.24 antigen protein and the anti-HM1.24 antibody can be detected.
  • the test sample it is also possible to quantitatively measure the soluble HM1.24 antigen protein or anti-HM1.24 antibody contained in the test sample by obtaining the results of their detection as numerical values and comparing those numerical values. it can.
  • the amount of binding between the soluble HM1.24 antigen protein and the anti-HM1.24 antibody can be determined. If the test sample contains soluble HM1.24 antigen protein or anti-HM1.24 antibody, the presence of the bound protein enables detection or detection of soluble HM1.24 antigen protein or anti-HM1.24 antibody. Can be measured.
  • soluble HM1.24 antigen protein or It can be quantified based on a standard curve created from numerical values obtained from a positive control group containing a known amount of anti-HM1.24 antibody.
  • a biosensor utilizing the surface plasmon resonance phenomenon as a means for detecting or measuring a soluble HM1.24 antigen protein or an anti-HM1.24 antibody in a test sample. It can.
  • a biosensor using the surface plasmon resonance phenomenon observes the interaction between proteins in real time as a surface plasmon resonance signal without labeling with a small amount of protein. (Eg, BIAcore; manufactured by Pharmacia). Therefore, it is possible to detect or measure the binding between the soluble HM1.24 antigen protein and the anti-HM1.24 antibody by using a biosensor such as BIAcore.
  • a test sample containing an anti-HM1.24 antibody or a soluble HM1.24 antigen protein is brought into contact with a sensor chip on which a soluble HM1.24 antigen protein or an anti-HM1.24 antibody is immobilized, and the soluble HM1 Anti-HM1.24 antibody or soluble HM1.24 antigen protein that binds to the .24 antigen protein or anti-HM1.24 antibody can be detected or measured as a change in resonance signal.
  • the sensor chip CM5 Biosensor
  • the sensor chip CM5 is activated to immobilize the soluble HM1.24 antigen protein or anti-HM1.24 antibody on the sensor chip. That is, after the sensor chip is activated with an ED CI NHS aqueous solution (200 mM EDC (N-ethyl-N '-(3-dimethylaminopropyoxycarbonate hydrochloride), 50 mM NHS (N-hydroxysuccinimide)), the HBS buffer is activated. Wash the sensor chip with a filter (lOmM HBPES pH 7.4, 150m NaCl, 3.4m MEDTA, 0.053 ⁇ 4 Tween20).
  • EDC N-ethyl-N '-(3-dimethylaminopropyoxycarbonate hydrochloride
  • NHS N-hydroxysuccinimide
  • a test sample containing an appropriate amount of anti-HM1.24 antibody or soluble HM1.24 antigen protein dissolved in HBS buffer is injected.
  • the amount of anti-HM1.24 antibody or soluble HM1.24 antigen protein in the test sample bound to the soluble HM1.24 antigen protein or anti-HM1.24 antibody immobilized on the sensor chip was determined by the resonance signal. Observed as an increase in value.
  • a control group should be set up together with the group containing the test sample, including a negative control group containing no test sample and a known amount.
  • Positive control group containing soluble HM1.24 antigen protein and / or anti-HM1.24 antibody or both groups can be used
  • Bound protein should be quantitatively measured as the change in resonance signal value.
  • the target protein in the test sample can be detected or measured by comparing the results obtained with the positive control group containing the anti-HM1.24 antibody.
  • a soluble HM1.24 antigen protein or an anti-HM1.24 antibody is specifically recognized as a means for detecting or measuring the protein in the bound test sample.
  • Primary antibodies can be used.
  • a test sample is brought into contact with a soluble HM1.24 antigen protein or an anti-HM1.24 antibody, washed, and the bound protein is detected or measured by a primary antibody that specifically recognizes the protein.
  • a primary antibody that specifically recognizes the protein.
  • one of the proteins bound to the support is brought into contact with a test sample containing the other protein.
  • the cells may be washed, and the bound protein may be detected or measured by a primary antibody that specifically recognizes the protein.
  • the primary antibody is preferably labeled with a labeling substance.
  • the soluble HM1.24 antigen protein may be fused to other peptides or polypeptides. Therefore, an anti-HM1.24 antibody can be used to detect the soluble HM1.24 antigen protein contained in the test sample, and other peptides or polypeptides fused with the soluble HM1.24 antigen protein can be used. Can be used. Further, in order to detect the anti-HM1.24 antibody contained in the test sample, an antibody that specifically recognizes the anti-HM1.24 antibody can be used. When the anti-HM1.24 antibody is a mouse antibody, an anti-mouse immunoglobulin antibody can be used as an antibody that specifically recognizes the anti-HM1.24 antibody. When the anti-HM1.24 antibody is a chimeric antibody or a humanized antibody, an anti-immunoglobulin antibody can be used as an antibody that specifically recognizes the anti-HM1.24 antibody.
  • the protein can be labeled by commonly known methods.
  • the labeling substance include a radioisotope, an enzyme, a fluorescent substance, Biotin Z avidin and the like.
  • these labeling substances commercially available labeling substances can be used. Is to radioisotopes, for example 3 2 P, 3 3 P, 1 3 ⁇ , '2 5 1, 3 H, 1 4 C, 3 5 S and the like.
  • the enzyme include alkaline phosphatase, horseradish spa l-xidase, 3-galactosidase, ⁇ -glucosidase and the like.
  • the fluorescent substance include fluorescein isothiocyanate (FITC) and rhodamine.
  • HM1.24 antigen protein or an anti-HM1.24 antibody can be obtained commercially and labeled by a known method. Specifically, it can be performed as follows. That is, a solution containing a soluble HM1.24 antigen protein or an anti-HM1.24 antibody is added to a plate, and left overnight to fix it on the plate. When immobilizing the soluble HM1.24 antigen protein or anti-HM1.24 antibody, the antibody for each is fixed on a plate in advance, and the soluble HM1.24 antigen protein or anti-HM 1.24 antibody is immobilized on the immobilized antibody. 24 antibodies may be bound. After washing the plate, block it with, for example, BSA to prevent nonspecific binding of the protein.
  • test sample containing the inhibitor After incubation, wash and add antibodies to the test sample. After a suitable incubation, the plate is washed and the protein is detected or measured with a primary antibody that specifically recognizes the protein.
  • a primary antibody For detection or measurement, in the case of a radioisotope, detection or measurement is performed by liquid scintillation.
  • the substrate In the case of an enzyme, the substrate is added, and the enzymatic change of the substrate, for example, color development is detected or measured by an absorptiometer. In the case of fluorescent substances, detect or measure with a fluorometer. By comparing these results with the values obtained for the control group, the test sample containing the inhibitor can be determined.
  • the soluble HM1.24 antigen protein or the anti-HM1.24 antibody in the test sample is detected or measured by using a soluble HM1.24 antigen protein or an anti-HM1.24 antibody.
  • a primary antibody that specifically recognizes and a secondary antibody that specifically recognizes the primary antibody can be used.
  • the soluble HM1.24 antigen After contacting the test sample with a protein or anti-HM1.24 antibody, incubating, washing and washing, the primary antibody that specifically recognizes the bound protein and the primary antibody specifically recognizes the protein. Detection or measurement using a secondary antibody. That is, specifically, a soluble HM1.24 antigen protein or an anti-HM1.24 antibody is immobilized on a support, and a test sample is contacted. After the incubation, washing is performed, and the bound protein may be detected or measured with a primary antibody that specifically recognizes the protein and a secondary antibody that specifically recognizes the primary antibody.
  • the secondary antibody is preferably labeled with a labeling substance. The antibody can be labeled by the above-mentioned method generally known.
  • a solution containing soluble HM1.24 antigen protein or anti-HM1.24 antibody is added to the plate, and left overnight to fix it on the plate.
  • an antibody against the soluble HM1.24 antigen protein or anti-HM1.24 antibody is immobilized on the plate in advance, and the soluble HM1.24 antigen protein or anti-HM1.24 is immobilized on the immobilized antibody.
  • Antibodies may be bound.
  • After washing the plate it is blocked with, for example, BSA to prevent non-specific binding of the protein. Wash again and add the test sample to the plate.
  • a group without the test sample (negative control) and a group to which Z or a known concentration of anti-HM1.24 antibody or soluble HM1.24 antigen protein was added were placed. Incubate.
  • the test sample containing the inhibitor can be determined.
  • the soluble HM1.24 antigen protein may be fused to other peptides or polypeptides. Therefore, an anti-HM1.24 antibody can be used as a temporary antibody for detecting the soluble HM1.24 antigen protein contained in the test sample, and fused with the soluble HM1.24 antigen protein. Antibodies to other peptides or polypeptides can also be used. Further, in order to detect the anti-HM1.24 antibody contained in the test sample, an antibody that specifically recognizes the anti-HM1.24 antibody can be used.
  • an anti-mouse immunoglobulin antibody can be used as a primary antibody that specifically recognizes the anti-HM1.24 antibody.
  • an anti-human immunoglobulin antibody can be used as a primary antibody that specifically recognizes the anti-HM1.24 antibody.
  • an antibody that specifically recognizes the primary antibody can be appropriately selected as the secondary antibody. For example, if the primary antibody is a hidge antibody, an anti-hidgymnoglobulin antibody can be used. In addition, when the primary antibody is a rabbit antibody, an anti-psagi immunoglobulin antibody can be used.
  • the present invention can be particularly preferably carried out by EL1SA (Enzyme-linked Immunosorbent Assay) as follows. That is, soluble HM1. Antibodies against 24 antigen protein and fused HA (I Nfuru Enza agglutinin) immobilized of buffers over (0. 1 M NaHC0 3 , 0.023 ⁇ 4 NaN 3 , pH 9.6). An appropriate amount of the diluted aqueous solution is added to each well of a 96-well immunoplate (manufactured by Nunc), and the mixture is immobilized at 4 ° C to solidify.
  • EL1SA Enzyme-linked Immunosorbent Assay
  • washing buffer prepared to be 0.053 ⁇ 4 Tween20 in PBS
  • 200 n1 of 5 BSA manufactured by SIGMA
  • soluble HM1.24 antigen protein fused with HA diluted with a diluting buffer (1% BSA, 0.5% Tween20, PBS) was added.
  • a diluting buffer 1% BSA, 0.5% Tween20, PBS
  • After washing three times with a washing buffer add a fixed amount of a test sample containing a chimeric anti-HML24 antibody having a human IgG antibody constant region (C region), and incubate at room temperature for 1 hour.
  • wash buffer 100 g of anti-human IgG antibody (1BI) labeled with alkaline phosphatase, diluted 5000 times with dilution buffer, and add 1 well to each well. Incubate for hours. Wash each well 5 times with a washing buffer, and add a coloring solution (substrate buffer: 50 mM NaHCOa, 10 mM MgCl 2 , Sima104 dissolved at a concentration of 1 mg / ml in pH9.8). Add 100 z 1 to each well. After reacting at room temperature, measure the absorbance at 405 nm using a microplate reader (Mode 13550, BI0-RAD). By comparing these results with the values obtained for the negative control group and the Z or positive control group, the chimeric anti-HM1.24 antibody can be detected or measured. Further, it is also possible to detect or measure the soluble HM1.24 antigen protein by the same method.
  • the screening method of the present invention can also be used for High Throughput Screening (HTS). Specifically, until pro-rocking The manual reaction is performed, and the subsequent reaction is performed by a robot, thereby realizing a high throughput screenin by automatization.
  • HTS High Throughput Screening
  • washing buffer prepared with 0.053 ⁇ 4 Tween20 in PBS
  • BSA manufactured by SIGMA
  • soluble HMl.24 antigen protein fused with HA diluted with dilution buffer (1% BSA, 0.5% Tween20, PBS) and add 4 ° C. Incubate with C to bind the anti-HA antibody and soluble HM1.24 antigen protein fused with HA.
  • the immunoplate is set on, for example, a Biomek2000 HTS system (manufactured by Beckman), and the test sample containing the chimeric anti-HM1.24 antibody, the primary antibody against the chimeric anti-HM1.24 antibody, and the primary antibody against the primary antibody are used. Run the system's control program to add the secondary antibody.
  • a Biomek 2000 dispenser manufactured by Beckman
  • a Multipipette 96-well simultaneous dispenser manufactured by Sagian
  • EL404 Microplate Washer Bio Tek
  • a SPECTRAmax250 plate reader can be used to measure absorbance.
  • the program is set to perform the following operations. That is, each well was washed three times with the washing buffer, and the test sample and the dilution buffer (1% BSA, Add a fixed amount of a test sample containing Chimera anti-HMl.24 antibody diluted with 0.53 ⁇ 4 Tween20, PBS). At the same time, a group not containing the test sample (negative control) and a group to which a chimeric anti-HM1.24 antibody of known concentration was added (positive control) were placed and incubated for 1 hour at room temperature. I do.
  • washing buffer add 100 ⁇ g of egret anti-human IgG antiserum (manufactured by New England Blolabs) diluted 5,000-fold with a dilution buffer to each well, and allow to stand at room temperature for 1 hour. Incubate. Wash each well three times with a washing buffer, add 100 liters of anti-mouse IgG antibody (TAG0) labeled with alkaline phosphatase, diluted 1: 5000 in the dilution buffer, and add to each well. And incubate for 1 hour.
  • TAG0 anti-mouse IgG antibody
  • the immunochemical assay method provided by the present invention can measure soluble HM1.24 antigen protein or anti-HM1.24 antibody up to a concentration of 500 pg / ml.
  • a commercially available antibody or an antibody contained in a commercially available kit can be used, or can be obtained as a monoclonal antibody or a polyclonal antibody using known means. .
  • Monoclonal antibodies are usually prepared using the desired sensitizing antigen. Immunization according to the above immunization method, fusing the obtained immunocytes with known parent cells by a normal cell fusion method, and screening the monoclonal antibody-producing cells by a normal screening method. Can be manufactured.
  • a monoclonal or polyclonal antibody may be prepared as follows.
  • the sensitizing antigen from which the antibody is obtained is not limited to the animal species from which it is derived, but the mammal or mammal, for example, human, which is the source of the peptide or polypeptide used in the present invention. Those derived from mice or rats are preferred. Of these, human-derived sensitizing antigens are particularly preferred.
  • a human soluble HM1.24 antigen protein when used as a sensitizing antigen, its nucleotide sequence and amino acid sequence can be obtained using the gene sequence disclosed herein. be able to.
  • those peptides and polypeptides are chemically converted. They can be synthesized or obtained by genetic engineering techniques.
  • the protein, peptide or polypeptide used as a sensitizing antigen may use its full length or its fragment.
  • the fragment include a C-terminal fragment and an N-terminal fragment.
  • cells expressing the protein, peptide or polypeptide used as the sensitizing antigen can be used as the sensitizing antigen.
  • the mammal immunized with the sensitizing antigen is not particularly limited, but is preferably selected in consideration of compatibility with the parent cell used for cell fusion. Bald-toothed, heron, and primate animals are used.
  • rodents examples include mice, rats, and hamsters Etc. are used. ⁇ Egrets are used as egrets.
  • monkeys are used as primates.
  • monkeys with lower nasal nose old world monkeys
  • cynomolgus monkeys lizard monkeys
  • baboons baboons
  • chimpanzees are used.
  • Immunization of an animal with a sensitizing antigen is performed according to a known method.
  • a sensitizing antigen is administered intraperitoneally or in a mammal.
  • the sensitizing antigen is P
  • the suspension is mixed with an appropriate amount of an ordinary adjuvant, for example, Freund's complete adjuvant, if necessary, and emulsified, and then administered to the mammal several times every 4 to 21 days.
  • an ordinary adjuvant for example, Freund's complete adjuvant, if necessary, and emulsified
  • a suitable carrier can be used during immunization of the sensitizing antigen. Immunization is performed in this manner, and an increase in the level of the desired antibody in the serum is confirmed by a conventional method.
  • the blood of the mammal sensitized with the antigen is taken out.
  • the serum is separated from the blood by a known method.
  • a serum containing the polyclonal antibody may be used as the polyclonal antibody, and if necessary, a fraction containing the polyclonal antibody may be further isolated from the serum.
  • immune cells may be removed from the mammal and subjected to cell fusion.
  • preferred immune cells used for cell fusion include splenocytes, in particular.
  • P3 P3X63Ag8.65
  • mammalian myeloma cells are already known as mammalian myeloma cells as the other parent cells fused with the immune cells.
  • P3 P3X63Ag8.65
  • P3X63Ag8.65 Various mammalian cell lines, such as P3 (P3X63Ag8.65), are already known as mammalian myeloma cells as the other parent cells fused with the immune cells.
  • P 3 x 63 Ag 8.U 1 Yamamoto, DE et al., Current Topics in Microbiology and Immunology (1978)
  • NS-1 Kohler, G. and Mi1stein, C., Eur. J. Im munol. (1976) 6, 511-519
  • MPC-11 argulies, DH et al.
  • Cell (1976) 8, 405-415 SP 2/0 (Shulman, M. et a 1., Nature (1978) 276, 269-270), F 0 (de St. Groth, SF and Scheidegger, D., J. Immunol.Methods (1980) 35, 1-21), S194 (Trowbridge, IS, J. Exp.Med. (1978) 148, 313-323), R210 (Galfre, G. et al., Nature (1979) 277, 131-133) and the like are preferably used.
  • the cell fusion between the immune cells and myeloma cells is basically known, for example, by the method of Milstein et al. (Galfre, G. and Milstein, C. suiods Enzymol. (1981) 73, 3-46). It can be done in accordance with it.
  • the cell fusion is performed, for example, in a normal nutrient culture in the presence of a cell fusion promoter.
  • a cell fusion promoter for example, polyethylene glycol (PEG), Sendai virus (HVJ) and the like are used, and if necessary, an auxiliary agent such as dimethyl sulfoxide is used to increase the fusion efficiency. You can also.
  • the ratio of the use of the immune cells to the myeloma cells is, for example, preferably 1 to 10 times the number of the immune cells to the myeloma cells.
  • the culture medium used for the cell fusion include RPMI 1640 culture medium and MEM culture medium suitable for the growth of the myeloma cell line, and other ordinary culture mediums used for this kind of cell culture.
  • a culture solution can be used, and a serum sample such as fetal calf serum (FCS) can also be used in combination.
  • FCS fetal calf serum
  • Cell fusion is performed by mixing a predetermined amount of the immune cells and myeloma cells well in the culture solution, and preliminarily heating to about 37 ° C, for example, a PEG solution.
  • a PEG solution having an average molecular weight of about 100 to 600 is usually added at a concentration of 30 to 60% (w / V), and mixed to mix. Is formed. Subsequently, by repeatedly adding an appropriate culture solution and centrifuging to remove the supernatant, the cell fusion agent and the like that are undesirable for the growth of the hybridoma can be removed.
  • the hybridoma is selected by culturing it in an ordinary selective culture medium, for example, an HAT culture medium (a culture medium containing hypoxanthine, aminobuterin and thymidine).
  • an HAT culture medium a culture medium containing hypoxanthine, aminobuterin and thymidine.
  • the culture in the HAT culture solution is continued for a time sufficient for the death of cells other than the target hybridoma (non-fused cells), usually several days to several weeks.
  • a conventional limiting dilution method is performed, and screening and cloning of the hybridoma producing the desired antibody are performed.
  • human lymphocytes for example, human erythrocyte infected with EB virus
  • peptides or polypeptides in vitro.
  • a hybrid which produces a desired human antibody having an activity of binding to a lipid (JP-A-63-17688).
  • a transgenic animal having a human antibody gene repertoire is immunized with a peptide or polypeptide serving as an antigen, an expression cell thereof, or a lysate thereof to produce antibody-producing cells.
  • a human antibody against the peptide or polypeptide used in the present invention may be obtained using a hybridoma obtained by fusing it with myeloma cells (International Patent Application Publication No. WO 9 2-0 3 9 18, WO 9 3 — 2 2 7, WO 94-0 2 6 0 2, W094-2 5 5 8 5, WO 9 6-3 3 7
  • the hybridoma producing the monoclonal antibody thus produced can be subcultured in a normal culture solution, and can be stored for a long time in liquid nitrogen.
  • a method of culturing the hybridoma according to a usual method and obtaining the culture supernatant, or a method of obtaining a hybridoma compatible mammal A method is used in which the cells are transplanted into a plant, proliferated, and obtained as ascites.
  • the former method is suitable for obtaining high-purity antibodies, while the latter method is suitable for mass production of antibodies.
  • cells in which immune cells such as sensitized lymphocytes producing antibodies are immortalized by oncogenes may be used.
  • the monoclonal antibody thus obtained can also be obtained as a recombinant antibody produced using a gene recombination technique.
  • a recombinant antibody is produced by cloning an antibody gene from an immune cell such as a hybridoma or a sensitized lymphocyte producing the antibody, incorporating the clone into an appropriate vector, and introducing it into a host.
  • This recombinant antibody can be used in the present invention (for example, Borrebaeck, C.A.K. and Larrick, J.W., THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United Kingdom by MACMILLAN PUBLISHERS LTD, 1990). See).
  • the antibody used in the present invention may be an antibody fragment or a modified antibody as long as it has a desired binding activity.
  • the antibody fragment includes Fab, F (ab ') 2, Fv, or single-glutinin FV (scFV) in which the Fv of H chain and L chain are linked by an appropriate linker.
  • enzymes such as papine and pepsin Antibody fragments, or constructing a gene encoding these antibody fragments, introducing this into an expression vector, and then expressing it in a suitable host cell (for example, Co, MS et al., J. Immunol. (1994) 152, 2968-2976; Better, M. and Horwitz, AH, Methods Enzymol.
  • the antibody detected or measured by the immunochemical assay method of the present invention may be any of the above-mentioned antibodies, for example, any of antibodies produced by hybridomas, recombinant antibodies, chimeric antibodies, and humanized antibodies. May be.
  • the antibody expressed and produced as described above can be separated from the host inside and outside the cell and from the host and purified to homogeneity.
  • the separation and purification of the antibody used in the present invention may be performed by the separation and purification methods used for ordinary proteins, and is not limited at all.
  • chromatography columns such as affinity chromatography, filters, ultrafiltration, salting out, dialysis, SDS polyacrylamide gel electrophoresis, isoelectric focusing, etc. selection, combination lever, antibody can be separated and purified (antibodies:. a Labora tory Manual Ed Harlow and David Lane, Cold Spring Harbor La boratory, 1988) 0
  • Columns used for affinity chromatography include a protein A column and a protein G column.
  • a protein A column For example, as a column using a tin tin A column, Hyper D, POROS, Sephar ose FF (Pharmacia) and the like.
  • Chromatography other than affinity chromatography includes, for example, ion-exchange chromatography, hydrophobic chromatography, gel filtration, reversed-phase chromatography, and adsorption chromatography. Rafie (Strategies for Protein Purification and Character ization: A Laboratory Course Manual. Ed Daniel R. arshak et al., Cold Spring Harbor Laboratory Press, 1996). These chromatographies can be carried out using liquid chromatography such as HPLC, FPLC and the like.
  • ELISA Enzyme immunoassay
  • RIA radioimmunoassay
  • fluorescent antibody method For measuring the concentration or confirming the activity of the antibody obtained above, known methods, for example, ELISA, EIA (enzyme immunoassay), RIA (radioimmunoassay) or fluorescent antibody method can be used.
  • Hypri-Doma HM1.24 which produces anti-HM1.24 antibody, was supplied to the Institute of Life Science and Technology, National Institute of Advanced Industrial Science and Technology (1-1-3 Tsukuba-Higashi, Ibaraki Pref.) In September 1995. Deposited internationally on the 14th as FERM BP-5233 under the Budapest Treaty.
  • Example 1 Construction of FLAG-tagged soluble HM1.24 antigen expression vector HEF expression vector prepared by digestion with EcoRI (Takara Shuzo) and Notl (Takara Shuzo) (International Patent Application Publication No. W092-19759) ) And a gene pair encoding a system ij and FLAG tag (supplied by Sudi Technology Co., Ltd.) with 50 mM Tris-HC1, pH 7.6, 10 mM MgCl 2 , 10 mM Incubate at 16 ° C for 3 hours in a reaction mixture containing dithiothrate, 1 mM TP, 50 mg zoml of polyethylene glycol and 1 unit of T4 DNA ligase (GI BC0-BRL). Connected.
  • the genes encoding the inserted Ig leader sequence and FLAG tag are EcoRI, Kpnl (Takara Shuzo) and the synthetic gene pair shown in SEQ ID NO: 12 and 13 in which the Not 1 restriction enzyme recognition site is connected as a linker.
  • the ligation reaction mixture was added to Escherichia coli DH5a competent cells (GIBCO-BRL), which was allowed to stand on ice for 30 minutes, at 42 ° C for 1 minute, and again on ice for 1 minute.
  • the gene in the extracellular region of the HM1.24 antigen was amplified by PCR using a Thermal Cycler (Perk in Elmer Cetus).
  • a Thermal Cycler Perk in Elmer Cetus
  • the primers shown in SEQ ID NOS: 9 to 10 at 100 pmole, 10 mM Tris-HCl, pH 8.3, 50 mKC1, 0.1 mM dNTPs (dATP, dGTP, dCTP , dTTP), 1.5 mM MgCl 2 and 5 units of DNA polymerase Ampli Taq (Perkin Elmer Cetus) were first denatured at 94 ° C, followed by denaturation at 94 ° C.
  • This plasmid DNA was designated as FLAG-tagged soluble antigen expression plasmid and named pSFHMl.24.
  • the nucleotide sequence was determined using an automatic DNA sequencer (Applied Biosystem In) and a Taq Dye terminat or Cycle Sequencing kit (Applied Biosystem In) according to the protocol specified by the manufacturer. As a result, the structure was confirmed to express a fusion protein (SEQ ID NO: 2) in which a FLAG tag peptide was linked to a soluble antigen.
  • the HA-tagged soluble antigen expression plasmid was constructed using the FLAG-tagged soluble HM1.24 antigen expression vector.
  • the B1 uescr ipt SK-vector-1 (Molecu lar Cloning: A Laboratory Manual, Sambrook et al.) Containing the Cytomegalovirus (CMV) promoter / enhancer, neomycin resistance gene, Dehydroiolate reductase (DHFR) gene and leader sequence. Cold Spring Harbor Laboratory Press, (1989)) (The gene coding for the epitop tag of Komamag and Noretinin was inserted.
  • CMV Cytomegalovirus
  • DHFR Dehydroiolate reductase
  • hemagglutinin epitop tag amino acid sequence: YPYDVPDYA
  • a synthetic DNA pair manufactured by Cymedia connected with DraIII and Kpnl restriction enzyme recognition sites as linkers (SEQ ID NO: 14 and 15).
  • a 5 -g vector prepared by digesting the gene pairs HA-S and HA-R encoding hemagglutinin epitopags of 500 pmo1 each with Kpnl and DraIII (Takara Shuzo).
  • DNA ligation kit Ver.2 (Takara Shuzo) in a reaction mixed solution containing 5 ⁇ 1 solution at 16 ° C for 1 hour and ligated.
  • This Escherichia coli was seeded on Manual, Sambrook, Cold Spring Harbor Laboratory Press, (1989)) and incubated at 37 ° C overnight to obtain an E. coli transformant.
  • the soluble HM1.24 antigen gene (sHM) to be used was obtained from pSFHMl.24.
  • a soluble antigen was prepared by purifying a 410 bp fragment from a reaction mixture obtained by digesting pSFHMl.24 with Kpnl and BamHI using agarose gel (manufactured by SIGMA).
  • sHM was introduced into CGM / HA.
  • anti-smut containing 50m Tris-HCl, pH 9.0, 1m MgCl 2 and 2 units of alkaline phosphatase (E. coli C75) (Takara Shuzo)
  • the mixture was reacted at 65 ° C for 15 minutes in the reaction mixture to perform dephosphorylation.
  • 100 ng of the dephosphorylated CGM / HA and sHM were ligated by reacting at 16 ° C for 1 hour in a reaction mixture solution containing 5 ⁇ l of DNA ligation kit Ver.2 (Takara Shuzo) I solution.
  • the 1 ⁇ 1 ligation mixture was added to 100 n1 of E. coli JM109 competent cells (manufactured by Nippon Gene), and the mixture was added on ice for 30 minutes, at 42 ° C for 1 minute, and again on ice for 1 minute. It was left still. Then, calorie the 4001 S0C medium (Molecular Cloning: A Laboratory Manual, Sambrook et al., Cold Spring Harbor Laboratory Press, (1989)), incubate at 37 ° C for 1 hour, and then add 50 mg / ml.
  • the Escherichia coli was inoculated on a 2xYT agar medium (Molecular Cloning: A Laboratory Manual, Sambrook, Cold Spring Harbor Laboratory Press, (1989)) containing ampicillin and incubated at 37 ° C overnight. E. coli transformants were obtained.
  • This E. coli transformant was incubated at 37 ° C in 600 ml of LB medium containing 100 ng / ml ampicillin (Molecular Cloning: A Laboratory Manual, Sambrook et al., Co Id Spring Harbor Laboratory Press, (1989)). Then, plasmid DNA was prepared from the culture according to the alkaline method (Molecular Cloning: A Laboratory Manual, Sambrook et al., Cold Spring Harbor Laboratory Press, (1989)). The thus prepared plasmid containing the gene encoding the hemagglutinin epitope tag and the gene encoding the soluble HM1.24 antigen was named CGM / HA-sHM, and the HA tag The added soluble HM1.24 antigen expression plasmid was used.
  • the nucleotide sequence of a plasmid (CGM / HA) containing the gene encoding the hemagglutinin epitop tag was determined using an automated DNA sequencer (Applied Biosystern Inc.) and Taq Dye terminator Cycle Sequencing kit. (Applied Biosystem Inc.) according to the protocol specified by the manufacturer.
  • the primers used in the reaction are shown in SEQ ID NOs: 7 to 8, the range of the decoded base sequence is shown in FIG. 1, and the determined base sequence is shown in SEQ ID NO: 5. This confirmed that the sequence matched the theoretical sequence.
  • the expression vector (CGM / HA-sHM) was tested in COS-7 cells (ATCC # CRL-1651). Cotransformation of C0S-7 cells by electroreaction using a Pulser device (Bio-Rad) Changed.
  • the expression plasmid (1 ⁇ g) was added to a 0.8 ml aliquot of 1.1 ⁇ 10 7 cells / ml in PBS and pulsed at 1.5 kV, 25 F volume.
  • the electroporated cells were suspended in 10 ml of DME culture medium (GIBCO-BRL) containing 10% fetal calf serum (GIBCO-BRL). They were cultured at 37 ° C, 5% C0 2 Lee Nkyu base one coater. After culturing for 6 days, the culture supernatant was collected, cell debris was removed by centrifugation, filtered with a 0.22 // m filter (MILLIP0RE), and stored at 4 ° C.
  • DME culture medium GEBCO-BRL
  • fetal calf serum GEBCO-BRL
  • CH0 cell strain DG44 (Urlaub, G et al., Cell (1983) 33 (2) 405-412) was used as a host cell. Since the DG44 strain is a DHFR-deficient strain, it shows auxotrophy for glycine, prin nucleotide and thymidine. Then, when the plasmid expressing the neomycin resistance gene and DHFR is transfected, DHFR +, neomycin resistant transformed cells are selected using a G418-supplemented nucleoside-deficient medium. I can do it. Furthermore, selection was made by gradually increasing the concentration of methotrexate (MTX), an inhibitor of DHFR, in the medium, and the surviving cells were amplified in the copy number of the introduced expression plasmid. The production of the target product increases.
  • MTX methotrexate
  • the clone # 1 selected by G418 was further suspended in a CHO-S-SFM II culture solution containing no nucleotides and supplemented with 5 n MTX (manufactured by SIGMA), and 5 x 10 2 cells / wel K
  • the cells were seeded in a 96-well flat-bottom plate at 100 1 / well at a concentration of 3 at 5 ⁇ 10 3 cells / welK 5 ⁇ 10 4 ce 11 s / we 11. After incubation overnight at 37 ° C, 5% C0 2 Lee Nkyubeta one, a 5 nM MTX added CHO- S-SF Mil selection medium was added 100 u 1 / well.
  • HM1.24 antigen purified from this culture supernatant can be used for searching for HM1.24 ligand or for functional analysis of HM1.24 antigen.
  • a preliminary study of the ELISA system was performed using the culture supernatant of COS-7 cells.
  • an anti-HA antibody control an anti-1L-6 receptor antibody MT18 antibody (mouse IgG2bk ⁇ (Hirata, Y et al., J. Immunol. (1989) 143 (9) 2900-2906)) was used. used.
  • the control of the chimeric anti-HM1.24 antibody includes human IgGl (human IgGl kappa purified, manufactured by THE BINDING SITE) derived from Mie's mouth as well as the chimeric antibody. Antibody purified with a Tin A column) was used.
  • Anti-HA antibody (mouse monoclonal antibody: Clone 12CA5, manufactured by Boehringer Mannheim) and B. (Coating Buffer: 0.1 g / ml and 5 g / ml) M NaHCO 3, buffer, pH 9.6, was prepared with 0.02% azide Na Application Benefits um), 100 1 / well in flat-bottomed 96 Anapu rate (Immuno plate I with test: manufactured by Nunc) to 4. Coated with C. After washing three times with RB (Rinse Buffer: PBS, 0.05% Tween 20), at 200 1 / well! B.
  • the reaction was added at 100 1 / well at room temperature for 1 hour. After washing 5 times with R.B., S1GMA104 was similarly added to develop color, and the absorbance at 405 nm to 655 nm was measured.
  • FIG. 2 schematically shows a sandwich E / SA system using the HA-added soluble HMl.24 antigen.
  • a sandwich ELISA was performed in the same manner as for the culture supernatant of COS-7 cells. However, the soluble antigen was reacted at 4 ° C for intense reaction, and AHM was diluted three-fold from 1 ⁇ g / ml.
  • the standard curve when using soluble antigens from CH0 cells was as shown in Fig. 4.
  • the measurement limit was about several ng / ml.
  • the amount of soluble antigen produced was compared by anti-HA antibody, sandwich ELISA using chimeric anti-HM1.24 antibody and humanized anti-HM1.24 antibody, and cell line selection was performed. went.
  • the culture supernatant of the HA-tagged soluble antigen-producing cells was serially diluted and added. Since the purified antigen has not been obtained, the antigen concentration cannot be determined. For comparison, the culture supernatant obtained by culturing the cells for 4 days with the same initial seeding amount was used.
  • chimeric anti-HM1.24 antibody and humanized anti-HM1.24 antibody were added, and the mixture was incubated at room temperature for 1 hour.
  • Alkaline phosphatase-labeled goat anti-human IgG (manufactured by BI0S0URCE) was added, and the mixture was allowed to react at room temperature for 1 hour. Then, the base solution was added. The color was developed at room temperature, and the absorbance at 405 nm to 655 nm was measured with a mi croplate reader model 3550 (manufactured by BIORAD).
  • clone # 1 was selected with G418, and this was amplified with 5 nM MTX (manufactured by SIGMA) as a parent strain to obtain, #B and #C.
  • the chimera-type anti-HM1.24 antibody was administered at a dose of 4 mg / kg or 40 mg / kg, and blood was collected from macaques treated with v. Infusion before, on days 1, 3, 7, and 14 after administration, and 4 ° C. Centrifugation under C gave serum.
  • blood was similarly collected from rhesus monkeys to which physiological saline was administered instead of the chimera-type anti-HM1.24 antibody to obtain serum.
  • the concentration of the chimera-type anti-HM1.24 antibody in the serum was measured by a sandwich ELISA using an HA-tagged HM1.24 soluble antigen.
  • HM1.24 soluble antigen diluted 4-fold culture supernatant from CH0 cells.
  • the serum of rhesus monkeys to which the chimera-type anti-HM1.24 antibody was administered was serially diluted and added to each well in an amount of 100 ⁇ l / well.
  • the chimera-type anti-HM1.24 antibody used for administration as a standard was serially diluted from 10 / ml into a three-fold dilution in 11 steps and used. After 1 hour incubation and washing at room temperature Then, an alkaline phosphatase-labeled goat anti-human IgG antibody (manufactured by BI0S0URCE) was added.
  • the binding inhibitory activity of the human anti-HM1.24 antibody by the biotin-labeled mouse anti-HM1.24 antibody was measured by sandwich ELISA using HA-tagged HM1.24 soluble antigen. Block the plate coated with anti-HA antibody at 1 ⁇ g / ml and add HA-tagged HM1.24 soluble antigen (diluted 4-fold culture supernatant from CH0 cells) at 100 1 / well. The reaction was carried out at 4 ° C overnight.
  • human anti-HM1.24 antibody and chimeric anti-HM1.24 antibody are serially diluted from 10 g / ml into three-fold dilutions in three-fold dilutions, and added 50/1 to each well, and 20 ng at the same time A 50 / ml biotin-labeled mouse anti-HM1.24 antibody was also added, and reacted at room temperature for 1 hour.
  • HA-added soluble HM1.24 antigen-producing CH0 cells did not produce much antigen.
  • FCM flow cytometry
  • mice IgG2ak (UPC10) (CAPPEL) 51 and FACS buffer 951 instead of mouse anti-HM1.24 antibody, or mouse lgG2bk antibody (MT18) instead of anti-HA antibody 5 ⁇ 1 and 95 951 of FACS buffer were added, and the mixture was incubated similarly.
  • 100 ⁇ l of a 10 / g / ml FITC-labeled goat anti-mouse IgG antibody (manufactured by Becton Dickinson) was added, and the mixture was incubated at an ice temperature for 30 minutes.
  • the cells were suspended in 600-1 FACS buffer and the fluorescence intensity of each cell was measured by FACScan (manufactured by Becton Dickinson).
  • a cell lysate was similarly prepared for 1.0 ⁇ 10 7 KPMM2 cells (Patent Application Publication No. JP-A-7-236475).
  • the number of cells corresponding to the culture supernatant 20 ⁇ 1 (# 1: 3 X 10 4 cells, # ⁇ : 4 X 10 4 cells, # ⁇ : 3 ⁇ 10 4 pieces, #C: 2.8 x 10 4 cells) of To the cell lysate 101 containing the same, 51 of a sample buffer containing 5% 2-mercaptoethanol was added, and the mixture was heated at 100 ° C for 5 minutes.
  • KPMM2 cell lysate which is a myeloma cell that overexpresses HM1.24 antigen instead of culture supernatant, etc. as a positive control (1 x 10 5 cells) 10 ⁇ 1 to 5!
  • sample buffer 10 ⁇ 1 of sample buffer was added to the culture supernatant #C of 2 ⁇ 1, and the mixture was heated at 100 ° C for 5 minutes. Further, the sample of buffers over to cell dissolve was 10 / I of #C containing four 2.8 X 10 5 fi 1 added, 100. Heated at C for 5 minutes. Sample buffer was added to KPMM2 cell lysate (1 x 10 5 cells) 10 ⁇ 1, which is a myeloma cell that overexpresses HM1.24 antigen instead of culture supernatant as a positive control. ⁇ Add 1 and heat in the same way
  • the HM1.24 antigen since the HM1.24 antigen also has a hydrophobic region of about 14 amino acids on the C-terminal side, a part of the expressed antigen is not secreted into the culture supernatant as a soluble form. It was thought to remain on the cell surface. Therefore, hereinafter, the HA-tagged soluble antigen from which the N-terminus including the N-terminal transmembrane region has been deleted and the HA-tagged soluble antigen from which the C-terminus including the C-terminal hydrophobic region has been deleted are further described. Produced.
  • This PCR product was digested with Kpnl and BamHl as a soluble antigen (HM164) from which the C-terminus was also deleted, and 5 ⁇ g of vector (CGM / HA) prepared by digestion with Kpnl and BamHI was added to the PCR product.
  • Reaction mixture containing mM Tris-HC1, pH 7.6, 10 mM MgCh, 10 mM dithiothreitol, 1 mM ATP, 50 mg / ml polyethylene glycol and 1 unit T4 DNA ligase (GIBC0-BRL) The reaction was carried out at 16 ° C for 3 hours in the medium.
  • E. coli JM109 competent cells Toyobo 100a1
  • the cells were placed on ice for 30 minutes, at 42 ° C for 1 minute, and again on ice for 1 minute. It was left still.
  • 400 1 SO Medium C Molecular Cloning: A Laboratory Manual, Sambrook et al., Cold Spring Harbor Laboratory Press, (1989)
  • After incubation for 1 hour at C place on an LB agar medium containing 50 ⁇ g / ml ampicillin (Molecular Cloning: A Laboratory Manual, Sambrook et al., Cold Spring Harbor Laboratory Press, (1989)).
  • the Escherichia coli was inoculated and incubated at 37 ° C overnight to obtain an Escherichia coli transformant.
  • This transformant was incubated in 3 ml of LB medium (Molecular Cloning: A Laboratory Manual, Sambrook et al., Cold Spring Harbor Laboratory Press, (1989)) containing 50 g / ml of ampicillin. After culturing overnight at C, plasmid DNA was prepared from this culture according to the alkaline method. After digesting this plasmid DNA with Kpnl and BamHI, a 360 bp plasmid was selected by 1% agarose gel electrophoresis, and the selected transformant was transformed into LB medium containing 50 ⁇ g / ml ampicillin. Cultured overnight at 37 ° C in 0 ml.
  • Plasmid DNA was prepared from this culture by the alkaline method (Molecular Cloning: A Laboratory Manual, Sambrook et al., Cold Spring Harbor Laboratory Press, (1989)), and the hydrophobic region at the C-terminus was deleted. It was named (CGM / HA-HM164) as a plasmid expressing HA-tagged soluble antigen.
  • the nucleotide sequence of plasmid (CGM / HA-HM164) expressing HA-added soluble antigen with the C-terminal hydrophobic region deleted was determined.
  • the above expression plasmid was digested with Bgl II (Takara Shuzo).
  • Bgl II Takara Shuzo
  • the nucleotide sequence was determined according to the protocol specified by the manufacturer.
  • the primers used for the reaction were set forth in SEQ ID NOS: 9 and 11, and the The box is shown in FIG. 10 and the determined nucleotide sequence is shown in SEQ ID NO: 6. This confirmed that the sequence matched the theoretical nucleotide sequence.
  • the expression plasmid CGM / HA-HM164 was purified by the electrophoresis method as described above (see Example 4. The gene was simultaneously transfected into COS-7 cells under the conditions of (transfection into 7 cells). Further, the cells subjected to the electroporation treatment were cultured under the same conditions as described above (Example 4) for 6 days, and the collected culture supernatant was applied to a 0.22 / m filter (manufactured by ILLIP0RE). Stored at 4 ° C.
  • G418 (GIBC0 BRL) was selected.
  • Example 17 Sandwich ELISA using culture supernatant
  • Example 7 sandwich ELISA using culture supernatant.
  • the culture supernatant of C0S-7 cells and CH0 cells diluted 4 times was removed.
  • the solution was added at 100 ⁇ 1 / well, and reacted at 4 ° C.
  • serial dilution of 1 g / ml of humanized anti-HM1.24 antibody was performed by 3-fold dilution. 100 n 1 / well was added to the wells, and the mixture was allowed to react at room temperature for 1 hour.
  • a 5000-fold diluted alkaline phospho-labeled goat anti-human IgG (manufactured by BI0S0URCB) was reacted for 1 hour at room temperature. After washing, the substrate solution was added, and the absorbance at 405 nm to 655 nm was measured with a Microplate reader (manufactured by BI0RAD).
  • the production amount of soluble antigen was compared by sandwich EUSA using anti-HA antibody and chimeric anti-HM1.24 antibody, and cell lines were selected. After plating a plate coated with anti-HA antibody at 1 ⁇ g / ml, the culture supernatant of the HA-tagged soluble antigen-producing cells was serially diluted and added. Since the purified antigen was not obtained, the antigen concentration was not known. To compare the concentrations, we used the culture supernatant in which cells were cultured for 4 days with the same initial seeding volume.
  • Example l Western blotting First, a cell lysate was prepared. HA-tagged C-terminal to express deleted soluble antigen, 1 X 10 7 cells of COS- 7 cells and 4 click loans of HA-tagged C-terminal deleted soluble antigen expression CH0 cells selected in G418 ( # 1: 1.2 X 10 7 cells, # 2: 1.5 xlO 7 cells, # 21: 2.2 x 10 7 cells, # 28: 1.3 xlO 7 cells), respectively, under the conditions of Example 12 described above.
  • # 1 1.2 X 10 7 cells, # 2: 1.5 xlO 7 cells, # 21: 2.2 x 10 7 cells, # 28: 1.3 xlO 7 cells
  • culture supernatant (COS-7 Sup., CHO Sup. # 2, # 21, # 28) from which cells were cultured was passed through a 0.22 ⁇ m filter at 4 ° C. Saved in C.
  • Sample buffer containing 5% 2-mercaptoethanol in this culture supernatant 201 (0.5 M Tris-HCl buffer containing 10% glycerol, 2% SDS, 0.253 ⁇ 4 bromphenol blue, pH 6. 8) was added and heated at 100 ° C for 5 minutes.
  • cell lysate (COS-7: 1 ⁇ 10 5 cells, # 2: 5.4 ⁇ 10 4 , # 21: 1 ⁇ 10 6) cell number of 10 to 16 times the number of cells corresponding to the culture supernatant 20 II 1 s , # 28: 5 n 1 of sample buffer containing 5% 2-mercaptoethanol was added to 10/1 of the cell lysate containing 5.9 x 10 4 ), and the mixture was heated in the same manner.
  • FIG. 13 shows the results of western blotting of these with the mouse anti-HM1.24 antibody under the conditions described above (Example 13.).
  • soluble HM1.24 antigen was detected in the culture supernatant as in the previous case, but the cell lysate of the soluble C-terminally deleted soluble antigen-producing cell prepared this time contained HM1.24 antigen. No expression was seen.
  • the HA-added soluble HM1.24 antigen trapped on the cell surface became secreted into the culture supernatant.
  • the soluble C-terminally deleted antigen also formed a homodimer.Example 20.
  • the Escherichia coli was collected, suspended in D-PBS (-), frozen and stored at 180 ° C., and the expressed GST.IS-1 used for the following purification was extracted from the Escherichia coli inclusion body. That is, after the thawed E. coli was thawed, Tron X100 was added thereto to a concentration of 1%, and the mixture was sonicated for 1 minute using a Branson Sonifier 250 under the conditions of output 2 and duty 50%. The precipitate fraction was collected by centrifugation at 14000 rpm for 20 minutes using Tomy MX160.
  • This precipitate fraction was suspended in a 50 mmol / L Tris-HCl buffer containing 100 ug / mL Lysozyme, pH 8.0, and quenched under ice cooling for 30 minutes. After the Lysozyme digestion, MgCl 2 was added at a concentration of 5 mmol / digest, followed by digestion with DNase I at room temperature for 10 minutes. The precipitate was collected by centrifugation at 14000 rpm for 20 minutes, and washed twice with 50 ⁇ 1 / L Tris-HCl buffer containing 1% Triton X100, pH 8.0.
  • the GST. IS-1 extract was purified by anion exchange using DEAE Sepharose Fast Flow.
  • the GST. IS-1 extract was added to a column of DEAE Sepha rose Fast Flow equilibrated with 50 mmol / L Tris-HCl buffer containing 8 moi / L Urea, 10 mmol / L DTT, pH 8.0, and the same. The plate was washed with a buffer. The adsorbed GST. IS-1 was eluted by adjusting the concentration of NaCl to 0.25 mol / L, and this fraction was designated as GST. IS-1 (D).
  • GST • IS-1 (D) was purified by reversed-phase HPLC using C0SM0SIL C4.
  • GSTIS-1 (D) is diluted with twice the volume of 200 mmol / L sodium acetate-HC1 buffer, pH 3.5, and equilibrated with 20 nnnol / L sodium acetate-HCl buffer, pH 3.5. It was desalted with a -10 column.
  • an equal volume of 0.1% TFA was added to the desalted GST • IS-1 (D) and adsorbed on C0SM0SIL C4 equilibrated with 20% CH 3 CN / 0.1% TFA.
  • the adsorbed GST.IS-1 was eluted by linearly increasing the concentration of acetonitrile to 60%.
  • the major GST. IS-1 eluted fraction was named GST-IS-1 (C4) o
  • GST • IS-1 (C4) was purified by a second reversed-phase HPLC using Vydac Diphenyl.
  • GST • IS-1 (C4) was diluted three times with deionized water and adsorbed on Vydac Diphenyl equilibrated with 30% CH 3 CN / 0.1% TFA. The adsorbed GST. IS-1 was eluted by linearly increasing the concentration of acetonitrile to 60%. GST.1S-1 eluted as the main peak.
  • Coating Buffer is 100 mmol / L NaHCO 3 solvent solution containing 0.02% Na 3
  • Dilution Buffer ( DB) is 1 mmol / L gCl 2)
  • 150 discussions 1 / and NaCl, 0. 05% Tween20, 0.02 % NaN 3 50 mmol / L Tris-HCl, pH 8.1 containing 1% BSA
  • Substrate Buffer (SB) contains 50 mmol containing lOmmoi / L MgCl 2 / L NaHCO 3, pH 9.8 solution, the 0.1% Tween 20 / TBS were used TBS (TaKaRa CodeT903 Lot201) containing 0. 1% T een 20. GST.
  • IS-1 (D) was directly immobilized on Nunc Immuno Plate axi Sorp, and the concentration of the human anti-HM1.24 antibody was measured. GST. IS-1 (D) was diluted with CB, added to Nunc Immuno Plate Maxi Sorp at 100 1 / well, and immobilized at room temperature for 1 hour. After washing 3 times with 200% 1 / wel 1 using 0.1% Tween20 / TBS, DB was added with 2001 Zwell and blocking was performed at room temperature for 1 hour or more. As a test substance, a human anti-HM1.24 antibody diluted with DB was reacted at 100 ⁇ l / well at room temperature for 1 hour.
  • the alkaline phosphatase-labeled goat anti-IgG (Goat ant i human IgG rchain AP con juga te) (Biosource AH20305 Lot 6202) was reacted in a 100 ⁇ l well for 1 hour at room temperature.
  • Sigmal04 adjusted to 1 mg / ml with SB was added with 100l Zwell, and the color was developed for 1 hour at room temperature.
  • the absorbance at 405 nm-620 nm was measured with Bio-Rad Mode 13550. As a result, a concentration-dependent increase in absorbance of the humanized anti-HM1.24 antibody was obtained (FIG. 19).
  • a mouse anti-HM1.24 monoclonal antibody-producing hybridoma was prepared according to the method described in Goto, T. et al., Blood (1994) 84, 1992-1930.
  • the antibody in the culture supernatant of the hybridoma was screened using Cell BLISA using KPC-32 (Posner, MR et al., J. Immunol. Ethods (1982) 48, 23). 5 ⁇ 10 4 KPC-32 were suspended in 50 ml of PBS, dispensed into a 96-well plate (U-bottom type, manufactured by Corning, Iwaki), and air-dried at 37 ° C. After blocking with PBS containing 1% serum albumin (BSA), the hybridoma culture supernatant was added, and the mixture was incubated at 4 ° C for 2 hours.
  • KPC-32 Posner, MR et al., J. Immunol. Ethods (1982) 48, 23. 5 ⁇ 10 4 KPC-32 were suspended in 50 ml of PBS, dispensed into a 96-well plate (U-bottom type, manufactured by Corning, Iwaki), and air-dried at 37
  • a peroxidase-labeled anti-mouse IgG goat antibody (manufactured by Zymed) was reacted at 4 ° C for 1 hour. After washing, a 0-phenylenediamine substrate solution (manufactured by Sumitomo Bakelite) was added at room temperature for 30 minutes. It was allowed to react.
  • the reaction was stopped with 2N sulfuric acid, and the absorbance at 492 nm was measured using an ELISA reader (manufactured by Bio-Rad).
  • ELISA reader manufactured by Bio-Rad.
  • the positive hybridoma culture supernatant was pre-adsorbed to human serum, and the reactivity to other cell lines was screened by ELISA. Positive hybridomas were selected and their reactivity to various cells was determined by flow cytometry.
  • the last selected hybridoma clone was cloned twice and injected into the abdominal cavity of pristane-treated BALB / C mice to obtain ascites.
  • Monoclonal antibodies were purified from mouse ascites by precipitation with ammonium sulfate and protein A affinity chromatography kit (Ampure PA, manufactured by Amersham). Purified antibody, Quick Tag FI FITC labeling was performed by using a TC binding kit (manufactured by Boehringer Mannheim).
  • HM1.24 a hybridoma clone most useful for flow-site analysis and having CDC activity against RPMI 8226 was selected and named HM1.24.
  • the subclass of the monoclonal antibody produced by this hybridoma was determined by ELISA using a subclass-specific anti-mouse porcupine antibody (Zymed).
  • the anti-HM1.24 antibody had a subclass of IgG2a / c.
  • Hypri-Doma HM1.24 which produces anti-HM1.24 antibody, was submitted to the Institute of Biotechnology, Institute of Industrial Science and Technology (1-3 1-3 Tsukuba East, Ibaraki Prefecture) by FERM BP on September 14, 1995. -Deposited internationally as 5233 under the Budapest Treaty.
  • a humanized anti-HM1.24 antibody was obtained by the following method.
  • Total RNA was prepared from the hybridoma HM1.24 prepared in Reference Example 1 by a conventional method. From this, cDNA encoding the mouse antibody V region was synthesized and amplified by the polymerase chain reaction (PCR) method and the 5'-RACE method. A DNA fragment containing the gene encoding the mouse V region was obtained, and each of these DNA fragments was ligated to a plasmid pUC-type cloning vector, and introduced into E. coli competent cells to obtain an E. coli transformant.
  • the above plasmid was obtained from this transformant, the nucleotide sequence of the cDNA coding region in the plasmid was determined by a conventional method, and the phase of each V region was further determined. The complementarity determining region (CDR) was determined.
  • cDNAs encoding the V regions of the mouse anti-HM1.24 antibody L and H chains, respectively, were inserted into the HEF vector.
  • the V region CDR of the mouse anti-HM1.24 antibody was transplanted into the human antibody by CDR transplantation.
  • the L chain of the human antibody RE1 was used as the L chain of the human antibody
  • the FR1-3 of the human antibody HG3 was used as the H chain of the human antibody for the frame region (FR) 1-3.
  • FR4 of human antibody JH6 was used.
  • the amino acids of FRs in the V region of the H chain were replaced so that the CDR-grafted antibody formed an appropriate antigen-binding site.
  • each of the genes was separately introduced into a HEF vector, and the humanized anti-HM1.24 antibody was humanized.
  • a vector for expressing the L chain or H chain of the HM1.24 antibody was prepared.
  • a cell line producing a humanized anti-HM1.24 antibody was established.
  • the antigen binding activity and the binding inhibitory activity of the humanized anti-HM1.24 antibody obtained by culturing this cell line on the human amniotic membrane-derived cell line WISH were examined by Cell ELISA.
  • the humanized anti-HM1.24 antibody has the same antigen-binding activity as the chimeric antibody, and the binding inhibitory activity using the biotinylated mouse anti-HM1.24 antibody is also significant. It had the same activity as the antibody or mouse antibody.
  • Escherichia coli having a plasmid containing DNA encoding the L chain V region and H chain V region of the chimeric anti-HM1.24 antibody was Escherichia coli DH5a (pUC19-l.24L-g / c) and Escherichia coli, respectively.
  • i cia col i DH5a (pUC19-1.24Hg a1) was submitted to the Institute of Biotechnology, Industrial Science and Technology Institute (1-3 1-3 Higashi, Tsukuba City, Ibaraki Prefecture) on August 29, 1996. , Each They were deposited internationally under the Budapest Treaty as FERM BP-5646 and FERM BP-5644, respectively.
  • a plasmid containing DNA encoding the L chain V region a version (SEQ ID NO: 17) and the H chain V region r version (SEQ ID NO: 18) of the humanized anti-HM1.24 antibody The Escherichia coli having a mid was Escherichia co 1 i DH5a (pUC19-RVLa-AH-gk) and Escher i chia col i DH5a (pUC19-RVHr-AH-g a1), respectively.
  • Escherichia coli having a plasmid containing DNA encoding the H chain V region s version of the humanized anti-HM1.24 antibody (SEQ ID NO: 19) is also cherichis coHDH5 (pUC19-RVHs- AHM-g a1) was reported to the Institute of Biotechnology and Industrial Technology, Institute of Industrial Science and Technology (1-3 1-3 Tsukuba-Higashi, Ibaraki Pref.) On FERM BP on September 29, 1997. -6127, deposited internationally under the Budapest Treaty.
  • the human myeloma cell lines RPMI 8226 and U266 were cultured in RPMI164 medium (GIBC0-BRL) supplemented with 10% fetal calf serum (FBS).
  • the myeloma cell line KP MM 2 Japanese Unexamined Patent Application Publication No. 7-236365 was cultured in RPMI164 medium supplemented with 20% fetal bovine serum.
  • RNA was isolated by Chioshia phosphate Guanin / cesium chloride method than, Fast Track mRNA Isolation MRNA was purified using Kit (Invitrogen). After synthesizing cDNA from 10 g of mRNA using Not I / oligo-dT, 8 (Time Saver cDNA Synthesis Kit; Pharmacia Biotech), EcoRI adapter was ligated. The cDNA of 0.7 kbp or more was fractionated using 1.0% low melting point agarose gel (Sigma), digested with Not I, and expressed with pCOSl expression vector or AExCel1 vector (Pharmacia). Biotech) at the EcoRI / Not I site, and the library (library 1A) used for direct expression cloning (screening by panning) and the library (immunoscreening library) (library B) were used, respectively. It was constructed.
  • the pC0S1 expression vector was prepared by deleting the EcoR-Notl-BamHI Adapter from HEF-PMhyl (see W092-19759) by deleting the genes contained by Ec0RI and SmaI digestion. (Takara Shuzo).
  • the cells are washed with a phosphate buffer (PBS), and PBS containing 5 mM EDTA is added to wash the cells, and the cells are washed with PBS supplemented with 5% FBS and 0.02% NaN3.
  • cell suspension 2 x 1 0 6 cellsZml was adjusted.
  • cells were plated with anti-HM1.24 antibody coated pan. 2 hours Kiyoshi ⁇ on ning plates (described below), the plates 5% FBS, was gently washed 3 times with 0. 0 2% N a N 3 3 ml containing the PBS. After washing, the cells bound on the plate were positively added using a Hirt solution (Hitt J., Mol. Biol. 26: 365-369, 1983) (0.6% SDS, 10 mM EDTA). Mid DNA was recovered. The recovered plasmid DNA was amplified in E. coli and used for the next panning.
  • PBS phosphate buffer
  • PBS containing 5 mM EDTA is added to
  • the Panning plate was prepared as follows. Add 3 ml of the anti-HM1.24 antibody solution (10/8111151011 ⁇ Tris-HCH9.5) to a 60 mm dish (Fa1con) and let it warm for 2 hours at room temperature. After washing with 0.15 M Na C 1 three times, add 3 ml of 5% FBS, 1 mM EDTA, 0.02% Na N 3 in PBS and add 2 ml at room temperature. Blocking was performed for a period of time. After removing the blocking solution, the panning plate was stored at 120 ° C until use.
  • Immunoscreening Library B was subjected to immunoscreening using an anti-HM1.24 antibody. That, 1. 5 X 1 0 5 independent click low off Ajiraibura Lee containing down was layered together on agar with E. coli NM 5 2 2 (Pharmacia Biotech) , and 3.5 hour incubation at 4 2 ° C . After the cultivation, a nitrocellulose filter (Schleicher & Schueil) pretreated with 1 OmM IPTG was overlaid on the plate, and further cultured at 37 ° C for 3 hours.
  • a nitrocellulose filter Scholaser & Schueil
  • F i ter was washed with 0.05% (v / v) Tween—20 added TBS (20 mM Tris—HCl, pH 7.4, 150 mM NaCI), TBS with 1% (w / v) BSA was added, and the mixture was incubated at room temperature for 1 hour to perform blocking.
  • an anti-HM1.24 antibody solution (10 g / ml blocking buffer), incubate at room temperature for 1 hour, wash, wash and dilute 5,000-fold diluted alkaline phosphatase.
  • Peptide-conjugated anti-mouse Ig antiserum (picoBlue Immunoscreening kit; Stratagene) was calorie-incubated and incubated at room temperature for 1 hour. Spots that reacted with the antibody were 0.3 mg / ml nitrotrasodium, 0.1 mg / ml 5 — bromo 4 — black lip 3 — color developing solution containing indole phosphate and developed by - (1 0 0 mM T ris . HC l, pH9 5, 1 0 0 mM N a C 5 mM M g C 1 2).
  • Escherichia coli containing pUC19 was named Escherichia coli DH5a (pRS38-pUC19), and on October 5, 1993, the Institute of Biotechnology and Industrial Technology (Ibaraki It has been deposited internationally under the Budapest Treaty under the deposit number FE RM BP—4 4 3 4 at Tsukuba-Higashi 1-chome 1-3).
  • FACS buffer PBS (-) / 2% FCS / 0. 1% N a N 3
  • HM 1 2 4 antibody added pressure to, in ice
  • the reaction was performed for 30 minutes.
  • the cells were resuspended in a GAM-FITC solution (25 UL g / ml in FACS buffer; Beeton Dickinson), and further reacted on ice for 30 minutes.
  • the cells were resuspended in 600 u1 of a FACS buffer and determined using a FACS can (Becton Dickinson).
  • UPC10 was used as a negative control antibody.
  • the cell lysis buffer method 50 mM sodium folate, 150 mM NaCl, 0.5% sodium deoxycholate, 1% Ultrasonic crushing was performed in Nonidet P-40, 0.1 mg / ml phenylmethylsulfonyl fluoride, protease inhibitor Cactenyl [Boehringer Mannheim]) to obtain a solubilized fraction.
  • the solubilized fraction was added to a Sepharose 4B bead to which an anti-HM1.24 antibody was conjugated.
  • the precipitate was separated by SDS-PAGE (1% ge1) and transferred to a PVDF membrane.
  • the PVDF membrane was reacted with an anti-HM1.24 antibody and subsequently with a POD-antiiouse IgG, and then detected using an ECL kit (Amersham).
  • P3.19 encodes a protein with an estimated molecular weight of 19.8 kDa, consisting of 180 amino acids, and has two N-type sugar chain binding motifs (Fig. 14). ). Therefore, it was considered that the presence of those having different molecular weights observed by immunoprecipitation was due to differences in N-glycan modification. In fact, the immunoprecipitate was found to bind several lectins. ing.
  • SEQ ID NO: 1 shows the amino acid sequence and base sequence of the extracellular domain of the soluble HM1.24 antigen protein.
  • SEQ ID NO: 2 shows an amino acid sequence and a base sequence of a fusion protein comprising a leader sequence, a FLAG peptide, and a soluble HM1.24 antigen protein.
  • the leader sequence from Met at position 1 to His at position 18 is a leader sequence.
  • From Asp at position 20 to Lys at position 27 are FLAG peptides.
  • Gly at position 28 and Thr at position 29 are linkers.
  • SEQ ID NO: 3 shows an amino acid sequence and a base sequence of a fusion protein composed of an HA peptide and a soluble HM1.24 antigen protein.
  • HA peptides are from Tyr in 1st place to Ala in 9th place.
  • G 1 y at position 28 and Thr at position 29 are linkers.
  • SEQ ID NO: 4 shows an amino acid sequence and a base sequence of a fusion protein composed of a HA peptide and a soluble HM1.24 antigen protein having a C-terminal deleted. From Tyr in 1st position to Ala in 9th position are HA peptides. Gly at position 28 and Thr at position 29 are linkers.
  • SEQ ID NO: 5 shows the determined base sequence of CGM / HA and the amino acid sequence of HA peptide.
  • the HA peptide is used to connect Tyr at 1st position to Ala at 9th position.
  • SEQ ID NO: 6 shows the determined amino acid sequence and base sequence of CGM / HA-HM164.
  • the leader sequence from Met at position 1 to Cys at position 20 is a leader sequence.
  • 22 From Tyr at position 2 to Al a at position 30 are HA peptides.
  • Gly in 31 position and Thr in 32 position are linkers.
  • 33 From Asn at position 3 to A at position 151 is a soluble HM1.24 antigen protein with a C-terminal deletion.
  • SEQ ID NO: 7 shows the nucleotide sequence of primer CMV / L.
  • SEQ ID NO: 8 shows the nucleotide sequence of primer BGH-1.
  • SEQ ID NO: 9 shows the nucleotide sequence of primer So1.
  • SEQ ID NO: 10 shows the nucleotide sequence of primer Sot2.
  • SEQ ID NO: 11 shows the nucleotide sequence of primer So3.
  • SEQ ID NO: 12 shows one base sequence of a synthetic DNA pair containing a leader sequence and a FLAG peptide sequence.
  • SEQ ID NOS: 13 and 12 show the other nucleotide sequence of a synthetic DNA pair containing a leader sequence and a FLAG peptide sequence.
  • SEQ ID NO: 14 shows one base sequence of a synthetic DNA pair containing the HA peptide sequence.
  • SEQ ID NO: 15 shows the other base sequence of the synthetic DNA pair containing the HA peptide sequence.
  • SEQ ID NO: 16 shows the amino acid sequence and the nucleotide sequence of human HM1.24 antigen protein expressed on the cell membrane.
  • SEQ ID NO: 17 shows an amino acid sequence and a base sequence of an L chain V region a purge ion of a humanized anti-HM1.24 antibody.
  • SEQ ID NO: 18 shows an amino acid sequence and a base sequence of an H chain V region r purge ion of a humanized anti-HM1.24 antibody.
  • SEQ ID NO: 19 shows an amino acid sequence and a base sequence of H chain V region s purge ion of humanized anti-HM1.24 antibody.
  • the immunological assay method of the present invention it is possible to detect or measure soluble HM1.24 antigen protein or anti-HM1.24 antibody up to about 500 pg / ml.
  • Highly sensitive and rapid measurement of soluble HM1.24 antigen protein or anti-HM1.24 antibody which was previously only detectable or measurable up to 10 ng / ml with Cell Elisa, and can simultaneously measure large amounts of test samples It became.
  • soluble HM1.24 antigen protein and the DNA encoding the same of the present invention are useful for measuring anti-HM1.24 antibody or soluble HM1.24 antigen protein.
  • Refrigerator H -:-a # ⁇ ⁇ ⁇ ⁇ ' ⁇
  • Sequence type nucleic acid
  • O OVO 113 OVO OVO OIO VVV OVV wo voo m OOO OVV OVO VOO IVO 010
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid

Description

明 細 書 抗 HM l . 2 4抗体の免疫化学的測定方法 発明分野
本発明は、 抗 HM1.24抗体の免疫化学的測定方法に関する。 また本 発明は可溶性 HM1.24抗原タンパク質の免疫化学的測定方法に関する 。 さ らに本発明は、 可溶性 HM1.24抗原タ ンパク質及びそれをコー ド する DNA に関する。 背景技術
Goto, T らはヒ ト形質細胞を免役して得られた、 B 細胞系列に特 異的に発現する分子量が 22〜39 kDaの抗原を認識するマウスモノ ク ローナル抗体 1.24抗体を報告している (Blood(1994)84, 1922-1930 ) 。 このマウス抗 HMl.24抗体はヒ ト形質細胞を移植したマウスにお いて in vivo 抗腫瘍効果ならびに、 ヒ ト形質細胞に対する ADCC (an t i body-dependent cellular cytotoxicity) 活性による in vitro抗 腫瘍効果を示す (Ozaki, S et al., Blood, (1997)90, 3179-3189) o
また、 このマウス抗 HMl.24抗体のキメ ラ抗体および再構成ヒ 卜抗 体が作製されている (小野浩一郎ら第 2 0 回日本分子生物学会年会 ( 1997) 抄録集一般演題 3- 501-P- 478 ) 。
一方、 これらマウス HM1.24抗体、 キメ ラ抗体、 再構成ヒ ト抗体の 活性測定はヒ ト形質細胞株 RPMI8226を用いた eel卜 EL1SA (Goto, T ら、 Blood(1994)84, 1922-1930) によって行われており、 より精度 の高い測定方法が求められていた。 発明の開示
抗 HM1. 24抗体とその抗原である細胞膜上に発現している HM1. 24抗 原タンパク質については上述のようにすでに報告されている。 しか しながら、 可溶性 HM1. 24抗原タ ンパク質や低濃度の可溶性 HM1. 24抗 原タンパク質又は抗 HM1. 24抗体を検出又は測定する方法は知られて いなかつた。
したがって、 本発明は低濃度の可溶性 HM1. 24抗原タ ンパク質又は 抗 HM1. 24抗体を検出又は測定する簡便な方法を提供する。
すなわち、 本発明は、 ( 1 ) 可溶性 HM1. 24抗原タ ンパク質と被験 試料中に含まれる抗 HM1. 24抗体とを反応させて、 可溶性 HM1. 24抗原 タンパク質に結合した抗 HM1.: 24抗体を検出又は測定する工程を含む 、 抗 HM1. 24抗体の免疫化学的測定方法を提供する。 可溶性 HM1. 24抗 原タンパク質は、 好ま しく は他のぺプチ ド又はポリべプチ ドと融合 している。 可溶性 HM1. 24抗原タンパク質は、 好ま しく は支持体と結 合している。
支持体は、 好ま しく はビーズ又はプレー トである。 可溶性 HM1. 24 抗原タ ンパク質は、 好ま しく は可溶性 HM1. 24抗原タ ンパク質又は可 溶性 HM1. 24抗原夕 ンパク質と融合した他のぺプチ ド又はポ リべプチ ドに対する抗体により支持体と結合している。
本発明はまた、 ( 2 ) 可溶性 HM1. 24抗原タ ンパク質に結合した抗 HM1. 24抗体を、 抗 HM1. 24抗体に対する一次抗体により検出又は測定 することを特徴とする前記 ( 1 ) に記載の免疫化学的測定方法を提 供する。
本発明はまた、 ( 3 ) 可溶性 HM1. 24抗原タンパク質に結合した抗 HM1. 24抗体を、 抗 HM1. 24抗体に対する一次抗体及び一次抗体に対す る二次抗体により検出又は測定することを特徴とする前記 ( 1 ) 又 は ( 2 ) に記載の免疫化学的測定方法を提供する。 前記 ( 1 ) 又は ( 2 ) において、 一次抗体又は二次抗体は、 好ま しく は放射性同位 元素、 酵素、 ピオチ ン アビジ ン又は蛍光物質により標識されてい る o
本発明はまた、 ( 4 ) 抗 HM1.24抗体と被験試料中に含まれる可溶 性 HM1.24抗原タ ンパク質とを反応させて、 抗 HM1.24抗体に結合した 可溶性 HM1.24抗原タ ンパク質を検出又は測定する工程を含む、 可溶 性 HM1.24抗原タ ンパク質の免疫化学的測定方法を提供する。 可溶性 HM1.24抗原タンパク質は、 好ま しく は他のぺプチ ド又はポリべプチ ドと融合している。 HM1.24抗体は、 好ま しく は支持体と結合してい る。
支持体は、 好ま しく はビーズ又はプレー トである。 抗 HM1.24抗体 は、 好ま しく は抗 HM1.24抗体に対する抗体により支持体と結合して いる。
本発明はまた、 ( 5 ) 抗 HM1.24抗体に結合した可溶性 HM1.24抗原 タンパク質を、 可溶性 HM1.24抗原タンパク質に対する一次抗体又は 可溶性 HM1.24抗原タ ンパク質と融合した他のぺプチ ド又はポリぺプ チ ドに対する一次抗体により検出又は測定することを特徴とする前 記 ( 4 ) に記載の免疫化学的測定方法を提供する。
本発明はまた、 ( 6 ) 抗 HM1.24抗体に結合した可溶性 HM1.24抗原 タンパク質を、 可溶性 HM1.24抗原タンパク質に対する一次抗体又は 可溶性 HM1.24抗原タンパク質と融合した他のぺプチ ド又はポリぺプ チ ドに対する一次抗体及び一次抗体に対する二次抗体により検出又 は測定することを特徴とする前記 ( 4 ) 又は ( 5 ) に記載の免疫化 学的測定方法を提供する。 前記 ( 4 ) 又は ( 5 ) において、 一次抗 体又は二次抗体は、 好ま しく は放射性同位元素、 酵素、 ピオチ ン/ アビジ ン又は蛍光物質により標識されている。
本発明はまた、 ( 7 ) 配列番号 : 1 に示されるア ミ ノ酸配列を有 する可溶性 HM1.24抗原タ ンパク質を提供する。
本発明はまた、 ( 8 ) 前記 ( 7 ) に記載の可溶性 HM1.24抗原タ ン パク質と他のぺプチ ド又はポリべプチ ドとの融合タンパク質を提供 する。 可溶性 HM1.24抗原タ ンパク質と他のぺプチ ド又はポリベプチ ドとの融合タンパク質の具体例は、 配列番号 : 3及び 4 に記載され ている。
本発明はさ らに、 ( 9 ) 前記 ( 7 ) 又は ( 8 ) に記載の可溶性 HM 1.24抗原タ ンパク質又は可溶性 HM1.24抗原タンパク質と他のぺプチ ド又はポリペプチ ドとの融合タンパク質をコ一 ドする DNA を提供す る。 HM1.24抗原タンパク質又は可溶性 HM1.24抗原夕 ンパク質と他の ペプチ ド又はポリペプチ ドとの融合タンパク質をコー ドする DNA は 、 配列番号 : 1 に示される有する。 他の具体例は、 配列番号 : 3お よび 4 に示される塩基配列である。 図面の簡単な説明
図 1 は、 HAタグを発現する遺伝子を揷入したベクタ一 CGM/HAの塩 基配列を解読した範囲を示した模式図である。
図 2 は、 HAタグ付加可溶性抗原を用いた sandwich ELISA系を示す 模式図である。
図 3 は、 HAタグ付加可溶性抗原を一過性に発現させた COS- 7 細胞 の培養上清を用いた sandwich ELISA系における ヒ ト型化抗 HM1.24抗 体の標準曲線を示すグラフである。
図 4は、 HAタグ付加可溶性抗原を安定産生させた CH0 細胞による 培養上清を用いた sandwich ELISA系におけるヒ ト型化抗 HM1.24抗体 の標準曲線を示すグラフである。
図 5 は、 HAタグ付加可溶性抗原を用いた sandwich ELISA系にてキ メラ型抗 HM1.24抗体を投与したァカゲザルの血中抗体濃度の推移を 測定した結果を示したグラフである。
図 6 は、 HAタグ付加可溶性抗原を用いた sandwich ELISA系におい て、 ヒ ト型化抗 HM1.24抗体はキメ ラ型抗 HM1.24抗体と同様にビォチ ン標識マウス抗 HM1.24抗体の HAタグ付加可溶性抗原への結合を濃度 依存的に阻害していることを示すグラフである。
図 7 は、 HAタグ付加可溶性抗原を安定産生させた CH0 細胞を用い た FCM 解析において、 マウス抗 HM1.24抗体 (左半分のパネル) 、 抗 HA抗体 (右半分のパネル) の蛍光強度が、 コン トロール抗体 (波線 で示した) に比べシフ ト していることを示すグラフである。 なお、 #1は G418で選択した CH0 細胞株、 #Aは #1細胞を親株と して 5 nMの MT X で選択した CH0 細胞株である。
図 8は、 HAタグ付加可溶性抗原を安定産生させた CH0 細胞による 培養上清および細胞溶解物を還元状態にて SDS-ポリアク リルア ミ ド ゲル電気泳動を行った後、 マウス HM1.24抗体による western blotを 行い、 HM1.24抗原を検出した結果を示す図面代用写真である。 なお 、 #1は G418で選択した CH0 細胞株、 #A、 #B、 #Cは #1細胞を親株と し て 5 nMの MTX で選択した CH0 細胞株であり、 また KPMM2 細胞溶解物 は HM1.24抗原の陽性コ ン ト ロールである。
図 9は、 HAタグ付加可溶性抗原を安定産生させた CH0 細胞 #C株に よる培養上清および細胞溶解物を還元状態および非還元状態にて SD S-ポリアク リルア ミ ドゲル電気泳動を行った後、 マウス HM1.24抗体 による western blotを行い、 HM1.24抗原を検出した結果を示す図面 代用写真である。 なお、 #C株は 5 nMの MTX で選択した CH0 細胞株で あり、 また KPMM2 細胞溶解物は HM1.24抗原の陽性コ ン ト 口一ルであ る o
図 1 0は、 HAタグ付加 C 端削除可溶性 HM1.24抗原発現ベクター CG M/HA- HM164の塩基配列を解読した範囲を示した模式図である。 図 1 i は、 HAタグ付加 C 端削除可溶型 HM1.24抗原を発現させた CO S-7 細胞による培養上清を用いた sandwich ELISA系における ヒ ト型 化抗 HM1.24抗体の標準曲線を示すグラフである。
図 1 2 は、 HAタグ付加 C 端削除可溶型 HM1.24抗原を発現させた CH 0 細胞による培養上清を用いた sandwich ELISA系におけるヒ ト型化 抗 HM1.24抗体の標準曲線を示すグラフである。
図 1 3 は、 HAタグ付加 C 端削除可溶性 HM1.24抗原を産生させた CO S-7 細胞も しく は CH0 細胞 (#2、 #21 、 #28 ) による培養上清およ び細胞溶解物を還元状態にて SDS-ポリア ク リ ルア ミ ドゲル電気泳動 を行った後、 マウス HM1.24抗体による western blotを行い、 HM1.24 抗原を検出した結果を示す図面代用写真である。 なお、 CHO/sHM は HAタグ付加可溶性 HM1.24抗原を発現させた CH0 細胞であり、 その培 養上清を HM1.24抗原の陽性コン トロールと して用いている。
図 1 4 は、 HM 1 . 2 4抗原タ ンパク質をコー ドする c D N Aの 塩基配列及び対応するァ ミ ノ酸配列を示す図である。
図 1 5 は、 HM 1. 2 4抗原タ ンパク質をコー ドする c D N Aの 塩基配列及び対応するァ ミ ノ酸配列を示す図である。
図 1 6 は、 P a n n i n g法を用いて単離したク ローン P 3. 1 9及び免疫スク リーニング法により単離された 5つのク ローン ( I S 1 〜 I S 5 ) の模式図である。
図 1 7 は、 抗 HM し 2 4抗体 (A ; C H OZN E O, B ; C H 0/HM) を用いたフローサイ トメ ト リ 一解析の結果を示す図であ る。 抗 HM 1 . 2 4抗体のヒス トグラムは実線で、 アイ ソタイプの —致したコン トロ一ル抗体 (U P C 1 0 ) のヒス トグラムは波線で 示す。 なお、 横軸は蛍光強度を、 縦軸は細胞数を示す。
図 1 8 は、 各種細胞株および HM 1 . 2 4発現 C H 0細胞におけ る HM 1. 2 4抗原の発現を抗 HM 1 . 2 4抗体を用いた免疫沈降 • ウェスタ ンプロッティ ング法により検出した結果を示す図面代用 写真である。 抗 H M 1 . 2 4抗体結合セフ ァロ一ス 4 B (レー ン 1 〜 6 ) または非結合セフ ァロ一ス 4 B ( レー ン 7及び 8 ) を用いて 免疫沈降を行った後、 抗 HM 1 . 2 4抗体を用いてウェスタ ン · ブ ロ ッテイ ングを行い、 H M 1 . 2 4抗原の検出を行った (右側に表 示) 。 (* ; 抗 H M 1 . 2 4抗体 H鎖)
図 1 9 は、 大腸菌により発現させた G S T付加可溶性 HM 1 . 2 4抗原を用いた E L I S A系におけるヒ ト型化抗 H M 1 . 2 4抗体 の標準曲線を示すグラフである。 発明の実施の形態
本発明の可溶性 HM1.24抗原タンパク質と しては、 配列番号 : 1 示 すァ ミ ノ酸配列においてァ ミ ノ酸位置 1 位の Asn からァ ミ ノ酸位置 1 3 2位の Gin からなるァ ミ ノ酸配列を有し、 且つ可溶性 HM1.24抗 原タンパク質の生物学的活性を有するタ ンパク質であれば、 いかな るものであってよい。 可溶性 HM1.24抗原夕 ンパク質の生物学的活性 とは、 抗 HM1.24抗体に特異的に結合され、 細胞膜には結合しておら ず細胞膜から遊離して可溶性であり、 且つ二量体である。
また、 本発明の可溶性 HM1.24抗原タ ンパク質は、 可溶性 HM1.24抗 原タンパク質の生物学的活性を有し、 且つ配列番号 : 1 に示すア ミ ノ酸配列に対する 1 又は複数個のア ミ ノ酸残基の置換、 欠失及び/ 又は付加により修飾されたァ ミ ノ酸配列を有する可溶性 HM1.24抗原 タンパク質であってよい。 本発明の可溶性 HM1.24抗原タ ンパク質は 、 より具体的には可溶性 HM1.24抗原タ ンパク質の生物学的活性を有 する限り、 配列番号 : 1 に示すァ ミ ノ酸配列において、 1 又は 2個 以上、 好ま しく は 1 又は 24個以下、 より好ま しく は 1 又は 12個以下 のァ ミ ノ酸残基が置換したァ ミ ノ酸を有していてよい。 又は、 配列番号 : 1 に示すア ミ ノ酸配列において、 1 又は 2個以 上、 好ま しく は 1又は 42個以下、 より好ま しく は 1 又は 1 7個以下の アミ ノ酸残基が欠失したア ミ ノ酸を有していてよい。 又は、 配列番 号 : 1 に示すア ミ ノ酸配列において、 1 又は 2個以上、 好ま しく は 1又は 50個以下、 より好ま し く は 1 又は 14個以下のア ミ ノ酸残基が 付加したア ミ ノ酸を有していてよい。 本発明に使用される可溶性 HM し 24抗原タ ンパク質はまた、 上記ア ミ ノ酸の置換、 欠失及び/ 又は 付加による修飾が同時になされていてもよい。
可溶性 HM 1. 24抗原タンパク質は、 配列番号 : 1 において 1 位のァ ミ ノ酸 A s n から 90位のァ ミ ノ酸 A r g までのア ミ ノ酸配列を有してい ればその生物学的活性を示すことが明らかになつている。 したがつ て、 本発明の可溶性 HM 1. 24抗原タンパク質は、 配列番号 : 1 におい て 1 位のア ミ ノ酸 A s n から 9 0位のアミ ノ酸 A r g までのア ミ ノ酸配 列を有するか、 あるいは 1 位のア ミ ノ酸 A s n から 9 0位のア ミ ノ酸 Ar までのァ ミ ノ酸配列に対する 1 又は複数個のァ ミ ノ酸残基の置 換、 欠失及び/又は付加により修飾されたァ ミ ノ酸配列を有する可 溶性 HM 1. 24抗原タ ンパク質であってよい。
可溶性 HM1. 24抗原タ ンパク質は、 その生物学的活性有する限り、 配列番号 : 1 において 9 0位のア ミ ノ酸 Ar g から 132 位のア ミ ノ酸 G i n までのァ ミ ノ酸配列を有するか、 あるいはこのァ ミ ノ酸配列に 対して 1又は複数個のア ミ ノ酸残基の置換、 欠失及び Z又は付加に より修飾されたア ミ ノ酸配列を有する可溶性 HM 1. 24抗原夕 ンパク質 であってよい。
配列番号 : 1 に示すア ミ ノ酸配列に対する 1 又は複数個のア ミ ノ 酸残基の置換、 欠失及び Z又は付加により修飾されたア ミ ノ酸配列 を有する可溶性 HM1. 24抗原タ ンパク質と して、 配列番号 : 3及び 4 に示されるァ ミ ノ酸配列を有する可溶性 HM1. 24抗原タ ンパク質が挙 げられる。
あるァ ミ ノ酸配列に対する 1 又は複数個のァ ミ ノ酸残基の置換、 欠失及び/又は付加により修飾されたア ミ ノ酸配列を有するタ ンパ ク質がその生物学的活性を維持することはすでに知られている (Ma rk, D. F. et al. , Proc. Natl. Acad. Sci. USA (1984) 81, 5662 -5666 、 Zoller, M. J. & Smith, M. Nucleic Acids Research (19 82) 10, 6487-6500 、 Wang, A. et al. , Science 224, 1431-1433 、 Dalbadie-McFarland, G. et al. , Proc. Natl. Acad. Sci. USA (1982) 79, 6409-6413 ) 。
本発明の可溶性 HM1.24抗原タンパク質は、 由来する種、 それらを 産生する宿主及び/又は精製方法によ り、 ア ミ ノ酸配列、 分子量、 等電点、 糖鎖付加の有無や糖鎖付加の位置、 糖鎖の構造、 リ ン酸化 状態及びノ又はジスルフ ィ ド結合の有無が異なる。 しかしながら、 本発明に好適に使用し得る限り、 いかなる構造を有するタ ンパク質 であってよい。 タンパク質が由来する種と してはヒ 卜が好ま しい。 本発明の可溶性 HM1.24抗原タ ンパク質をコ― ドする DNA と しては 、 配列番号 : 1 に示す塩基配列の塩基位置 1 位の塩基アデニンから 396 位の塩基グァニンからなる塩基配列が挙げられる。 また、 本発 明の可溶性 HM1.24抗原タ ンパク質をコー ドする DNA と しては配列番 号 : 1 に示す塩基配列を有する DNA であれば、 いかなる由来の DNA であってよい。 このような DNA と して、 例えばジエノ ミ ッ ク DNA 、 CDNA, 合成 DNA が挙げられる。 これらは、 種々の細胞、 組織又は臓 器あるいはヒ ト以外の種から得られた cDNAライブラ リ 一、 ジエノ ミ ッ クライブラ リ 一から得られた DNA であってよいし、 それらは巿販 の DNA ライブラ リ ーであってもよい。 これらライブラ リ ーに用いら れるベクタ一と しては、 プラス ミ ド、 バクテリオフ ァージ、 YAC ベ クタ一等いかなるものであってよい。 本発明の可溶性 HMl . 24抗原夕ンパク質をコ一 ドする DNA と しては また、 配列番号 : 1 に示す塩基配列に対しハイブリ ダィズし、 且つ 可溶性 HM1. 24抗原タンパク質の生物学的活性を有するポリぺプチ ド をコー ドする DNA であってもよい。 可溶性 HM1. 24抗原タ ンパク質を コー ドする DNA がハイブリ ダィズする条件と しては、 適度なス ト リ ン ジ ヱ ンシ一条件下においてハイブリ ダイズする DNA が挙げられる このようなハイブリ ダィズ条件と しては、 例えば低ス ト リ ンジェ ン シーな条件が挙げられる。 低ス ト リ ン ジ エ ン シーな条件と しては 、 例えば 4 2 °C、 5 X SSC 、 0. 1 %ドデシル硫酸ナ ト リ ウ ム、 50% ホ ルムア ミ ドにより与えられる洗浄条件である。 より好ま し く は、 高 ス ト リ ン ジ ヱ ン シ一な条件が挙げられる。 高ス ト リ ン ジ X ン シ一な 条件と しては、 例えば 60°C、 0. 1 X SSC 、 0. 1 %ドデシル硫酸ナ ト リ ゥムにより与えられる洗浄条件である。 あるタ ンパク質をコー ドす る塩基配列に対し、 適度な条件でハイブリ ダィズする DNA がコー ド するタンパク質がそのタ ンパク質と同じ生物学的活性を有すること はすでに知られている。
従って、 本発明の可溶性 HM1. 24抗原タ ンパク質は、 上記の 「ハイ ブリダィズする DNA 」 により コー ドされており、 可溶性 HM1. 24抗原 タンパク質の生物活性を有するタ ンパク質も包含する。
なお、 細胞膜上に発現するヒ ト HM1. 24抗原タ ンパク質のア ミ ノ酸 配列を配列番号 : 1 6 に示す。 配列番号 : 1 6 のア ミ ノ酸配列を有 するヒ ト タ ンパク質をコー ドする DNA を pUC ベクターの Xba l切断部 位間に保持するプラス ミ ド pRS38- pUC 19 を含有する大腸菌は Es cher i ch i a co l i DH5 a ( pRS38-pUC19 ) と命名され、 平成 5 ( 1 9 9 3 ) 年 1 0月 5 日付けで工業技術院生命工学工業技術研究所 (茨城県 つく ば巿東 1 丁目 1 番 3 号) に寄託番号 FERM BP- 4 4 3 4 と して、 ブダぺス ト条約に基づき国際寄託されている。
本発明の可溶性 HM1.24抗原タンパク質はまた、 可溶性 HM1.24抗原 タンパク質の生物学的活性を有する限り他のぺプチ ド又はポリぺプ チ ドと融合した上記タ ンパク質であってよい。 これら融合タ ンパク 質を作製する方法は、 すでに公知の手法を用いることができる。 夕 ンパク質との融合に付される他のペプチ ド又はポリペプチ ドと して は、 本発明に有効に使用される限りいかなるべプチ ド又はポリぺプ チ ドであってよい。 例えば、 ペプチ ドと しては、 FLAG (Hopp, T. Ρ . et al., BioTechnology (1988) 6, 1204-1210 ) 、 6 個の His ( ヒスチジ ン) 残基からなる 6 X His 、 10X His 、 イ ンフルエンザ凝 集素 (HA) 、 ヒ ト c- myc の断片、 VSV- GPの断片、 pl8HIVの断片、 T7 -tag, HSV-tag 、 E-tag 、 SV40T 抗原の断片、 lck tag 、 a-tubul i n の断片、 B-tag 、 Protein C の断片等、 すでに公知であるべプチ ドが使用される。
また例えば、 ポ リペプチ ドと しては、 GST (グルタチオン · S · ト ラ ンスフ ヱ ラーゼ) 、 HA、 ィムノ グロプリ ン定常領域、 b-ガラ ク トシダ一ゼ、 MBP (マル ト一ス結合蛋白質) 等が挙げられる。 これ らは市販されているものを用いることができる。
本発明のタ ンパク質をコー ドする DNA は、 以上に述べた DNA を巿 販のキッ トゃ公知の方法によって構築することができる。 例えば、 制限酵素による消化、 リ ンカーの付加、 開始コ ド ン (ATG ) 及び/ 又は終始コ ドン (ATT 、 TGA 又は TAG ) の挿入等により構築するこ とができる。
本発明のタンパク質の発現ベクターは、 本発明に好適に使用され る発現べクタ一であればいかなる発現べクターであってよい。 発現 ベクターと しては、 哺乳動物由来の発現ベクター、 例えば pEF 、 pC DM8 、 昆虫細胞由来の発現ベクター、 例えば pBacPAK8、 植物由来の 発現べクタ一、 例えば ρΜΗ 1、 pMH2、 動物ウ ィ ルス由来の発現べク タ 一、 例えば pHSV、 pMV 、 酵母由来の発現ベクター、 例えば pNV l l 、 枯草菌由来の発現べクタ一、 例えば pPL608、 pKTH50、 大腸菌由来の 発現ベクター、 例えば pGEX、 pGE EX. pMAL p2が挙げられる。
本発明のタ ンパク質の発現べクターには、 例えば可溶性 HM 1. 24抗 原タンパク質をコー ドする DNA をプロモーターの下流に連結し、 こ れを発現ベクターに導入することにより製造することができる。 プ 口モータ— /ェンハンサ—と しては、 哺乳動物由来のプロモーター
/ェ ンノヽンサ一、 例えば EF l - αプロモーター Zェ ンノヽンサ一、 ァ 一 ァクチンプロモーターノエンハンサー、 昆虫ゥィ ルス由来のプロモ 一ター Zェンハンサ一、 例えば多核体 (ポリヘ ド リ ン) ウィルスプ 口モーター Zェンハンサー、 植物由来のプロモータ一 Zェ ンノヽンサ ―、 例えばタノく'コモザィ ク ゥ ィ ルスプロモータ一 Zェンハンサー、 動物ゥィルス由来のプロモーター Zェンハンサ一、 例えば SV40プ口 モータ一 Zェ ンノヽンサ一、 ヒ ト CMV プロモーター/ェンハンサ一、 酵母由来のプ口モーター/ェンハ ンサー、 例えばアルコール脱水素 酵素プロモーター Zェンハンサ一、 大腸菌由来のプロモーター Zェ ンハンサー、 例えば La c プロモータ一/ェンハンサ一、 T r p プロモ 一夕一/ェンハンサー、 Ta c プロモーター/ェ ンノヽ ンサ一力く挙げら れる。
本発明のタンパク質の発現には、 発現に用いられる宿主に適した シグナル配列を付加して使用 してもよい。 シグナル配列と しては、 例えば分泌蛋白質のシグナル配列が挙げられる。 分泌蛋白質のシグ ナル配列と しては、 例えば哺乳動物由来分泌蛋白質のシグナル配列 、 例えばィムノ グ口ブリ ンのシグナル配列が挙げられる。 また分泌 蛋白質のシグナル配列と しては、 大腸菌由来分泌蛋白質のシグナル 配列、 例えば OmpA等のペリブラズム分泌シグナル配列が挙げられる このよ う に作製した発現ベクターは、 公知の方法により宿主に導 入することができる。 宿主への導入の方法と しては、 例えばエレク トロポレーシヨ ン、 リ ン酸カルシウム法、 リ ボソーム法が挙げられ る
本発明に使用されるタンパク質は、 上述のように遺伝子組換え技 術を用いて産生させた組換え夕 ンパク質と して得ることができる。 例えば、 組換えタ ンパク質は、 本明細書に記載された遺伝子の塩基 配列をそれらを発現する細胞、 組織、 又は臓器からクローニングし 、 適当なベク ターに組み込んで、 これを宿主に導入し産生させる。 本発明には、 この組換えタ ンパク質を用いることができる。
具^的には、 本発明に使用されるタ ンパク質を発現する細胞、 組 織、 又は臓器から、 その遺伝子をコー ドする m R N Aを単離する。 mRN Aの単離は、 公知の方法、 例えば、 グァニジ ン超遠心法(Chi rgwin, J. M. et al. , Biochemistry (1979) 18, 5294-5299) 、 A G P C法 (Chomczynski, P. and Sacchi, N. , Anal. B i ochem. (19 87) 162, 156-159) 等により全 R N Aを調製し、 mRNA Purif icatio n Kit (Pharmacia) 等を使用 して全 R N Aから mR N Aを精製する また、 Qui ckPrep mRNA Purification Kit (Pharmacia) を用いる ことにより mR N Aを直接調製することもできる。
得られた m R N Aから逆転写酵素を用いて遺伝子の c D N Aを合 成する。 c D NAの合成は、 AMV Reverse Transcri tase First-s trand cDNA Synthesis Kit (生化学工業) 等を用いて行う こと もで きる。 また、 c D N Aの合成及び増幅を行うには Marathon cDNA Am plification kit(CLONTECH製) 及びポリ メ ラーゼ連鎖反応 (polyme rase chain reaction ; P C R ) を用いた 5 ' — R A C E法(Frohm an, M. A. et al. , Proc. Natl. Acad. Scl. U. S.A. (1988) 85, 8 998-9002 ; Belyavsky, A. et al. , Nucleic Acids Res. (1989) 1 7, 2919-2932) を使用することができる。
得られた P C R産物から目的とする D N A断片を調製し、 ベクタ — D N Aと連結する。 さ らに、 これより組換えベク ターを作製し、 大腸菌等に導入してコ ロニーを選択して所望の組換えベク タ ーを調 製する。 目的とする D N Aの塩基配列を公知の方法、 例えば、 ジデ ォキシヌ ク レオチ ドチヱイ ンタ一 ミネ一ショ ン法により確認する。 目的とする D N Aが得られれば、 これを発現べクタ一へ組み込む。 より具体的には、 前記のように構築した D N Aは、 下記のように 発現させ、 タンパク質を取得することができる。 哺乳類細胞を使用 する場合、 常用される有用なプロモーター Zェンハ ンサ一、 発現さ れる遺伝子、 その 3'側下流にポリ A シグナルを機能的に結合させた DNA あるいはそれを含むベクターにより発現させることができる。 例えばプロモーター/ェンハンサ一と しては、 ヒ トサイ トメ ガロウ イ ノレス gij期フ ロモーター /ェ ン ノヽ ンサ一 (human cytomegalovirus immediate early promoter/enhancer ) を挙げるこ と力くできる。 また、 その他にタンパク質発現に使用できるプロモータ一/ェン ノヽ ンサ一 と して、 レ ト ロ ウ イ ノレス、 ポ リ オ一マウ イ ノレス、 アデノ ウ イ ノレス、 シ ミ ア ンウイノレス 40 (SV 40 ) 等のウイ ノレスプロモータ一 /ェンハ ンサーゃ ヒ ト ェロ ンゲー シ ヨ ンフ ァ ク タ 一 1 a (HEF1 a ) の哺乳類細胞由来のプロモーター Zェンハンサ一を用いればよい。 例えば、 SV 40 プロモーター Zェンハンサーを使用する場合、 Mu lliganらの方法 (Nature (1979) 277, 108) 、 また、 HEF1 プロモ —ター/ェ ンハ ンサーを使用する場合、 Mizushima らの方法 (Nucl eic Acids Res. (1990) 18, 5322) に従えば容易に実施することが できる。
大腸菌の場合、 常用される有用なプロモータ一、 タ ンパク質分泌 のためのシグナル配列、 発現させる遺伝子を機能的に結合させて発 現させることができる。 例えばプロモータ一と しては、 lacZプロモ 一ター、 araBプロモータ一を挙げることができる。 lacZプロモータ 一を使用する場合、 Wardらの方法 (Nature (1098) 341, 544-546; FASEB J. (1992) 6, 2422-2427) 、 araBプロモーターを使用する場 合、 Betterらの方法 (Science (1988) 240, 1041-1043 ) に従えば よい。
夕 ンパク質分泌のためのシグナル配列と しては、 大腸菌のペリプ ラズムに産生させる場合、 pelBシグナル配列 (Lei, S. P. et al J . Bacteriol. (1987) 169, 4379 ) を使用すればよい。
複製起源と しては、 SV 40 、 ポリオ一マウィ ルス、 アデノ ウ イノレ ス、 ゥシパピローマウィルス (BPV ) 等の由来のものを用いること ができる。 さ らに、 宿主細胞系で遺伝子コピー数増幅のため、 発現 ベクターは選択マ一カーと して、 ァ ミ ノ グリ コ シ ドホスホ トラ ンス フェラーゼ (APH ) 遺伝子、 チミ ジンキナーゼ (TK) 遺伝子、 大腸 菌キサンチ ングァニンホスホ リ ボシル トラ ンスフ エラーゼ ( Ecogp t ) 遺伝子、 ジヒ ドロ葉酸還元酵素 (dhfr) 遺伝子等を含むことがで きる o
本発明において、 タンパク質の製造のために、 任意の産生系を使 用することができる。 タンパク質製造のための産生系は、 in vitro 及び in vivo の産生系がある。 in v roの産生系と しては、 真核細 胞を使用する産生系や原核細胞を使用する産生系が挙げられる。 真核細胞を使用する場合、 動物細胞、 植物細胞、 真菌細胞を用い る産生系がある。 動物細胞と しては、 (1) 哺乳類細胞、 例えば CH0 (J. Exp. Med. (1995) 108, 945) 、 COS 、 ミ エローマ、 BHK (ba by hamster kidney ) 、 HeLa、 Vero、 (2) 両生類細胞、 例えばァフ リ カツメガエル卵母細胞 (Valle, et al. , Nature (1981) 291, 35 8-340 ) 、 あるいは(3) 昆虫細胞、 例えば sf9 、 sf21、 Tn5 が知ら れている。 CH0 細胞と しては、 特に DHFR遺伝子を欠損した CH0 細胞 である dhfr- CHO (Pro atl. Acad. Sci. USA (1980) 77, 4216-4 220 ) や CHO K-l (Proc. Natl. Acad. Sci. USA (1968) 60, 1275 ) を好適に使用することができる。
植物細胞と しては、 ニコチアナ ' タバクム (Nicotiana tabacum ) 由来の細胞が知られており、 これをカルス培養すればよい。 真菌 細胞と しては、 酵母、 例えばサッカロ ミ セス (Saccharomyces ) 属 、 伊 jんはサッ カ ロ ;; セス ' セレヒ シェ ( Saccharomyces cerev i s iae ) 、 糸状菌、 例えばァスペルギウス属 (Asperg lus ) 属、 例えば ァスペルギウス ' 二ガー (Aspergillus niger ) が知られている。 原核細胞を使用する場合、 細菌細胞を用いる産生系がある。 細菌 細胞と しては、 大腸菌 (E. coli ) 、 枯草菌が知られている。
これらの細胞を目的とする D N Aにより形質転換し、 形質転換さ れた細胞を in vitroで培養することによりタ ンパク質が得られる。 培養は、 公知の方法に従い行う。 例えば、 培養液と して、 DMEM、 ME M 、 RPM11640, 1MDMを使用することができる。 その際、 牛胎児血清 (FCS ) 等の血清捕液を併用することもできる し、 無血清培養して もよい。 培養時の PHは約 6〜 8であるのが好ま しい。 培養は通常約 3 0〜 4 0 °Cで約 1 5〜 2 0 0時間行い、 必要に応じて培地の交換 、 通気、 撹拌を加える。
一方、 in vivo の産生系と しては、 動物を使用する産生系や植物 を使用する産生系が挙げられる。 これらの動物又は植物に目的とす る D N Aを導入し、 動物又は植物の体内でタンパク質を産生させ、 回収する。
動物を使用する場合、 哺乳類動物、 昆虫を用いる産生系がある。 哺乳類動物と しては、 ャギ、 ブタ、 ヒッジ、 マウス、 ゥシを用い ることができる (Vicki Glaser, SPECTRUM Biotechnology Appl ica tions, 1993 ) 。 また、 哺乳類動物を用いる場合、 ト ラ ンスジヱニ ッ ク動物を用いることができる。
例えば、 目的とする D N Aをャギ /5カゼイ ンのような乳汁中に固 有に産生される蛋白質をコー ドする遺伝子の途中に挿入して融合遺 伝子と して調製する。 この D N Aが挿入された融合遺伝子を含む DN A 断片をャギの胚へ注入し、 この胚を雌のャギへ導入する。 胚を受 容したャギから生まれる トラ ンスジヱニッ クャギ又はその子孫が産 生する乳汁からタ ンパク質を得る。 トラ ンスジヱニッ クャギから産 生されるタ ンパク質を含む乳汁量を増加させるために、 適宜ホルモ ンを トラ ンスジエニッ クャギに使用してもよい。 (Ebert, . . et al. , Bio/Technology (1994) 12, 699-702 ) 。
また、 昆虫と しては、 例えばカイ コを用いることができる。 カイ コを用いる場合、 目的とする D N Aを挿入したバキュロウ ィルスを カイコに感染させ、 この力ィ コの体液より所望の夕 ンパク質を得る (Susumu, M. et al. , Nature (1985) 315, 592-594 ) 。
さ らに植物を使用する場合、 例えばタバコを用いることができる 。 タバコを用いる場合、 目的とする D N Aを植物発現用ベクター、 例えば ρΜΟΝ 530に揷入し、 このベクターをァグロバクテリ ゥム · ッ メ フ ァ シエンス ^Agrobacter ium tumef ac i ens ) のよ う なノく ク テ リ ァに導入する。 このバクテリアをタバコ、 例えばニコチアナ · タパ クム (Nicotiana tabacum ) に感染させ、 本タ ノ、'コの葉より所望の タンパク質を得る (Julian, K. - C. Ma et al., Eur. J. Immunol. (1994) 24, 131-138) 。
なお、 宿主への発現ベクターの導入方法と しては、 公知の方法、 例えばリ ン酸カルシウム法 (Virology (1973) 52, 456-467 ) ゃェ レク ト口ポレーシヨ ン法 (EMBO J. (1982) 1, 841-845 ) 等が用い られる。 また、 発現に使用する宿主のコ ドン使用頻度を考慮して、 より発現効率の高い配列を設計することができる (Grantham, R. e t al. , Nucleic Acids Research (1981) 9, r43-r74 ) 0
これらの動物又は植物に上記のように遺伝子を導入し、 動物又は 植物の体内でタンパク質を産生させ、 回収する。 前記のように発現 、 産生されたタ ンパク質は、 細胞内外、 宿主から分離し均一にまで 精製することができる。 本発明で使用されるタ ンパク質の分離、 精 製は通常のタ ンパク質で使用されている分離、 精製方法を使用すれ ばよ く 、 何ら限定されるものではない。
例えば、 ァフィ二ティ ーク ロマ トグラフ ィ 一等のク ロマ トグラフ ィ ーカラム、 フ ィ ルタ一、 限外濾過、 塩析、 透析、 SDS ポ リ アク リ ルア ミ ドゲル電気泳動、 等電点電気泳動等を適宜選択、 組み合わせ れば、 タンパク質を分離、 精製することができる (新生化学実験講 座 1 ( 1990) 東京化学同人) 。
クロマ 卜グラフィ 一と しては、 例えばァフィ二ティ ーク ロマ トグ ラフ ィ ー、 イオン交換ク ロマ ト グラ フ ィ ー、 疎水性ク ロマ ト グラ フ ィ 一、 ゲル濾過、 逆相クロマ トグラフィ ー、 吸着ク ロマ トグラフ ィ —%=力く挙げられる(Strategies for Protein Purification and Cha racterization : A Laboratory Course Manual. Ed Daniel R. Mar s ak et al. , Cold Spring Harbor Laboratory Press, 1996) 0 こ れらのクロマ トグラフ ィ 一は H P L C、 F P L C等の液相ク ロマ ト グラフィ一を用いて行う ことができる。
タンパク質は、 公知の方法を用いて濃度を測定することができる 。 例えば、 吸光度の測定又は Bradford法を用いればよい。
本発明は、 可溶性 HM1.24抗原夕ンパク質と被験試料中に含まれる 抗 HM1.24抗体とを反応させて、 可溶性 HM1.24抗原タ ンパク質に結合 した抗 HM1.24抗体を検出又は測定する工程を含む、 抗 HM1.24抗体の 免疫化学的測定方法 ; 及び
抗 HM1. 24抗体と被験試料中に含まれる可溶性 HM1. 24抗原タ ンパク 質とを反応させて、 抗 HM1. 24抗体に結合した可溶性 HM1. 24抗原夕 ン パク質を検出又は測定する工程を含む、 可溶性 HM1. 24抗原タ ンパク 質の免疫化学的測定方法に関する。
本発明において提供される免疫化学的測定方法は、 i n V roのァ ッセィ系と して行われる。
i n v i t ro のアツセィ系は、 非細胞系において行われる。 具体的 には可溶性 HM1. 24抗原タ ンパク質を支持体に結合させ、 このタ ンパ ク質に抗 HM1. 24抗体を含む被験試料を加え、 イ ンキュベー トをした 後洗浄して支持体に結合した可溶性 HM1. 24抗原タ ンパク質に対する 抗 HM1. 24抗体の結合を検出又は測定すればよい。 又は、 具体的には 抗 HM1. 24抗体を支持体に結合させ、 このタ ンパク質に可溶性 HM1. 24 抗原タ ンパク質を含む被験試料を加え、 イ ンキュベー トをした後洗 浄して支持体に結合した抗 HM1. 24抗体に対する可溶性 HM1. 24抗原タ ンパク質の結合を検出又は測定すればよい。
可溶性 HM1. 24抗原タンパク質又は抗 HM1. 24抗体は、 それらを固有 に発現する細胞、 それらをコー ドする DNA を導入した細胞、 それら をコー ドする DNA を導入した動物又は植物から産生されるタ ンパク 質を、 精製した状態であるいは粗精製の状態で使用することができ 精製された又は粗精製された可溶性 HM1. 24抗原タ ンパク質又は抗 HM1. 24抗体のいずれか一方のタンパク質を支持体に結合させる。 タ ンパク質を支持体に結合させる際に標準的な方法でタ ンパク質を支 持体に固相化することができる。 タ ンパク質を結合させる支持体と しては、 例えば不溶性の多糖類、 例えばァガロース、 デキス ト ラ ン 、 セルロース、 合成樹脂、 例えばポ リ スチ レン、 ポ リ アク リ ルア ミ ド、 シ リ コ ン等が挙げられる。
より具体的にはそれらを原料と して製造される市販のビーズ、 プ レー トが用いられる。 ビーズの場合、 これらが充塡されたカラム等 を用いてもよい。 プレー トの場合、 マルチウヱルプレー ト (96穴マ ルチウヱルプレー ト等) やバイオセンサーチップが挙げられる。 タンパク質と支持体との結合は、 化学結合、 物理的な吸着等、 通 常用いられる方法により結合すればよい。 また、 タ ンパク質を特異 的に認識する抗体を上述の方法により予め支持体に結合せしめ、 こ の抗体とタ ンパク質とを結合させることにより結合することもでき る。 さ らに、 アビジン Zピオチンを介して結合させることができる 可溶性 HM 1. 24抗原タンパク質と抗 HM 1. 24抗体の結合は、 通常緩衝 液中で行われる。 緩衝液と しては、 例えばリ ン酸緩衝液、 Tr i s緩衝 液等が使用される。 また、 イ ンキュベー トの条件と しては、 すでに よく用いられている条件、 例えば 4 °C〜室温にて 1 時間〜 2 4時間 のイ ンキュベーシ ョ ンが行われる。 イ ンキュベー ト後の洗浄は、 可 溶性 HM1. 24抗原タンパク質と抗 HM1. 24抗体との結合を妨げないもの であれば何でもよく、 例えば界面活性剤を含む緩衝液が使用される 。 界面活性剤と しては、 例えば 0. 05 we en 20 が使用される。
本発明において測定される可溶性 HM 1. 24抗原夕 ンパク質又は抗 HM 1. 24抗体を含む被験試料と しては、 ヒ 卜体液 (血液、 血清、 尿、 関 節液等) 、 細胞の培養上清、 動物の分泌物 (乳等) 、 医薬製剤等を あげることができる。
これらの被験試料に含まれる可溶性 HM 1. 24抗原タ ンパク質又は抗 HM 1. 24抗体に対する抗 HM1. 24抗体又は可溶性 HM 1. 24抗原タ ンパク質 の結合を検出又は測定する際、 適切な条件下でィ ンキュベ一 ト及び 洗浄することにより、 特異的な結合と非特異的な結合を分離するこ とができる。 そして、 可溶性 HM1. 24抗原タ ンパク質と抗 HM1. 24抗体 との結合状態を評価すればよい。
本発明の免疫化学的測定方法において、 被験試料をタ ンパク質に 接触させる群と共にコ ン トロール群を設置してもよい。 コ ン ト口一 ル群と しては、 被験試料を含まない陰性コン トロール群又は精製さ れた可溶性 HM1. 24抗原タンパク質又は抗 HM1. 24抗体の標品を含む陽 性コン ト口一ル群ぁるいはその両群をおく ことができる。
本発明の免疫化学的測定方法により、 結合したタ ンパク質を検出 することができる。 又は結合したタンパク質を定量的に測定するこ ともできる。 これらの場合、 被験試料を含まない陰性コ ン ト ロール 群で得られた結果、 被験試料を含む群で得られた結果及び/又は精 製された可溶性 HM1. 24抗原タ ンパク質又は抗 HM1. 24抗体の標品を含 む陽性コ ン トロール群で得られた結果を比較することにより、 可溶 性 HM1. 24抗原タンパク質と抗 HM1. 24抗体との結合を検出することが できる。
また、 それらの検出の結果を数値と して得、 それらの数値を比較 することにより、 被験試料に含まれる可溶性 HM1. 24抗原タ ンパク質 又は抗 HM1. 24抗体を定量的に測定することもできる。 定量的に測定 する場合、 被験試料を含まない陰性コン トロール群で得られた数値 と可溶性 HM1. 24抗原タンパク質又は抗 HM1. 24抗体を含む被験試料を 適用した群で得られた数値を比較することにより、 可溶性 HM1. 24抗 原タンパク質と抗 HM1. 24抗体との結合量を定量することができる。 被験試料中に可溶性 HM1. 24抗原タ ンパク質又は抗 HM1. 24抗体が含ま れていれば、 結合したタンパク質が存在することにより可溶性 HM1. 24抗原タ ンパク質又は抗 HM1. 24抗体を検出又は測定することができ る。
また、 定量的に測定する場合、 可溶性 HM1. 24抗原タ ンパク質又は 抗 HM1.24抗体を既知量含む陽性コン トロール群で得られた数値によ り作成された標準曲線を元に定量することができる。
本発明の免疫化学的測定方法において、 被験試料中の可溶性 HM1. 24抗原タンパク質又は抗 HM1.24抗体を検出又は測定する手段と して 表面プラズモン共鳴現象を利用したバイオセンサ一を使用すること ができる。 表面ブラズモン共鳴現象を利用したバイオセンサーはタ ンパク質一タ ンパク質間の相互作用を微量のタ ンパク質を用いてか つ標識することなく、 表面プラズモン共鳴シグナルと してリ アルタ ィ ムに観察することが可能である (例えば BIAcore ; Pharmacia 製 ) 。 したがって、 BIAcore 等のバイオセンサ一を用いることにより 可溶性 HM1.24抗原夕 ンパク質と抗 HM1.24抗体との結合を検出又は測 定することが可能である。
具体的には、 可溶性 HM1.24抗原タンパク質又は抗 HM1.24抗体を固 定化したセンサーチップに、 抗 HM1.24抗体又は可溶性 HM1.24抗原タ ンパク質を含む被験試料を接触させ、 可溶性 HM1.24抗原タ ンパク質 又は抗 HM1.24抗体に結合する抗 HM1.24抗体又は可溶性 HM1.24抗原タ ンパク質を共鳴シグナルの変化と して検出又は測定することができ る。
より具体的には、 以下のように行えばよい。 初めにセンサ一チッ プ CM5 (Biosensor 社) を活性化して可溶性 HM1.24抗原タ ンパク質 又は抗 HM1.24抗体をセンサーチップ上に固定化する。 すなわち、 ED C I NHS 水溶液 (200mM EDC (N-ethyl-N' - (3-d i methyl ami nopropy 0 carbonate hydrochloride) , 50mM NHS (N-hydroxysuccinimide ) ) によ りセンサーチップを活性化した後、 HBS バッ フ ァ一 (lOmM HBPES pH7.4, 150m NaCl, 3.4m MEDTA, 0.05¾Tween20) によりセ ンサーチップを洗浄する。
次に HBSバッフ ァーに溶解した適量の抗 HM1.24抗体又は可溶性 HM 1. 24抗原タ ンパク質を含む被験試料をセンサーチップに接触させ、 固定化する。 HBSバッファ一によりセンサーチップを洗浄後、 エタ ノ 一ノレァ ミ ン溶液 ( 1 e thano l am i ne hydroch l or i de, pH8. 5) によ りセンサ一チップ上の残存活性基をプロ ッ クする。 再び HBSバッフ ァ一によりセンサーチップを洗浄し結合評価に用いる。
次に HBS バッフ ァーに溶解した適量の抗 HM1. 24抗体又は可溶性 HM 1. 24抗原タ ンパク質を含む被験試料を注入する。 このときにセンサ ーチップに固定化された可溶性 HM1. 24抗原タ ンパク質又は抗 HM1. 24 抗体に結合した被験試料中の抗 HM1. 24抗体又は可溶性 HM1. 24抗原夕 ンパク質の量は共鳴シグナル値の増加と して観察される。
さ らに、 また被験試料を含む群と共に、 コ ン ト ロール群を設置し て . „、い。 コ ン ト ロール群と しては、 被験試料を含まない陰性コ ン トロール群、 既知量の可溶性 HM1. 24抗原タンパク質又は抗 HM1. 24抗 体を含む陽性コ ン トロール群あるいはその両群をおく ことができる 。 結合したタンパク質は共鳴シグナル値の変化量と して定量的に測 定することができる。 この場合、 被験試料を含まない陰性コ ン ト口 ール群で得られた結果、 被験試料を含む群で得られた結果及び/又 は既知量の可溶性 HM1. 24抗原夕 ンパク質又は抗 HM1. 24抗体を含む陽 性コ ン トロール群で得られた結果を比較することにより、 被験試料 中の目的とするタンパク質を検出又は測定することができる。
本発明の免疫化学的測定方法において、 結合した被験試料中のタ ンパク質を検出又は測定する手段と して、 可溶性 HM1. 24抗原タ ンパ ク質又は抗 HM1. 24抗体を特異的に認識する一次抗体を用いることが できる。
例えば、 可溶性 HM1. 24抗原タ ンパク質又は抗 HM1. 24抗体に被験試 料を接触させ、 洗浄して結合しているタ ンパク質をそのタンパク質 を特異的に認識する一次抗体により検出又は測定する。 すなわち、 好ま しく は支持体に結合させた一方のタ ンパク質にもう一方のタ ン パク質を含む被験試料とを接触させる。 イ ンキュベー ト した後、 洗 浄して、 結合しているタンパク質をそのタ ンパク質を特異的に認識 する一次抗体により検出又は測定すればよい。 一次抗体は、 好ま し く は標識物質により標識されている。
可溶性 HM1. 24抗原タ ンパク質は、 他のペプチ ド又はポリペプチ ド と融合していてもよい。 したがって、 被験試料中に含まれる可溶性 HM1. 24抗原タンパク質を検出するために抗 HM1. 24抗体を使用するこ とができる し、 可溶性 HM1. 24抗原タンパク質と融合した他のぺプチ ド又はポ リペプチ ドに対する抗体を使用するこ とができる。 また、 被験試料中に含まれる抗 HM1. 24抗体を検出するために抗 HM1. 24抗体 を特異的に認識する抗体を使用するこ とができ る。 抗 HM1. 24抗体が マウス抗体である場合、 抗 HM1. 24抗体を特異的に認識する抗体と し て抗マウスィムノグロプリ ン抗体を使用することができる。 また、 抗 HM1. 24抗体がキメラ抗体又はヒ ト型化抗体である場合、 抗 HM1. 24 抗体を特異的に認識する抗体と して抗ヒ トイムノ グロブリ ン抗体を 使用することができる。
タ ンパク質は、 通常知られる方法により標識されることができる 。 標識物質と しては、 例えば放射性同位元素、 酵素、 蛍光物質、 ビ ォチン Zア ビジ ン等が挙げられる。 これらの標識物質は市販の標識 物質を使用することができる。 放射性同位元素しては、 例えば3 2 P 、 3 3 P 、 1 3 Ί 、 ' 2 5 1 、 3 H 、 1 4 C 、 3 5 S が挙げられる。 酵素と しては、 例えばアルカ リ フ ォスフ ァ ターゼ、 ホースラディ ッ シュパ 一才キシダ一ゼ、 3 - ガラク ト シダーゼ、 β - グルコ シダ一ゼ等が 挙げられる。 蛍光物質と しては、 例えばフロォロセイ ンイ ソチオシ ァネー ト (F I TC) 、 ローダミ ンが挙げられる。 これらは市販のもの を入手することができ、 公知の方法によって標識される。 具体的には、 次のようにして行う ことができる。 すなわち、 可溶 性 HM1. 24抗原タンパク質又は抗 HM1. 24抗体を含む溶液をプレー トに 加え、 一夜放置してプレー トに固定する。 可溶性 HM1. 24抗原タ ンパ ク質又は抗 HM1. 24抗体を固定する際、 各々に対する抗体をあらかじ めプレー トに固定し、 固定した抗体に可溶性 HM1. 24抗原タ ンパク質 又は抗 HM 1. 24抗体を結合させてもよい。 プレー トを洗浄の後、 タン パク質の非特異的な結合を防ぐため例えば BSA でブロ ッキングする 。 再び洗浄し、 抗 HM1. 24抗体又は可溶性 HM1. 24抗原タ ンパク質を含 む被験試料をプレー 卜に加える。 同時に被験試料を含まない群 (陰 性コ ン ト口—ル) 及び/又は既知濃度の抗 HM1. 24抗体又は可溶性 HM 1. 24抗原夕ンパク質を加えた群 (陽性コ ン ト ロール) を置き、 これ らをィ ンキュベー 卜する。
イ ンキュベー トの後、 洗浄し被験試料に対する抗体を加える。 適 度なィ ンキュベーショ ンの後、 プレー トを洗浄しそのタンパク質を 特異的に認識する一次抗体によりタンパク質を検出又は測定する。 検出又は測定には、 放射性同位元素の場合液体シ ンチ レーシ ヨ ンに より検出又は測定する。 酵素の場合その基質を加え、 基質の酵素的 変化、 例えば発色を吸光度計により検出又は測定する。 蛍光物質の 場合蛍光光度計より検出又は測定する。 これらの結果を、 コ ン ト 口 ール群で得られた数値を比較すれば阻害物質を含む被験試料を決定 することができる。
本発明の免疫化学的測定方法において、 被験試料中の可溶性 HM1. 24抗原タンパク質又は抗 HM1. 24抗体を検出又は測定する手段と して 、 可溶性 HM1. 24抗原タンパク質又は抗 HM1 , 24抗体を特異的に認識す る一次抗体及び一次抗体を特異的に認識する二次抗体を用いること ができる。
例えば、 前述の免疫化学的測定方法において、 可溶性 HM1. 24抗原 タンパク質又は抗 HM1. 24抗体に被験試料を接触させ、 イ ンキュベー ト した後、 洗浄して結合しているタ ンパク質をそのタンパク質を特 異的に認識する一次抗体及び一次抗体を特異的に認識する二次抗体 により検出又は測定する。 すなわち、 具体的には可溶性 HM1. 24抗原 タ ンパク質又は抗 HM1. 24抗体を支持体に固定し、 被験試料を接触さ せる。 イ ンキュベー ト した後、 洗浄して、 結合しているタ ンパク質 をそのタンパク質を特異的に認識する一次抗体及び一次抗体を特異 的に認識する二次抗体により検出又は測定すればよい。 二次抗体は 、 好ま しく は標識物質により標識されている。 抗体は、 通常知られ る上述の方法により標識されることができる。
具体的には、 次のようにして行う ことができる。 すなわち、 可溶 性 HM1. 24抗原夕ンパク質又は抗 HM1. 24抗体を含む溶液をプレー トに 加え、 一夜放置してプレー トに固定する。 プレー トに固定する際、 あらかじめ可溶性 HM1. 24抗原タ ンパク質又は抗 HM1. 24抗体に対する 抗体をプレー トに固定し、 固定された抗体に可溶性 HM1. 24抗原タ ン パク質又は抗 HM1. 24抗体を結合させてもよい。 プレー トを洗浄の後 、 タンパク質の非特異的な結合を防ぐため例えば BSA でブロ ッキン グする。 再び洗浄し、 被験試料をプレー トに加える。 同時に被験試 料を含まない群 (陰性コン トロール) 及び及び Z又は既知濃度の抗 HM1. 24抗体又は可溶性 HM1. 24抗原タ ンパク質を加えた群 (陽性コ ン トロール) を置き、 これらをイ ンキュベー トする。
イ ンキュベー トの後、 洗浄し被験試料に含まれる抗 HM1. 24抗体又 は可溶性 HM1. 24抗原タ ンパク質に対する一次抗体を加える。 適度な イ ンキュベーシ ョ ンの後、 プレー トを洗浄し、 次いで一次抗体を特 異的に認識する二次抗体を加える。 適度なイ ンキュべ一ショ ンの後 、 洗浄して、 その被験試料中に含まれるタ ンパク質を特異的に認識 する一次抗体を特異的に認識する二次抗体により タ ンパク質を検出 又は測定する。 検出又は測定には、 放射性同位元素の場合液体シ ン チレーシヨ ンにより検出又は測定する。 酵素の場合その基質を加え 、 基質の酵素的変化、 例えば発色を吸光度計により検出又は測定す る。 蛍光物質の場合蛍光光度計により検出又は測定する。
これらの結果を、 コ ン トロール群で得られた数値を比較すれば阻 害物質を含む被験試料を決定することができる。 可溶性 HM1. 24抗原 タンパク質は、 他のペプチ ド又はポリべプチ ドと融合していてもよ い。 したがって、 被験試料中に含まれる可溶性 HM1. 24抗原タ ンパク 質を検出するための一時抗体と して抗 HM1. 24抗体を使用することが できる し、 可溶性 HM1. 24抗原タ ンパク質と融合した他のぺプチ ド又 はポリペプチ ドに対する抗体を使用することもできる。 また、 被験 試料中に含まれる抗 HM1. 24抗体を検出するために抗 HM1. 24抗体を特 異的に認識する抗体を使用することができる。
抗 HM1. 24抗体がマウス抗体である場合.、 抗 HM1. 24抗体を特異的に 認識する一次抗体と して抗マウスィムノ グロプリ ン抗体を使用する ことができる。 また、 抗 HM1. 24抗体がキヌ ラ抗体又はヒ ト型化抗体 である場合、 抗 HM1. 24抗体を特異的に認識する一次抗体と して抗ヒ トイムノ グロブリ ン抗体を使用することができる。 また、 二次抗体 と して、 一次抗体を特異的に認識する抗体を適宜選択することがで きる。 例えば、 一次抗体がヒッジ抗体である場合、 抗ヒッジィムノ グロブリ ン抗体を使用することができる。 また、 一次抗体がゥサギ 抗体である場合、 抗ゥサギィ ムノ グロプリ ン抗体を使用することが できる。
より詳しく は、 本発明は特に好ま しく は EL 1 SA ( En zyme - l i nke d I mmunos orben t As say ) により次のようにして行う こと力くできる。 すなわち、 可溶性 HM1. 24抗原タ ンパク質と融合された HA (ィ ンフル ェンザ凝集素) に対する抗体を固相化バッ フ ァー (0. 1 M NaHC03 、 0.02¾ NaN3 、 pH9.6 ) により希釈する。 96穴のィムノプレー ト (Nunc製) の各穴に希釈したこの水溶液を適量加え、 4 °Cでー晚ィ ンキュペー ト して固相化する。
洗浄バッフ ァー (PBS に 0.05¾ Tween20 となるよう調製したもの ) で 3 回各穴を洗浄後、 PBSに溶解した 5 BSA (SIGMA 製) 溶液 20 0 n 1 を加え、 室温で 2 時間ブロ ッキングする。
次に洗浄バッ フ ァーで 3 回各穴を洗浄し、 希釈バッ フ ァー (1% B SA、 0.5% Tween20、 PBS ) で希釈した HAと融合した可溶性 HM1.24抗 原タ ンパク質を加え 4 °Cで一晩イ ンキュベー ト して抗 HA抗体と HAと 融合した可溶性 HM1.24抗原タ ンパク質を結合させる。 洗浄バッ フ ァ 一で 3回洗浄した後、 ヒ ト IgG 抗体定常領域 (C 領域) を有するキ メ ラ抗 HML 24抗体を含む被験試料を一定量加え、 室温で 1 時間ィ ン キュベー 卜する。
洗浄バッファーで各穴を 3 回洗浄し、 希釈バッフ ァーで 5000倍に 希釈したアル力 リ フ ォスフ ァターゼ標識ャギ抗ヒ ト IgG 抗体 (1BI 製) を 100 1 各穴に加え、 室温で 1 時間イ ンキュベー トする。 洗 浄バッ フ ァーで 5 回各穴を洗浄し、 発色溶液 (基質バッ フ ァ一 ; 50 mM NaHCOa 、 10m MgCl2 、 pH9.8 に 1 mg/mlの濃度に溶解した Si ma 104 ) を 100 z 1 各穴に加え、 室温で反応させた後に 405 n m での吸光度をマイ クロプレー ト リ ーダー (Mode 13550 、 BI0-RAD 製) を用いて測定する。 これらの結果を陰性コ ン ト ロール群及び Z 又は陽性コ ン ト ロール群で得られた数値を比較することにより、 キ メ ラ抗 HM1.24抗体を検出又は測定することができる。 また、 同様の 方法により、 可溶性 HM1.24抗原夕ンパク質を検出又は測定すること も可能である。
本発明のスク リーニング方法は、 High Throughput Screening ( HTS ) にも使用することができる。 具体的には、 プロ ッキングまで を手作業で行い、 その後の反応はロボッ 卜によ って行う ことでォー トメーシヨ ンィ匕し、 High Throughput screenin を実現することが できる。
すなわち、 HAに対する抗体を固相化バッ フ ァ一 (0.1M NaHC03 、 0.02 % NaN3 、 pH9.6 ) によ り希釈する。 96穴のィ ムノ プレー ト ( Nunc製) の各穴に希釈したこの水溶液を適量加え 4 °Cでー晚ィ ンキ ュベー ト して固相化する。
洗浄バッフ ァー (PBS に 0.05¾ Tween20 となるよう調製したもの ) で 3 回各穴を洗浄後、 PBSに溶解した 5% BSA (SIGMA 製) 溶液 20 0 1 を加え、 室温で 2 時間ブロ ッキングする。 次に洗浄バッフ ァ 一で 3 回各穴を洗浄し、 希釈バッ フ ァー (1% BSA、 0.5% Tween20、 PBS ) で希釈した HAと融合した可溶性 HMl.24抗原タ ンパク質を加え 4 °Cでー晚ィ ンキュベー ト して抗 HA抗体と HAと融合した可溶性 HM1. 24抗原タンパク質を結合させる。
次いで、 例えば Biomek2000 HTS sys tem(Beckman 製) にこのィム ノプレー トをセッ ト して、 キメ ラ抗 HM1.24抗体を含む被験試料、 キ メ ラ抗 HM1.24抗体に対する一次抗体及び一次抗体に対する二次抗体 を添加するようにシステムのコ ン ト ロールプロ グラ ムを実行する。
この際、 分注機と しては Biomek 2000 分注機(Beckman製) あるい は Multipipette96穴同時分注器(Sagian 製) を用いることでィ ムノ プレー ト各穴への溶液の分注や溶液の除去を行う ことができる。 ま た、 ィムノプレー トの各穴の洗浄には EL404 マイ ク ロプレー トウォ ッ シャ一(Bio Tek社) を用いることができる。 また、 吸光度の測定 には SPECTRAmax250 プレー ト リーダー(Mo 1 ecu 1 ar Devices製) を用 いることができる。
プログラムは以下の操作を行うよう設定する。 すなわち洗浄バッ フ ァーで 3 回各穴を洗浄し、 被験試料と希釈バッ フ ァー (1% BSA、 0.5¾ Tween20、 PBS ) で希釈したキメ ラ抗 HMl.24抗体を含む被験試 料を一定量加える。 同時に被験試料を含まない群 (陰性コ ン トロー ル) 及び既知濃度のキメラ抗 HM1.24抗体を加えた群 (陽性コ ン ト口 ール) を置き、 これらを室温で 1 時間ィ ンキュベ一 卜する。 洗浄バ ッフ ァーで各穴を 3 回洗浄し、 希釈バッフ ァ一で 5000倍に希釈した ゥサギ抗ヒ ト IgG 抗血清 (New England Blolabs 製) を 100 1 各 穴に加え、 室温で 1 時間イ ンキュベー トする。 洗浄バッ フ ァ一で各 穴を 3 回洗浄し、 希釈バッフ ァーで 5000 倍に希釈したアル力 リ フ ォスフ ァターゼ標識ャギ抗ゥサギ IgG 抗体 (TAG0製) を 100 1 各 穴に加え、 室温で 1 時間ィ ンキュベー トする。
洗浄バッ フ ァーで 5 回各穴を洗浄し、 発色溶液 (基質バッ フ ァー ; 50 mM NaHC03 、 10 mM gCl 2 、 pH9.8 に lmg/ml の濃度に溶解 した p-ニ トロフ エニルフ ォスフヱー ト (Sigma 製) ) を 100〃 1 各 穴に加え、 室温で反応させた後に 405 nm での吸光度をマイ ク ロプ レー 卜 リーダー、 Biomekプレー ト リ一ダ一 (Beckman I Molecular D evices製) を用いて測定する。 これらの結果をコ ン ト ロール群で得 られた数値と比較することにより、 被験試料に含まれているキメ ラ 抗 HM1.24抗体を検出又は測定することができる。 また、 同様の方法 により、 可溶性 HM1.24抗原タ ンパク質を検出又は測定することも可 能である。
本発明により提供される免疫化学的測定方法は、 可溶性 HM1.24抗 原タンパク質又は抗 HM1.24抗体を 500pg/mlの濃度まで測定すること が可能である。
本発明に使用される抗体は、 市販の抗体や市販のキッ 卜に含まれ る抗体を用いることもできる し、 公知の手段を用いてモノ クローナ ル抗体又はポリ クローナル抗体と して得ることができる。
モノ クローナル抗体は、 所望の感作抗原を使用 して、 これを通常 の免疫方法にしたがって免疫し、 得られる免疫細胞を通常の細胞融 合法によつて公知の親細胞と融合させ、 通常のスク リ ーニング法に より、 モノ クローナル抗体産生細胞をスク リーニングすることによ つて作製できる。
具体的には、 モノ クローナル抗体又はポリ ク ローナル抗体を作製 するには次のようにすればよい。
例えば、 抗体取得の感作抗原は、 その由来となる動物種に制限さ れないが、 実際に本発明で使用するべプチ ド又はポリべプチ ドの由 来となる哺乳動物、 例えばヒ ト、 マウス又はラ ッ ト由来のものが好 ま しい。 これらのうち、 特にヒ ト由来の感作抗原が好ま しい。 例え ば、 ヒ ト可溶性 HM 1 . 24抗原タンパク質を感作抗原と して使用する場 合、 それらの塩基配列及びア ミ ノ酸配列は本明細書に開示される遺 伝子配列を用いて得ることができる。 また、 可溶性 HM 1 . 24抗原タ ン パク質との融合に付される他のぺプチ ドゃポリべプチ ドを感作抗原 と して用いる場合、 それらのペプチ ドやポリペプチ ドを化学的に合 成するか、 遺伝子工学的手法により得ることができる。
感作抗原と して使用されるタンパク質、 ペプチ ド又はポリべプチ ドは、 その全長を使用してもよいし、 またその断片も用いることが できる。 断片と しては、 例えば C 末端断片や N 末端断片が挙げられ る。 あるいは、 感作抗原と して使用されるタンパク質、 ペプチ ド又 はポリペプチ ドを発現する細胞を感作抗原と して使用することもで きる。
感作抗原で免疫される哺乳動物と しては、 特に限定されるもので はないが、 細胞融合に使用する親細胞との適合性を考慮して選択す るのが好ま しく、 一般的にはげつ歯目、 ゥサギ目、 霊長目の動物が 使用される。
げっ歯目の動物と しては、 例えば、 マウス、 ラ ッ ト、 ハムスター 等が使用される。 ゥサギ目の動物と しては、 例えば、 ゥサギが使用 される。 霊長目の動物と しては、 例えばサルが使用される。 サルと しては、 狭鼻下目のサル (旧世界ザル) 、 例えば、 力二クイザル、 ァカゲザル、 マン ト ヒ ヒ、 チンパンジー等が使用される。
感作抗原を動物に免疫するには、 公知の方法にしたがって行われ る。 例えば、 一般的方法と して、 感作抗原を哺乳動物の腹腔内又は
、 皮下に注射することにより行われる。 具体的には、 感作抗原を P
B S (Phosphate-Buffered Saline) や生理食塩水等で適当量に希釈
、 懸濁したものを所望により通常のアジュバン ト、 例えば、 フロイ ン ト完全ァジュバン トを適量混合し、 乳化後、 哺乳動物に 4〜 2 1 日毎に数回投与するのが好ま しい。 また、 感作抗原免疫時に適当な 担体を使用することができる。 このように免疫し、 血清中に所望の 抗体レベルが上昇するのを常法により確認する。
ここで、 ポリ クローナル抗体を得るには、 血清中の所望の抗体レ ベルが上昇したことを確認した後、 抗原を感作した哺乳動物の血液 を取り出す。 この血液から公知の方法により血清を分離する。 ポリ クローナル抗体と してポリ クローナル抗体を含む血清を使用 しても よいし、 必要に応じこの血清からポリ ク ローナル抗体を含む画分を さ らに単離してもよい。
モノ クローナル抗体を得るには、 上記抗原を感作した哺乳動物の 血清中に所望の抗体レベルが上昇するのを確認した後に、 哺乳動物 から免疫細胞を取り出し、 細胞融合に付せばよい。 この際、 細胞融 合に使用される好ま しい免疫細胞と して、 特に脾細胞が挙げられる
前記免疫細胞と融合される他方の親細胞と しての哺乳動物の ミ エ ローマ細胞と しては、 既に公知の種々の細胞株、 例えば、 P3 ( P 3 X 6 3 A g 8. 6 5 3 )(Kearney, J. F. et al., J. Immunol. (19 79) 123, 1548-1550) 、 P 3 x 6 3 A g 8. U 1 (Yelton, D. E. et al. , Current Topics in Microbiology and Immunology (1978)
81, 1-7) 、 N S - 1 (Kohler, G. and Mi 1 stein, C., Eur. J. Im munol. (1976) 6, 511-519) 、 M P C— 1 1 ( argulies, D. H. et al. , Cell (1976) 8, 405-415) 、 S P 2 / 0 (Shulman, M. et a 1., Nature (1978) 276, 269-270) 、 F 0 (de St. Groth, S. F. and Scheidegger, D. , J. Immunol. Methods (1980) 35, 1-21) 、 S 1 9 4 (Trowbridge, I. S. , J. Exp. Med. (1978) 148, 313-323 ) 、 R 2 1 0 (Galfre, G. et al. , Nature (1979) 277, 131-133) 等が好適に使用される。
前記免疫細胞と ミエローマ細胞の細胞融合は基本的には公知の方 、 例えば . ミルスティ ンらの方法(Galfre, G. and Milstein, C. . suiods Enzymol. (1981) 73, 3-46) 等に準じて行う ことができ る。
より具体的には、 前記細胞融合は例えば、 細胞融合促進剤の存在 下に通常の栄養培養液中で実施される。 融合促進剤と しては例えば 、 ポ リ エチ レングリ コール ( P E G) 、 センダイ ウ ィ ルス ( H V J ) 等が使用され、 更に所望により融合効率を高めるためにジメ チル スルホキシ ド等の補助剤を添加使用することもできる。
免疫細胞と ミ エローマ細胞との使用割合は、 例えば、 ミ エローマ 細胞に対して免疫細胞を 1 ~ 1 0倍とするのが好ま しい。 前記細胞 融合に用いる培養液と しては、 例えば、 前記ミ エローマ細胞株の増 殖に好適な R P M I 1 6 4 0培養液、 ME M培養液、 その他、 この 種の細胞培養に用いられる通常の培養液が使用可能であり、 さ らに 、 牛胎児血清 ( F C S ) 等の血清捕液を併用すること もできる。 細胞融合は、 前記免疫細胞と ミエローマ細胞との所定量を前記培 養液中でよく混合し、 予め、 3 7 °C程度に加温した P E G溶液、 例 えば、 平均分子量 1 0 0 0〜 6 0 0 0程度の P E G溶液を通常、 3 0〜6 0 % ( w/ V ) の濃度で添加し、 混合することによって目的 とする融合細胞 (ハイプリ ドーマ) が形成される。 続いて、 適当な 培養液を逐次添加し、 遠心して上清を除去する操作を繰り返すこと によりハイブリ ドーマの生育に好ま しく ない細胞融合剤等を除去で きる。
当該ハイプリ ドーマは、 通常の選択培養液、 例えば H A T培養液 (ヒポキサンチン、 ア ミ ノブテリ ン及びチミ ジンを含む培養液) で 培養することにより選択される。 当該 H A T培養液での培養は、 目 的とするハイプリ ドーマ以外の細胞 (非融合細胞) が死滅するのに 十分な時間、 通常数日〜数週間継続する。 ついで、 通常の限界希釈 法を実施し、 目的とする抗体を産生するハイプリ ドーマのスク リ ー ニング及びクローニングが行われる。
また、 ヒ ト以外の動物に抗原を免疫して上記ハイプリ ドーマを得 る他に、 ヒ ト リ ンパ球、 例えば EBゥィルスに感染したヒ ト リ ンパ球 を in vitroでべプチ ド又はポリべプチ ドゃそれらの発現細胞又はそ の溶解物で感作し、 感作リ ンパ球をヒ 卜由来の永久分裂能を有する ミエ口一マ細胞、 例えば U 2 6 6 と融合させ、 ペプチ ド又はポ リべ プチ ドへの結合活性を有する所望のヒ ト抗体を産生するハイブリ ド 一マを得ることもできる (特開昭 63- 17688) 。
さ らに、 ヒ ト抗体遺伝子のレパー ト リ 一を有する トラ ンスジェニ ック動物に抗原となるぺプチ ド又はポリぺプチ ド、 それらの発現細 胞又はその溶解物を免疫して抗体産生細胞を取得し、 これをミ エ口 一マ細胞と融合させたハイプリ ドーマを用いて本発明に使用される ペプチ ド又はポリペプチ ドに対するヒ ト抗体を取得してもよい (国 際特許出願公開番号 WO 9 2 - 0 3 9 1 8 , WO 9 3 — 2 2 2 7、 WO 9 4 - 0 2 6 0 2 , W0 9 4 - 2 5 5 8 5、 WO 9 6 - 3 3 7 このようにして作製されるモノ クローナル抗体を産生するハイブ リ ドーマは、 通常の培養液中で継代培養することが可能であり、 ま た、 液体窒素中で長期保存することが可能である。
当該ハイプリ ド一マからモノ クローナル抗体を取得するには、 当 該ハイプリ ドーマを通常の方法にしたがい培養し、 その培養上清と して得る方法、 あるいはハイプリ ドーマをこれと適合性がある哺乳 動物に移植して増殖させ、 その腹水と して得る方法などが採用され る。 前者の方法は、 高純度の抗体を得るのに適しており、 一方、 後 者の方法は、 抗体の大量生産に適している。
ハイプリ ドーマを用いて抗体を産生する以外に、 抗体を産生する 感作リ ンパ球等の免疫細胞を癌遺伝子 (oncogene) により不死化さ せた細胞を用いてもよい。
このように得られたモノ ク ローナル抗体はまた、 遺伝子組換え技 術を用いて産生させた組換え型抗体と して得ることができる。 例え ば、 組換え型抗体は、 抗体遺伝子をハイプリ ドーマ又は抗体を産生 する感作リ ンパ球等の免疫細胞からクローニングし、 適当なベクタ 一に組み込んで、 これを宿主に導入し産生させる。 本発明には、 こ の組換え型抗体を用いることができる (例えば、 Borrebaeck, C. A . K. and Larrick, J. W,, THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United Kingdom by MACMILLAN PUBLISHERS LTD, 1990 参照) 。
本発明で使用される抗体は、 所望の結合活性を有するかぎり、 そ の抗体断片や抗体修飾物であってよい。 例えば、 抗体断片と しては 、 F a b , F ( a b ' ) 2、 F v又は H鎖と L鎖の F vを適当なリ ンカーで連結させたシ ングルチヱイ ン F V ( s c F V ) が挙げられ る。 具体的には、 抗体を酵素、 例えば、 パパイ ン、 ペプシンで処理 し抗体断片を生成させるか、 又は、 これら抗体断片をコー ドする遺 伝子を構築し、 これを発現ベクターに導入した後、 適当な宿主細胞 で発現させる (例えば、 Co, M. S. et al. , J. Immunol. (1994) 1 52, 2968-2976 ; Better, M. and Horwi tz, A. H. , Methods Enzym ol. (1989) 178, 476-496 ; Pluckt un, A. and Skerra, A. , Meth ods Enzymol. (1989) 178, 497-515 ; Lamoyi, E. , Methods Enzym ol. (1986) 121, 652-663 ; Rousseaux, J. et al. , Methods Enzy mol. (1986) 121, 663-669 ; Bird, R. E. and Walker, B. . , Tr ends Biotechnol. (1991) 9, 132- 137参照) 。 本発明には、 公知の 技術により作製されるキメ ラ抗体又はヒ ト型化抗体を使用すること ができる。
また、 本発明の免疫化学的測定方法により検出又は測定される抗 体は、 上述の抗体、 例えばハイプリ ドーマに産生される抗体、 組換 え型抗体、 キメ ラ抗体及びヒ ト型化抗体のいずれでもよい。
前記のように発現、 産生された抗体は、 細胞内外、 宿主から分離 し均一にまで精製することができる。 本発明で使用される抗体の分 離、 精製は通常のタンパク質で使用されている分離、 精製方法を使 用すればよく、 何ら限定されるものではない。
例えば、 ァフィ二ティ ーク ロマ トグラフィ 一等のク ロマ トグラフ ィ ーカラム、 フ ィ ルタ一、 限外濾過、 塩析、 透析、 SDS ポリ アク リ ルア ミ ドゲル電気泳動、 等電点電気泳動等を適宜選択、 組み合わせ れば、 抗体を分離、 精製することができる(Antibodies : A Labora tory Manual. Ed Harlow and David Lane, Cold Spring Harbor La boratory, 1988) 0
ァフィ二ティ ークロマ トグラフィ 一に用いるカラムと しては、 プ 口ティ ン Aカラム、 プロテイ ン Gカラムが挙げられる。 例えば、 プ 口ティ ン Aカラムを用いたカラムと して、 Hyper D, POROS, Sephar ose F. F. (Pharmacia) 等が挙げられる。
ァフィ二ティ ークロマ トグラフィ ー以外のク ロマ トグラフィ 一と しては、 例えば、 イオン交換ク ロマ トグラフ ィ ー、 疎水性ク ロマ ト グラフィ ー、 ゲル濾過、 逆相クロマ トグラフ ィ ー、 吸着ク ロマ ト グ ラ フィ 一等力く挙げられる(Strategies for Protein Purification a nd Character i zat i on : A Laboratory Course Manual. Ed Daniel R. arshak et al. , Cold Spring Harbor Laboratory Press, 1996 ) 。 これらのクロマ トグラフ ィ ーは H P L C、 F P L C等の液相ク ロマ トグラフィ一を用いて行う ことができる。
上記で得られた抗体の濃度測定又は活性確認は、 公知の方法、 例 えば E L I S A、 E I A (酵素免疫測定法) 、 R I A (放射免疫測 定法) あるいは蛍光抗体法を用いることができる。
抗 HM1.24抗体を産生するハイプリ ドーマ HM1.24は、 工業技術院生 命工学工業研究所 (茨城県つく ば巿東 1 丁目 1 番 3 号) に、 平成 7 ( 1 9 9 5 ) 年 9 月 14日に FERM BP- 5233と してブタぺス ト条約に基 づき国際寄託された。
実施例
以下に実施例を示して本発明をより詳細に説明するが、 本発明の 範囲を限定するものではない。
実施例 1. FLAGタグ付加可溶性 HM1.24抗原発現べクタ一の構築 EcoRI (宝酒造製) および Notl (宝酒造製) で消化することによ り調製した HEF 発現ベクター (国際特許出願公開番号 W092-19759) と、 ィ ムノ グロブリ ン ( I g) リーダ一配歹 ijと FLAGタグをコー ドする 遺伝子ペア (サヮディ ーテクノ ロジ一製) を、 50 mM Tris- HC1, pH 7.6 、 10 mM MgCl 2 、 10 mM ジチオス レイ ト一ル、 1 mMTP、 50 mgゾ mlのポリエチレングリ コールおよび 1 ュニッ ト T4 DNAリガーゼ ( G I BC0-BRL 製) を含有する反応混合物中で、 16°Cにて 3 時間反応させ 連結した。
挿入した Igリーダ一配列と FLAGタグをコ一 ドする遺伝子は EcoRI 、 Kpnl (宝酒造製) および Not 1制限酵素認識部位をリ ンカ一と して 接続した配列番号 12および 13に示す合成遺伝子ペアを用いた。 次に 連結反応混合物を大腸菌 DH5aのコ ンビテ ン ト細胞 (GIBCO- BRL 製) に加え、 これを氷上で 30分間、 42°Cにて 1 分間、 そして再び氷上で 1 分間静置した。
次いで、 400 fi 1 の 2xYT培地 (Molecular Cloning : A Laborato ry Manual, Sambrook り、 Col d Spring Harbor Laboratory Press, ( 1989) ) を加え、 37°Cにて 1 時間イ ンキュベーショ ンした後、 50 U g /ml のア ンピシ リ ンを含有する 2xYT寒天培地 (Molecular Clon i ng : A Laboratory Manual, Sambrook ら、 Col d Spring Harbor L aboratory Press, ( 1989) ) 上にこの大腸菌を播き、 37°Cにて一夜 ィ ンキュベー ト して大腸菌形質転換体を得た。 この大腸菌形質転換 体を 50〃 g /ml のアンピシリ ンを含有する 2xYT培地中で 37°Cにて一 夜培養し、 この培養物から、 アルカ リ法 (Molecular Cloning : A Laboratory Manual, Sambrook ら、 Cold Spring Harbor Laborator y Press, ( 1989) ) に従ってプラス ミ ド DNA を調製した。
一方、 HM1.24抗原の細胞外領域の遺伝子は Thermal Cycler (Perk in Elmer Cetus製) を用いた PCR 法により増幅した。 HM1.24抗原の cDNAを铸型と して、 100 pmole の配列番号 9 〜10に示したプライマ 一、 10 mM Tris-HCl, pH8.3 、 50 m KC1 、 0.1 mM dNTPs (dATP, dGTP, dCTP, dTTP) 、 1.5 mM MgCl2 および 5 ュニ ッ 卜の DNA ポリ メ ラーゼ Ampli Taq (Perkin Elmer Cetus製) を含有する混合物を 最初に 94°Cにて最初の変性の後、 94°Cにて 1 分間、 55°Cにて 1 分間 、 72°Cにて 1 分間のサイ クルを 30回行い、 最後に 72°Cにて 10分間ィ ンキュベーシ ヨ ン した。 この PCR 産物を HMl.24抗原の細胞外領域の遺伝子と して、 Kpnlお よび BamHI 消化した上記プラス ミ ド DNA と 50 mM Tris-HCl, pH7.6 、 10 mM MgCl 2 、 10 m ジチオス レィ トール、 1 mM ATP, 50 mg/ml のポリエチレングリ コールおよび 1 ュニッ ト T4 DNAリガ一ゼ ( G I BC 0-BRL 製) を含有する反応混合物中で、 16°Cにて 3 時間反応させ連 結した。 上記同様に、 連結反応混合物を大腸菌 DH5aのコ ンビテン ト 細胞に加え、 大腸菌形質転換体を得、 これよりプラス ミ ド DNA を調 製した。
このプラス ミ ド DNA を FLAGタグ付加可溶性抗原発現プラス ミ ドと し、 pSFHMl.24 と命名した。 これの塩基配列決定を、 自動 DNA シ一 クェンサ— (Applied Biosystem In 製) および Taq Dye terminat or Cycle Sequencing kit (Applied Biosystem In 製) を用いて 、 メーカー指定のプロ ト コールに従って行った。 その結果、 可溶性 抗原に FLAGのタグペプチ ドをつないだ融合タ ンパク (配列番号 2 ) が発現する構造になっていることが確認された。
実施例 2 , HAタグ付加可溶性抗原発現プラス ミ ドの構築
FLAGタグ付加可溶性 HM1.24抗原発現べクターを利用 して、 HAタグ 付加可溶性抗原発現プラス ミ ドを構築した。
最初に、 Cytomegalovirus (CMV ) プロモータ一/ ェンハンサー 、 ネオマイ シン耐性遺伝子、 Dehydroiolate reductase (DHFR) 遺 伝子ならびに leader 配列を含む B 1 uescr i p t SK-ベクタ一 (Molecu lar Cloning : A Laboratory Manual, Sambrook ら、 Cold Spring Harbor Laboratory Press, ( 1989) ) (こへマグ、ノレチニンのェピ トー プタグをコー ドする遺伝子を挿入した。
へマグルチニンのェピ トープタグ (ア ミ ノ酸配列 : YPYDVPDYA ) をコー ドする遺伝子は DraIII、 Kpnl制限酵素認識部位をリ ンカーと して接続した合成 DNA ペア (サイメディ ア製) を用いた (配列番号 1 4および 1 5 ) 。 500 pmo 1ずつのへマグルチニンのェピ トープタ グをコー ドする遺伝子ペア HA- S、 HA- Rを、 Kpnlおよび DraIII( 宝酒 造製) で消化することにより調製した 5 〃 gのベクター (CGM ) と 、 DNA ligation kit Ver.2( 宝酒造製) I 液 5 〃 1 を含む反応混合 溶液中で 16°Cにて 1 時間反応させ連結した。
次に、 1 1 の連結反応混合物を大腸菌 JM109 のコ ンビテン ト細 胞 (二ツボンジーン製) 100 ; 1 に加え、 これを氷上で 30分間、 42 °Cにて 1 分間、 そして再び氷上で 1 分間静置した。 次いで、 400 a 1 の S0C 培地 (Molecular Cloning : A Laboratory Manual, Sambr ook ら、 Cold Spring Harbor Laboratory Press, ( 1989) ) をカロえ 、 37°Cにて 1時間イ ンキュベー ト した後、 50 g /ml のアンピシ リ ンを含有する 2xYT 寒天培地 (Molecular Cloning : A Laboratory
Manual, Sambrook り、 Cold Spring Harbor Laboratory Press, ( 1989) ) 上にこの大腸菌を播き、 37°Cにて一夜ィ ンキュベー 卜 して 大腸菌形質転換体を得た。
10 m Tris-HCl, pH8.3, 50 mM KC1, 0.1 mM dNTPs, 100 pmole ずつの配列番号 7 〜8 に示したプライマー、 5 unitの Ampli Taq 酵 素および上記形質転換体を铸型と して含む、 20 / 1 の混合液を 94°C にて 30秒間、 55°Cにて 30秒間、 72°Cにて 30秒間ィ ンキュベ一 トのサ イクルを 25回行った。 4%ァガロースゲル電気泳動により この PCR生 成物が 220 bpである大腸菌形質転換体を選択した。 この大腸菌形質 転換体を 100 / g/ml のア ンピシ リ ンを含む LB培地 (Molecular C1 oning : A Laboratory Manual, Sambrook ら、 Cold Spring Harbor
Laboratory Press, ( 1989) ) 300 ml中で 37。Cにて一夜培養し、 そ してこの培養物から、 アル力 リ法 (Molecular Cloning : A Labora tory Manual, Sambrook ら、 Cold Spring Harbor Laboratory Pres s, ( 1989) ) に従ってプラス ミ ド DNA を調製した。 こ う して調製し たへマグルチニンのェピ トープタグをコー ドする遺伝子を含有する プラス ミ ドを CGM/HAと命名した。
一方、 用いる可溶性 HM1.24抗原遺伝子 (sHM ) は、 pSFHMl.24よ り得た。 の pSFHMl.24を Kpnlおよび、 BamHI で消化した反応 混合物から、 ァガロースゲル (SIGMA 製) を用いて 410 bpの断片 を精製することにより可溶性抗原を調製した。
次に、 CGM/HAに、 sHM を揷入した。 CGM/HAを Kpn Iおよび、 BamHI 消化した後、 50 m Tris-HCl, pH9.0, 1 m MgCl 2 および 2 ュニッ 卜のアルカ リ ホスフ ァ ターゼ (E. coli C75) (宝酒造製) を含む反 応混合物中で、 65°Cにて 15分間反応させ、 脱リ ン酸化を行った。 こ の脱リ ン酸化 CGM/HA 100 ng と sHM を DNA ligation kit Ver.2 (宝 酒造製) I 液 5 μ 1 を含む反応混合溶液中で 16°Cにて 1 時間反応さ せ連結した。
続いて、 1 〃 1 の連結反応混合物を大腸菌 JM109 のコ ンビテン ト 細胞 (二ッボンジーン製) 100 n 1 に加え、 これを氷上で 30分間、 42°Cにて 1 分間、 そして再び氷上で 1 分間静置した。 次いで、 400 1 の S0C 培地 (Molecular Cloning : A Laboratory Manual, Sam brook ら、 Cold Spring Harbor Laboratory Press, ( 1989) ) をカロ え、 37°Cにて 1時間イ ンキュベー ト した後、 50 mg/mlのアンピシ リ ンを含有する 2xYT 寒天培地 (Molecular Cloning : A Laboratory Manual, Sambrook り、 Cold Spring Harbor Laboratory Press, ( 1989) ) 上にこの大腸菌を播き、 37°Cにて一夜ィ ンキュベ一 ト して 大腸菌形質転換体を得た。
10 mM Tris-HCl, pH8.3, 50 mM KC1, 0.1 mM dNTPs, 100 pmole ずつの配列番号 7 〜8 に示した各プライマ一、 5 unitの Ampli Taq 酵素 (Perkin Elmer Cetus製) および上記形質転換体を铸型と して 含む、 20〃 1 の混合液を 94°Cにて 30秒間、 55°Cにて 30秒間、 72°Cに て 30秒間ィ ンキュベ一 卜のサイ クルを 25回行った。 1% ァガロース ゲル電気泳動により この PCR生成物が 630 bpである大腸菌形質転換 体を選択した。
この大腸菌形質転換体を 100 n g /ml のア ン ピシ リ ンを含む LB培 地 (Molecular Cloning : A Laboratory Manual, Sambrook ら、 Co Id Spring Harbor Laboratory Press, ( 1989) ) 600 ml中で 37°Cに て一夜培養し、 そしてこの培養物から、 アルカ リ法 (Molecular C1 oning : A Laboratory Manual, Sambrook ら、 Cold Spring Harbor Laboratory Press, ( 1989) ) に従ってプラス ミ ド DNA を調製した 。 こう して調製したへマグルチニンのェピ ト一プタグをコ一 ドする 遺伝子および可溶性 HM1.24抗原をコ一 ドする遺伝子を含有するブラ ス ミ ドを CGM/HA- sHMと命名し、 HAタグ付加可溶性 HM1.24抗原発現プ ラス ミ ドと した。
実施例 3. 塩基配列決定
へマグルチニンのェピ トープタグをコ— ドする遺伝子を含有する プラス ミ ド (CGM/HA) の塩基配列決定を、 自動 DNA シークェンサ一 Applied B i osys tern Inc.製) および Taq Dye terminator Cycle S equencing kit (Applied B i osys tern Inc.製) を用いて、 メ ーカ一 指定のプロ トコールに従って行った。 反応に用いたプライマーを配 列番号 7 〜8 、 解読した塩基配列の範囲を図 1 、 決定した塩基配列 を配列番号 5 に示した。 これより理論上の配列と一致していること が確認された。
実施例 4. C0S-7 細胞への トラ ンス Xク シ ヨ ン
HAタグ付加可溶性 HM1.24抗原の一過性の発現を観察するため、 前 記発現ベクターを COS- 7 細胞 (ATCC #CRL-1651) において試験した 発現プラスミ ド (CGM/HA-sHM) を Gene Pulser 装置 (Bio- Rad 製 ) を用いてエレク トロボレ一シヨ ンにより C0S-7 細胞を同時形質転 換した。 発現プラスミ ド (1 〃 g) を PBS 中 1.1 X 107細胞 /mlの 0.8 mlァリ コー トに加え、 1.5 kV、 25 F の容量にてパルスを与え た。
室温にて 10 分間の回復期間の後、 エレク トロポレーシ ョ ンされ た細胞を、 10 mlの 10% ゥ シ胎児血清 (GIBCO- BRL 製) を含有する DME 培養液 (GIBCO- BRL 製) に懸濁し、 37°C、 5 % C02 イ ンキュ ベ一ターで培養した。 6 日間の培養の後、 培養上清を集め、 遠心分 離により細胞破片を除去し、 0.22// mフィルター(MILLIP0RE製) を かけ、 4 °Cで保存した。
これを sandwich EL ISA系の初期検討に用いた。
実施例 5. CH0 細胞への ト ラ ンスフ モク ヨ ン
宿主細胞と して CH0 細胞 DG44株 (Urlaub, G et al. , Cell (1983 ) 33(2)405-412) を使用 した。 DG44株は DHFR欠損株なので、 グリ シ ン、 プリ ンヌ ク レオチ ド、 チミ ジンに対して栄養要求性を示す。 そ こで、 ネオマイ シン耐性遺伝子並びに DHFR を発現するプラス ミ ド を トラ ンスフ ヱク シヨ ンすると、 G418添加ヌ ク レオシ ド欠損培地に より、 DHFR +、 ネオマイ シ ン耐性の形質転換細胞を選出することが 出来る。 更に、 DHFR のイ ンヒ ビターであるメ ト ト レキセー ト (MT X ) の培地中濃度を段階的に増加させることで選択し、 生き残った 細胞は導入した発現プラス ミ ドのコピー数が増幅し、 目的産物の産 生量が増加する。
HAタグ付加可溶性 HM1.24抗原安定産生系を樹立するために、 Pacl (New England biolabs 製) で消化した後、 0.7!¾ァガロースゲルを 用いて 4.7 kb断片を精製して得た直鎖状にした前記発現ベク ター ( CGM/HA-sH ) をエレク トロポレーシヨ ン法により前述と同様 (前記 COS- 7 細胞への ト ラ ンスフヱク シヨ ン) の条件下で同時に CH0 細胞 に遺伝子を導入した。 遺伝子導入した CHO 細胞をヌ ク レオシ ド不含 CHO- S- SFM II培養液 (GIBCO BRL 製) に懸濁し、 100 1 /well (4x 10 4 cells/well ) で平底 96穴プレー ト (FALCON製) に播種した。 37 °C、 5¾ C02 イ ンキュベータ一にて一晩培養した後、 1 mg/mlの濃度で G418(GIB CO BRL製) を添加したヌ ク レオシ ド不含 CHO- S- SFM II培養液を 100 1 /well 加え、 引き続き培養した。 途中、 播種後 7 日目、 14日目 に培養上清を 100〃 1 /well 抜いた後、 1 mg/ml の G418添加ヌ ク レ オシ ド不含 CHO- S- SFM II培養液を 100 1 /well 加えて、 培地交換 を行った。 播種後 16日目に検鏡を行い、 増殖したクロー ンを選別し た。
G418で選別したク ロ一ン #1を更に、 5 n MTX (SIGMA 製) を添加 したヌ ク レオシ ド不含 CHO- S- SFM II培養液に懸濁し、 5 x 102 cell s/wel K 5 χ 103 cells/welK 5 x 104 ce 11 s/we 11の三段に濃度を 振って 100 1 /well で平底 96穴プレ一卜に播種した。 37°C、 5 % C02 イ ンキュベータ一にて一晩培養した後、 5 nM MTX添加 CHO- S-SF Mil 選択培地を 100 u 1 /well 加えた。 途中、 培地交換を行い、 7 日〜 14日目に検鏡を行った。 得られた #A、 #B、 #Cのコロニーについ て拡大培養し、 5 nM MTXで増幅した場合と同様にして 50 nM 、 更に 500 nMと MTX の濃度を上げて、 増幅していった。 最終的に COS- 7 細 胞による培養上清の 60% の産生量を示す CH0 細胞を得た。
実施例 6. 可溶性抗原の調製
暫定的な可溶性 HM1.24抗原を確保するため、 G418で選択した # 1 株 (CH0 細胞への トラ ンスフヱク シヨ ンの項に記述) を培養した。 培地は 1 mg/ml G418を含むヌ ク レオシ ド不含 CHO- S-SFM II培養液を 用いた。 500mlスピナ一フラスコ (Techne製) 2 本にて (1 L 分) を 60 rpmで攪拌しながら、 37 でで 10日間培養した。 遠分離により 培養上清を集め、 0.22 mのフ ィ ルター (FALCON製) に通した後、 可溶性抗原と して ― 80 でで保存した。 この培養上清から精製した HM1.24抗原は HM1.24リガン ドの探索、 あるいは HM1.24抗原の機能解 析にも利用できると考えられる。
実施例 7. EL1SA 系予備検討
COS- 7細胞による培養上清を用いて ELISA 系の予備検討を行った 。 抗 HA抗体のコン トロールと して抗 1L- 6 receptor 抗体である MT18 抗体 (マウ ス IgG2bkヽ (Hirata, Y et al., J. Immunol. (1989) 14 3 ( 9 ) 2900-2906 ) ) を使用した。 キメ ラ型抗 HM1.24抗体 (参考 例参照) のコ ン ト ロールにはミエ口一マ由来ヒ 卜 IgGl (ヒ ト IgGl kappa purified, (THE BINDING SITE製) をキメ ラ抗体と同様にプ 口ティ ン A カラムで精製した抗体) を用いた。
1. 抗 HA抗体一キメ ラ型抗 HM1.24抗体
抗 HA抗体 (マウスモノ ク ローナル抗体 : ク ロ ー ン 12CA5 、 Boehri nger Mannheim 製) ならびにコ ン ト 口一ノレ抗体を 1 〃 g/ml と 5 g /ml に B. (Coating Buffer: 0. 1 M NaHC03 、 緩衝液, pH9.6, 0.02%アジ化ナ ト リ ウム) で調製し、 100 1 /well で平底 96穴プ レー ト (Immuno plate I検定付 : Nunc 製) に 4 。Cで一晚コーティ ングした。 R. B. (Rinse Buffer: PBS, 0.05% Tween 20 ) で 3 回洗 浄した後、 200 1 /well で!) · B. (Dilution Buffer: 50 m Tris- HC1, pH8.1, 1 mM gCl2 , 0.15 NaCl, 0.05¾ Tween 20, 0.02¾ アジ化ナ ト リ ウム, 1% BSA (SIGMA 製) ) を加え、 室温で 2 時間ブ ロ ッキングを行った。 培養上清を D. B.で 4 倍希釈ずつ 4 段に段階希 釈したものを室温で 1 時間反応させた。
R.B.で 3 回洗浄した後、 キメ ラ型抗 HM1.24抗体を 5 g /ml に D. B.で調製したものを 100 1 /well 加え、 室温で 1 時間反応させた o 更に R.B. で 3 回洗浄した後、 アルカ リ フ ォ スフ ァタ一ゼ標識ャ ギ抗ヒ ト IgG 抗体 (BI0S0URCE 製) を D. B.で 5000倍希釈、 10, 000倍 希釈したものを 100〃 1 /well ずつ加え、 室温で 1 時間反応させた o R. B.で 5 回洗浄した後、 アルカ リ フ ォ スフ ァターゼ基質である SI GMA 104 p - Ni tropheny 1 hosphate, dl sodium, exahydrate: SIG A 製) を S. B. (Substrate Buffer : 0.05 M NaHC03 緩衝液, pH9. 8, lOm MgCls ) で 1 mg/ml にしたもを 100 / 1 /well 加え、 室温 で発色させ、 405 nm - 655 nm の吸光度を microplate reader mode 1 3550 (BI0RAD製) にて測定した。
2. キメ ラ型抗 HMl.24抗体ー抗 HA抗体
キメ ラ型抗 HM1.24抗体ならびにコ ン ト ロール抗体を 1 ^ g/ml と 5 μ. g /ml に C. B.にて調製し、 100 1 /well で平底 96穴プレー ト
( Immuno plate I : Nunc 製) に 4 °Cで一晚コ一ティ ングした。 R. B.で洗浄した後、 上記 1 と同様に培養上清を反応させた。 洗浄後、 HA抗体を 5 a g /ml に D. B.で調製したものを 100〃 1 /well 加え、 室温で 1 時間反応させた。 アルカ リ フォスフ ァターゼ標識ャギ抗マ ウス G 抗体 (ZYMED 製) を 5000倍希釈、 10, 000倍希釈したものを
100 1 /well ずつ加え、 室温で 1 時間反応させた。 R. B. で 5 回 洗浄した後、 S1GMA104 を同様に加えて発色させ、 405 nm〜 655 n m の吸光度を測定した。
以上の試験において、 a)抗 HA抗体→キメ ラ型抗 HM1.24抗体、 b)キ メ ラ型抗 HM1.24抗体→抗1^抗体のどちらの ELISA 系でも抗原の濃度 依存的にカーブが描け、 いずれの系も利用可能であった。 ヒ ト型化 抗 HM1.24抗体の測定系には 1.の方法が適しているので上記 1.のサン ドイ ッチ ELISA 系を用いることと した。
実施例 8. 培養上清を用いた sandwich ELISA
HA付加可溶性 HMl.24抗原を用いた sandwich Eい SA系を模式的に図 2 に示した。
1. COS- 7細胞による培養上清 抗 HA抗体を 1 g /ml でコーティ ングし、 COS- 7 細胞による培養 上清を 4 倍に希釈したものを 100 1 /well 加え、 室温で 2 時間反 応させた。 400 ng/ml のキメ ラ型抗 HM1.24抗体およびヒ 卜型化抗 HM 1.24抗体 (参考例参照) を 3 倍希釈の段階希釈を行い、 100 1 /w ell 加えて室温で 1 時間反応させた。 アルカ リ フ ォスフ ァターゼ標 識ャギ抗ヒ ト G (BI0S0URCE 製) を加え、 室温で 1 時間反応させ た。 アルカ リ フォスフ ァタ一ゼ基質を同様に加えて発色させ、 405 nm - 655 nm の吸光度を測定した。
その結果、 COS- 7 細胞培養上清を用いた場合のヒ 卜型化抗 HM1.24 抗体による標準曲線を作製したところ、 図 3 のようになり、 この EL ISA 系の測定限界は 500pg/mlであつた。 キメ ラ型抗体も同様であつ た。
2. CH0細胞による培養上清
G418で選択した CH0 細胞 #1 による培養上清 (可溶性抗原の調製 に記述した) を用いて 1. COS- 7細胞による培養上清の項と同様にサ ン ドイ ッチ ELISAを行った。 ただし、 可溶性抗原はしつかり反応さ せるために 4 °Cで一晚反応させ、 AHM は 1 μ g /ml から 3 倍希釈の 段階希釈を行った。
その結果、 CH0 細胞による可溶性抗原を用いた場合の標準曲線は 図 4 のようになり、 この場合の測定限界は数 ng/ml 程度であった。
実施例 9. 細胞株の選択
なるべく高産生の株を得るために可溶性抗原の産生量を抗 HA抗体 とキメ ラ型抗 HM1.24抗体およびヒ ト型化抗 HM1.24抗体による sandwi ch ELISAで比較し、 細胞株の選択を行った。
抗 HA抗体を 1 g /ml でコー ト したプレー トをブロ ッキングした 後、 HAタグ付加可溶性抗原産生細胞の培養上清を段階希釈して加え た。 精製抗原を得ていないため、 抗原濃度は分からないので、 濃度 を比較するために、 初期播種量をそろえ、 4 日間細胞を培養した培 養上清を用いた。
これを室温にて 2 時間イ ンキュベー ト した後、 1 〃 g/ml のキメ ラ型抗 HM1.24抗体およびヒ ト型化抗 HM1.24抗体を加え、 室温にて 1 時間イ ンキュベー ト した。 アルカ リ フ ォスフ ァターゼ標識ャギ抗ヒ ト IgG (BI0S0URCE 社製) を加え、 室温で 1 時間反応させた後、 基 質溶液を加えた。 室温で発色させ、 405 nm - 655 nm の吸光度を mi croplate reader model 3550 (BIORAD社製) にて測定した。
その結果クローン #1を G418で選別し、 これを親株と して 5nM MTX( SIGMA 社製) で増幅させ、 , #B, #Cを得た。
実施例 10. Sandwich ELISA系の利用
1 . キメ ラ型抗 HM1.24抗体を投与したァカゲザルにおけるキメ ラ型 抗 HM1.24抗体の血中濃度の測定
キメ ラ型抗 HM1.24抗体を 4 mg/kg 、 40 mg/kgの投与量でし v. inf usion 投与したァカゲザルから投与前、 投与後 1 、 3 、 7 、 14日に 採血し、 4 °C下で遠心分離し、 血清を得た。 またコ ン ト ロール群と して、 キメ ラ型抗 HM1.24抗体の代わりに生理食塩水を投与したァカ ゲザルからも同様に採血し、 血清を得た。 この血清中のキメ ラ型抗 HM1.24抗体の濃度を HAタグ付加 HM1.24可溶性抗原を用いた sandwi ch ELISAで測定した。
抗 HA抗体を 1 g /ml でコーティ ングしたプレー トをブロ ッキン グし、 HAタグ付加 HM1.24可溶性抗原 (CH0 細胞による培養上清を 4 倍に希釈したもの) を 100 μ 1 /well 加え、 4 °Cにてー晚反応させ た。 キメ ラ型抗 HM1.24抗体を投与したァカゲザルの血清を段階希釈 して各穴に 100 〃 1 加えた。 また、 スタンダー ドと して投与に用い たキメ ラ型抗 HM1.24抗体を 10 /ml から 3 倍希釈で 11段に段階希 釈して用いた。 室温にて 1 時間イ ンキュベーシ ョ ンおよび洗浄の後 、 アルカ リ フ ォスフ ァターゼ標識ャギ抗ヒ ト IgG 抗体 (BI0S0URCE 製) を加えた。
室温にて 1 時間イ ンキュベーシ ョ ンした後洗浄し、 基質溶液を加 えた。 イ ンキュベーシ ョ ンの後、 MICROPLATE READER Model 3550 ( Bio-Rad 製) を用いて 405 nmでの吸光度を測定した。 その結果、 ァ 力ゲザルの血清中におけるキメ ラ型抗 HM1.24抗体の濃度の推移は図 5 の通りであった。 この ELISA 系の測定限界は 508 pg/ml であった また、 この sandwich ELISA は二次抗体をアル力 リ フォスフ ァタ —ゼ標識抗マウス IgG2a 抗体に変えることにより、 マウス抗 HM1.24 抗体の血中動態の測定も可能である。
2.ヒ ト型化抗 HM1.24抗体の結合阻害活性の測定
ピオチン標識マウス抗 HM1.24抗体による ヒ ト型化抗 HM1.24抗体の 結合阻害活性を HAタグ付加 HM1.24可溶性抗原を用いた sandwich ELI SAで測定した。 抗 HA抗体を 1 〃 g /ml でコーティ ングしたプレー ト をブロ ッキングし、 HAタグ付加 HM1.24可溶性抗原 (CH0 細胞による 培養上清を 4 倍に希釈したもの) を 100 1 /well 加え、 4 °Cにて 一晩反応させた。 洗浄した後、 ヒ 卜型化抗 HM1.24抗体およびキメ ラ 型抗 HM1.24抗体を 10 g /ml から 3 倍希釈で 7 段に段階希釈して各 穴に 50 / 1加え、 同時に 20 ng/mlのピオチン標識マウス抗 HM1.24抗 体 50 1 も添加し、 室温にて 1 時間反応させた。
洗浄後、 アルカ リ フ ォスフ ァ ターゼ標識ス ト レプ トア ビジ ン (PI ERCE製) を加え、 室温で 2 時間反応させた後洗浄し、 基質溶液を加 えた。 イ ンキュベーシ ョ ンの後、 MICROPLATEREADER Model 3550 ( Bio-Rad 製) を用いて 405 nmでの吸光度を測定した。 その結果、 図 6 に示す通り、 ピオチン標識マウス抗 HM1.24抗体に対してヒ ト型化 抗 HM1.24抗体はマウス抗 HM1.24抗体と同等の結合阻害活性を示した 。 このことより、 ヒ ト型化抗 HMl.24抗体はマウス抗 HMl.24抗体と同 じ V領域を有することが示された。
また、 培養上清より精製した可溶性 HM1.24抗原を Standardに用い た可溶性 HM1.24抗原の測定系にも応用が可能である。
実施例 11. FCM 解析
HA夕グ付加可溶性 HM1.24抗原産生 CH0 細胞の抗原産生量はあまり 高いものではなかった。 この原因を究明するため、 G418 で選択し た HAタグ付加可溶性抗原産生 CH0 細胞 #1 、 および 5 nM MTXで増幅 した HAタグ付加可溶性抗原産生 CH0 細胞 について FCM (フ ロー サイ トメ ト リ ー) 解析を行った。 l x 106 個の可溶 性抗原発現 CH 0 細胞 PBS で洗浄した後、 500 g /ml のマウス抗 HM1.24抗体 5 / 1 および FACS 緩衝液( 2!¾ゥシ胎児血清, 0.1%ァジ化ナ ト リ ウム含 有 PBS) 95 1 、 または 500 g /ml の抗 HA抗体 (Boehringer Man nheim 製) 5 1 および FACS 緩衝液 95 JLL 1 を加え、 氷温下 30分 間ィ ンキュベ一 ト した。
コン トロールと してマウス抗 HM1.24抗体の代わりに 500 n g /ml のマウス IgG2ak (UPC10 ) (CAPPEL製) 5 1 および FACS 緩衝液 95 1 、 または抗 HA 抗体の代わりにマウス lgG2bk 抗体 (MT18 ) 5 〃 1 および FACS 緩衝液 95 〃 1 を加え、 同様にイ ンキュベー 卜 した。 FACS緩衝液で洗浄した後、 10 / g/ml の FITC標識ャギ抗マ ウス IgG 抗体 (Becton Dickinson製) 100 μ. 1 を加え、 氷温下 30分 間イ ンキュベー ト した。 FACS緩衝液で洗浄した後、 600 〃 1 の FAC S 緩衝液に懸濁して FACScan (Becton Dickinson 製) にて各細胞の 蛍光強度を測定した。
その結果、 図 7 に示すとおり、 マウス抗 HM1.24抗体ならびに抗 H A 抗体を添加した細胞では、 コ ン トロールと比較して蛍光強度のピ 一クが右側にシフ ト したことから、 マウス抗 HM1.24抗体ならびに抗 HA 抗体が、 HAタグ付加可溶性抗原産生 CHO 細胞を結合したことが 明らかになった。 このことより、 細胞表面に HM1.24抗原ならびにへ マグルチニンタグぺプチ ドが高発現していることが確認された。
実施例 12. 細胞溶解物の作製
1.2 X 107 個の G418で選択した HAタグ付加可溶性抗原産生 CH0 細 胞 #1 、 および 5 nM MTXで増幅した 1.6 x 107 個の #A 、 1.2 x 10 7 個の #B 、 1.1 x 107 個の #C の HAタグ付加可溶性抗原産生 CHO 細胞を PBS で洗浄した後、 50mM NaHC03 緩衝液, pH 8.0, 150 mM N aCl, lOO g /ml P SF, 25倍希釈の protease inhibitor cocktail (Boehringer Mannheim製), 0.5% デォキシコール酸ナ ト リ ウム, Nonidet P-40 を含む lysis 緩衝液 1 mlを加え、 氷温下で 30分間ソ 二ケ一シ ヨ ンを行った。 その後、 4 °C、 14, 000回転で 10分間遠心し 、 上清を細胞溶解物と して回収した。 1.0 X 107 個の KPMM2 細胞 ( 特許出願公開番号特開平 7- 236475) についても同様に細胞溶解物を 調製した。
実施例 13. ウェスタ ンブロ ッ テイ ング
1. 還元状態における SDSポリアク リルア ミ ドゲル電気泳動
HAタグ付加可溶性抗原産生 CH0 細胞の細胞溶解物を調製する際、 細胞を培養していた培養上清 (Sup. #1 、 Sup. #A 、 Sup. #B 、 Su P. #C ) を 0.22 / mのフィルターを通して 4 °Cで保存した。 この培 養上清 20 1 に 5¾; 2-メルカプ トエタノールを含むサンプルバッフ ァー (10¾1 グリ セロール, 2% SDS, 0.25% ブロムフ エ ノ ールブルー を含有する 0.5 M Tris-HCl 緩衝液, pH 6.8) を 10 1 加え、 100 °Cで 5 分間加熱した。 また、 培養上清 20μ 1 に対応する細胞数 (#1 : 3 X 104 個、 #Α : 4 X 104 個、 #Β : 3 χ 104 個、 #C : 2.8 x 10 4 個) を含む細胞溶解物 10 1 に 5% 2-メ ルカプ トエタ ノ ールを含 むサンプルバッファーを 5 1 加え、 100 °Cで 5 分間加熱した。 陽性コ ン トロールとして培養上清などの代わりに HM1.24抗原を高 発現している骨髄腫細胞である KPMM2 細胞溶解物 (1 X 105 個) 10 〃 1 に 5!¾ 2 -メ ルカプ トエタ ノ ールを含むサンプルバッ フ ァー 5〃 1 加え、 同様に加熱した。 4 - 20% グラジェン トゲル ( TEFC0 製) を用いて 20 mA で 1.5 時間 SDS ポリアク リルァ ミ ドゲル電気泳動を 行った。 泳動後、 ゲルを PVDFメ ンブレン (TEFC0 製) に 150 mAで 2 時間 ト ラ ンスブロ ッ 卜 した。 このメ ンブレ ンを 3%スキム ミ ルクを含 む TBS- T (0.1¾ Tween 20 含有 Tris緩衝液 (宝酒造製) ) で 4 に てー晚ィ ンキュベ一 ト した。
TBS - T洗浄後、 10 g /ml マウス抗 HM1.24抗体、 10% FCS 、 0.02 5¾ Thiraerosal を含有する PBS を加え、 室温で振とう しながら 1 時 間反応させた。 洗浄した後、 1000倍希釈のペルォキシダーゼ標識ャ ギ抗マウス IgG 抗体 (Zymed 製) を室温で振とう しながら 1 時間反 応させた。 洗浄後、 ECL 検出試薬 (Amersham製) を用いて化学発光 させ、 Hyper f ilm- ECL (Amersham製) に写した。 これを自動現像機 (Konica製 SRX- 101) で現像して HM1.24抗原を検出した。
その結果、 図 8 に示したとおり、 陽性コ ン ト 口一ルの KPMM2 細胞 と同様に 30 kDa付近に HM1.24抗原の発現が確認された。
2. 非還元状態における SDSポリアク リルア ミ ドゲル電気泳動
2 β 1 の前記培養上清 #C にサンプルバッフ ァーを 10〃 1 加え、 100 °Cで 5 分間加熱した。 また、 2.8 X 104 個を含む #C の細胞溶 解物 10 / I にサンプルバッ フ ァーを 5 fi 1 加え、 100 。Cで 5 分間 加熱した。 陽性コ ン トロールと して培養上清などの代わりに HM1.24 抗原を高発現している骨髄腫細胞である KPMM2 細胞溶解物 (1 X 10 5 個) 10^ 1 にサンプルバッ フ ァー 10〃 1 を加え、 同様に加熱した
。 これらを還元状態に記述した条件下にて同様に試験し、 抗原を検 出した。 その結果、 図 9 に示したとおり、 還元状態では 30 kDa 付近に検 出された抗原が、 非還元状態では 60 kDaに検出した。 つま り HAタグ 付加可溶型 HM1.24抗原も HM1.24抗原と同様にホモダイマーを形成し ていた。
一方、 HM1.24抗原は C 端側にも 14ア ミ ノ酸程度の疎水領域が存在 するので、 発現させた抗原の一部が可溶型と して培養上清中に分泌 されずに、 細胞表面にとどまっていると考えられた。 そこで、 以下 、 N 端の膜貫通領域を含む N 末を削除した HAタグ付加可溶型抗原か ら更に、 この C 端側の疎水領域を含む C 末を削除した HAタグ付加可 溶型抗原を作製した。
実施例 14. 発現ブラスミ ドの構築
10 T I S-HCI, pH8.3 、 50 mM KC1 、 0.1 mM dNTPsヽ 1.5 m M gCl 2 、 100 ngの铸型 DNA と しての pSFHMl.24 、 100 pmole の各プ ライマー (配列番号 9 および 11) および 5 ュニッ 卜の Ampli Taq ( Perkin Elmer Cetus製) を含有する混合物を最初に 94 °Cにて変性 した後、 94 °Cにて 1 分間、 55°Cにて 1 分間、 および 72°Cにて 1 分 間の反応を 25サイ クル行った後、 72°Cにて 7 分間イ ンキュベーショ ンを行った。 この PCR 産物を Kpnlおよび BamHl 消化したものを C 端 も削除した可溶性抗原 (HM164 ) と して、 Kpnlおよび BamHI 消化す ることにより調製した 5 〃 gのべクタ一 ( CGM/HA) と、 50 mM Tris -HC1, pH7.6 、 10 mM MgCh 、 10 mM ジチオスレィ トール、 1 mM A TP、 50 mg/mlのポリエチレングリ コールおよび 1 ュニッ ト T4 DNAリ ガーゼ (GIBC0- BRL 製) を含有する反応混合物中で、 16°Cにて 3 時 間反応させ連結した。
次に、 10 z 1 の上記連結混合物を大腸菌 JM109 のコ ンビテン ト細 胞 (東洋紡製) 100 a 1 に加え、 この細胞を氷上で 30分間、 42°Cに て 1 分間そして再び氷上で 1 分間静置した。 次いで、 400 1 の SO C 培地 (Molecular Cloning : A Laboratory Manual, Sambrook ら 、 Cold Spring Harbor Laboratory Press, ( 1989) ) を加え、 37。C にて 1時間イ ンキュべ一 卜 した後、 50〃 g /ml のアンピシリ ンを含 有する LB 寒天培地 (Molecular Cloning : A Laboratory Manual, Sambrook ら、 Cold Spring Harbor Laboratory Press, ( 1989) ) 上にこの大腸菌を播き、 37°Cにて一夜イ ンキュベー ト して大腸菌形 質転換体を得た。
この形質転換体を 50 g /ml のア ンピシ リ ンを含有する LB 培地 (Molecular Cloning : A Laboratory Manual, Sambrook ら、 Cold Spring Harbor Laboratory Press, ( 1989) ) 3 ml中で 37。Cにて一 夜培養し、 この培養物から、 アルカ リ法に従ってプラスミ ド DNA を 調製した。 このプラスミ ド DNA を Kpnlおよび BamHI 消化した後、 1% ァガロースゲル電気泳動により 360 bpのプラス ミ ドを選択し、 選択 した形質転換体を 50^ g /ml のア ンピシ リ ンを含有する LB 培地 30 0 ml中で 37°Cにて一夜培養した。 この培養物からアルカ リ法 (Mole cular Cloning : A Laboratory Manual, Sambrook ら、 Cold Spr in g Harbor Laboratory Press, ( 1989) ) により、 プラスミ ド DNA を 調製し、 これを C 端の疎水領域を削除した HAタグ付加可溶性抗原発 現プラスミ ドと して (CGM/HA- HM164) と命名した。
実施例 15. CGM/HA-SH 164 の塩基配列決定
C 端の疎水領域を削除した HA夕グ付加可溶性抗原発現プラスミ ド プラスミ ド (CGM/HA- HM164) の塩基配列決定を、 上記発現プラスミ ドを Bgl II (宝酒造製) で消化したものを铸型と して自動 DNA シー クェンサー (Applied Biosystem Inc.製) および Taq Dye terminat or Cycle Sequencing kit (Applied Biosystem Inc.製) を用いて 、 メ一力一指定のプロ ト コールに従って塩基配列を決定した。 反応 に用いたプライマーを配列番号 9 および 11、 解読した塩基配列の範 囲を図 10に、 決定した塩基配列を配列番号 6 に示した。 これより理 論上の塩基配列と一致することが確認された。
実施例 16. COS- 7 細胞および CH0 細胞への トラ ンスフエク シ 3 ン
HAタグ付加 C 端削除可溶性 HM1.24抗原の一過性の発現を観察する ため、 前記発現ブラスミ ド CGM/HA- HM164をェレク トロボレ一シ ヨ ン 法により前述と同様 (前記実施例 4. COS- 7細胞への ト ラ ンスフ エク シヨ ン) の条件下で同時に COS- 7 細胞へ遺伝子導入した。 更に、 ェ レク トロポレーショ ン処理された細胞は前述 (前記実施例 4 ) と同 様の条件にて 6 日間培養し、 回収した培養上清は 0.22/ mフ ィ ルタ 一 ( ILLIP0RE 製) をかけ、 4 °Cで保存した。
また、 HAタグ付加可溶性 HM1.24抗原安定産生系を樹立するために 、 Pacl (New England Biolabs 製) で消化した後、 0.7%ァガロース ゲルを用いて 4.7 kb断片を精製して得た直鎖状にした前記発現べク タ一 (CGM/HA-HM164) をエレク トロポレーシヨ ン法により前述と同 様 (前記実施例 4. C0S-7細胞への ト ラ ンスフ ヱ ク シ ョ ン) の条件下 で同時に CH0 細胞 DG44 株 (Urlaub, G et al., Cell (1983) 33(2 )405-412) に遺伝子を導入した。
更に前述 (前記実施例 5 ) 同様にして、 G418(GIBC0 BRL製) で選 択した。
実施例 17. 培養上清を用いたサン ドイ ッチ ELISA
前述 (実施例 7. 培養上清を用いた sandwich ELISA) と同様の条 件で行った。 1 g /ml の抗 HA抗体 (Boehringer Mannheim M を コ一ティ ングしたプレー トを室温にて 2 時間ブロ ッキングを行った 後、 4倍に希釈した C0S-7 細胞および CH0 細胞による培養上清をも のを 100〃 1 /well 加え、 4 °Cでー晚反応させた。 洗浄した後、 1 g/ml のヒ ト型化抗 HM1.24抗体を 3 倍希釈の段階希釈を行い、 各 穴に 100 n 1 /well 加えて室温で 1 時間応させた。 洗浄後、 5000倍 希釈したアルカ リ フ ォスフ ァ タ一ゼ標識ャギ抗ヒ 卜 IgG (BI0S0URC B 製) を室温で 1 時間反応させた。 洗浄した後、 基質溶液を加え、 Microplate reader (BI0RAD製) で 405 nm~ 655 nm の吸光度を測 定した。
その結果、 図 11に示したとおり、 C 端削除可溶型抗原を産生させ た C0S-7 細胞の培養上清を用いて、 ヒ ト型化抗 HM1.24抗体の標準曲 線が得られた。 また、 CH0 細胞の培養上清を用いた場合も、 図 12の とおり ヒ 卜型化抗 HM1.24抗体の標準曲線が得られた。 どちらの ELIS A 系の測定限界も数 ng/ml であった。
実施例 18. 細胞株の選択
高産生の株を選択するために可溶性抗原の産生量を抗 HA抗体とキ メ ラ型抗 HM1.24抗体によるサン ドイ ッチ EUSAで比較し、 細胞株の 選択を行つた。 抗 HA抗体を 1 ^ g/ml でコー ト したプレー トをプロ ッキングした後、 HAタグ付加可溶性抗原産生細胞の培養上清を段階 希釈して加えた。 精製抗原を得ていないため、 抗原濃度は分からな いので、 濃度を比較するために、 初期播種量をそろえ、 4 日間細胞 を培養した培養上清を用いた。 これを室温にて 2 時間イ ンキュべ一 ト した後、 1 g/ml のキメ ラ型抗 HM1.24抗体およびヒ ト型化抗 HM 1.24抗体を加え、 室温にて 1 時間ィ ンキュペー ト した。 アルカ リ フ ォスフ ァ ターゼ標識ャギ抗ヒ ト IgG (BI0S0URCE 製) を加え、 室温 で 1 時間反応させた後、 基質溶液を加えた。 室温で発色させ、 405 ηπ!〜 655 nm の吸光度をマイ クロプレー ト リーダ一 (BI0RAD製) に て測定した。
その結果、 G418による細胞の選択において、 産生量の多かった #1 , #2, #21, #28の 4 クローンを選んだ。
実施例 l^ Western blotting まず、 細胞溶解物を作製した。 HAタグ付加 C 端削除可溶型抗原を 発現させた、 1 X 107 個の COS- 7 細胞および G418で選択した 4 ク ロ ーンの HAタグ付加 C 端削除可溶型抗原発現 CH0 細胞 (#1: 1.2 X 10 7 個、 #2 : 1.5 xlO7 個、 #21 : 2.2 x 107 個、 #28 : 1.3 xlO7 個) をそれぞれ、 前述実施例 12. の条件下にて細胞溶解物を調製し た。
また、 細胞溶解物を調製する際、 細胞を培養していた培養上清 ( COS- 7 Sup.、 CHO Sup. #2 、 #21 、 #28 ) を 0.22〃 mのフ ィ ルタ一 を通して 4 °Cで保存した。 この培養上清 20 1 に 5% 2-メルカプ ト エタノ ールを含むサンプルバッ フ ァ一 ( 10% glycerol, 2% SDS, 0. 25¾ ブロムフエノールブルーを含有する 0.5 M Tris-HCl buffer, pH6.8)を 10 1 加え、 100 °Cで 5 分間加熱した。 また、 培養上清 20 II 1 に対応する細胞数の 10〜16倍の細胞数の細胞溶解物 (COS- 7 : 1 X 105 cells 、 #2 : 5.4 X 104 、 #21 : 1 x 10s 、 #28 : 5.9 x 104 ) を含む細胞溶解物 10 / 1 に 5% 2-メルカプ トエタノールを含 むサンプルバッファーを 5 n 1 加え、 同様に加熱した。
更に、 陽性コ ン ト ロールと して前述した C 端を削除していない HA タグ付加可溶型抗原発現 CH0 細胞 #C の培養上清 (#C Sup. ) 20 1 にも 5!¾ 2-メルカプ トエタ ノ ールを含むサンプルバッ ファーを 10 / 1 同様の処理を行った。 これらを前述した条件下 (実施例 13. ) にてマウス抗 HM1.24抗体で western blotを行った結果を図 13に示し た。 図に示したとおり、 培養上清には前回同様に可溶型 HM1.24抗原 が検出されたが、 今回作製した C 端削除可溶型抗原産生細胞の細胞 溶解物には HM1.24抗原の発現は見られなかった。 これより C端の疎 水領域を削除することで、 細胞表面に トラ ップされていた HA付加可 溶型 HM1.24抗原は培養上清中に分泌されるようになつた。
また、 上記 C端削除可溶型抗原産生細胞の培養上清を用いて、 非 還元状態で SDS ポリ アク リルア ミ ド電気泳動を行い、 Western blot を行った結果、 C 端削除可溶型抗原もホモダイマーを形成していた 実施例 20.
GST 付加可溶性 HML 24抗原を用いた ELISA を検討した。
1 . GST 付加可溶性 HM1.24抗原の調製
HM1.24抗原の細胞外 ドメ イ ン 76- 180ア ミ ノ酸 (IS- 1) を Glutathi one S- transferase (GST) の 末端に結合させた GST. IS- 1の発現べ クタ一を構築し、 このベクターで大腸菌(DH5ひ) を形質転換した ( GST. IS- 1/E. col i)。 この GST. IS- 1/E. col i を LB/Amp培地で一晚前培 養した。 この前培養液を LB/Amp培地で 50倍希釈して、 30°Cで約 4時 間培養した。 濁度が 0.7 以上になったところで、 IPTGを 0.5mmol/L となるように添加して約 4時間発現誘導した。 この大腸菌を集菌し 、 D-PBS (-)に懸濁して一 80°Cに凍結保存して以下の精製に使用した 発現させた GST. IS- 1は大腸菌の封入体から抽出した。 すなわち、 凍結保存した大腸菌を融解後、 1 %になるように Tr on X100 を添 加して Branson Sonif ier 250を用いて ou tpu t 2, duty50%の条件で 1分間超音波破砕した。 Tomy MX160を用いて 14000rpmで 20分間遠心 して沈澱画分を集めた。 この沈澱画分を 100 u g/mL Lysozyme を含 む 50mmol/L Tris-HCl buffer, pH8.0 に懸濁して氷冷下で 30分間消 化した。 Lysozyme 消化後、 5 mmol/ こなるように MgCl 2 を加えて DNase I で室温、 10分間消化した。 14000rpmで 20分間の遠心で沈澱 を集めて、 1 % Triton X100を含む 50ππηο 1 /L Tris-HCl buffer, pH 8.0 で 2回洗浄した。 この沈澱画分に 8 mol/L Urea, 10mmol/L DTT を含む 50mmol/L Tris-HCl buffer, pH8.0 を加えてピベッティ ング で懸濁させた。 14000rpmで 20分間遠心して上清を GST. IS-1抽出物と し
GST. IS- 1抽出物は DEAE Sepharose Fast Flowを用いた陰イオ ン交 換で精製した。 GST. IS- 1抽出物を 8 moi/L Urea, 10mmol/L DTTを含 む 50mmol/L Tris-HCl buffer, pH8.0 で平衡化してある DEAE Sepha rose Fast Flowのカラムに添加し、 同一の buff erで洗浄した。 吸着 した GST. IS- 1は NaClの濃度を 0.25mol/L にすることで溶出させ、 こ の画分を GST. IS- 1 (D)と した。
次に、 GST · IS-1 (D)は C0SM0SIL C4 を用いた逆相系 HPLCで精製 した。 まず、 GST · IS- 1 (D)を 2倍量の 200mmol/L sodium acetate -HC1 buffer, pH3.5で希釈し、 20nnnol/L sodium acetate-HCl buff er, pH3.5 で平衡化してある PD-10 のカラムで脱塩した。 次に、 脱 塩した GST · IS- 1 (D)に等量の 0.1 %TFA を加えて、 20% CH3CN/0 .1%TFA で平衡化してある C0SM0SIL C4 に吸着させた。 吸着した GS T. IS- 1はァセ トニ ト リルの濃度を 60%まで直線的に増加させること で溶出させた。 主要な GST. IS- 1溶出画分を GST - IS-1 (C4) と した o
次に、 GST · IS-1 (C4) を Vydac Diphenylを用いた 2回目の逆相 系 HPLCで精製した。 GST · IS- 1 (C4) を脱イオン水で 3倍に希釈し て 30% CH3CN/0.1%TFA で平衡化してある Vydac Diphenylに吸着さ せた。 吸着した GST. IS- 1はァセ トニ ト リルの濃度を 60%まで直線的 に増加させることで溶出させた。 GST.1S-1はメイ ンピーク と して溶 出した。
2. ELISA
Coating Buffer (CB) は 0.02% Na 3 を含む 100mmol/L NaHC03溶 液、 Dilution Buffer (DB)は 1 mmol/L gCl 2) 150議 1/し NaCl, 0. 05% Tween20, 0.02%NaN3, 1 % BSAを含む 50mmol/L Tris-HCl, p H8.1溶液、 Substrate Buffer (SB) は lOmmoi/L MgCl 2を含む 50mmol /L NaHC03, pH9.8溶液、 0.1 % Tween 20/TBS は 0. 1 % T een 20 を含む TBS (TaKaRa CodeT903 Lot201)を使用 した。 GST. IS- 1 (D)を Nunc Immuno Plate axi Sorp に直接固相化し、 ヒ ト型化抗 HM1.24 抗体の濃度を測定した。 GST. IS- 1 (D)を CBで希釈して Nunc Immuno Plate Maxi Sorp に 100 1 /wellで加えて室温で 1 時間固相化し た。 0.1 % Tween20/TBSを用いて 200 〃 1 /wel 1で 3 回洗浄後、 DB を 200 1 Zwellで加えて室温で 1 時間以上ブロ ッキングした。 被 検物質と して DBで希釈したヒ ト型化抗 HM1.24抗体を 100 μ. 1 /well で室温で 1 時間反応させた。 次に、 0.1 % Tween20/TBSを用いて 20 0 1 /wellで 3回洗浄後、 DBで 5000倍希釈したアルカ リ フ ォ スフ ァターゼ標識ャギ抗 IgG (Goat ant i human IgG r chain AP con juga te)(Biosource AH20305 Lot 6202) を 100 μ 1 ノ wellで室温、 1 時 間反応させた。 0.1 % Tween20/TBSを用いて 200 ; l Zwellで 3回 洗浄後、 SBで 1 mg/mlに調製した Sigmal04を 100 l Zwellで加え て室温で 1 時間発色させた。 405nm- 620nm の吸光度を Bio- Rad Mode 1 3550で測定した。 その結果、 ヒ ト型化抗 HM1.24抗体の濃度依存的 な吸光度の上昇が得られた (図 19) 。
参考例し マゥス抗 HM1.24モノ ク ロ一ナル抗体産生ハィブリ ド一 マの調製
Goto, T. et al., Blood (1994) 84, 1992-1930 に記載の方法に て、 マウス抗 HM1.24モノ ク ローナル抗体産生ハイプリ ドーマを調製 した。
ヒ ト多発性骨髄腫患者骨髄由来の形質細胞株 KPC- 32 (lxlO7 個) (Goto, T. et al. , Jpn. J. Clin. Hematol. (1991) 32, 1400 ) を BALB/Cマウス (チヤ一ルスリバ一製) の腹腔内に 6 週間おきに 2 回注射した。
このマウスを屠殺する 3 日前にマウスの抗体産生価をさ らに上昇 させるために、 1.5 x 106 個の KPC- 32をマウスの脾臓内に注射した (Goto, T. et al., Tokushima J. Exp. Med. (1990) 37, 89 ) 。 マウスを屠殺した後に脾臓を摘出し、 Groth, de St. & Schreidegg erの方法 (Cancer Research (1981) 41, 3465 ) に従い摘出した脾 臓細胞と ミエローマ細胞 SP2/0 を細胞融合に付した。
KPC- 32を用いた Cell BLISA (Posner, M. R. et al. , J. Immunol . ethods (1982) 48, 23 ) によりハイプリ ドーマ培養上清中の抗 体のスク リ ーニングを行った。 5 X 104 個の KPC- 32を 50 ml の PBS に懸濁し、 96穴プレー ト (U 底型、 Corning, Iwaki製) に分注し 37 °Cでー晚風乾した。 1%ゥ シ血清アルブミ ン (BSA ) を含む PBS でブ ロ ッ ク した後、 ハイプリ ドーマ培養上清を加え 4 °Cにて 2 時間イ ン キュペー ト した。 次いで、 4 °Cにて 1 時間ペルォキシダ一ゼ標識抗 マウス IgG ャギ抗体 (Zymed 製) を反応させ、 洗浄後室温にて 30分 間 0-フ ヱニレンジア ミ ン基質溶液 (Sumitomo Bakeli te 製) を反応 させた。
2N硫酸で反応を停止させ、 ELISA reader (Bio-Rad 製) で 492nm における吸光度を測定した。 ヒ ト免疫グロブリ ンに対する抗体を産 生するハイプリ ドーマを除去するために、 陽性ハイプリ ドーマ培養 上清をヒ ト血清にあらかじめ吸着させ、 他の細胞株に対する反応性 を ELISA にてスク リーニングした。 陽性のハイプリ ドーマを選択し 、 種々の細胞に対する反応性をフ ローサイ トメ ト リ 一で調べた。 最 後に選択されたハイプリ ドーマクロー ンを二度クロー ン化し、 これ をプリ スタ ン処理した BALB/Cマウスの腹腔に注射して、 腹水を取得 した。
モノ ク ロ一ナル抗体は、 硫酸ァ ンモニゥムによる沈澱とプロティ ン A ァフ ィ 二ティ ク ロマ ト グラ フ ィ ーキッ ト (Ampure PA 、 Amersh am製) によりマウス腹水より精製した。 精製抗体は、 Quick Tag FI TC結合キッ ト (ベーリ ンガーマンハイ ム製) を使用するこ とによ り F I TC標識した。
その結果、 30のハイブリ ドーマク ロー ンが産生するモノ ク ロ一ナ ル抗体が KPC - 32および RPM I 8226 と反応した。 ク ローニングの後、 これらのハイプリ ドーマの培養上清と他の細胞株あるいは末梢血単 核球との反応性を調べた。
このうち、 3 つのク ロー ンが形質細胞に特異的に反応するモノ ク ローナル抗体であった。 これらの 3 つのク ローンのう ち、 最もフ ロ —サイ トメ ト リ一分析に有用であり、 かつ RPM I 8226 に対する CDC 活性を有するハイプリ ドーマクローンを選択し、 HM1. 24と名付けた 。 このハイブリ ドーマが産生するモノ クローナル抗体のサブクラス を、 サブクラス特異的抗マウスゥサギ抗体 (Z yme d 製) を用いた EL I SA にて決定した。 抗 HM1. 24抗体は、 I gG2a /cのサブク ラスを有し ていた。 抗 HM1. 24抗体を産生するハイプリ ドーマ HM1. 24は、 工業技 術院生命工学工業研究所 (茨城県つく ば巿東 1 丁目 1 番 3 号) に、 平成 7 年 9 月 14日に FERM BP - 5233と してブタぺス ト条約に基づき国 際寄託された。
参考例 2. ヒ ト型化抗 HM1. 24抗体の作製
ヒ ト型化抗 HM1. 24抗体を下記の方法により得た。
参考例 1 で作製されたハイプリ ドーマ HM1. 24から、 常法により全 RNA を調製した。 これよりマウス抗体 V 領域をコ一 ドする cDNAをポ リ メ ラーゼ連鎖反応 (PCR ) 法および 5' -RACE 法により、 合成、 増 幅した。 マウス V 領域をコー ドする遺伝子を含む DNA 断片を得、 こ れらの DNA 断片を各々プラス ミ ド pUC 系クローニングベクターに連 結し、 大腸菌コ ンビテン ト細胞に導入して大腸菌形質転換体を得た 。 この形質転換体から上記プラス ミ ドを得、 プラス ミ ド中の cDNAコ 一ド領域の塩基配列を常法に従い決定し、 さ らに各々の V 領域の相 補性決定領域 (CDR ) を決定した。
キメ ラ抗 HM1.24抗体を発現するべクタ一を作製するため、 それぞ れマウス抗 HM1.24抗体 L 鎖および H 鎖の V 領域をコー ドする cDNAを HEF ベクターに挿入した。 また、 ヒ ト型化抗 HM1.24抗体を作製する ために、 CDR 移植法によりマウス抗 HM1.24抗体の V 領域 CDR をヒ ト 抗体へ移植した。 ヒ ト抗体の L 鎖と してヒ ト抗体 RE1 の L 鎖を用い 、 ヒ ト抗体 H 鎖と してフ レームヮ一ク領域 (FR) 1-3 についてはヒ ト抗体 HG3 の FR1- 3 を用い FR4 についてはヒ ト抗体 JH6 の FR4 を用 いた。 CDR を移植した抗体が適切な抗原結合部位を形成するように H 鎖 V 領域の FRのァ ミ ノ酸を置換した。
このようにして作製したヒ ト型化抗 HM1.24抗体の L 鎖および H 鎖 の遺伝子を哺乳類細胞で発現させるために、 HEF ベクターに、 各々 の遺伝子を別々に導入し、 ヒ ト型化抗 HM1.24抗体の L 鎖または H 鎖 を発現するベクターを作製した。
これら二つの発現ベクターを CH0 細胞に同時に導入することによ り、 ヒ ト型化抗 HM1.24抗体を産生する細胞株を樹立した。 この細胞 株を培養して得られたヒ ト型化抗 HM1.24抗体のヒ 卜羊膜由来細胞株 WISHへの抗原結合活性および結合阻害活性を、 Cell ELISAにて調べ た。 その結果、 ヒ ト型化抗 HM1.24抗体は、 キメ ラ抗体と同等の抗原 結合活性を有し、 さ らにピオチン化マウス抗 HM1.24抗体を用いた結 合阻害活性についても、 キメ ラ抗体あるいはマウス抗体と同等の活 性を有した。
なお、 キメ ラ抗 HM1.24抗体の L 鎖 V 領域および H 鎖 V 領域をコー ドする DNA を含むプラスミ ドを有する大腸菌は、 各々 Escherichia coli DH5a (pUC19-l.24L- g /c ) および Escher i ch i a col i DH5a ( pUC19-1.24H-g ァ 1 ) と して、 工業技術院生命工学工業技術研究所 (茨城県つく ば市東 1 丁目 1 番 3 号) に、 平成 8 年 8 月 29日に、 各 々 FERM BP- 5646および FERM BP- 5644と してブダぺス ト条約に基づき 国際寄託された。
また、 ヒ ト型化抗 HM1.24抗体の L 鎖 V 領域 a バージ ョ ン (配列番 号 : 17) および H 鎖 V 領域 r バージ ョ ン (配列番号 : 18) をコー ド する DNA を含むプラス ミ ドを有する大腸菌は、 各々 Escherichia co 1 i DH5a ( pUC19-RVLa-AH -gk ) および Escher i chia col i DH5 a ( pUC19-RVHr-AH - g ァ 1 ) と して、 工業技術院生命工学工業技術研 究所 (茨城県つく ば巿東 1 丁目 1 番 3 号) に、 平成 8 年 8 月 29日に 、 各々 FERM BP- 5645および FERM BP- 5643と してブダぺス ト条約に基 づき国際寄託された。
また、 ヒ ト型化抗 HM1.24抗体の H 鎖 V 領域 s バージ ョ ン (配列番 号 : 19) をコー ドする DNA を含むプラス ミ ドを有する大腸菌は、 cherichis coH DH5 (pUC19- RVHs- AHM- g ァ 1 ) と して、 工業技 術院生命工学工業技術研究所 (茨城県つく ば巿東 1 丁目 1 番 3 号) に、 平成 9 年 (1997年) 9 月 29日に FERM BP-6127と してブダぺス ト 条約に基づき国際寄託された。
参考例 3一. H M 1 . 2 4抗原をコ—一ドする c D N— Aの ローニン
^_
1 ) 細胞株
ヒ ト骨髄腫細胞株 R P M I 8 2 2 6 , U 2 6 6 は 1 0 %ゥ シ胎児 血清 ( F B S ) を添加した R P M I 1 6 4 0培地 ( G I B C 0— B R L ) にて培養を行い、 ヒ ト骨髄腫細胞株 K P MM 2 (特開平 7 — 2 3 6 4 7 5 ) は 2 0 %ゥシ胎児血清を添加した R P M I 1 6 4 0 培地にて培養を行った。
2 ) c D N Aライブラ リ一の構築
1 X 1 0 8 個の K P MM 2細胞よりチォシア ン酸グァニン/塩化 セシウム法により全 R N Aを単離し、 Fast Track mRNA Isolation Kit(Invitrogen) を用いて m R N Aの精製を行った。 1 0 gの m R NAより Not I /ol igo-dT, 8 (Time Saver cDNA Synthesis Kit ; Pharmacia Biotech ) を用いて c D NAを合成した後、 EcoR I a dapterを連結した。 0. 7 kbp 以上の c D N Aを 1. 0 %低融点ァ ガロースゲル ( S i g m a ) を用いて分画し、 N o t I にて消化し p C O S l発現ベクター又は A E x C e l 1 ベクタ一 (Pharmacia Biotech ) の EcoRI /Not I site に挿入し、 直接発現ク ローニン グ ( p a n n i n gによるスク リーニング) に用いるライブラ リー (ライブラ リ 一 A ) 及び免疫スク リーニング用のライブラ リ 一 (ラ イブラ リー B ) をそれぞれ構築した。
なお、 p C 0 S 1発現ベクターは、 HEF- PMh- gy l (W092-19759 参照) から、 E c 0 R Iおよび S m a I消化により含有される遺伝 子を削除し、 EcoRI- Notl- BamHI Adaptor (宝酒造) を連結すること により構築した。
3 ) P a n n i n g
ライブラ リ 一 Aをエレク ト口ポレーシ ヨ ン法により C O S— 7細 胞に導入した。 すなわち、 1 0 〃 gのプラス ミ ド D N A ( 5 X 1 0 5 個の独立ク ローンを含む) を 0. 8 mlの細胞 ( 1 X 1 0 7 細胞 Z ml in PBS ) と混合し、 Gene Pulser (Bio-Rad) を用いて 1. 5 kV 、 2 5 〃 FDの条件にてエレク トロポレーシヨ ンを行った。 室温にて 1 0分間清置した後、 細胞を 1 0 % F B S添加 D M E M ( G I B C O— B R L) に懸濁し 4枚の 1 0 0 mm培養ディ ッ シュに分け 3 7 °Cにて 7 2時間培養した。
培養後細胞をリ ン酸緩衝液 ( P B S ) で洗浄し、 5 mM E D TA を含む P B Sを加え細胞を剝がし、 5 % F B S、 0. 0 2 % N a N 3 添加 P B Sにて 1 一 2 x 1 0 6cellsZmlの細胞懸濁液を調整 した。 続いて細胞は抗 HM 1. 2 4抗体をコーティ ングした p a n n i n gプレー ト (後述) 上で 2時間清置し、 プレー トを 5 % F B S、 0. 0 2 % N a N3 を含む 3 mlの P B Sで穏やかに 3回洗 浄した。 洗浄後、 プレー ト上に結合した細胞から、 H i r tの溶液 (Hi tt J. , Mol. Biol. 26 : 365-369, 1983 ) ( 0. 6 % S D S 、 1 0 mM E D T A) を用いてプラス ミ ド D N Aを回収した。 回収 したプラス ミ ド D N Aは大腸菌内で増幅し、 次の p a n n i n gに 使用した。
P a n n i n gプレー トの調製は次のようにして行った。 3 mlの 抗 HM 1. 2 4抗体溶液 ( 1 0 / 8 1111 5 011^ T r i s — H C H 9. 5 ) を 6 0 mmデイ ツ シュ (F a 1 c o n ) に加え、 室 温にて 2時間清置し、 0. 1 5 M N a C 1 にて 3回洗浄した後、 3 mlの 5 % F B S、 1 mM E D TA, 0. 0 2 % N a N3 添加 P B Sを加え、 室温にて 2時間清置しブロ ッキングを行った。 プロ ッキング溶液を除去した後 p a n n i n gプレー トは使用するまで 一 2 0 °Cで保存した。
5 X 1 0 5 個のクロー ンを含むプラ ス ミ ドライ ブラ リ ー (ライブ ラ リー A) を出発材料と して p a n n i n gを 3回繰り返すことに より、 約 0. 9 kbp の c D N Aをイ ンサー ト と して持つプラス ミ ド DN A力く濃縮された。 Dye Terminator Cycle Sequencing Kit (App lied Biosystems ) を用いて 3 7 3 Aも しく は 377DNA Sequencer ( Applied Biosystems) により塩基配列の決定を行った結果、 クロー ン P 3. 1 9は 1 , 0 1 2 bpの c D N Aカヽら成り、 1 8 0ア ミ ノ酸 をコー ドするオープンリ ーデングフ レーム ( 2 3 — 5 4 9 ) を持つ ことが明らかとなった (図 14及び図 15) (配列番号 : 16) 。 この c D N Aより予想されるァ ミ ノ酸配列はタィプ IIの膜タ ンパクに特徴 的な構造を示し、 2箇所の N型糖鎖結合部位を有していた。
4 ) 免疫スク リーニング ライブラ リー Bは抗 HM 1. 2 4抗体を用いた免疫スク リーニン グに供した。 すなわち、 1. 5 X 1 0 5 個の独立ク ロー ンを含むフ ァージライブラ リーを大腸菌 NM 5 2 2 (Pharmacia Biotech ) と 共に寒天上に重層し、 4 2 °Cにて 3. 5時間培養した。 培養後、 プ レー ト上に 1 O mM I P T Gで前処置したニ ト ロセルロースフ ィ ノレ ター (Schleicher & Schueil) を重ね、 さ らに 3 7 °Cにて 3時間培 養した。 F i 1 t e rは 0. 0 5 % ( v/v ) Tw e e n— 2 0添 加 T B S ( 2 0 mM T r i s — H C l、 pH7. 4、 1 5 0 mM N a C I ) で洗浄した後、 1 % (w/v) B S A添加 T B Sを加え、 室 温にて 1 時間ィ ンキュベ一 ト してプロ ッキングを行った。
プロ ッキング後、 抗 HM 1. 2 4抗体溶液 ( 1 0 g/mlプロ ッ キング緩衝液) を加え、 室温にて 1時間イ ンキュベー ト し、 洗浄後 5 , 0 0 0倍希釈したアルカ リ ホスフ ァ ターゼ結合抗マウス I g抗 血清 (picoBlue Immunoscreening kit; Stratagene) ¾カロえ、 さ ら に室温にて 1 時間イ ンキュベー ト した。 抗体と反応したスポッ トは 0. 3 mg/mlニ トロブル一テ トラゾリ ゥム、 0. 1 5 mg/ml 5 — ブロモ一 4 —ク ロ口一 3 —イ ン ドリルホスフ ェー トを含む発色溶液 ( 1 0 0 mM T r i s - H C l、 pH9. 5、 1 0 0 mM N a C 5 mM M g C 1 2 ) にて発色させた。
免疫スク リ ーニングにより 5個の陽性ク ローンが単離され、 それ ら全てが P 3. 1 9の部分配列と一致した (図 16) 。 ホモ口ジー検 索の結果、 P 3. 1 9は骨髄または滑膜ス ト ローマ細胞に発現する B S T— 2 (Ishikawa J. ら、 Genomi cs, 26; 527- 534, 1995 ) の 塩基配列と同一のものであることが明らかとなった。 二通りのスク リ ーニング法により同一の分子が得られ、 P 3. 1 9がコー ドする 膜タ ンパクは HM 1. 2 4抗原分子であることを強く示唆している なお、 前記ヒ ト H M 1. 2 4抗原タ ンパク質と同一の配列を有す るヒ トタンパク質をコー ドする D N Aを p U Cベクターの X b a I 切断部位間に挿入したプラスミ ド P R S 3 8 - p U C 1 9 を含有す る大腸菌は Escherichia col i DH5 a (pRS38-pUC19 ) と命名され 、 平成 5 ( 1 9 9 3 ) 年 1 0月 5 日に工業技術院生命工学工業技術 研究所 (茨城県つく ば巿東 1 丁目 1番 3号) に寄託番号 F E RM B P— 4 4 3 4 と して、 ブダペス ト条約に基づき国際寄託されてい る。
5 ) F A C S解析
さ らに、 P 3. 1 9 によってコー ドされるタ ンノ、。クが確かに抗 H M l . 2 4抗体と結合するのかを確認するために、 P 3. 1 9 を導 入した C H 0形質転換細胞株を樹立した。 すなわち、 P 3. 1 9 ク ローンをヱレク トロポレーショ ン法により C H O細胞に導入した後 、 5 0 0 〃 g /mlの G 4 1 8 ( G I B C 0— B R L ) の存在下で培 養し、 HM 1. 2 4抗原発現 C H 0細胞株を得た。
1 X 1 0 6 個の培養細胞を F A C S緩衝液 ( P B S (—) / 2 % F C S / 0. 1 % N a N 3 ) に懸濁し、 H M 1 . 2 4抗体を添 加し、 氷中で 3 0分間反応した。 F A C S緩衝液で洗浄後、 G AM — F I T C溶液 ( 2 5 UL g /ml in F A C S緩衝液 ; Bee ton Dicki nson) で再懸濁し、 さ らに氷中で 3 0分間反応した。 F A C S緩衝 液で 2回洗浄した後、 6 0 0 u 1 の F A C S緩衝液に再懸濁し F A C S c a n (Becton Dickinson) にて (l定した。
なお、 陰性対照抗体と して U P C 1 0 を用いた。
F A C S解析の結果、 P 3. 1 9を導入した C H O細胞は抗 HM 1. 2 4抗体と強く 反応したのに対し、 コ ン トロールの発現べクタ —のみを導入した C H 0細胞 ( C H OZN E O) では有意な結合は 認められなかった (図 17) 。 したがって、 P 3. 1 9 によってコー ドされるタ ンパク質は抗 HM 1. 2 4抗体と結合することが確認さ れた。
6 ) 免疫沈降
細胞は P B S (—) で 2回洗浄した後、 細胞溶解緩衝法 ( 5 0 mM 萌酸ナ ト リ ウム、 1 5 0 mM N a C l、 0. 5 %デォキシコール酸 ナ ト リ ウム、 1 % Nonidet P- 40、 0. 1 mg/mlフ エ二ルメ チルス ルホニルフルオリ ド、 プロテアーゼ阻害剤カクテニル 〔Boehringer Mannheim 〕 ) 内で超音波破砕を行い、 可溶化画分を得た。 可溶化 画分は抗 HM 1. 2 4抗体をコンジユゲー 卜 した Sepharose 4Bビー ズに加えた。 遠心後、 沈殿物は S D S— P A G E ( 1 % g e 1 ) により分離し、 P V D F膜に転写した。 P V D F膜は抗 HM 1. 2 4抗体、 続いて POD-antiiouse IgGと反応させた後、 E C Lキッ ト (Am e r s h a m) を用いて検出を行った。
K P MM 2 , R P M I 8 2 2 6及び U 2 6 6の各種ミエ口一マ細 胞株は HM 1. 2 4抗原を強く発現し、 これらの細胞溶解物を抗 H M l . 2 4抗体で免疫沈降を行う と、 分子量が約 2 9〜 3 3 kDa の タ ンパクが特異的に検出された (図 18) 。 P 3. 1 9を導入した C H O細胞株 (C H O/HM) においても同様の実験を行った結果、 C H OZHM細胞においても ミエローマ細胞株と同様に免疫沈降物 が確認され (図 18、 レー ン 4 ) 、 発現べクター p C O S 1 のみを導 入したコ ン ト ロール細胞 (C H O/N E O) ではそのよ う な免疫沈 降物は確認されなかった (図 18、 レー ン 5 ) 。
P 3. 1 9は 1 8 0ア ミ ノ酸からなる推定分子量 1 9. 8 kDa の タ ンパクをコー ドしており、 2力所の N型糖鎖結合モチーフが存在 している (図 14) 。 従って、 免疫沈降により認められた分子量の異 なったものの存在は、 N型糖鎖の修飾の違いによることが考えられ た。 事実、 免疫沈降物が数種のレクチンと結合することが確認され ている。
配列表の説明
配列番号 : 1 は、 可溶性 HM1. 24抗原タンパク質の細胞外 ドメイ ン のァ ミ ノ酸配列及び塩基配列を示す。
配列番号 : 2 は、 リ—ダー配列、 FLAGぺプチ ド及び可溶性 HM1. 24 抗原タ ンパク質からなる融合蛋白質のァ ミ ノ酸配列及び塩基配列を 示す。 1位の Me t から 1 8位の H i s まではリ ーダー配列である。 2 0位の Asp から 2 7位の Lys までは FLAGぺプチ ドである。 2 8位の G l y および 2 9位の Thr はリ ンカーである。
配列番号 : 3 は、 HAペプチ ド及び可溶性 HM1. 24抗原タ ンパク質か らなる融合蛋白質のァ ミ ノ酸配列及び塩基配列を示す。 1 位の Tyr から 9位の A l a までは HAぺプチ ドである。 2 8位の G 1 y および 2 9 位の Thr はリ ンカ一である。
配列番号 : 4 は、 HAぺプチ ド及び C 末端を欠失させた可溶性 HM1. 24抗原タンパク質からなる融合蛋白質のァ ミ ノ酸配列及び塩基配列 を示す。 1位の Tyr から 9位の A l a までは HAペプチ ドである。 2 8 位の G l y および 2 9位の Thr はリ ンカ一である。
配列番号 : 5 は、 決定した CGM/HAの塩基配列及び HAぺプチ ドのァ ミ ノ酸配列を示す。 1位の Tyr から 9位の A l a までは HAぺプチ ドで める。
配列番号 : 6 は、 決定した CGM/HA-HM164のア ミ ノ酸配列および塩 基配列を示す。 1位の Me t から 2 0位の Cy s まではリ ーダー配列で ある。 2 2位の Tyr から 3 0位の Al a までは HAペプチ ドである。 3 1位の G l y および 3 2位の Thr はリ ンカ一である。 3 3位の Asn か ら 1 5 1位の A までは C 末端を欠失させた可溶性 HM1. 24抗原タ ン パク質である。
配列番号 : 7 は、 プライマー CMV/L の塩基配列を示す。 配列番号 : 8 は、 プライマー BGH- 1 の塩基配列を示す。
配列番号 : 9 は、 プライマー So卜 1 の塩基配列を示す。
配列番号 : 1 0 は、 プライマ— So卜 2 の塩基配列を示す。
配列番号 : 1 1 は、 プライマー So卜 3 の塩基配列を示す。
配列番号 : 1 2 は、 リ ーダー配列及び FLAGぺプチ ド配列を含む合 成 DNA ペアの一方の塩基配列を示す。
配列番号 : 1 3 は、 1 2 は、 リーダー配列及び FLAGぺプチ ド配列 を含む合成 DNA ペアのもう一方の塩基配列を示す。
配列番号 : 1 4 は、 HAぺプチ ド配列を含む合成 DNA ペアの一方の 塩基配列を示す。
配列番号 : 1 5 は、 HAペプチ ド配列を含む合成 DNA ペアのもう一 方の塩基配列を示す。
配列番号 : 1 6 は、 細胞膜上に発現するヒ 卜 HM1.24抗原タ ンパク 質のア ミ ノ酸配列および塩基配列を示す。
配列番号 : 1 7 は、 ヒ ト型化抗 HM1.24抗体の L 鎖 V 領域 a パージ ヨ ンのァ ミ ノ酸配列および塩基配列を示す。
配列番号 : 1 8 は、 ヒ ト型化抗 HM1.24抗体の H 鎖 V 領域 r パージ ヨ ンのァ ミ ノ酸配列および塩基配列を示す。
配列番号 : 1 9 は、 ヒ ト型化抗 HM1.24抗体の H 鎖 V 領域 s パージ ヨ ンのァ ミ ノ酸配列および塩基配列を示す。 産業上の利用可能性
本発明の免疫学的測定方法によれば、 可溶性 HM1.24抗原タ ンパク 質又は抗 HM1.24抗体を約 500 pg/ml まで検出又は測定することが可 能である。 これまで、 Cell Elisa で 10ng/ml までしか検出又は測 定できなかった可溶性 HM1.24抗原タンパク質又は抗 HM1.24抗体を高 感度で迅速に、 しかも大量の被験試料を同時に測定することが可能 となった。
また、 本発明の可溶性 HMl.24抗原タ ンパク質及びそれをコ一ドす る' DNA は、 抗 HM1.24抗体又は可溶性 HM1.24抗原タ ンパク質の測定に おいて有用である。
特許協力条約第 13規則の 2の寄託された微生物への言及及び寄託 機関
寄託機関 名 称 : 工業技術院生命工学工業技術研究所
あて名 : 日本国茨城県つく ば巿東 1 丁目 1 一 3 微生物(1) 表 示 : Escherichia coli DH5a (p S38-pUC19)
寄託番号 : FERM BP- 4434
寄託日 : 1993年 10月 5 日
(2) 表 示 : Mouse-mouse hybr i doma HMl.24
寄託番号 : FERM BP- 5233
寄託日 : 1995年 9月 14日
(3) 表 示 : Escherichia col i DH5a (pUC19-l.24L-g c ) 寄託番号 : FERM BP- 5646
寄託日 : 1996年 8月 29日
(4) 表 示 : Escherichia col i DH5a (pUC19-l.24H-g r 1) 寄託番号 : FERM BP- 5644
寄託日 : 1996年 8月 29日
(5) 表 示 : Escherichia col i DH5ひ (pUC19 - RVLa- AHM- g
K )
寄託番号 : FERM BP- 5645
寄託日 : 1996年 8月 29日
(6) 表 示 : Escherichia col i DH5a (pUC19-RVHr-AHM-g r 1)
寄託番号 : FERM BP- 5643 寄託日 : 1996年 8月 29日
(7) 表 示 : Escherichia col i DH5ひ (pUC19- RVHs- AHM-g
71)
寄託番号 : FERM BP- 6127
寄託日 : 1997年 9月 29日
S6 06 98
nai ϊ¾Λ uio usy nio 8JV 3JV naq Sjy ni ΐ¾Λ "19 ¾1V J3S ¾IV dsy
882 VIL DID 0V3 OVV WO VOV VOV OIO V03 OVO 0100V9 VOO 131000 OVO
08 S丄 0丄 S9
UIO nai s SIH USV na J¾ J¾ 9]I ^ niO naq nio n]Q Ι¾Λ
O OVO 113 OVV IVO OVV VIL VOV XOV OIV 9V0 VOO OVO 113 OVO OVO 910
09 ss og
sAq Siq uto ^ΐθ uio ¾tv s ni^ ¾iy dsv ng jgs naq ¾iv S6T VVV OVV VVO VOO VVO 000 OVV OVO VOO IVO 013001130 OIV V13300
0 S8
Λ Jy丄 SIH usv S Q jq ¾JV ¾iv uio ¾1V nio Λ uto aqd OIV 01010V OVO OVV 301 OOV 300030 OVO 300 OVO 019 IVO OVO ill
OS 22 02
^10 s q ui BIV niO J¾ nio ui uio naq naq SIH JMI Ι¾Λ USV 96 300 OVV 0V3330 OVO 03V 013 OVO VVO VVO 010313 IVO OOV 310 IVV
ST 01 S I
3JV s o n\t) law Ι¾Λ ¾1V 8jy ng io dsy SJV SAQ ¾tV "10 J9S usy 8 003101 OVO OIV 010 V30003110000 OVO 0033010309V0 OOV OVV v N a 3 : 籙 s® a
驟 H: - :- a # ^ 鹩本ニ '·
m -蔬© ¾ ΐ : -^#½21
S8800/66df/13d £0i.£W66 OAV AGC GTG AGA ATC GCG GAC AAG AAG TAC TAC CCC AGC TCC CAG GAC TCC 336 Ser Val Arg He Ala Asp Lys Lys Tyr Tyr Pro Ser Ser Gin Asp Ser
100 105 110
AGC TCC GCT GCG GCG CCC CAG CTG CTG ATT GTG CTG CTG GGC CTC AGC 384 Ser Ser Ala Ala Ala Pro Gin Leu Leu l ie Val Leu Leu Gly Leu Ser
115 120 125
GCT CTG CTG CAG TGA 399 Ala Leu Leu Gin
130
配列番号 : 2
配列の長さ : 5 1 0
配列の型 : 核酸
鎖の数 : 二本鎖
トポロジー : 直鎖状
配列の種類 : c D N A
配列
GAATTCCCAC C ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA 47
Met Gly Trp Ser Cys He l ie Leu Phe Leu Val Ala
1 5 10
ACA GCT ACA GGT GTC CAC TCC GAC TAC AAA GAC GAT GAC GAT AAA GGT 95 Thr Ala Thr Gly Val His Ser Asp Tyr Lys Asp Asp Asp Asp Lys Gly
15 20 25
ACC AAC AGC GAG GCC TGC CGG GAC GGC CTT CGG GCA GTG ATG GAG TGT 143 Thr Asn Ser Glu Ala Cys Arg Asp Gly Leu Arg Ala Val Met Glu Cys
30 35 40 9 I
ε :
091
uio nai ng ¾{
IS 301V00 V333IV9V010V301301 100 OCV
ggi osi S
na ig naq naq 八 911 ng na uig OJJ ¾IV ¾IV ¾1V aS J3S J3S
6 0103000X3013010 UV 013 DIO OVO 30303003013033133V 33丄
OH SET OS! S2T dsv uio J3S J3S ojj JAX JA sAq sA dsy ¾iv 911 3JV 1¾Λ J3S na ΐε^ 3V0 OVO 33130V 3333VJL 3V1 OVV OVV OVO 00031V VOV 010 GOV Vll
02Ϊ SIT 0Π
\n UIO usv ni 3JV V naq SJV Ι¾Λ nio ¾1V ¾IV dsy uyo S88 310 OVO OVV WO VOV VOV 010 VOO OVO OIO OVO VOO 131030 OVO 9V3
GOT ΟΟΐ 96
nai s q S!H usy ngq J¾ J¾ an nio 3 "10 "10 niO Ι¾Λ sAq
SSC 113 OVV IVO OVV VII VOV 13V 01V OVO VOO DVO 113 OVO OVO 010 VVV
06 S8 08
sAi uio ui3 BIV s nig \ dsy ng J9§ BIV Η3Ί ¾IV 131
9VV VV3 VOO WO 300 OVV OVO VOO IVO 013301130 OIV VIO D3001V
A OL S9
ί^Λ JMl s!H usv SAQ J¾ ¾IV ¾IV uio ¾1V nio Ι¾Λ dsv "10 3
Q£Z 010 IDV OVO OVV DDI 33V 339330 OVO 3000V9010 XVO OVO 111030
09 9S 09 St7 s uio BIV nio J¾ Π31 nig u uig ngq no S!H J¾ Λ USV 3JV
161 OW OVO 000 DVO 30V 013 OVO WO WO 0133131V333V 310 IVV 093
S8800/66df/XDd £0ムひ /66 ΟΛ L L
0Π GOT ΟΟΐ
¾1V I 3JV ΙΒΛ J3S "91 Ι¾Λ uio usy SJ 3JV "31 3JV niO 1¾Λ
988 030 OIV VOV 01030V Vll 3109V3 OVV VVO VOV VOV 013 VOO 9V0010
96 06 S8
niO ¾1V J3S ¾IV dsy uio na s SIH usy n9 J¾ JIJ丄 an nio λιο
882 OVO VOO 131030 OVO OVO 113 OVV丄 V3 OVV VII VOV 13V 31V OVO VOO
08 9L OL S9 niO Π9ΐ nto "10 s q sA uio AIQ uto ¾IV sA ¾IV dsv n3i
DVO 113 OVO OVO 010 VVV OVV VVO VOO VVO 000 OVV OVO VOO IVO 010
09 go os
J9S ¾1V ηθΐ BIV 3W ΙΒΛ JMl SIH usy s J¾ ¾iv ¾IV "10 ¾1V 261 301130 OIV V13330 DIV 01010V OVO OVV 091 D3V 030000 OVO 300
^ se
niO ΐ¾Λ dsv uio 3 Aio sAq ¾iv nio J¾ nio UIQ uio naq OVD 0X0 IVO OVO 111300 OVV DVO 000 OVO 33V 013 OVO VVO VVO 013
OS 92 OZ
naq SIH JMl Ι¾Λ usv 3JV 3 nto 1 Λ ¾1V V Η3Ί HO dsy 3JV 96 3131V330V 010 XVV 300101 OVO OIV 010 VOO 003113000 OVO 000
ST Οΐ g ΐ s o ¾1V nio J8S usv J¾ Λ10 ¾iv J 1¾Λ 0Jd ]¾Λ dsv J^l OJd JAi 8 301030 OVO OOV 3VV 33V 100130 OVI OVO V333100V9 OVI VOO OVI v N a 3 : ncoM
^MIH : - ^ a ^f-H
耱本ニ - om
S8800/66dT/lDd £0ムひ /66 OAV 8 L
09 gs os
J9S ¾iv m S !H USV SAQ J¾ ¾IV ¾tv uio ¾iv
Z6T 031 100 OIV VIO 339 OIV 010 13V DVD OVV 001 33V 000 000 9V3 030
0 92
ηΐθ 1¾Λ dsv "10 aild ^io s q B JV nio jqi naq nio U JO uio
\ OVO 010 IVO OVO 111 OOO OVV OVO OOO OVO 33V 013 0V9 VV3 VVO 013
OS SZ 02
na S ! H J¾ 1¾Λ usv 3JV SAQ n o l^A ¾1V V na Ajg dsy 3JV 96 313 1V3 OOV 310 IVV 003 101 OVO OXV 010 VOO 003 110 303 OVO 003
91 01 9 ΐ
SAQ ¾IV niO J9S usv J¾ ^to ¾iv J ΐ¾Λ QJd dsvュ OJd J
8 301 000 OVO DDV OVV OOV 100 130 OVI OVO V33 310 OVO DVI VOO 3V1 v a a :
鹩軍 : - a ^ | 鹩本二 :
m m : o
8 ε : $
f : ½ # ½ 2S 331V00 V0301V0V01
OH 9C1 OCT uio "31 nai ¾iv J3S na A]g naq ng 八 311 ngq naq iqj) OJ^
62 OVO 013 010 130 OOV DID 000 013 010 010 i丄 V 013 013 OVO 030
92ΐ 02ΐ 9ΐΐ
¾1V ¾1V J9S J3S J9S dsy uio J3S J9S OJJ JA JAi sAi sAq dsv 8S 030 030 100 331 OOV 331 OVO OVO 301 OOV 333 OVI OVi OVV OW 9V0
S8800/66df/XDd £0L£P/66 OM 6 I s ε s : $ ofi 2@
9 : ^
¾IV
98 1 VVOOOVIOOV VVOIVVVOOI 00VV0DV109130
S ΐ
丄 八 0Jd 1¾Λ dsv J i ojj j
T9 OVl OVO VOO OXO OVO OVl VOO OVl V30101V 00V30100V30310001010 v a o : ii»0½g@
鹩軍 : 一 d、 )
篛本二 : mom
- mowm
9 8 : $ ¾0?½3@ 00IVO0VOI
9Ζΐ 02ΐ SU
¾IV J3S J3S J3S dsv UIO J9S OJJ J J sAi dsv
8丄 S 13003130V 031 OVO OVO 33130V 0333V1 OVi OVV OVV OVO
0Π SOI 001
¾IV an SJV J3S ng 八 uio usy ni Sjy 3JV 3JV "ID Ι¾Λ
9££ 03031V VOV 01000V Vll 310 OVO OVV WO VOV VOV 010 VOO OVO 010
S6 06 S8
niO BIV J9S ¾IV dsv UI9 nai sA SIH usy na^ j¾ j¾ an nj Aio
882 OVO V30101030 OVO OVO 110 OVV ΙΏ OVV VXl VOV 10V 31V OVO V90
08 L OL 99
"ID "31 nig nyg Ι¾Λ sAq s uyo Aio uig ¾ιγ sA nig ^iv DSV
O OVO 113 OVO OVO OIO VVV OVV wo voo m OOO OVV OVO VOO IVO 010
S8800/66df/lDd £0ム /66 OAV 0 8
SOT ΟΟΐ S6
usv naq J¾ jqi an nyg Ai naq nio nio Ι¾Λ sAq sAq AIQ εε DVV vii ναν ιον oiv ovo voo ovo ovo ovo 010 vvv ovv wo voo
06 S8 08
uiO sAi nio BIV dsy "91 J3S ¾1V ¾1V 1¾Λ J SIH 82 WO 330 OVV OVO VOO IVO 013031130 OIV V13000 OIV 01010V 3V3
Si OA 99
usv sA3 JMl ¾1V BIV uio ¾IV nio Ι¾Λ dsy UIQ gqj AJQ sA uyo ¾1V ^2 OVV 001 OOV ODD OOO OVO 330 OVO 0X0 IVO OVO 111000 OVV OVO 330
09 99 OS 9^ nio J¾ nai nio uio naq n9i SIH J¾ i usv 2J s
26ΐ OVO OOV 013 OVO WO WO 010313 IVO 33V 310 IVV 003101 OVO OIV
o 9ε οε
ΐ¾Λ ¾1V 3JV "SI ^ίθ dsv 3JV s ¾iv nig J9S usv ^IO ¾IV J n\ 010 voo ooo no ooo ovo ooo ooi oo ovo OOV ovv aov xoo ioo ovi
SS OS ST
1¾Λ OJd ϊ¾Λ dsv J ojj JAX ¾IV SAQ 3JV ¾1V ^IO OJJ na dj丄 naq
96 OVO VOO 31D OVO OVl VOO 3V1 VOO 101 VOO VOO lOD VOO 313001013
01 S ΐ
naq na naq Aio ngq na u{g ¾{y OJJ 八 Sjy
8 013010010000010313 OVO 13D 33331090V 91V 00 V310131V0V v N a 3 : 籙 » ω ¾
^flH ·· - ^ o ^
鹩本ニ : rn o
S8800/66df/lDd £0L£P/66 OAV ΐ 8
6 :
S V0IV0300V0 V00130001V v N a : rnuco
^ :一 ' a ^
鹩本ー : 凝 鹩
: owm o z : $ ω ½ 21 S IVVODVOiOl lOlVOOOOOO
V N ^ : ¾¾o½2i
鹩軍 :一 a
耱本ー ■ ^a>m mm - cowm
0 Z : $
SS9 3V 031000V31V OIVIOOVIOI V1V0100300301V0VV0V0 IDOIIVOOIO
¾1V J9S J3S dsy uio J9S
V0V133V10V VDOVIIOOIV 1331V00V01130331 ODV 301 OVO 9V0031
OH SSI OCT S21
J3S OJd JAI J sA dsy ¾1V 311 3JV 1¾Λ J3S ng uio USV
Z2f 30V 3333V13V1 OVV OW 3V003001V VOV 01030V Vll 3100V03VV
021 SU 0Π
nio V 3JV "313 -IV "10 Ι¾Λ "10 ¾IV J9S ¾1V dsy na sA S!H
8£ WO VOV VOV 013 VOO 0V00X00V0 V001010000V09V01139VV 1V0
S8800/66df/J.3d Z L£P/66 OAV 配列の長さ : 2 7
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : 合成 D N A
配列
TAAAGGTACC AACAGCGAGG CCTGCCG 27 配列番号 : 1 0
配列の長さ : 2 8
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : 合成 D N A
配列
CTGCTGGAGT GAGATCCCAG GATCCATA 28 配列番号 : 1 1
配列の長さ : 3 0
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : 合成 D A
配列
CAGGACTCCA GCTCCGCTTG AGGATCCTAT 30 配列番号 : 1 2
配列の長さ : 1 0 6
配列の型 : 核酸
鎖の数 : 一本鎖 トポロジー : 直鎖状
配列の種類 : 合成 D N A
配列
AATTCCCACC ATGGGATGGA GCTGTATCAT CCTCTTCTTG GTAGCAACAG CTACAGGTGT 60 CCACTCCGAC TACAAAGACG ATGACGATAA AGGTACCGCG GCCGCG 106 配列番号 : 1 3
配列の長さ : 1 0 6
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : 合成 D N A
配列
GATCCGCGGC CGCGGTACCT TTATCGTCAT CGTCTTTGTA GTCGGAGTGG ACACCTGTAG 60 CTGTTGCTAC CAAGAAGAGG ATGATACAGC TCCATCCCAT GGTGGG 106 配列番号 : 1 4
配列の長さ : 3 7
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状
配列の種類 : 合成 D N A
配列
GTGCATACCC ATACGACGTC CCAGACTACG CTGGTAC 37 配列番号 : 1 5
配列の長さ : 3 6
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直鎖状 配列の種類 : 合成 D N A
配列
CAGCGTAGTC TGGGACGTCG TATGGGTATG CACATC 36 配列番号 : 1 6
配列の長さ : 1014
配列の型 : 核酸
鎖の数 : 一本鎖
トポロジー : 直線状
配列の種類 : cDNA
配列
GAATTCGGCA CGAGGGATCT GG ATG GCA TCT ACT TCG TAT GAC TAT TGC 49
Met Ala Ser Thr Ser Tyr Asp Tyr Cys
1 5
AGA GTG CCC ATG GAA GAC GGG GAT AAG CGC TGT AAG CTT CTG CTG GGG 97 Arg Val Pro Met Glu Asp Gly Asp Lys Arg Cys Lys Leu Leu Leu Gly 10 15 20 25
ATA GGA ATT CTG GTG CTC CTG ATC ATC GTG ATT CTG GGG GTG CCC TTG 145 He Gly He Leu Val Leu Leu l ie l ie Val l ie Leu Gly Val Pro Leu
30 35 40
ATT ATC TTC ACC ATC AAG GCC AAC AGC GAG GCC TGC CGG GAC GGC CTT 193 l ie l ie Phe Thr He Lys Ala Asn Ser Glu Ala Cys Arg Asp Gly Leu
45 50 55
CGG GCA GTG ATG GAG TGT CGC AAT GTC ACC CAT CTC CTG CAA CAA GAG 241 Arg Ala Val Met Glu Cys Arg Asn Val Thr His Leu Leu Gin Gin Glu
60 65 70 CTG ACC GAG GCC CAG AAG GGC TTT CAG GAT GTG GAG GCC CAG GCC GCC 289 Leu Thr Glu Ala Gin Lys Gly Phe Gin Asp Val Glu Ala Gin Ala Ala
75 80 85
ACC TGC AAC CAC ACT GTG ATG GCC CTA ATG GCT TCC CTG GAT GCA GAG 337 Thr Cys Asn Hi s Thr Val Met Ala Leu Met Ala Ser Leu Asp Ala Glu
90 95 100 105
AAG GCC CAA GGA CAA AAG AAA GTG GAG GAG CTT GAG GGA GAG ATC ACT 385 Lys Ala Gin Gly Gin Lys Lys Val Glu Glu Leu Glu Gly Glu l ie Thr
110 115 120
ACA TTA AAC CAT AAG CTT CAG GAC GCG TCT GCA GAG GTG GAG CGA CTG 433 Thr Leu Asn Hi s Lys Leu Gin Asp Ala Ser Ala Glu Val Glu Arg Leu
125 130 135
AGA AGA GAA AAC CAG GTC TTA AGC GTG AGA ATC GCG GAC AAG AAG TAC 481 Arg Arg Glu Asn Gin Val Leu Ser Val Arg He Ala Asp Lys Lys Tyr
140 145 150
TAC CCC AGC TCC CAG GAC TCC AGC TCC GCT GCG GCG CCC CAG CTG CTG 529 Tyr Pro Ser Ser Gin Asp Ser Ser Ser Ala Ala Ala Pro Gin Leu Leu
155 160 165
ATT GTG CTG CTG GGC CTC AGC GCT CTG CTG CAG TGAGATCCCA GGAAGCTGGC 582 l ie Val Leu Leu Gly Leu Ser Ala Leu Leu Gin
170 175 180
ACATCTTGGA AGGTCCGTCC TGCTCGGCTT TTCGCTTGAA CATTCCCTTG ATCTCATCAG 642 HCTGAGCGG GTCATGGGGC AACACGGTTA GCGGGGAGAG CACGGGGTAG CCGGAGAAGG 702 GCCTCTGGAG CAGGTCTGGA GGGGCCATGG GGCAGTCCTG GGTGTGGGGA CACAGTCGGG 762 TTGACCCAGG GCTGTCTCCC TCCAGAGCCT CCCTCCGGAC AATGAGTCCC CCCTCTTGTC 822 TCCCACCCTG AGATTGGGCA TGGGGTGCGG TGTGGGGGGC ATGTGCTGCC TGTTGTTATG 882 GGTTTTTTTT GCGGGGGGGG TTGCTTTTTT CTGGGGTCTT TGAGCTCCAA AAAAATAAAC 942 9 8
S丄 02- S9
J9S J9S 9 Π ·"!丄 a¾ 丄 3Md dsv J¾ Aio J9S Aio J3S Ai J9S aqd
882 OOV 30V 31V OOV Oil 33V Oil OVO OOV 100 OOV 100 33V 100 OOV Oil
09 SS OS
SJV J3S 0Jd ΐ¾Λ Λιο JM1 J 3JV usy J3S ¾IV J3S J 811 nai na
0 V9V OOV V33 010 100 13V OVl 000 OVV 331 VOO 901 OVl OIV 010 013
o S8 οε s q ojd BIV s i Aio 0Jd sA u uio d ¾IV ΐ¾Λ ¾1V JMI usy
Ζ6ΐ ovv VOO ιαο ovv voo voo ovv ovo ovo ovi ooi aoo vio 130 ιαν丄 vv
Z OZ 91
n dsv uio J3S ¾1V sA s jq d\ \ jq \ /[ gjy dsy Aio Ι¾Λ
\ 010 IVO OVO lOV 100 OVV lOl OOV OIV 3DV 010 VOV OVO 100 010 OOV
Οΐ S ΐ ΐ-
¾1V J9S J3S J3S ojd J9S uio 丄 } uio 3 I I dsv J9S S !H Λ
96 300 OOV 013 09V 39V VDO OOV OVO OOV OIV 9V3 OIV OVO 301 OVO 010
s- oi - gi-
^ 10 J¾ ¾IV J¾ BIV \ Π91 J3S na 9 Π ai l s o J3S dJl }
8^ 100 VOV 130 VOV VOO VIO Oil 001 313 OIV 31V 101 30V 901 VOO OIV
Figure imgf000088_0001
m : - ^ a ^ 4
Figure imgf000088_0002
6 I ε ·· $智© ¾
^ΐθΐ V3 303D003000
2001 3I1VVVVVVV VVVVWVVVV VVVVWVVVV VVVVllOOVO VOOVOVOOOV 0I11031I3V
S8800/66Jr/13d εθム £» 66 OM. CTC CAG CCA GAG GAC ATC GCT ACC TAC TAC TGC CAG CAA CAT TAT AGT 336 Leu Gin Pro Glu Asp He Ala Thr Tyr Tyr Cys Gin Gin Hi s Tyr Ser
80 85 90
ACT CCA TTC ACG TTC GGC CAA GGG ACC AAG GTG GAA ATC AAA C 379 Thr Pro Phe Thr Phe Gly Gin Gly Thr Lys Val Glu l ie Lys
95 100 105
配列番号 : 1 8
配列の長さ : 4 1 8
配列の型 : 核酸
トポロジー : 直鎖状
配列の種類 : c D N A
配列
ATG GAC TGG ACC TGG AGG GTC TTC TTC TTG CTG GCT GTA GCT CCA GGT 48 Met Asp Trp Thr Trp Arg Val Phe Phe Leu Leu Ala Val Ala Pro Gly
- 15 -10 -5
GCT CAC TCC CAG GTG CAG CTG GTG CAG TCT GGG GCT GAG GTG AAG AAG 96 Ala His Ser Gin Val Gin Leu Val Gin Ser Gly Ala Glu Val Lys Lys
- 1 1 5 10
CCT GGG GCC TCA GTG AAG GTT TCC TGC AAG GCA TCT GGA TAC ACC TTC 144 Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe
15 20 25
ACT CCC TAC TGG ATG CAG TGG GTG CGA CAG GCC CCT GGA CAA GGG CTT 192 Thr Pro Tyr Trp Met Gin Trp Val Arg Gin Ala Pro Gly Gin Gly Leu 30 35 40 45
GAG TGG ATG GGA TCT ATT TTT CCT GGA GAT GGT GAT ACT AGG TAC AGT 240 Glu Trp Met Gly Ser l ie Phe Pro Gly Asp Gly Asp Thr Arg Tyr Ser
50 55 60 92 OS SI
3Md JMl J Aio J9S ¾1V sAq SAQ J3S ΐ¾Λ sAq ¾IV ^ΐθ OJd m Oil 30V OVl VOO 101 VOO OVV 001 331 110 OVV 010 V01 339 000丄 M
Οΐ 9 ΐ I- sAi sAi ι¾Λ nio ^10 J3S "10 Ι¾Λ naq ui Ι¾Λ uiO J3S S JH ¾IV 96 OVV OVV 010 DVO 100 000 131 0V3 010 013 OVO 010 OVO 331 OVO 100
S- Οΐ- 9ΐ- ϊ9 OJd Biv \U ¾IV nai nai 3Md aqd Ι¾Λ 3JV dJX J¾ dJi dsy 19W 8 100 VOO 130 VIO 130 013 Oil 311 311 010 OOV GDI OOV 001 OVO DIV
2匿 v N α つ : M M G)
^鹩軍 :一 a fH
m - m rn
6 ΐ :
021 gn on
J3S J9S \n J¾ ΐ¾Λ J¾ JM ^10 uio A I D 丄 8 0 V01 33X 310 33V 310 03V 33V 090 VV3 ϋΟΟ 001
90ΐ 00ΐ 96
j/ί丄 dsv aqd JA jAi I O ^to 3JV SJV ΠΘΙ A I D 3JV ¾tv s J
8S OVl 0V9 111 OVl OVl 000 909 V03 VOO Vll VOO VOV 039 101 OVl 1VI
06 98 08
n JMI dsv nio J9S 3JV J9S J9S "91 ni WW J ¾iy Jqi
988 010 000 OOV OVO 0V9 ID! VOV OID OOV aOV OID 0V9 OXV OVI 030 VOV
S OL 99
J3S Jqi J9S sAq dsv ¾IV J¾ J¾ ΐ¾Λ SJV I O sAq sX uio
882 OOV OOV 331 OVV OVO VOO OOV 01V OOV 019 VOV 300 OVV 311 9VV OVO
S8800/66df/13d £0ム CtV66 ΟΛλ 6 8
oz\ sn on
s J3s jm \n J¾ JMI IS UIO ^IO 丄 m o vox ooi oio DOV OIO oov ov ooo m ooo ooi
SOI 001 96
J/5丄 dSV 3 d J JAl IO AtO 3JV 3JV ΛΙΟ 3JV ¾1V SAQ J JA丄
^88 3VX OVO ill DVl OVI 000 000 VOO VOO VII VOO VOV 000 101 OVI IVl
06 S8 08
Λ ¾1V dsv "ID J3S v naq jag J8S na nio }dn ¾iv J
9CS 010 300 OOV OVO OVO Idl VOV 013 OOV OOV 010 OVO OIV OVI 330 VOV
SZ OL S9
J3S Jqi J9S sAq dsv ¾IV J¾ 911 Jqi 1¾Λ 8JV ^19 sAi 9qd sAq uio 2 Z 30V 03V 031 OVV OVO VOO 03V 31V 03V 310 VOV ODO OVV 311 QW 0V3
09 SS OS
J3S JA丄 8JV Jqi dsy ^10 dsy Λι OJJ d\ \ J3S ^IO 丄 nio 0 19V OVI OOV 13V IVO 100 IVO V90 130 丄丄丄 11V 101 VOO OIV 001 OVO
of gs οε
^io uio ^io ojj ¾iv uio 3JV \n 丄 m }dn CIJI J I OJJ J¾
261 113 000 VV3 VOO 133 000 OVO VOO 010 001 OVO OIV 001 3VI 303 IOV
S8800/66dT/I3d C0 t 66 O W

Claims

請 求 の 範 囲
1 . 可溶性 HMl . 24抗原タンパク質と被験試料中に含まれる抗 HM1. 24抗体とを反応させて、 可溶性 HM1. 24抗原タ ンパク質に結合した抗 HM1. 24抗体を検出又は測定する工程を含む、 抗 HM1. 24抗体の免疫化 学的測定方法。
2 . 可溶性 HM1. 24抗原タンパク質が、 支持体と結合していること を特徴とする、 請求項 1 に記載の免疫化学的測定方法。
3 . 抗 HM1. 24抗体と被験試料中に含まれる可溶性 HM1. 24抗原タン パク質とを反応させて、 抗 HM1. 24抗体に結合した可溶性 HM1. 24抗原 タンパク質を検出又は測定する工程を含む、 可溶性 HM1. 24抗原タ ン パク質の免疫化学的測定方法。
4 . 抗 HM1. 24抗体が、 支持体と結合していることを特徴とする、 請求項 3 に記載の免疫化学的測定方法。
5 . 可溶性 HM1. 24抗原タンパク質が、 他のペプチ ド又はポリぺプ チ ドと融合していることを特徴とする、 請求項 1 〜 4のいずれか 1 項に記載の免疫化学的測定方法。
6 . 支持体がビーズ又はプレー トであることを特徴とする、 請求 項 2又は 4 に記載の免疫化学的測定方法。
7 . 可溶性 HM1. 24抗原タ ンパク質に結合した抗 HM1. 24抗体又は抗 HM1. 24抗体に結合した可溶性 HM1. 24抗原タ ンパク質を、 抗 HM1. 24抗 体に対する一次抗体又は可溶性 HM1. 24抗原タンパク質に対する一次 抗体により検出又は測定することを特徴とする請求項 1 〜 6 のいず れか 1 項に記載の免疫化学的測定方法。
8 . 可溶性 HM1. 24抗原タンパク質に結合した抗 HM1. 24抗体又は抗 HM1. 24抗体に結合した可溶性 HM1. 24抗原タンパク質を、 抗 HM1. 24抗 体に対する一次抗体又は可溶性 HM1. 24抗原タンパク質に対する一次 抗体及び該一次抗体に対する二次抗体により検出又は測定すること を特徴とする請求項 1 〜 7のいずれか 1 項に記載の免疫化学的測定 方法。
9 . 一次抗体又は二次抗体が放射性同位元素、 酵素、 ピオチン Z ァビジン又は蛍光物質により標識されていることを特徴とする請求 項 1 〜 8のいずれか 1 項に記載の免疫化学的測定方法。
10. 配列番号 : 1 に示されるア ミ ノ酸配列を有する可溶性 HM1. 24 抗原タンパク質。
1 1. 請求項 1 0 に記載の可溶性 HM1. 24抗原タ ンパク質と他のぺプ チ ド又はポリペプチ ドとの融合タンパク質。
12. 請求項 i 0又は 1 1 に記載の可溶性 HM1. 24抗原タ ンパク質又 は可溶性 HML 24抗原タンパク質と他のぺプチ ド又はポリべプチ ドと の融合タ ンパク質をコー ドする DNA 。
PCT/JP1999/000885 1998-02-25 1999-02-25 Technique de dosage immunochimique de l'anticorps anti-hm1.24 WO1999043703A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU26403/99A AU2640399A (en) 1998-02-25 1999-02-25 Method for immunochemically assaying anti-hm1.24 antibody
EP99906489A EP1059533A4 (en) 1998-02-25 1999-02-25 METHOD FOR THE IMMUNOLOGICAL DETECTION OF ANTI-HM1.24 ANTIBODY
JP2000533453A JP3609026B2 (ja) 1998-02-25 1999-02-25 抗hm1.24抗体の免疫化学的測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6061398 1998-02-25
JP10/60613 1998-02-25

Publications (2)

Publication Number Publication Date
WO1999043703A1 true WO1999043703A1 (fr) 1999-09-02
WO1999043703A8 WO1999043703A8 (fr) 1999-12-02

Family

ID=13147307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000885 WO1999043703A1 (fr) 1998-02-25 1999-02-25 Technique de dosage immunochimique de l'anticorps anti-hm1.24

Country Status (6)

Country Link
EP (2) EP1059533A4 (ja)
JP (1) JP3609026B2 (ja)
AT (1) ATE462975T1 (ja)
AU (1) AU2640399A (ja)
DE (1) DE69942215D1 (ja)
WO (1) WO1999043703A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077362A1 (fr) * 2000-04-06 2001-10-18 Chugai Seiyaku Kabushiki Kaisha Dosage immunologique d'anticorps anti hm1 . 24
WO2002057316A1 (fr) * 2000-12-28 2002-07-25 Kirin Beer Kabushiki Kaisha Nouvel anticorps monoclonal
JP2006508094A (ja) * 2002-10-30 2006-03-09 中外製薬株式会社 Hm1.24を応用した癌ワクチン
US8435530B2 (en) 2004-06-11 2013-05-07 Sbi Biotech Co., Ltd. Methods for suppressing activity of activated interferon-producing cells

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776612B2 (en) 2001-04-13 2010-08-17 Chugai Seiyaku Kabushiki Kaisha Method of quantifying antigen expression
US20080299128A1 (en) 2006-06-20 2008-12-04 Myung Kim Effect of Bst2 on inflammation
CA2620626C (en) 2004-12-20 2011-06-07 Isu Abxis Co., Ltd. Molecules inhibiting intercellular adhesion
US8329186B2 (en) 2004-12-20 2012-12-11 Isu Abxis Co., Ltd Treatment of inflammation using BST2 inhibitor
US7740856B2 (en) 2005-12-20 2010-06-22 Isu Abxis Co., Ltd. Effect of BST2 on inflammation
AU2007299843B2 (en) 2006-09-18 2012-03-08 Xencor, Inc Optimized antibodies that target HM1.24
WO2021081880A1 (zh) * 2019-10-31 2021-05-06 中国科学院深圳先进技术研究院 一种杂交瘤细胞株及其用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998014580A1 (fr) * 1996-10-04 1998-04-09 Chugai Seiyaku Kabushiki Kaisha Anticorps anti-hm1.24 humain reconstitue
WO1998035698A1 (fr) * 1997-02-12 1998-08-20 Chugai Seiyaku Kabushiki Kaisha Remedes contre les tumeurs lymphocitaires
WO1998037913A1 (fr) * 1997-02-28 1998-09-03 Chugai Seiyaku Kabushiki Kaisha Inhibiteurs d'activation de lymphocytes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256768A (en) * 1985-12-13 1993-10-26 The Johns Hopkins University Expression of antigenic Epstein-Barr virus polypeptides in bacteria and their use in diagnostics
CN1277632A (zh) * 1997-10-03 2000-12-20 中外制药株式会社 天然人源化抗体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998014580A1 (fr) * 1996-10-04 1998-04-09 Chugai Seiyaku Kabushiki Kaisha Anticorps anti-hm1.24 humain reconstitue
WO1998035698A1 (fr) * 1997-02-12 1998-08-20 Chugai Seiyaku Kabushiki Kaisha Remedes contre les tumeurs lymphocitaires
WO1998037913A1 (fr) * 1997-02-28 1998-09-03 Chugai Seiyaku Kabushiki Kaisha Inhibiteurs d'activation de lymphocytes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOTO T, ET AL.: "A NOVEL MEMBRANE ANTIGEN SELECTIVELY EXPRESSED ON TERMINALLY DIFFERENTIATED HUMAN B CELLS", BLOOD, AMERICAN SOCIETY OF HEMATOLOGY, US, vol. 84, no. 06, 15 September 1994 (1994-09-15), US, pages 1922 - 1930, XP002929216, ISSN: 0006-4971 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077362A1 (fr) * 2000-04-06 2001-10-18 Chugai Seiyaku Kabushiki Kaisha Dosage immunologique d'anticorps anti hm1 . 24
WO2002057316A1 (fr) * 2000-12-28 2002-07-25 Kirin Beer Kabushiki Kaisha Nouvel anticorps monoclonal
US7592005B2 (en) 2000-12-28 2009-09-22 Kirin Beer Kabushiki Kaisha Monoclonal antibody
JP2006508094A (ja) * 2002-10-30 2006-03-09 中外製薬株式会社 Hm1.24を応用した癌ワクチン
JP4716730B2 (ja) * 2002-10-30 2011-07-06 中外製薬株式会社 Hm1.24を応用した癌ワクチン
US8435530B2 (en) 2004-06-11 2013-05-07 Sbi Biotech Co., Ltd. Methods for suppressing activity of activated interferon-producing cells

Also Published As

Publication number Publication date
EP1757941B1 (en) 2010-03-31
EP1757941A1 (en) 2007-02-28
DE69942215D1 (de) 2010-05-12
JP3609026B2 (ja) 2005-01-12
ATE462975T1 (de) 2010-04-15
AU2640399A (en) 1999-09-15
EP1059533A1 (en) 2000-12-13
WO1999043703A8 (fr) 1999-12-02
EP1059533A4 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
JP7389424B2 (ja) 抗gpc3抗体
KR101606236B1 (ko) Ffpe 물질 내의 인테그린 복합체의 검출용 항체
JP4571496B2 (ja) MRL/lprマウスを用いた抗体の作製
JP2010190572A (ja) IL13Ra2に対する抗体およびこれを含む診断・治療薬
JPWO2008072723A1 (ja) 抗Claudin3モノクローナル抗体およびそれを用いる癌の治療および診断
WO2001077362A1 (fr) Dosage immunologique d'anticorps anti hm1 . 24
JP4984160B2 (ja) 抗体の作製方法
WO1999043703A1 (fr) Technique de dosage immunochimique de l'anticorps anti-hm1.24
AU750296B2 (en) Antibodies against SEMP1, methods for their production and uses thereof
KR20180014239A (ko) HE4a의 결정을 위해 사용되는 조성물들 및 방법들
WO1999006541A1 (fr) Anticorps du recepteur des cellules pre-b non humaines
EP3444273A1 (en) Antibody specifically binding to aimp2-dx2 protein
AU754278B2 (en) Monoclonal antibody against human telomerase catalytic subunit
WO2005017155A1 (ja) フコーストランスポーター
JP3480941B2 (ja) TGF−β阻害物質のスクリーニング方法
US7338797B2 (en) Compositions for isolating a cDNA encoding a membrane-bound protein
CN111448214B (zh) 抗糖皮质激素诱导的肿瘤坏死因子受体(gitr)的小型化抗体、其聚合物及应用
EP1939286A1 (en) Novel peptides
JP4499926B2 (ja) 腫瘍抑制遺伝子
CN114437221B (zh) 一种癌症检测抗体及其用途
CN112979798B (zh) 一种包含c反应蛋白抗原结合结构域的分离的结合蛋白
JP2008099690A (ja) 新規ヘモポエチン受容体蛋白質、nr12
AU2021206586A1 (en) Epithelial cadherin-specific antibodies
CN117304319A (zh) 靶向人clec12b蛋白的纳米抗体及其应用
KR100465643B1 (ko) 비형 간염 바이러스 프리에쓰1 항원 유래의 에피토프 태그및 이에 대한 항체를 이용한 폴리펩티드의 검출 및 정제방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: (EXCEPT GD)

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: C1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WR Later publication of a revised version of an international search report
WWE Wipo information: entry into national phase

Ref document number: 1999906489

Country of ref document: EP

Ref document number: 09622646

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: KR

WWP Wipo information: published in national office

Ref document number: 1999906489

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWR Wipo information: refused in national office

Ref document number: 1999906489

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999906489

Country of ref document: EP