WO1999037889A1 - Combined cycle power plant - Google Patents

Combined cycle power plant Download PDF

Info

Publication number
WO1999037889A1
WO1999037889A1 PCT/JP1998/000258 JP9800258W WO9937889A1 WO 1999037889 A1 WO1999037889 A1 WO 1999037889A1 JP 9800258 W JP9800258 W JP 9800258W WO 9937889 A1 WO9937889 A1 WO 9937889A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
pressure
bin
turbine
exhaust
Prior art date
Application number
PCT/JP1998/000258
Other languages
English (en)
French (fr)
Inventor
Osamu Wakazono
Hideo Kimura
Yasushi Fukuizumi
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP19459996A priority Critical patent/JP3825088B2/ja
Priority claimed from JP19459996A external-priority patent/JP3825088B2/ja
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to CA002284494A priority patent/CA2284494C/en
Priority to PCT/JP1998/000258 priority patent/WO1999037889A1/ja
Priority to DE69835593T priority patent/DE69835593T2/de
Priority to EP98900712A priority patent/EP0974737B1/en
Priority to US09/381,613 priority patent/US6301874B1/en
Publication of WO1999037889A1 publication Critical patent/WO1999037889A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to a combined cycle power plant combining a gas turbine plant and a steam turbine plant.
  • the combined cycle power plant is a power generation system combining a gas bin and a steam turbine plant.
  • the high-temperature region of thermal energy is shared by the gas bin and the low-temperature region is shared by the steam bin. It is a system that effectively recovers and uses thermal energy, and is a power generation system that has been particularly noticed in recent years.
  • R & D has been promoted in terms of how one high-efficiency area can be raised as one point for improving efficiency.
  • a cooling system must be provided for the formation of the high-temperature region in view of the heat resistance of the turbine structure, and air has been conventionally used as a cooling medium in this cooling system.
  • FIG. 2 illustrates the main part of the configuration disclosed in Japanese Patent Application Laid-Open No. 5-163690, which is described below.
  • the configuration is as follows.
  • Gas turbine plant 11 mainly composed of gas bin 13, air compressor 18, combustor 19, high-pressure drum 20, medium-pressure drum 2 using exhaust gas from gas turbine plant 11 as heating source 1, a waste heat recovery boiler 14 mainly composed of a low-pressure drum 2 2, and a high-pressure turbine 15a supplied with steam from the waste heat recovery boiler 14, a medium-pressure turbine 1 bin 15b, a low-pressure turbine 1
  • a combined cycle power plant 10 is constituted by a steam turbine plant 12 mainly composed of 5c.
  • the cooling system incorporated here is a steam cooling system 50, and the steam supply path 51 is provided by using the medium-pressure steam that has exited the medium-pressure drum 21 of the exhaust heat recovery poiler 14 as cooling steam.
  • the steam cooling system 52 After passing through the steam cooling system 52 provided in the high-temperature portion to be cooled of the gas bin 13, the cooling steam is heated by cooling the high-temperature portion to be cooled, that is, heat energy is given, and the steam recovery system is provided. After passing through 53, it is supplied to the medium pressure bin 15b of the steam turbine plant 12 and is effectively recovered.
  • the steam system 60 is a backup system, which can supply backup steam from the high-pressure drum 20 of the exhaust heat recovery poirer 14 through the high-pressure steam line 42. And so on.
  • the turbine inlet temperature of the gas turbine further increases, or the gas turbine has a high temperature.
  • the area to be cooled expands, and the area of the area to be cooled in the same bin widens with the moving blade, the stationary blade, and the annular part. Due to the limitation of the amount of steam generated in the heat recovery steam generator, the cooling capacity of the high-temperature cooled part of the gas bin is insufficient. There is a problem that it will not be possible.
  • the present invention solves such a problem in the prior art, and always reliably and sufficiently cools a high-temperature portion to be cooled of a gas turbine, and reliably recovers the amount of heat obtained by this cooling to improve efficiency.
  • the task is to provide what is intended. Disclosure of the invention
  • the present invention has been made to solve the above-described problems, and combines a gas turbine bin plant and a steam turbine bin plant to generate steam for driving a steam turbine using exhaust heat from a gas turbine.
  • a combiner having an exhaust heat recovery poiler and a steam cooling system for cooling a high-temperature part to be cooled in the gas bin with steam, and configured to collect superheated steam from the steam cooling system into the steam bin.
  • a combined cycle power plant wherein the steam turbine plant comprises at least a high-pressure turbine and a low-pressure evening bin, and the exhaust of the high-pressure evening bin is guided to the steam cooling system.
  • the present invention provides a gas turbine plant and a steam turbine plant, comprising a waste heat recovery poiler that generates steam for driving a steam bin by using waste heat from the gas turbine.
  • a combined cycle power plant configured to provide a steam cooling system for cooling a high-temperature part to be cooled with steam, and to recover superheated steam from the steam cooling system to a steam bin
  • Steam that provides a cycle power plant and cools the hot cooled part of the gas turbine with steam The exhaust from the high-pressure evening bin specified as cooling steam guided to the cooling system is directly waked after performing predetermined work in the high-temperature cooled part, without dropping off to equipment such as a reheater in a poiler, for example.
  • a steam turbine such as a medium-pressure evening bin, in which a predetermined work can be sufficiently performed.
  • the present invention provides a combined cycle power generation plant in which the exhaust heat recovery poiler is at least a three-pressure system of high pressure, medium pressure, and low pressure. Cool with the exhaust, then into the medium pressure turbine Therefore, even if the exhaust heat recovery boiler is a three-pressure system of high, medium and low pressure, it is not necessary to provide a reheater.
  • the present invention provides a combined cycle power plant in which the exhaust of the high pressure bin is passed in parallel to a plurality of cooled portions of the high temperature cooled portion, and the high pressure exhaust exiting the high pressure turbine is separated. Since the fluid flows and flows through the high-temperature cooled part arranged in parallel, the pressure loss of a specific path is to be shared only by the shunt flow flowing through the specific path.
  • FIG. 1 is a system diagram of a combined cycle power plant according to one embodiment of the present invention.
  • Figure 2 is a system diagram of a conventional compound cycle power plant. BEST MODE FOR CARRYING OUT THE INVENTION
  • 101 is a gas turbine
  • 102 is an air compressor driven by the gas turbine 101
  • 103 is a combustor that burns compressed air supplied from the air compressor 102 together with fuel.
  • Reference numeral 104 denotes a generator, which is driven together with the air compressor 102.
  • the gas turbine bin 101, the air compressor 102, the combustor 103 and the generator 104 constitute a gas turbine plant 100.
  • the exhaust gas from the gas bin 101 is led to an exhaust heat recovery boiler 200 via an exhaust duct 105.
  • This waste heat recovery poirer 200 consists of a high-pressure superheater 204, a high-pressure steamer 205, a high-pressure economizer 206, a medium-pressure superheater 200, a low-pressure superheater 208, and a medium-pressure superheater.
  • the 310 is a high pressure turbine, 302 is a medium pressure turbine and 303 is a low pressure evening bin,
  • the high-pressure turbine 3001 is driven by high-pressure steam supplied from a high-pressure superheater 204 of the exhaust heat recovery poirer 200 through a high-pressure steam line 303, and the low-pressure turbine 303 is The steam is driven by a mixture of low-pressure steam supplied from a low-pressure superheater 208 of the heat recovery boiler 200 through a low-pressure steam line 307 and exhaust of a medium-pressure turbine 302 described later.
  • the medium-pressure turbine 302 does not depend only on the medium-pressure steam supplied from the exhaust heat recovery boiler 200 through the medium-pressure steam line 311, but a steam cooling system 400 described later.
  • the high-temperature portion to be cooled is cooled by the steam generator, and is driven by steam mainly containing the high-pressure exhaust of the high-pressure turbine 301 supplied from the steam recovery system 405.
  • the high-pressure turbine 301, the medium-pressure evening bin 302, and the low-pressure evening bin 303 are directly connected to the shaft together with the generator 304, and are connected to the low-pressure evening bin 303.
  • a steam bin unit 300 is constructed.
  • Reference numeral 401 denotes a cooling steam supply system, which is connected to an exhaust portion 310 of the high-pressure turbine 301 and is configured to receive the exhaust of the high-pressure turbine 301.
  • Reference numeral 402 denotes a first steam cooling system, which branches off from the cooling steam supply system 401 to cool the combustor 103.
  • reference numeral 403 denotes a second steam cooling system
  • reference numeral 404 denotes a third steam cooling system, which is arranged in parallel with the first steam cooling system 402, and each of which is provided with the cooling steam supply system 400. It branches from 1 to cool the high-temperature cooled part of the gas turbine 101.
  • 106 is the air supply system to the air compressor 102
  • 310 is the cooling water supply system for the condenser 305
  • 309 is the condensate obtained by the condenser 305. This shows the water supply system supplied to the waste heat recovery poiler 200.
  • the high-pressure exhaust, the medium-pressure exhaust, the low-pressure exhaust, or the exhaust in the steam turbine plant 300 is performed.
  • High-pressure steam, medium-pressure steam and low-pressure steam in heat recovery poiler 200 Focusing on the high-pressure exhaust of a high-pressure turbine, which is optimal in terms of quantity, pressure, or temperature, the gas is used substantially as a cooling medium, and as a result, The amount of heat obtained by cooling the part to be cooled of the plant 100 is carried into the medium-pressure evening bin 302, which is collected without being thrown out of the system to improve the thermal efficiency.
  • the high pressure steam is considered.
  • the steam amount is satisfactory, but the pressure is high, so the high temperature cooling of the gas turbine plant 100 is performed.
  • the part must have a strong structure, which increases the wall thickness, not only increases the thermal stress, but also makes the structural design of the part to be cooled extremely expensive and difficult.
  • low-pressure steam usually has a pressure lower than the atmospheric pressure of the high-temperature cooled part of the gas turbine plant 100, and the high-temperature gas The principle of safety design that the gas does not leak to the steam system side.
  • the first, second, and third steam cooling systems 402, 403, and 404 are of course branched and configured in parallel. At the same time, the steam flow was made as parallel as possible to reduce the pressure loss and to disperse the danger of overheating due to local blockage.
  • a high-temperature exhaust gas from a high-pressure turbine which is optimal in terms of quantity, pressure, or temperature, is used as cooling steam for cooling a high-temperature portion to be cooled in a gas turbine plant. Even if the temperature of the part to be cooled becomes high or if the range of the part to be cooled expands, it can be dealt with in a following manner. Since there is no need to install a reheater, significant cost reductions can be achieved in plant design and manufacture.
  • the exhaust gas of the high-pressure turbine is directly downstream without performing a predetermined work in the high-temperature cooled part of the gas turbine, for example, without dropping to equipment such as a reheater of a boiler.
  • a reheater is not required in the above-mentioned waste heat recovery poiler because it is supplied to a steam turbine such as a medium pressure turbine.
  • the present invention in the three-pressure system of the high-pressure, medium-pressure, and low-pressure exhaust heat recovery poil, it is possible to omit the reheater which is indispensable as a standard product because of the three-pressure system. The effect of cost reduction is large and remarkable.
  • a plurality of high-temperature cooled parts are branched in parallel to reduce pressure loss in the high-temperature cooled parts, and the high-pressure exhaust of the high-pressure turbine can be directly and effectively used. Can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

明 細 書 コンバインドサイクル発電ブラント 技術分野
本発明はガスタービンプラントと蒸気タービンプラントとを組み合わせたコン バインドサイクル発電プラントに関するものである。 背景技術
コンバインドサイクル発電プラントは、 ガス夕一ビンプラントと蒸気タービン プラントを組み合わせた発電システムであり、 熱エネルギーの高温域をガス夕一 ビンで、 また、 低温域を蒸気夕一ビンでそれぞれ分担して受持ち、 熱エネルギー を有効に回収し、 利用するようにしたものであり、 近年特に脚光を浴びている発 電システムである。
このコンバインドサイクル発電プラントでは、 効率向上のための一つのボイン トを、 高温域を何処まで高め得るか、 と言う点に置いて研究開発が進められてき た。
一方、 高温域の形成には、 タービン構造体の耐熱性の面から冷却システムを設 けねばならず、 この冷却システムにおける冷却媒体としては従来から空気が用い られて来た。
しかし、 冷却媒体として空気を用いる限り、 例え高温域を達成し得たとしても 、 冷却に要した空気を自らの空気圧縮機で必要圧力迄昇圧するのに要した動力損 失と、 また、 高温ガスの通過する夕一ビン流路内に部品の冷却に使用した空気を 最終的に混合させる事により平均ガス温度を低下させてガスの持つエネルギーを 低下せしめる結果になることとの両方を考慮すると、 熱効率のこれ以上の向上は 期待できないところまで来ている。
この問題点を解決し更に効率向上を図るべく、 ガスタービンの冷却媒体として 前記した空気に替えて、 蒸気を採用するものが現れ、 例えば、 特開平 5— 1 6 3 9 6 0号公報に示されるものが提案されるに至った。 この特開平 5— 1 6 3 9 6 0号公報のものを、 その主要部を抜き出して、 図 2 に示して説明すれば、 次の様な構成となっている。
ガス夕一ビン 1 3、 空気圧縮機 1 8、 燃焼器 1 9を主要構成とするガスタービ ンプラント 1 1、 同ガスタービンプラント 1 1の排気ガスを加熱源として、 高圧 ドラム 2 0、 中圧ドラム 2 1、 低圧ドラム 2 2を主要構成とする排熱回収ボイラ 1 4、 及び同排熱回収ポイラ 1 4から蒸気を供給される高圧タービン 1 5 a、 中 圧夕一ビン 1 5 b、 低圧タービン 1 5 cを主要構成とする蒸気タービンプラント 1 2によりコンバインドサイクル発電プラント 1 0が構成されている。
そして、 ここに組入れられた冷却システムは、 蒸気冷却システム 5 0であり、 前記排熱回収ポイラ 1 4の中圧ドラム 2 1を出た中圧蒸気を冷却蒸気として、 蒸 気供給経路 5 1を経てガス夕一ビン 1 3の高温被冷却部に設けた蒸気冷却系統 5 2に導き、 この高温被冷却部を冷却することにより同冷却蒸気は加熱され、 即ち 熱エネルギーを与えられ、 蒸気回収系統 5 3を経て蒸気タービンプラント 1 2の 中圧夕一ビン 1 5 bへ供給され、 有効に回収されるものである。
なお、 蒸気系統 6 0はバックアップ系統であり、 バックアップ蒸気を排熱回収 ポイラ 1 4の高圧ドラム 2 0から高圧蒸気ライン 4 2を経て供給可能にしたもの で、 ガス夕一ビン 1 3の起動直後等に使用されるものである。
前記したように従来のものは、 冷却蒸気として中圧ドラム 2 1を出た中圧蒸気 を用いているものであるために、 ガスタービンのタービン入口温度が更に上昇し 、 または、 ガスタービンの高温被冷却部が拡張し、 しかも同夕一ビン部の被冷却 部の範囲が動翼、 静翼そして環状部と広がり、 これら高温被冷却部の熱負荷が増 える程に前記中圧蒸気では、 排熱回収ポイラでの蒸気の発生量の限界からガス夕 一ビンの高温被冷却部での冷却能力が不足し、 初期の目的である高温被冷却部の 十分にして確実な冷却を行うことは出来なくなると言う問題がある。
本発明はこのような従来のものにおける問題点を解消し、 ガスタービンの高温 被冷却部を常に確実に且つ十分に冷却すると共に、 この冷却によって得た熱量を 確実に回収し、 効率の向上を図るようにしたものを提供することを課題とするも のである。 発明の開示
本発明は前記した課題を解決するベくなされものであり、 ガス夕一ビンプラン 卜と蒸気夕一ビンプラントとを組合せ、 ガスタービンからの排熱を利用して蒸気 タービン駆動用蒸気を発生させる排熱回収ポイラを備えるとともに、 前記ガス夕 一ビンの高温被冷却部を蒸気で冷却する蒸気冷却システムを設け、 この蒸気冷却 システムからの過熱蒸気を蒸気夕一ビンに回収させるように構成したコンバイン ドサイクル発電プラントにおいて、 前記蒸気タービンプラントを少なくとも高圧 タービンと低圧夕一ビンとから構成するとともに、 前記高圧夕一ビンの排気を前 記蒸気冷却システムに導くようにしたコンバインドサイクル発電プラントを提供 し、 ガス夕一ビンの高温被冷却部を蒸気で冷却する蒸気冷却システムに導く冷却 蒸気として高圧夕一ビンの排気を特定し、 この高圧排気のもつ量的、 圧力的、 又 は温度的特性を利用して同ガス夕一ビンの高温被冷却部を効率的に、 かつ適格に 冷却するようにしたものである。
また、 本発明は、 ガスタービンプラントと蒸気タービンプラントとを組合せ、 ガスタービンからの排熱を利用して蒸気夕一ビン駆動用蒸気を発生させる排熱回 収ポイラを備えるとともに、 前記ガスタービンの高温被冷却部を蒸気で冷却する 蒸気冷却システムを設け、 この蒸気冷却システムからの過熱蒸気を蒸気夕一ビン に回収させるように構成したコンバインドサイクル発電プラントにおいて、 前記 蒸気タービンプラントを少なくとも高圧夕一ビンと低圧タービンとから構成する とともに、 前記高圧夕一ビンの排気を前記蒸気冷却システムに導き、 かつ、 同蒸 気冷却システムを出た後直接後流の蒸気タービンへ供給するようにしたコンバイ ンドサイクル発電プラントを提供し、 ガスタービンの高温被冷却部を蒸気で冷却 する蒸気冷却システムに導かれる冷却蒸気として特定された高圧夕一ビンの排気 は、 同高温被冷却部で所定の仕事をした後に、 例えばポイラの再熱器等の機器に 寄り道することなく、 直接後流にある例えば中圧夕一ビン等の蒸気タービンへ供 給され、 そこで十分に所定の仕事を成しうるようにしたものである。
また、 本発明は、 前記排熱回収ポイラが少なくとも高圧、 中圧、 低圧の 3圧力 式であるコンバインドサイクル発電ブラントを提供し、 ガスタービンの高温被冷 却部を高圧夕一ビンを出た高圧排気で冷却し、 次いで中圧タービンに導入するの で、 排熱回収ボイラが高圧、 中圧、 低圧の 3圧力式であっても再熱器を必ずしも 設ける必要のないようにするものである。
更にまた、 本発明は、 前記高温被冷却部の複数の被冷却部に対して前記高圧夕 一ビンの排気を並列に流通させるコンバインドサイクル発電プラントを提供し、 高圧タービンを出た高圧排気は分流し、 並列に配置された高温被冷却部を流れる ので、 特定の経路の圧力損失は、 その特定経路を流れる分流分だけで分担するよ うにしたものである。 図面の簡単な説明
図 1は、 本発明の実施の一形態に係わるコンバインドサイクル発電プラントの 系統図である。
図 2は、 従来のコンパィンドサイクル発電ブラントの系統図である。 発明を実施するための最良の形態
本発明の実施の一形態を図 1に基づいて説明する。
1 0 1はガスタービン、 1 0 2は同ガスタ一ビン 1 0 1で駆動される空気圧縮 機、 1 0 3は燃焼器で空気圧縮機 1 0 2から供給される圧縮空気を燃料と共に燃 焼させ、 前記ガス夕一ビン 1 0 1を駆動する。 1 0 4は発電機で、 前記空気圧縮 機 1 0 2と共に駆動される。 このガス夕一ビン 1 0 1、 空気圧縮機 1 0 2、 燃焼 器 1 0 3及び発電機 1 0 4とによりガスタービンプラント 1 0 0が構成される。 前記ガス夕一ビン 1 0 1の排気ガスは、 排気ダクト 1 0 5を経て排熱回収ボイ ラ 2 0 0に導かれる。 この排熱回収ポイラ 2 0 0は、 高圧過熱器 2 0 4、 高圧蒸 発器 2 0 5、 高圧節炭器 2 0 6、 中圧過熱器 2 0 7、 低圧過熱器 2 0 8、 中圧蒸 発器 2 0 9、 高中圧節炭器 2 1 0、 低圧蒸発器 2 1 1、 低圧節炭器 2 1 2、 更に 前記高圧蒸発器 2 0 5、 中圧蒸発器 2 0 9、 及び低圧蒸発器 2 1 1にそれぞれ連 接した高圧ドラム 2 0 1、 中圧ドラム 2 0 2及び低圧ドラム 2 0 3等で構成され 、 前記排気ガスを加熱源として、 高圧、 中圧、 及び低圧の各圧力の蒸気を発生す る。
3 0 1は高圧タービン、 3 0 2は中圧タービンまた 3 0 3は低圧夕一ビンで、 高圧タービン 3 0 1は前記排熱回収ポイラ 2 0 0の高圧過熱器 2 0 4から高圧蒸 気ライン 3 0 6を経て供給される高圧蒸気で駆動され、 また、 低圧タービン 3 0 3は同排熱回収ボイラ 2 0 0の低圧過熱器 2 0 8から低圧蒸気ライン 3 0 7を経 て供給される低圧蒸気と、 後記する中圧タービン 3 0 2の排気との混合蒸気で駆 動される。
他方、 中圧タービン 3 0 2は、 前記排熱回収ボイラ 2 0 0から中圧蒸気ライン 3 1 1を経て供給される中圧蒸気のみに依存するのではなく、 後述する蒸気冷却 システム 4 0 0で高温被冷却部を冷却し、 蒸気回収系統 4 0 5から供給される高 圧タービン 3 0 1の高圧排気を主体とする蒸気により駆動される。
そしてこの高圧タービン 3 0 1、 中圧夕一ビン 3 0 2及び低圧夕一ビン 3 0 3 は、 発電機 3 0 4と併せて軸直結され、 かつ、 前記低圧夕一ビン 3 0 3に連結し たコンデンサ 3 0 5を含めて蒸気夕一ビンプラント 3 0 0が構成される。
4 0 1は冷却蒸気供給系統で、 前記高圧タービン 3 0 1の排気部 3 1 0に連結 しており、 同高圧タービン 3 0 1の排気を受け入れるように構成されている。 4 0 2は第 1の蒸気冷却系統で、 前記冷却蒸気供給系統 4 0 1から分岐して前記燃 焼器 1 0 3を冷却する。 また、 4 0 3は第 2の蒸気冷却系統、 4 0 4は第 3の蒸 気冷却系統で、 前記第 1の蒸気冷却系統 4 0 2と並列に配置され、 それぞれ前記 冷却蒸気供給系統 4 0 1から分岐して前記ガスタービン 1 0 1の高温被冷却部を 冷却する。
そしてこの並列に分岐した第 1、 第 2、 第 3の蒸気冷却系統 4 0 2、 4 0 3、 4 0 4により蒸気冷却システム 4 0 0を構成し、 それぞれに供給される高圧排気 を冷却媒体として高温被冷却部を冷却した後、 同冷却媒体を再び合流し、 蒸気回 収系統 4 0 5を経て、 前記中圧タービン 3 0 2へ供給する。
なお、 図中 1 0 6は空気圧縮機 1 0 2への空気供給系統、 3 0 8はコンデンサ 3 0 5の冷却水供給系統、 また、 3 0 9はコンデンサ 3 0 5で得た復水が排熱回 収ポイラ 2 0 0へ供給される給水系統を示す。
このように本実施の形態によれば、 ガス夕一ビンプラント 1 0 0の高温被冷却 部を冷却するに際し、 蒸気タービンプラント 3 0 0中の高圧排気、 中圧排気及び 低圧排気、 若しくは、 排熱回収ポイラ 2 0 0中の高圧蒸気、 中圧蒸気及び低圧蒸 気のなかで、 量的、 圧力的、 又は温度的にみて最適なものである高圧タービンの 高圧排気に着目して、 その実質的全量を冷却媒体として使用し、 その結果、 この ガス夕一ビンプラント 1 0 0の被冷却部の冷却によって得た熱量を中圧夕一ビン 3 0 2に持込み、 系外に捨てることなくこれを回収して、 熱効率を向上させるよ うにしたものである。
即ち、 前記排熱回収ボイラ 2 0 0で得られる各蒸気のうち、 まず、 高圧蒸気に ついて考察してみると、 蒸気量は申し分ないものの圧力が高いのでガスタービン プラント 1 0 0の高温被冷却部を強固な構造にする必要があり、 その分肉厚が増 し、 かえって熱応力の増大を招くのみならず、 この被冷却部の構造設計が非常に 高価で難しいものとなる。
また、 中圧蒸気については、 被冷却部の必要熱量に対し蒸気量が不十分である ので、 ポイラ側を設計変更して中圧蒸気量を増やすことが対策として考えられる が、 それをするとポイラでの排熱回収効率が悪くなるという相反する結果となる さらに、 低圧蒸気は、 通常、 ガスタービンプラント 1 0 0の高温被冷却部の雰 囲気圧力より低い圧力となり、 カス夕一ビンの高温ガスを蒸気系統側に漏洩させ ないという安全設計の原則を守れなくなる。
この様に個別に追求していくと、 高圧排気以外の他のものが不適格であること が明らかになるが、 それ以上に、 このガスタービンプラントの高温被冷却部の冷 却において、 高圧夕一ビンの高圧排気がいかに適格であるかということがここで の大きな発見であった。
そして中圧タービン 3 0 2の作動蒸気は、 そのほとんどがガス夕一ビンプラン ト 1 0 0の蒸気冷却システム 4 0 0から供給されるので、 通常のこの種プラント に不可欠である排熱回収ポイラ 2 0 0中の再熱器を設置する必要はなく、 プラン トの設計製作に際し大幅なコストダウンとなるものである。
なお、 高圧タービンの高圧排気を直接利用する際には、 プラント効率も維持す るために、 ガスタービンプラント 1 0 0の被冷却部での圧力損失を極力抑えるこ とが望ましいので、 この被冷却部では、 第 1、 第 2、 第 3の蒸気冷却系統 4 0 2 、 4 0 3 、 4 0 4を並列に分岐して構成するのは勿論のこと、 更に被冷却部各部 位においても蒸気の流れを極力並列として圧力損失を抑えると共に、 局部閉塞に よる過熱の危険を分散することができたものである。
これまでは本発明を図示の実施の形態について説明したが、 本発明はかかる実 施の形態に限定されず、 本発明の範囲内でその具体的構造に種々の変更を加えて よいことはいうまでもない。 産業上の利用可能性
上述した本発明によれば、 ガス夕一ビンプラントの高温被冷却部の冷却に、 冷 却蒸気として量的、 圧力的、 又は温度的にみて最適な高圧タービンの高圧排気を 用いることにより、 高温被冷却部の温度が高温化しても、 また被冷却部の範囲が 拡張しても追随して対処でき、 しかも、 この高温被冷却部に再熱器の役をさせ、 排熱回収ボイラ中に再熱器を設置する必要はなくなるので、 プラントの設計製作 にさいし大幅なコストダウンを図ることができる。
また、 本発明によれば、 高圧タービンの排気は、 ガスタービンの高温被冷却部 で所定の仕事をした後に、 例えばボイラーの再熱器等の機器に寄り道することな く、 直接後流にある例えば中圧タービン等の蒸気タービンへ供給されるので、 前 記した排熱回収ポイラ中に再熱器は全く不要となることが明白である。
また、 本発明によれば、 排熱回収ポイラが高圧、 中圧、 低圧の 3圧力方式のも のにおいて、 3圧力方式であるが故に定番品として不可欠であった再熱器を省略 することができ、 これによるコストダウンの効果は、 大きくかつ、 顕著なもので ある。
更にまた、 本発明によれば、 高温被冷却部を複数並列に分岐して構成すること により、 同高温被冷却部での圧力損失を抑え、 高圧タービンの高圧排気を直接有 効に利用することができる。

Claims

請求の範囲
1 . ガスタービンプラントと蒸気夕一ビンプラントとを組合せ、 ガス夕一ビンか らの排熱を利用して蒸気夕一ビン駆動用蒸気を発生させる排熱回収ポイラを備え るとともに、 前記ガスタービンの高温被冷却部を蒸気で冷却する蒸気冷却システ ムを設け、 この蒸気冷却システムからの過熱蒸気を蒸気タービンに回収させるよ うに構成したコンバインドサイクル発電プラントにおいて、 前記蒸気タービンプ ラントを少なくとも高圧夕一ビンと低圧夕一ビンとから構成するとともに、 前記 高圧タービンの排気を前記蒸気冷却システムに導くようにしたことを特徴とする コンバインドサイクル発電プラント。
2 . ガス夕一ビンプラントと蒸気夕一ビンプラントとを組合せ、 ガス夕一ビンか らの排熱を利用して蒸気夕一ビン駆動用蒸気を発生させる排熱回収ポイラを備え るとともに、 前記ガスタービンの高温被冷却部を蒸気で冷却する蒸気冷却システ ムを設け、 この蒸気冷却システムからの過熱蒸気を蒸気夕一ビンに回収させるよ うに構成したコンバインドサイクル発電プラントにおいて、 前記蒸気タービンプ ラントを少なくとも高圧タービンと低圧夕一ビンとから構成するとともに、 前記 高圧タービンの排気を前記蒸気冷却システムに導き、 かつ、 同蒸気冷却システム を出た後直接後流の蒸気タービンへ供給するようにしたことを特徴とするコンパ ィンドサイクル発電プラント。
3 . 前記排熱回収ボイラが少なくとも高圧、 中圧、 低圧の 3圧力式であることを 特徴とする請求項 1または 2に記載のコンバインドサイクル発電プラント。
4 . 前記高温被冷却部の複数の被冷却部に対して前記高圧タービンの排気を並列 に流通させることを特徴とする請求項 1または 2に記載のコンバインドサイクル 発電プラント。
PCT/JP1998/000258 1996-07-24 1998-01-23 Combined cycle power plant WO1999037889A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP19459996A JP3825088B2 (ja) 1996-07-24 1996-07-24 コンバインドサイクル発電プラント
CA002284494A CA2284494C (en) 1998-01-23 1998-01-23 Combined cycle power plant
PCT/JP1998/000258 WO1999037889A1 (en) 1996-07-24 1998-01-23 Combined cycle power plant
DE69835593T DE69835593T2 (de) 1998-01-23 1998-01-23 Kraftanlage mit kombiniertem kreislauf
EP98900712A EP0974737B1 (en) 1998-01-23 1998-01-23 Combined cycle power plant
US09/381,613 US6301874B1 (en) 1998-01-23 1998-01-23 Combined cycle power plant with steam-cooled gas turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19459996A JP3825088B2 (ja) 1996-07-24 1996-07-24 コンバインドサイクル発電プラント
PCT/JP1998/000258 WO1999037889A1 (en) 1996-07-24 1998-01-23 Combined cycle power plant

Publications (1)

Publication Number Publication Date
WO1999037889A1 true WO1999037889A1 (en) 1999-07-29

Family

ID=14207453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000258 WO1999037889A1 (en) 1996-07-24 1998-01-23 Combined cycle power plant

Country Status (5)

Country Link
US (1) US6301874B1 (ja)
EP (1) EP0974737B1 (ja)
CA (1) CA2284494C (ja)
DE (1) DE69835593T2 (ja)
WO (1) WO1999037889A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046576A1 (de) * 1999-12-21 2001-06-28 Siemens Aktiengesellschaft Verfahren zum betreiben einer dampfturbine sowie turbinenanlage mit einer danach arbeitenden dampfturbine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4395254B2 (ja) * 2000-11-13 2010-01-06 三菱重工業株式会社 コンバインドサイクルガスタービン
EP1388643B1 (en) * 2002-08-09 2008-10-29 Hitachi, Ltd. Combined cycle plant
US8424281B2 (en) * 2007-08-29 2013-04-23 General Electric Company Method and apparatus for facilitating cooling of a steam turbine component
US8146341B2 (en) * 2008-09-22 2012-04-03 General Electric Company Integrated gas turbine exhaust diffuser and heat recovery steam generation system
US8899909B2 (en) * 2011-06-27 2014-12-02 General Electric Company Systems and methods for steam turbine wheel space cooling
JP5901194B2 (ja) * 2011-09-15 2016-04-06 三菱日立パワーシステムズ株式会社 ガスタービン冷却システム及びガスタービン冷却方法
IT202100000296A1 (it) 2021-01-08 2022-07-08 Gen Electric Motore a turbine con paletta avente un insieme di fossette

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163960A (ja) 1991-12-16 1993-06-29 Tohoku Electric Power Co Inc コンバインドサイクル発電プラント
JPH094417A (ja) * 1995-04-05 1997-01-07 General Electric Co <Ge> 複合サイクル・システム
JPH09112214A (ja) * 1995-10-16 1997-04-28 Yoshihide Nakamura 動力発生システム
JPH09189236A (ja) * 1996-01-09 1997-07-22 Hitachi Ltd コンバインド発電プラント及びコンバインド発電プラントの運転方法
JPH09280010A (ja) * 1996-04-11 1997-10-28 Toshiba Corp ガスタービン,このガスタービンを備えたコンバインドサイクルプラントおよびその運転方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3261410D1 (en) * 1981-04-03 1985-01-17 Bbc Brown Boveri & Cie Combined steam and gas turbine power plant
US5577377A (en) * 1993-11-04 1996-11-26 General Electric Co. Combined cycle with steam cooled gas turbine
DE4409567A1 (de) * 1994-03-21 1995-09-28 Abb Management Ag Verfahren zur Kühlung von thermisch belasteten Komponenten einer Gasturbogruppe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163960A (ja) 1991-12-16 1993-06-29 Tohoku Electric Power Co Inc コンバインドサイクル発電プラント
JPH094417A (ja) * 1995-04-05 1997-01-07 General Electric Co <Ge> 複合サイクル・システム
JPH09112214A (ja) * 1995-10-16 1997-04-28 Yoshihide Nakamura 動力発生システム
JPH09189236A (ja) * 1996-01-09 1997-07-22 Hitachi Ltd コンバインド発電プラント及びコンバインド発電プラントの運転方法
JPH09280010A (ja) * 1996-04-11 1997-10-28 Toshiba Corp ガスタービン,このガスタービンを備えたコンバインドサイクルプラントおよびその運転方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0974737A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046576A1 (de) * 1999-12-21 2001-06-28 Siemens Aktiengesellschaft Verfahren zum betreiben einer dampfturbine sowie turbinenanlage mit einer danach arbeitenden dampfturbine
CZ298536B6 (cs) * 1999-12-21 2007-10-31 Siemens Aktiengesellschaft Zpusob provozování parní turbíny a turbosoustrojí

Also Published As

Publication number Publication date
DE69835593D1 (de) 2006-09-28
DE69835593T2 (de) 2007-09-13
EP0974737B1 (en) 2006-08-16
EP0974737A4 (en) 2003-04-23
US6301874B1 (en) 2001-10-16
CA2284494A1 (en) 1999-07-29
CA2284494C (en) 2005-01-11
EP0974737A1 (en) 2000-01-26

Similar Documents

Publication Publication Date Title
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
JP3681434B2 (ja) コージェネレーション装置およびコンバインドサイクル発電装置
US6983585B2 (en) Combined cycle plant
JP2000073706A (ja) 石炭ガス化コンバインドサイクル発電プラント
JPH1162515A (ja) コンバインドサイクル発電プラントの運転方法およびコンバインドサイクル発電プラント
EP2535533A2 (en) Asymmetrical combined cycle power plant
JPH10131717A (ja) コンバインドサイクル発電プラント
WO1999037889A1 (en) Combined cycle power plant
JPH1150812A (ja) 排気再燃式コンバインドサイクル発電プラント
JP2699808B2 (ja) 蒸気冷却ガスタービンコンバインドプラント
JP3854156B2 (ja) 再生式ガスタービンコンバインドサイクル発電システム
JP3586542B2 (ja) 多軸コンバインドサイクル発電プラント
JP3926048B2 (ja) コンバインドサイクル発電プラント
JPH11117712A (ja) ガスタービンコンバインドプラント
JPH11280412A (ja) コンバインドサイクル発電プラント
JP3782565B2 (ja) コンバインドサイクル発電プラント
JP3117424B2 (ja) ガスタービンコンバインドプラント
JP4090584B2 (ja) コンバインドサイクル発電プラント
JP3825088B2 (ja) コンバインドサイクル発電プラント
JPH09280010A (ja) ガスタービン,このガスタービンを備えたコンバインドサイクルプラントおよびその運転方法
WO1999037890A1 (fr) Centrale a cycle combine
JP2960371B2 (ja) 水素燃焼タービンプラント
JPH04124411A (ja) 蒸気タービン複合発電設備
JP3586538B2 (ja) コンバインドサイクル発電プラント
JPH1037711A (ja) コンバインドサイクル発電プラント

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2284494

Country of ref document: CA

Ref country code: CA

Ref document number: 2284494

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1998900712

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09381613

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998900712

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998900712

Country of ref document: EP