WO1999036568A2 - Verfahren zum identifizieren von t-zell-stimulierenden proteinfragmenten - Google Patents

Verfahren zum identifizieren von t-zell-stimulierenden proteinfragmenten Download PDF

Info

Publication number
WO1999036568A2
WO1999036568A2 PCT/DE1999/000175 DE9900175W WO9936568A2 WO 1999036568 A2 WO1999036568 A2 WO 1999036568A2 DE 9900175 W DE9900175 W DE 9900175W WO 9936568 A2 WO9936568 A2 WO 9936568A2
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
protein fragments
protein
identifying
Prior art date
Application number
PCT/DE1999/000175
Other languages
English (en)
French (fr)
Other versions
WO1999036568A3 (de
Inventor
Florian Kern
Hans-Dieter Volk
Peter Walden
Alexander Scheffold
Rainer Blasczyk
Original Assignee
Florian Kern
Volk Hans Dieter
Peter Walden
Alexander Scheffold
Rainer Blasczyk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26043259&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999036568(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE1998102174 external-priority patent/DE19802174A1/de
Priority claimed from DE1998134932 external-priority patent/DE19834932A1/de
Application filed by Florian Kern, Volk Hans Dieter, Peter Walden, Alexander Scheffold, Rainer Blasczyk filed Critical Florian Kern
Priority to US09/600,564 priority Critical patent/US8932806B1/en
Priority to DE59913761T priority patent/DE59913761D1/de
Priority to EP99930888A priority patent/EP1051619B1/de
Priority to AU32463/99A priority patent/AU3246399A/en
Priority to JP2000540269A priority patent/JP2002509241A/ja
Priority to DE19980037T priority patent/DE19980037D2/de
Publication of WO1999036568A2 publication Critical patent/WO1999036568A2/de
Publication of WO1999036568A3 publication Critical patent/WO1999036568A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6863Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors

Definitions

  • a method for identifying T cell stimulating protein fragments comprising the following steps: a) determining the amino acid sequence of an antigen which is a protein or peptide, b) dividing the amino acid sequence of the antigen found into protein fragments, c) synthesizing at least one Protein fragment with a length of 8 to 30 amino acids or columns of the amino acid sequence of the
  • T-cell cytokine that was induced by the protein fragment or fragments and was synthesized in the T-cells, the T-cell cytokine (s) being present intracellularly or bound to the cell membrane, and / or ( ii) of at least one activation marker which has been induced or increased in its expression by the protein fragment or fragments and which is expressed in the T cells, the activation marker being able to be present intracellularly or being expressed on the cell surface, the T cell or cells Identify cytokines or activation markers by flow cytometry, and f) assign the test approaches in which T cells have been stimulated and this T cell stimulation by identifying one or more T cell cytokines and / or one or more Activation markers was recognized for the 16 amino acid sequences of the protein fragments which were incubated with the T cells.
  • Activation markers are made at the single cell level.
  • T cell stimulating protein fragments according to one of the preceding claims, wherein the T cell containing suspensions contain cells which present the protein fragment essentially bound to MHC class I or class II molecules.
  • PWBC peripheral white blood cells
  • spleen cells spleen cells
  • thymus cells thymus cells
  • cerebrospinal fluid / or from lymph node cells.
  • a method for identifying T cell stimulating protein fragments according to one of the preceding claims, wherein the suspension containing T cells originates from the patient to be treated, from donors or from animals.
  • T-cell stimulating protein fragments according to one of the preceding claims, wherein the antigens, which proteins or peptides are from macroorganisms, from cells, cell cultures and / or tissues from donors or patients. 17
  • T-cell stimulating protein fragments according to one of the preceding claims, wherein the T-cell cytokines are of the interferon- ⁇ , TNF- ⁇ or interleukin 2 type.
  • Liquid phase method or by means of protein biosynthesis in a host Liquid phase method or by means of protein biosynthesis in a host.
  • the invention comprises a method for identifying T-cell stimulating protein fragments by means of T-cell induction, a method for producing protein fragments with a sequence which was found with the method according to the invention, and a use of these protein fragments for immune stimulation.
  • the T-cell stimulating protein fragments comprise T-cell epitopes which are specifically recognized by T-cell receptors and which, among other things, use this recognition to stimulate the T-cells to biosynthesize cytokines, which are normally secreted.
  • a known method for identifying T-cell stimulating protein fragments consists in dividing a protein whose amino acid sequence is known into individual overlapping protein fragments. The corresponding synthetically produced protein fragments are incubated individually or in groups with T cells. After one to three weeks there may be cell lines or cell clones that could be stimulated specifically by the or at least one of the protein fragments used. The specificity of these lines or clones can be demonstrated by cytotoxicity testing on corresponding target cells. Based on the experimental setup, the stimulated cell lines or cell clones can be assigned to the corresponding T cell stimulating protein fragments. This method is described in detail in P. WALDEN et al. (1996) Current Opinion in Immunology, Vol. 8, pp 68-74. Alternatively, the proliferation of cells after 1 week can be determined by incorporation of 3H-thymidine, but this is associated with greater non-specificity.
  • the main task of this experimental arrangement is to determine whether MHC class II presented epitopes are present in a protein or complex antigen or whether an individual has specific MHC class II restricted T cells against such possibly or known epitopes and how high the frequency of these cells is (quantification of the antigen-specific T cells).
  • other properties of the stimulated T cells can be determined (surface markers, etc.).
  • neither the amino acid sequence of existing epitopes nor the frequency of such epitopes can be determined.
  • the method should work even with a small number of T cells without T cell lines or clones having to be available. Furthermore, it should be possible to find out from a large number of protein fragments which stimulate T cells. 3
  • the object is achieved by a method for identifying T cell stimulating protein fragments, comprising the following steps: a) determining the amino acid sequence of an antigen which is a protein or peptide, b) dividing the amino acid sequence of the antigen found into
  • Protein fragments c) synthesizing at least one protein fragment with a length of 8 to 30 amino acids or columns of the amino acid sequence of the antigen to form at least one protein fragment with a length of 8 to 30 amino acids, the protein fragment being a partial sequence of the determined amino acid sequence of the antigen, d) Incubate a suspension containing T cells with the protein fragment (s) in experimental batches, e) identify
  • T-cell cytokine that was induced by the protein fragment or fragments and was synthesized in the T-cells, the T-cell cytokine (s) being present intracellularly or bound to the cell membrane, and / or ( ii) of at least one activation marker which has been induced or increased in its expression by the protein fragment or fragments and which is expressed in the T cells, the activation marker being able to be present intracellularly or being expressed on the cell surface, the T cell or cells Cytokines or activation markers identified by flow cytometry, and f) assigning the experimental approaches in which T cells were stimulated and this T cell stimulation by identifying a T cell
  • Cytokine or more T cell cytokines and / or one or more activation markers was recognized, to the amino acid sequence (s) of the protein fragments which were incubated with the T cells. 4
  • the advantage of this method according to the invention is that within a very short time and in comparison with the conventional method with very little effort, a protein fragment known with regard to the sequence can be identified as a T-cell stimulating protein fragment.
  • the time between the first incubation of T cells and flow cytometric evaluation can be six hours. The smallest line numbers can suffice. If one starts with a number of 1 • 10 6 peripheral white blood cells, a positive answer can undoubtedly be determined if 0.1% of the starting T cell number are stimulated T cells.
  • the classic method requires a cell count of about 8 • 10 6 peripheral white blood cells per protein fragment or mixture of protein fragments in order to be able to successfully carry out a cytotoxicity test.
  • the method according to the invention is therefore a method which can be used with high efficiency for T cell epitope mapping of protein antigens.
  • T cell lines or T cell clones are not necessary for this method according to the invention. This results in time advantages in the incubation and also very significantly, an advantage with regard to the viability of the T cells, which are present in the short incubation time as a large pool with high variability. A selection and proliferation, which is accompanied by a targeted elimination of certain T cells, does not take place due to the short incubation times in the method according to the invention.
  • Preferred sources of the T cells to be stimulated are those donors which have previously built up an immunological primary response against the antigen. This may have taken place, for example, as part of an infection or as part of an immunization. This situation also applies to an autoimmune response.
  • the donor's MHC type need not be known. For example, protein fragments with 9 amino acids from a protein are incubated with the T cells without knowing the MHC type of the blood or cell donor. Nevertheless, the T-cell stimulating protein fragments can be identified. Thus, knowledge of the MHC type is not required to identify the epitope. In the classic test using cytotoxic T cell lines or clones, the target cell lines (target cell lines) in the MHC must match the effector cells. 5 The creation of target line lines from donor blood means additional material and time expenditure.
  • T-cell stimulating protein fragments on the one hand bind to defined MHC molecules and on the other hand they contain amino acid sequences (epitopes) which can bind to the antigen binding region of the T cell receptor (paratope).
  • protein or peptide has the essential feature of the sequence of at least nine amino acids. It does not matter how the sequence was determined.
  • the sequence can be analyzed for the first time for a new protein or read from a database for known protein. It is only important that the amino acid sequence of the protein fragment is determined. The subdivision of the protein or peptide sequence can also be different.
  • the protein fragments can thus be derived from a protein step by step with the variation of an amino acid. Other overlaps are also conceivable. It is the classic method of protein mapping.
  • Suspensions containing T cells in the sense of this application are distinguished by the fact that they contain cells which can present MHC-bound peptides.
  • the presenting cells can also be, for example, T cells.
  • the method according to the invention is advantageous for identifying T-cell-stimulating protein fragments, since the identification of at least one 6 T cell cytokine or activation marker is done at the single cell level. Even the smallest amounts of T cells, which contain cytokines intracellularly or bound to the cell membrane, are sufficient.
  • MHC main histocompatibility complex
  • binding anchors amino acids used for anchoring in the column of the MHC molecule
  • certain sequences must be present that are specifically recognized by a T cell receptor (T cell epitopes) so that the protein fragment as a T cell epitope works.
  • a method according to the invention for identifying T cell-stimulating protein fragments is preferred, in which the protein fragment in the class I restricted presentation comprises 9 to 11 amino acids and the protein fragment in the class II restricted presentation comprises at least 11 amino acids.
  • MHC Major Histocompatibility Complex
  • the MHC molecules located on the cell surface sufficiently absorb the protein fragments to enable unambiguous identification of stimulated T cells after, for example, six hours. If short protein fragments (class I with 9 amino acids and class II with preferably 11-15 amino acids) are also used, the epitope present in a stimulating amino acid sequence can be limited to a maximum.
  • a method according to the invention for identifying T-cell-stimulating protein fragments is preferred, in which the suspension containing T-cells is a suspension of whole blood, peripheral white blood cells (PWBC), spleen cells, thymus cells, bone marrow, cerebrospinal fluid and / or lymph node cells .
  • PWBC peripheral white blood cells
  • spleen cells thymus cells
  • bone marrow a suspension of lymph node cells
  • cerebrospinal fluid and / or lymph node cells a method for identifying T-cell-stimulating protein fragments.
  • the process is considerably simplified in that the suspensions containing T cells can come from a wide variety of sources. It is also particularly advantageous that it is not necessary to work up the T cells. So 7 the T cells do not have to be enriched, furthermore it is not necessary to remove or destroy other cells. As a result, the method according to the invention can be handled more routinely.
  • the method is not as susceptible to interference due to culture conditions, contamination,
  • a method according to the invention for identifying T cell stimulating protein fragments is preferred, in which the suspension containing T cells from the
  • Patients to be treated come from donors or animals.
  • Virus antigen can induce a T cell response.
  • Such a protein fragment / epitope can then be used specifically to stimulate further T cells of the patient.
  • the cells thus induced and stimulated for proliferation can be expanded and subsequently retranfused to the patient.
  • the method according to the invention can also be used in veterinary medicine.
  • a wide variety of animal species and constellations of animal patients and donors are conceivable as a source of the suspension containing T cells.
  • a method according to the invention for identifying T-cell-stimulating protein fragments is advantageous, in which the antigens, which are proteins or peptides, come from microorganisms, from macroorganisms, from cells, cell cultures and / or tissues from donors or patients.
  • Microorganisms are, for example, viruses, bacteria, fungi, unicellular organisms, parasites.
  • Macroorganisms include, for example, all multicellular eukaryotes. This source is particularly important for influencing allergies. This includes animals and plants. Cells, cell cultures or even whole tissues consisting of one or more layers or cell types can be used.
  • T cell stimulating protein fragments in which the T cell cytokines are of the interferon- ⁇ , TNF- ⁇ (tumor necrosis factor alpha) or interleukin 2 type.
  • TNF- ⁇ tumor necrosis factor alpha
  • interleukin 2 interleukin 2
  • Cytokines possible. It is only important here that these cytokines can be fluorescently labeled.
  • Activation markers can also be identified which are expressed by the protein fragments due to the T cell stimulation or which are increased in expression.
  • the marker CD69 is an example of this. When identifying activation markers that are on the cell surface or that are not secreted, the inhibition of secretion may no longer be necessary. Cytokines and surface markers are described in detail in Abul K. ABBAS et al. (1997) Cellular and Molecular Immunology, Philadelphia, 3rd edition, ISBN 0-7216- 4024-9.
  • a method according to the invention for identifying T cell stimulating protein fragments is more preferred, in which the T cell cytokines are present intracellularly after inhibition of secretion. It is important that the stimulation is clearly assigned to T cells.
  • a method for identifying T-cell-stimulating protein fragments is preferred, the stimulation being detected by means of a flow cytometer. It is essential here that markers that are in the cell or on its surface, such as cytokines or surface markers with a specific detector, for example an antibody, the detector being loaded with a fluorescent dye. After excitation of this fluorescent dye on the cells focused in a liquid stream by laser light, the flow cytometer records the emitted scattered light and fluorescence signals, which enables the cells to be analyzed at the same time or later.
  • markers that are in the cell or on its surface such as cytokines or surface markers with a specific detector, for example an antibody, the detector being loaded with a fluorescent dye. After excitation of this fluorescent dye on the cells focused in a liquid stream by laser light, the flow cytometer records the emitted scattered light and fluorescence signals, which enables the cells to be analyzed at the same time or later.
  • cytokines or surface markers with a specific detector, for example an antibody
  • the invention further comprises a method for producing a protein fragment / peptide which is T-cell stimulating and whose amino acid sequence or initial amino acid sequence according to the inventive method for 9 Identification of T cell stimulating protein fragments has been found, the protein fragment / peptide being produced in a host using the solid phase method, the liquid phase method or by means of protein biosynthesis.
  • Solid phase synthesis Solid phase synthesis is described in detail in Solid Phase Synthesis, E. ATHERTON and RC SHEPPARD (1989) IRL Press, ISBN 1- 85221-133-4 and Amino Acid and Peptide Syntheses, J. JONES, Oxford Science Publication (1992) ISBN 0-19-855668-3.
  • Liquid phase synthesis Liquid phase synthesis or solution technology is described in methods of organic chemistry (HOUBEN WEYL), vol. 15 / no. 1 and 2, E. WÜNSCH (editor), Thieme Verlag Stuttgart, 1974.
  • a method for producing a protein fragment / peptide which is T-cell stimulating and whose amino acid sequence or initial amino acid sequence has been found according to the inventive method for identifying T cell-stimulating protein fragments, the protein fragment / peptide using the solid phase method , the liquid phase method or by means of protein biosynthesis in a host, the protein fragment / peptide has insertions, deletions or substitutions (modifications), one, two, three or more amino acids being exchanged, deleted or inserted, the modified protein fragment / Peptide has essentially the same T cell stimulation function that the unmodified protein fragment / peptide possesses.
  • a method for producing a protein fragment / peptide of the previous type is particularly advantageous, the protein fragment / peptide at the N-terminal and / or C-terminal end having at least one further natural or unnatural amino acid and / or a protective group (extended modification), wherein the extended modified protein fragment / peptide has essentially the same T cell stimulation function that the unmodified protein fragment / peptide has.
  • the protective group or its variants for the N-terminus can consist of:
  • Alkyl, aryl, alkylaryl, aralkyl, alkylcarbonyl or arylcarbonyl groups with 1 to 10 carbon atoms, naphthoyl, naphthylacetyl, naphthylpropionyl, benzoyl group or an acyl group with 1 to 7 carbon atoms are preferred.
  • the protective group or its variants for the C-terminus can consist of: an alkoxy or aryloxy group with 1 to 10 carbon atoms or an amino group.
  • T cell stimulating protein fragments as a drug
  • a protein fragment / peptide the amino acid sequence or initial amino acid sequence of which has been found by the method according to the invention for identifying T-cell stimulating protein fragments and which has been produced by the production method according to the invention, for the manufacture of a medicament for immune stimulation.
  • a protein fragment / peptide with immune stimulation being vaccination or desensitization.
  • the vaccination consists in that, as the antigen, proteins from viruses, bacteria, eukaryotic unicellular organisms or multicellular organisms, after determining their sequence, are divided into protein fragments which, according to the invention, are added to suspensions containing T cells.
  • the positive approaches in which there is a T cell stimulating protein fragment are used as the starting point for the production of a vaccine.
  • Desensitization consists in determining protein fragments / peptides that trigger the undesired, immunological reaction.
  • the T-cell stimulating protein fragments / peptides or the medicaments produced therefrom according to the manufacturing process are then administered to the patient.
  • the desired effect is achieved or intensified via the type and location of use and the dose (for example high-dose or low-dose tolerance induction) and the accompanying administration of, for example, stimulating or tolerating cytokines or similar immunomodulatory active drugs.
  • Protein fragments which have not been found by this method according to the invention have already been used successfully as medicaments, for example in the vaccination of cattle against foot-and-mouth disease (Collen et al .; J Immunol 1991; 146: 749-755).
  • the peptide identified in our example was found in parallel by another group using conventional technology and is being tested as a vaccine (Diamond et al. Blood 1997; 5: 1751-1767).
  • Mononuclear cells were prepared from the peripheral blood obtained by venous puncture from an HLA-typed patient who had the MHC class I allele HLA-A * 0201. The patient also had antibodies against the human cytomegalovirus. The cells prepared according to the standard method were incubated for six hours under optimized conditions with the peptides specified below. These represent fragments of a protein fragment known from the literature of the pp 65 protein of the human cytomegalovirus (Swiss-Prot PO6725) of 15 amino acids in length (Ala Arg Asn Leu Val Pro Met Val Ala Thr Val Gin Gly Gin Asn, pp65 49 3 . 5 or 7 ).
  • This protein fragment is known to be able to induce restricted, cytotoxic T cells in the HLA-A2 bulk culture, that is to say it contains a T cell epitope presented with HLA-A2 (MR WILLS et al. (1996) J. Virol Vol. 70, pp 7569-5779).
  • the length of 9 amino acids for the fragments to be tested was chosen since this is the typical length of epitopes presented with MHC class I molecules (HG RAMMENSEE et al. (1995) Immunogenetics, Vol 41, pp 178- 228).
  • the peptides used overlap by 8 amino acids each and thus represent all possible fragments of this length.
  • the peptides were used as a mixture of all peptides or individually.
  • the peptide concentration in the example shown was 1 ⁇ g / ml per peptide.
  • the following peptides were used: 1) Ala Arg Asn Leu Val Pro Met Val Ala
  • the marker CD69 was used as an activation marker.
  • the display is limited to CD3 + / CD8 + events, the mean fluorescence intensity is shown.
  • Mononuclear cells were prepared from the peripheral blood obtained by venous puncture from an HLA-typed patient who had the MHC class II allele HLA-DR11. The patient also had antibodies against the human cytomegalovirus.
  • the cells prepared according to the standard method were incubated for six hours under optimized conditions with mixtures of 11 or 12 15-amino acid long peptides each with 11 overlaps in accordance with the sequence of the pp65 matrix phosphoprotein (Swiss-Prot PO6725) (138 peptides in total). The peptide concentration was 1 ⁇ g / ml per peptide. Three of the total of 24 mixtures clearly stimulated CD4 + T cells.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten mit den folgenden Schritten: a) Ermitteln der Aminosäuresequenz eines Antigens, b) Unterteilen der gefundenen Aminosäuresequenz des Antigens in Proteinfragmente, c) Synthetisieren von mindestens einem Proteinfragment, d) Inkubieren einer T-Zellen enthaltenden Suspension mit den Proteinfragmenten, e) Identifizieren von einem induzierten T-Zell-Zytokin oder Aktivierungsmarker, durch Durchflusszytometrie, und f) Zuordnen der T-Zellen, bei denen T-Zell-Zytokine und/oder Aktivierungsmarker identifiziert wurden, zu den Proteinfragmenten, welche mit den T-Zellen inkubiert wurden. Mit Hilfe der ermittelten positiven Sequenz werden die entsprechenden Proteinfragmente/Peptide synthetisch hergestellt und lassen sich zur Herstellung eines Medikamentes zur Immunstimulation verwenden.

Description

Patentansprüche
1. Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten, die folgenden Schritte umfassend: a) Ermitteln der Aminosäuresequenz eines Antigens, welches ein Protein oder Peptid ist, b) Unterteilen der gefundenen Aminosäuresequenz des Antigens in Proteinfragmente, c) Synthetisieren von mindestens einem Proteinfragment mit einer Länge von 8 bis 30 Aminosäuren oder Spalten der Aminosäuresequenz des
Antigens zu mindestens einem Proteinfragment mit einer Länge von 8 bis 30 Aminosäuren, dabei ist das Proteinfragment eine Teilsequenz der ermittelten
Aminosäuresequenz des Antigens, d) Inkubieren einer T-Zellen enthaltenden Suspension mit dem oder den
Proteinfragmenten in Versuchsansätzen, e) Identifizieren
(i) von mindestens einem T-Zell-Zytokin, das durch das oder die Proteinfragmente induziert und in den T- Zellen synthetisiert wurde, dabei liegen das oder die T-Zell-Zytokine intrazellulär oder an die Zellmembran gebunden vor, und / oder (ii) von mindestens einem Aktivierungsmarker, der durch das oder die Proteinfragmente induziert oder in seiner Expression gesteigert wurde und in den T-Zellen exprimiert wird, dabei kann der Aktivierungsmarker intrazellulär vorliegen oder auf der Zelloberfläche exprimiert sein dabei werden das oder die T-Zell-Zytokine oder Aktivierungsmarker durchflußzytometrisch identifiziert, und f) Zuordnen der Versuchsansätze, bei denen T-Zellen stimuliert wurden und diese T-Zell-Stimulation durch das Identifizieren von einem T-Zell- Zytokin oder mehreren T-Zell-Zytokinen und / oder einem oder mehreren Aktivierungsmarkern erkannt wurde, zu der oder den 16 Aminosäuresequenzen der Proteinfragmente, welche mit den T-Zellen inkubiert wurden.
2. Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten nach Anspruch 1 , wobei das Identifizieren von mindestens einem T-Zell-Zytokin oder
Aktivierungsmarker auf der Einzelzell-Ebene erfolgt.
3. Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten nach einem der vorherigen Ansprüche, wobei die T-Zellen enthaltende Suspen- sionen Zellen enthalten, die das Proteinfragment im wesentlichen an MHC-Klasse-I oder Klasse- Il-Moleküle gebunden präsentieren.
4. Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten nach einem der vorherigen Ansprüche, wobei das Proteinfragment bei der Klasse I restringierten Präsentation 9 bis 11 Aminosäuren umfaßt und das Proteinfragment bei der Klasse II restringierten Präsentation mindestens 11 Aminosäuren umfaßt.
5. Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten nach einem der vorherigen Ansprüche, wobei die T-Zellen enthaltende Suspension eine Suspension ist aus
Vollblut, peripheren weißen Blutzellen (PWBC), Milzzellen, Thymuszellen, Knochenmark, Liquor und / oder aus Lymphknotenzellen.
6. Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten nach einem der vorherigen Ansprüche, wobei die T-Zellen enthaltende Suspension aus den Patienten, die therapiert werden sollen, aus Spendern oder aus Tieren stammen.
7. Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten nach einem der vorherigen Ansprüche, wobei die Antigene, welche Proteine oder Peptide sind aus Makroorganismen, aus Zellen, Zellkulturen und / oder Geweben von Spendern oder Patienten stammen. 17
8. Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten nach einem der vorherigen Ansprüche, wobei die T-Zell-Zytokine vom Typ Interferon- γ, TNF-α oder Interleukin 2 sind.
9. Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten nach einem der vorherigen Ansprüche, wobei die T-Zell-Zytokine nach einer Inhibition der Sekretion intrazellulär vorliegen.
10. Verfahren zum Herstellen von einem Proteinfragment Peptid, das T-Zell- stimulierend ist und dessen Aminosäuresequenz bzw. ausgängliche Aminosäuresequenz nach dem Verfahren zum Identifizieren von T-Zell- stimulierenden Proteinfragmenten gemäß einem der vorherigen Ansprüche 1 bis 9 gefunden worden ist, wobei das Proteinfragment/Peptid mit der Festphasenmethode, der
Flüssigphasenmethode oder mittels der Proteinbiosynthese in einem Wirt hergestellt wird.
11. Verfahren zur Herstellung eines Proteinfragmentes/Peptides nach Anspuch 10, dabei weist das Proteinfragment/Peptid Insertionen, Deletionen oder
Substituierungen auf (Modifikationen), wobei eine, zwei, drei oder mehrere Aminosäuren ausgetauscht, deletiert oder inseriert sind, wobei das modifizierte Proteinfragment/Peptid im wesentlichen dieselbe Funktion bezüglich der Stimulation von T - Zellen aufweist, die das nicht modifizierte Proteinfragment/Peptid besitzt.
12. Verfahren zur Herstellung eines Proteinfragmentes/Peptides nach Anspruch 10 oder 11 , wobei das Proteinfragment / Peptid am N-terminalen und / oder C-terminalen Ende mindestens eine weitere natürliche oder nichtnatürliche Aminosäure und / oder eine Schutzgruppe besitzt (erweiterte Modifizierung), wobei das erweitert modifizierte Proteinfragment/Peptid im wesentlichen dieselbe Funktion bezüglich der Stimulation von T - Zellen aufweist, die das nicht modifizierte Proteinfragment/Peptid besitzt. 18
13. Verwendung von einen Proteinfragment/Peptid, das nach dem Verfahren gemäß einem der vorherigen Ansprüche 10 bis 12 hergestellt worden ist, zur Herstellung eines Medikaments zur Immunstimulation.
14. Verwendung von einem Proteinfragment/Peptid nach Anspruch 13, wobei die Immunstimulation eine Vakzinierung oder Desensibilisierung ist.
1
Verfahren zum Identifizieren von T-Zell- stimulierenden Proteinfragmenten
Die Erfindung umfaßt ein Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten mit Hilfe einer T-Zell-Induktion, ein Verfahren zur Herstellung von Proteinfragmenten mit einer Sequenz, die mit dem erfindungsgemäßen Verfahren gefunden wurde, und eine Verwendung dieser Proteinfragmente zur Immunstimulation.
Stand der Technik
Die T-Zell-stimulierenden Proteinfragmente umfassen T-Zell-Epitope, die von T-Zell- Rezeptoren spezifisch erkannt werden und mittels dieser Erkennung unter anderem die T-Zellen zur Biosynthese von Zytokinen, die üblicher Weise sekretiert werden, anregen.
Ein bekanntes Verfahren zur Identifizierung von T-Zell stimulierenden Proteinfragmenten besteht darin, daß ein Protein, dessen Aminosäure-Sequenz bekannt ist, in einzelne überlappende Proteinfragmente aufgeteilt wird. Die entsprechenden synthetisch hergestellten Proteinfragmente werden einzeln oder in Gruppen mit T-Zellen inkubiert. Nach ein bis drei Wochen liegen gegebenenfalls Zeil- Linien oder Zell-Klone vor, die spezifisch durch das bzw. mindestens eines der eingesetzten Proteinfragment stimuliert werden konnten. Die Spezifität dieser Linien oder Klone kann durch Zytotoxizitätstestung an ensprechenden Zielzellen (engl.: target cells) nachgewiesen werden. Aufgrund der Versuchsanordnung können die stimulierten Zeil-Linien oder Zell-Klone den entsprechenden T-Zell stimulierenden Proteinfragmenten zugeordnet werden. Diese Methode ist ausführlich in P. WALDEN et al. (1996) Current Opinion in Immunology, Vol. 8, pp 68-74 beschrieben. Alternativ kann die Proliferation von Zellen nach 1 Woche durch Inkorporation von 3H-Thymidin bestimmt werden, was aber mit größerer Unspezifität behaftet ist.
Nachteil dieser beiden Methoden ist der hohe apparative, personelle und zeitliche Aufwand. Außerdem ist es wahrscheinlich, daß stimulierte T-Zellen während der langen Inkubationszeit absterben, z.B. durch den aktivierungsinduzierten, programmierten Zelltod (Apoptose) und falsch negative Ergebnisse daraus resultieren. 2
Ein Verfahren zur durchflußzytometrischen Identifizierung von Antigen-spezifischen T- Zellen nach S. L. WALDROP et al., (1997) Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry: evidence for a novel antigen-specific homeostatic mechanism in HlV-associated immunodeficiency. J Clin. Invest. Vol 99, pp 1739-1750 besteht darin, daß Proteine als Antigen mit peripheren mononukleären Zellen (PBMC = peripheral blood mononuclear cells) inkubiert werden. Dabei werden diese Proteine von Antigen-präsentierenden Zellen prozessiert und präsentiert. Diese Prozessierung führt zu Proteinfragmenten, mit welchen MHC- Klasse-Il-Moleküle beladen werden und dann zur Zelloberfläche gelangen (Antigenpräsentation). Die durch die Erkennung von Proteinfragmenten jeweils stimulierten T-Zellen werden durchflußzytometrisch identifiziert. Dabei ist es weder Möglich die stimulierenden Proteinframente zu ermitteln, noch die spezifisch induzierten T-Zellen den induzierenden Proteinfragmenten zuzuordnen. Aufgabe dieser Versuchsanordnung ist es vor allem, festzustellen, ob MHC-Klasse-Il präsentierte Epitope in einem Protein oder komplexen Antigen vorhanden sind bzw. ob ein Individuum gegen solche möglicherweise oder bekanntermaßen vorhandenen Epitope spezifische MHC-Klasse-Il restringierte T-Zellen besitzt und wie hoch die Frequenz dieser Zellen ist (Quantifizierung der antigenspezifischen T-Zellen). Zusätzlich lassen sich weitere Eigenschaften der stimulierten T-Zellen ermitteln (Oberflächenmarker etc.). Aber, weder die Aminosäure-Sequenz vorhandener Epitope noch die Häufigkeit solcher Epitope läßt sich ermitteln.
Aufgabe und Lösung
Es ist daher Aufgabe der Erfindung, ein Verfahren anzubieten, mit dem Proteinfragmente, deren Aminosäure-Sequenzen bekannt sind, in kurzer Zeit als stimulierende Proteinfragmente identifiziert werden können. Dabei soll die Methode auch bei kleiner Anzahl an T-Zellen arbeiten, ohne daß T-Zell-Linien oder -Klone zur Verfügung stehen müssen. Weiterhin soll es möglich sein, aus einer großen Anzahl an Proteinfragmenten, diejenigen herauszufinden, welche T-Zellen stimulieren. 3 Die Aufgabe wird gelöst durch ein Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten, die folgenden Schritte umfassend: a) Ermitteln der Aminosäuresequenz eines Antigens, welches ein Protein oder Peptid ist, b) Unterteilen der gefundenen Aminosäuresequenz des Antigens in
Proteinfragmente, c) Synthetisieren von mindestens einem Proteinfragment mit einer Länge von 8 bis 30 Aminosäuren oder Spalten der Aminosäuresequenz des Antigens zu mindestens einem Proteinfragment mit einer Länge von 8 bis 30 Aminosäuren, dabei ist das Proteinfragment eine Teilsequenz der ermittelten Aminosäuresequenz des Antigens, d) Inkubieren einer T-Zellen enthaltenden Suspension mit dem oder den Proteinfragmenten in Versuchsansätzen, e) Identifizieren
(i) von mindestens einem T-Zell-Zytokin, das durch das oder die Proteinfragmente induziert und in den T- Zellen synthetisiert wurde, dabei liegen das oder die T-Zell-Zytokine intrazellulär oder an die Zellmembran gebunden vor, und / oder (ii) von mindestens einem Aktivierungsmarker, der durch das oder die Proteinfragmente induziert oder in seiner Expression gesteigert wurde und in den T-Zellen exprimiert wird, dabei kann der Aktivierungsmarker intrazellulär vorliegen oder auf der Zelloberfläche exprimiert sein dabei werden das oder die T-Zell-Zytokine oder Aktivierungsmarker durchflußzytometrisch identifiziert, und f) Zuordnen der Versuchsansätze, bei denen T-Zellen stimuliert wurden und diese T-Zell-Stimulation durch das Identifizieren von einem T-Zell-
Zytokin oder mehreren T-Zell-Zytokinen und / oder einem oder mehreren Aktivierungsmarkern erkannt wurde, zu der oder den Aminosäuresequenzen der Proteinfragmente, welche mit den T-Zellen inkubiert wurden. 4
Vorteile:
Der Vorteil dieses erfindungsgemäßen Verfahrens besteht darin, daß innerhalb von sehr kurzer Zeit und im Vergleich zur konventionellen Methode mit sehr geringem Aufwand ein bezüglich der Sequenz bekanntes Proteinfragment als ein T-Zell stimulierendes Proteinfragment identifiziert werden kann. Die Zeit zwischen erster Inkubation von T-Zellen und durchflußzytometrischer Auswertung kann sechs Stunden betragen. Dabei können kleinste Zeil-Zahlen ausreichen. Wenn mit einer Anzahl von 1 • 106 peripheren weißen Blutzellen gestartet wird, kann zweifelsfrei eine positive Antwort noch festgestellt werden, wenn 0,1% der Ausgangs-T-Zellzahl stimulierte T- Zellen sind. Dagegen benötigt die klassische Methode eine Zellzahl von etwa 8 • 106 peripheren weißen Blutzellen je Proteinfragment oder Mischung aus Proteinfragmenten, um anschließend einen Zytotoxizitätstest erfolgreich durchführen zu können. Das erfindungsgemäße Verfahren ist also ein Verfahren, welches mit hoher Effizienz zum T-Zell-Epitopmapping von Proteinantigenen eingesetzt werden kann.
Weiterhin können Gemische aus frisch isolierten zellulären Blutzellen oder Gewebezellen verwendet werden. T-Zell-Linien oder T-Zell-Klone sind nicht für dieses erfindungsgemäße Verfahren notwendig. Hierdurch ergeben sich Zeitvorteile bei der Inkubation und weiterhin sehr wesentlich, ein Vorteil bezüglich der Viabilität der T- Zellen, welche in der kurzen Inkubationszeit als großer Pool mit hoher Variabilität vorliegen. Eine Selektion und Proliferation, die mit einer gezielte Eliminierung bestimmter T-Zellen einhergeht, erfolgt aufgrund der kurzen Inkubationszeiten bei dem erfindungsgemäßen Verfahren nicht. Bevorzugt als Quelle der zu stimulierenden T-Zellen sind solche Spender, welche zuvor eine immunologische Primärantwort gegen das Antigen aufgebaut haben. Dies kann beispielsweise im Rahmen einer Infektion stattgefunden haben oder auch im Rahmen einer Immunisierung. Auch bei einer Autoimmunantwort ist diese Situation gegeben. Ein weiterer Vorteil besteht darin, daß der MHC-Typ des Spenders nicht bekannt sein muß. So werden zum Beispiel Proteinfragmente mit 9 Aminosäuren aus einem Protein mit den T-Zellen inkubiert, ohne daß man den MHC-Typ des Blut-oder Zellspenders kennt. Dennoch lassen sich die T-Zell stimulierenden Proteinfragmente identifizieren. Somit ist zum Identifizieren des Epitops die Kenntnis des MHC-Typs nicht erforderlich. Beim klassischen Test mittels zytotoxischen T-Zell-Linien oder Klonen müssen die Zielzell-Linien (Target-Zeil-Linien) im MHC mit den Effektor-Zellen übereinstimmen. 5 Das Erstellen von Target-Zeil-Linien aus Spenderblut bedeutet einen zusätzlichen materiellen und zeitlichen Aufwand.
Weiterhin kann mit dem erfindungsgemäßen Verfahren eine große Anzahl an Proteinfragmenten zur selben Zeit inkubiert werden. Geringe Zeil-Zahlen und hochsensitive Detektion stimulierter T-Zellen erlauben eine zeitlich deutlich vorteilhafte Identifizierung der T-Zell stimulierenden Proteinfragmente.
Da die Anzahl der zu untersuchenden Proteinfragmente aufgrund des geringen notwendigen Arbeitsaufwandes sehr hoch sein kann, ist es nicht notwendig mögliche Epitope mittels theoretischer Vorhersagen einzugrenzen. Die Epitope werden rein empirisch gefunden, und es können deshalb auch solche T-Zell-Epitope gefunden werden, die sich aufgrund einer theoretischen Voraussage nicht ergeben würden. Mit diesem Verfahren lassen sich leicht T-Zellen identifizieren, die spezifisch durch bestimmte ausgewählte Proteinfragmente stimulierbar sind. T-Zell-stimulierende Proteinfragmente binden einerseits an definierte MHC-Moleküle und andererseits enthalten sie Aminosäuresequenzen (Epitope), welche mit der Antigenbindungsregion des T-Zell-Rezeptors (Paratop) eine Bindung eingehen können.
Die Begriffe Protein oder Peptid haben als wesentliches Merkmal die Sequenz von mindestens neun Aminosäuren. Dabei ist gleichgültig, wie die Sequenz ermittelt worden ist. So kann bei einem neuen Protein die Sequenz zum erstenmal analysiert werden oder bei bekannten Protein aus einer Datenbank abgelesen werden. Wichtig ist nur, daß die Aminosäuresequenz des Proteinfragments bestimmt ist. Auch die Unterteilung der Protein-oder Peptidsequenz kann unterschiedlich ausfallen. So können die Proteinfragmente schrittweise mit der Variation von einer Aminosäure aus einem Protein abgeleitet werden. Andere Überlappungen sind ebenfalls denkbar. Es handelt sich dabei um das klassische Verfahren eines Protein-Mappings. T-Zellen enthaltende Suspensionen im Sinne dieser Anmeldung zeichnen sich dadurch aus, daß sie Zellen enthalten, welche MHC-gebundene Peptide präsentieren können. So können die präsentierenden Zellen neben den Antigen-präsentierenden Zellen auch zum Beispiel T-Zellen sein.
Weitere Ausführungsformen
Vorteilhaft ist das erfindungsgemäße Verfahren zum Identifizieren von T-Zell-stimu- lierenden Proteinfragmenten, da das Identifizieren von mindestens einem 6 T-Zell-Zytokin oder Aktivierungsmarker auf der Einzelzell-Ebene erfolgt. Schon kleinste Mengen an T-Zellen, welche Zytokine intrazellulär oder an die Zellmembran gebunden enthalten, reichen aus.
Bevorzugt ist ein erfindungsgemäßes Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten, bei dem die T-Zellen enthaltenden Suspensionen Zellen enthalten, die das Proteinfragment im wesentlichen mit MHC-Klasse-I oder-ll (Haupt Histokompatibillitäts Komplex, MHC = Major Histocompatibility Complex) präsentieren. Neben den zur Verankerung in der Spalte des MHC-Moleküls dienenden Aminosäuren (Bindungsanker) müssen bestimmte Sequenzen vorhanden sein, die von einem T-Zell-Rezeptor spezifisch erkannt werden (T-Zell-Epitope), damit das Proteinfragment als T-Zell-Epitop funktioniert.
Bevorzugt ist ein erfindungsgemäßes Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten, bei dem das Proteinfragment bei der Klasse I restringier- ten Präsentation 9 bis 11 Aminosäuren umfaßt und das Proteinfragment bei der Klasse II restringierten Präsentation mindestens 11 Aminosäuren umfaßt. Es ist bekannt, daß an Moleküle der MHC-Kiasse I (MHC = Major Histocompatibility Complex) bindende Proteinfragmente in der Regel eine Länge von 9 Aminosäuren aufweisen, während Proteinfragmente, welche an MHC-Klasse II Moleküle binden, etwas länger und in der Länge stärker variabel sind.
Vorteilhaft ist, daß die Proteinfragmente trotz der kurzen Inkubationszeit von den MHC-Molekülen, die sich auf der Zelloberfläche befinden, ausreichend aufgenommen werden, um eine eindeutige Identifizierung stimulierter T-Zellen nach zum Beispiel sechs Stunden zu ermöglichen. Werden weiterhin kurze Proteinfragmente (Klasse I mit 9 Aminosäuren und Klasse II mit vorzugsweise 11-15 Aminosäuren) verwendet, läßt sich das in einer stimulierenden Aminosäuresequenz vorhandene Epitop maximal eingrenzen.
Bevorzugt ist ein erfindungsgemäßes Verfahren zum Identifizieren von T-Zell-stimu- lierenden Proteinfragmenten, bei dem die T-Zellen enthaltende Suspension eine Suspension ist aus Vollblut, peripheren weißen Blutzellen (PWBC), Milzzellen, Thymuszellen, Knochenmark, Liquor und / oder aus Lymphknotenzellen. Das Verfahren wird erheblich dadurch vereinfacht, daß die T-Zellen enthaltenden Suspensionen aus unterschiedlichster Quelle stammen können. Weiterhin ist besonders vorteilhaft, daß eine Aufarbeitung der T-Zellen nicht erforderlich ist. So 7 müssen die T-Zellen nicht angereichert werden, weiterhin ist ein Entfernen oder Zerstören von anderen Zellen nicht notwendig. Hierdurch läßt sich das erfindungsgemäße Verfahren einfacher routinemäßig handhaben. Das Verfahren ist nicht so störanfällig durch Kulturbedingungen, Kontaminationen, kulturbedingte Selektionen und Selektionierung von spezifischen Klonen wie das konventionelle Verfahren. Ein repräsentatives Bild von T-Zellen allgemein und T-Zellen, die durch Proteinfragmente stimuliert werden, läßt sich mit diesem Verfahren ermitteln.
Bevorzugt ist ein erfindungsgemäßes Verfahren zum Identifizieren von T-Zell-stimu- lierenden Proteinfragmenten, bei dem die T-Zellen enthaltende Suspension aus den
Patienten, die therapiert werden sollen, aus Spendern oder aus Tieren stammen.
Stammt die T-Zellen enthaltende Suspension aus einem Patienten, so läßt sich mit der
Identifizierung zum Beispiel feststellen, gegen welches Proteinfragment/Epitop eines
Virus-Antigens sich eine T-Zell-Antwort induzieren läßt. Ein solches Proteinfragment/Epitop kann dann zur Stimulation weiterer T-Zellen des Patienten gezielt eingesetzt werden. Die so induzierten und zur Proliferation angeregten Zellen können so expandiert und anschließend dem Patienten retranfusioniert werden.
Das erfindungsgemäße Verfahren läßt sich auch in der Tiermedizin verwenden. Dabei sind unterschiedlichste Tierarten und auch Konstellationen von Tierpatienten und Spendern als Quelle der T-Zellen enthaltenden Suspension denkbar.
Vorteilhaft ist ein erfindungsgemäßes Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten, bei dem die Antigene, welche Proteine oder Peptide sind, aus Mikroorganismen, aus Makroorganismen, aus Zellen, Zellkulturen und / oder Geweben von Spendern oder Patienten stammen. Mikroorganismen sind zum Beispiel Viren, Bakterien, Pilze, Einzeller, Parasiten. Unter Makroorganismen fallen zum Beispiel alle mehrzelligen Eukaryoten. Gerade diese Quelle ist für die Beeinflussung von Allergien wichtig. Hierunter fallen Tiere und Pflanzen. Es können Zellen, Zellkulturen oder auch ganze Gewebe bestehend aus einer oder mehreren Schichten oder Zeil-Typen verwendet werden.
Bevorzugt ist ein erfindungsgemäßes Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten, bei dem die T-Zell-Zytokine vom Typ Interferon-γ, TNF-α (Tumor-Nekrose-Faktor-alpha) oder Interleukin 2 sind. Jedoch sind auch andere 8
Zytokine möglich. Hier ist allein von Bedeutung, daß diese Zytokine fluoreszenzmarkiert werden können.
Auch können Aktivierungsmarker identifiziert werden, die aufgrund der T-Zell- Stimulation durch die Proteinfragmente exprimiert oder in der EΞxpression gesteigert werden. Der Marker CD69 ist hierfür beispielhaft. Beim Identifizieren von Aktivierungsmarkern die sich auf der Zelloberfläche befinden oder nicht sekretiert werden ist gegebenenfalls die Inhibition der Sekretion nicht mehr erforderlich. Zytokine und Oberflächenmarker sind ausführlich beschrieben in Abul K. ABBAS et al. (1997) Cellular and Molecular Immunology, Philadelphia, 3. Auflage, ISBN 0-7216- 4024-9.
Mehr bevorzugt ist ein erfindungsgemäßes Verfahren zum Identifizieren von T-Zell- stimulierenden Proteinfragmenten, bei dem die T-Zell-Zytokine nach einer Inhibition der Sekretion intrazellulär vorliegen. Bedeutsam ist, daß die erfolgte Stimulation eindeutig T-Zellen zuzuordnen ist.
Bevorzugt ist ein erfindungsgemäßes Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten, wobei die Stimulation mittels eines Durchflußzytometers erfaßt wird Wesentlich ist dabei das Prinzip, daß Marker, die sich in der Zelle oder auf deren Oberfläche befinden, wie beispielsweise Zytokine oder Oberflächenmarker mit einem spezifischen Detektor, zum Beispiel einem Antikörper in Kontakt treten, wobei der Detektor mit einem Fluoreszenzfarbstoff beladen ist. Nach Anregung dieses Fluoreszenzfarbstoffes auf den in einem Flüssigkeitsstrom fokussierten Zellen durch Laserlicht zeichnet das Durchflußzytometer die emittierten Streulicht und Fluoreszenzsignale auf, was die zeitgleiche oder spätere Analyse der Zellen ermöglicht. Ausführlich sind solche Techniken beschreiben in Howard M. SHAPIRO (1995) Practical Flow Cytometry, New York, 3. Auflage, ISBN 0-471-30376-3. Die Detektion der intrazellulären Zytokine ist beschrieben in L. J. PICKER et al. (1995) Blood, Vol. 86, pp 1408.
Herstellung von T-Zell-stimulierenden Proteinfragmenten
Die Erfindung umfaßt weiterhin ein Verfahren zur Herstellung eines Proteinfragmentes/Peptides, das T-Zell-stimulierend ist und dessen Aminosäuresequenz oder ausgängliche Aminosäuresequenz nach dem erfindungsgemäßen Verfahren zum 9 Identifizieren von T-Zell-stimulierenden Proteinfragmenten gefunden worden ist, wobei das Proteinfragment/Peptid mit der Festphasenmethode, der Flüssigphasenmethode oder mittels der Proteinbiosynthese in einem Wirt hergestellt wird. Festphasen-Synthese: Die Festphasen-Synthese ist ausführlich beschreiben in Solid Phase Synthesis, E. ATHERTON and R.C. SHEPPARD (1989) IRL Press, ISBN 1- 85221-133-4 und Amino Acid and Peptide Syntheses, J. JONES, Oxford Science Publication (1992) ISBN 0-19-855668-3.
Flüssigphasen-Synthese: Die Flüssigphasen-Synthese oder Lösungstechnik ist in Methoden der Organischen Chemie (HOUBEN WEYL), Bd. 15 / Nr. 1 und 2, E. WÜNSCH (Herausgeber), Thieme Verlag Stuttgart, 1974 dargestellt.
Vorteilhaft ist weiterhin ein Verfahren zur Herstellung eines Proteinfragmentes/Peptides, das T-Zell-stimulierend ist und dessen Aminosäuresequenz oder ausgängliche Aminosäuresequenz nach dem erfindungsgemäßen Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten gefunden worden ist, wobei das Proteinfragment/Peptid mit der Festphasenmethode, der Flüssigphasenmethode oder mittels der Proteinbiosynthese in einem Wirt hergestellt wird, dabei weist das Proteinfragment/Peptid Insertionen, Deletionen oder Substituierungen auf (Modifikationen), wobei eine, zwei, drei oder mehrere Aminosäuren ausgetauscht, deletiert oder inseriert sind, wobei das modifizierte Proteinfragment/Peptid im wesentlichen dieselbe Funktion bezüglich der Stimulation von T - Zellen aufweist, die das nicht modifizierte Proteinfragment/Peptid besitzt.
Besonders vorteilhaft ist ein Verfahren zur Herstellung eines Proteinfragmentes/Peptides der vorherigen Art, wobei das Proteinfragment / Peptid am N-terminalen und / oder C-terminalen Ende mindestens eine weitere natürliche oder nichtnatürliche Aminosäure und / oder eine Schutzgruppe besitzt (erweiterte Modifizierung), wobei das erweitert modifizierte Proteinfragment/Peptid im wesentlichen dieselbe Funktion bezüglich der Stimulation von T - Zellen aufweist, die das nicht modifizierte Proteinfragment/Peptid besitzt.
Abkürzungen: Die im Text verwendeten Abkürzungen sind durch die Regeln bestimmt, die von der IUPAC-IUB Kommission für biochemische Nomenklatur festgelegt worden sind (Biochemistry 11: 1726 (1972) und Biochem. J. 219: 345 (1984)). Folgende 10 übliche Abkürzungen werden verwendet: Ala = A = Alanin; Arg = R= Arginin; Asn =N = Asparagin; Cys = C = Cystein; Gin = Q = Glutamin; Glu = E = Glutaminsäure; Gly = G = Glycin; His = H = Histidin; He = I = Isoleucin; Leu = L = Leucin; Lys = K = Lysin; Met = M = Methionin; Phe = F = Phenylalanin; Pro = P = Prolin; Ser = S = Serin; Thr =T = Threonin; Trp = W = Tryptophan; Tyr = Y = Tyrosin und Val = V = Valin.
Vorteilhaft ist, wenn die Proteinfragmente, die an MHC-Klasse-Il-Moleküle gebunden präsentiert werden, je nach Ende, Amino-Schutzgruppen oder Carboxyl- Schutzgruppen oder deren Varianten aufweisen. Die Schutzgruppe oder deren Varianten für den N-Terminus kann bestehen aus:
Alkyl-, Aryl-, Alkylaryl-, Aralkyl-, Alkylcarbonyl-oder Arylcarbonylgruppen mit 1 bis 10 Kohlenstoffatomen, bevorzugt sind Naphthoyl-, Naphthylacetyl-, Naphthylpropionyl-, Benzoylgruppe oder einer Acylgruppe mit 1 bis 7 Kohlenstoffatomen. Die Schutzgruppe oder deren Varianten für den C-Terminus können bestehen aus: Einer Alkoxy-oder Aryloxygruppe mit 1 bis 10 Kohlenstoffatomen oder aus einer Aminogruppe.
Verwendung von T-Zell-stimulierenden Proteinfragmenten als Medikament
Besonders bevorzugt ist die Verwendung von einem Proteinfragment/Peptid, dessen Aminosäuresequenz bzw. ausgängliche Aminosäuresequenz nach dem erfindungsgemäßen Verfahren zur Identifikation T-Zellen-stimulierender Proteinfragmente gefunden wurde und welches nach dem erfindungsgemäßen Herstellungsverfahren produziert worden ist, zur Herstellung eines Medikaments zur Immunstimulation.
Am meisten bevorzugt ist die Verwendung eines Proteinfragmentes/Peptides, wobei die Immunstimulation eine Vakzinierung oder Desensibilisierung ist. Die Vakzinierung besteht darin, daß als Antigen Proteine von Viren, Bakterien eukaryotischen Einzellern oder Vielzellern nach der Ermittlung ihrer Sequenz in Proteinfragmente aufgeteilt werden, die gemäß der Erfindung zu T-Zell-enthaltenden Suspensionen gegeben werden. Die positiven Ansätze, in denen sich ein T-Zell- stimulierendes Proteinfragment befindet, werden als Ausgangspunkt für die Herstellung einer Vakzine verwendet. 1 1 Die Desensibilisierung besteht darin, daß Proteinfragmente/Peptide ermittelt werden, die die unerwünschte, immunologische Reaktion auslösen. Anschließend werden die T-Zell-stimulierenden Proteinfragmente/Peptide bzw. die daraus entsprechend dem Herstellungsverfahren hergestellten Medikamente dem Patienten verabreicht. Der jeweils gewünschte Effekt (Stimulation oder Desensibilisierung) wird über die Art und den Ort der Anwendung sowie die Dosis (z.B. Hochdosis-oder Niedrigdosistoleranzinduktion) und die begleitende Verabreichung beispielweise stimulierender oder tolerisierender Zytokine oder ähnlicher immunmodulatorisch aktiver Medikamente erreicht bzw. verstärkt. Proteinfragmente, die nicht nach diesem erfindungsgemäßen Verfahren aufgefunden worden sind, wurden bereits erfolgreich als Medikamente eingesetzt, so z.B. bei der Vakzinierung von Rindern gegen Maul- und Klauenseuche (Collen et al.; J Immunol 1991; 146:749-755). Das in unserem Beispiel identifizierte Peptid wurde parallel durch konventionelle Technik von einer anderen Gruppe gefunden und befindet sich als Vakzine in Erprobung (Diamond et al. Blood 1997; 5:1751-1767).
12 Beispiele Beispiel 1
(Siehe Abbildung 1/2).
Mononukleäre Zellen wurden aus dem durch venöse Punktion gewonnenen peripheren Blut einer HLA-typisierten Patientin präpariert, welche das MHC-Klasse-I Allel HLA-A*0201 besaß. Die Patientin besaß außerdem Antikörper gegen das humane Cytomegalie-Virus. Die nach Standardmethode präparierten Zellen wurden für sechs Stunden unter optimierten Bedingungen mit den unten angegebenen Peptiden inkubiert. Diese stellen Bruchstücke eines aus der Literatur bekannten Proteinfragmentes des pp 65-Proteins des humanen Cytomegalie-Virus (Swiss-Prot PO6725) von 15 Aminosäuren Länge dar (Ala Arg Asn Leu Val Pro Met Val Ala Thr Val Gin Gly Gin Asn, pp65493.5o7). Dieses Proteinfragment ist bekannt dafür, daß es in der Bulk-Kultur HLA-A2 restringierte, zytotoxische T-Zellen induzieren kann, also ein mit HLA-A2 präsentiertes T-Zell-Epitop enthält (M. R. WILLS et al. (1996) J. Virol. Vol. 70, pp 7569-5779). Die Länge von 9 Aminosäuren für die zu testende Bruchstücke wurde gewählt, da dieses die typische Länge von Epitopen ist, welche mit MHC- Klasse-I-Molekülen präsentiert werden (H. G. RAMMENSEE et al. (1995) Immunogenetics, Vol 41, pp 178-228). Die verwendeten Peptide überlappen sich um jeweils 8 Aminosäuren und stellen somit alle möglichen Bruchstücke dieser Länge dar. Die Peptide wurden als Mischung aus allen Peptiden oder einzeln eingesetzt. Die Peptidkonzentration im gezeigten Beispiel betrug 1 μg/ml je Peptid. Folgenden Peptide wurden eingesetzt: 1) Ala Arg Asn Leu Val Pro Met Val Ala
2) Arg Asn Leu Val Pro Met Val Ala Thr
3) Asn Leu Val Pro Met Val Ala Thr Val
4) Leu Val pro Met Val Ala Thr Val Gin
5) Val pro Met Val Ala Thr Val Gin Gly 6) pro Met Val Ala Thr Val Gin Gly Gin
7) Met Val Ala Thr Val Gin Gly Gin Asn
Die Inkubation mit der Mischung aus allen Peptiden (Abbildung: Diagramm oben links) sowie Peptid 3 allein (Abbildung: Diagramm in der Mitte, zweites von oben) führten zur Produktion von IFN-γ in T-Zellen, welches durch Messung am Durchflußzytometer auf 13 Einzel-Zellebene (J. L PICKER et al., (1995) Blood, Vol 86, pp 1408-1419) nachgewiesen wurde, Keines der anderen einzeln getesteten Peptide hatte diesen Effekt. Eine in der Literatur veröffentlichte Untersuchung identifizierte exakt das gleiche Epitop innerhalb des gleichen Proteinsegments durch konventionelle Methoden und bestätigt unser Ergebnis eindeutig (D. J. DIAMOND et al. (1997) Blood, Vol 90, pp 1751-1767).
Legende zur Abbildung 1/2:
Detektion von intrazellulär vorliegendem Interferon-γ in CD8+ T-Lymphozyten nach Stimulation mit der Mischung aus den 7 angegebenen Peptiden (Oben, ganz links) beziehungsweise den einzelnen Peptiden, pp65 93-5oι bis pp65499-5o7. Der Marker CD69 wurde als Aktivierungsmarker verwendet. Die Darstellung ist auf CD3+/CD8+ Ereignisse eingegrenzt, angegeben ist die mittlere Fluoreszenzintensität.
Beispiel 2
(Siehe Abbildung 2/2)
Mononukleäre Zellen wurden aus dem durch venöse Punktion gewonnenen peripheren Blut einer HLA-typisierten Patientin präpariert, welche das MHC-Klasse-Il Allel HLA-DR11 besaß. Die Patientin besaß außerdem Antikörper gegen das humane Cytomegalie-Virus. Die nach Standardmethode präparierten Zellen wurden für sechs Stunden unter optimierten Bedingungen mit Mischungen aus 11 oder 12 jeweils 15- Aminosäuren-Iangen Peptiden mit jeweils 11 Überlappungen entsprechend der Sequenz des pp65 Matrix Phosphoproteins (Swiss-Prot PO6725) inkubiert (insgesamt 138 Peptide). Die Peptidkonzentration betrug 1 μg/ml je Peptid. Drei der insgesamt 24 Mischungen stimulierten eindeutig CD4+ T-Zellen. Aufgrund der Versuchsanordnung (Vorkommen bestimmter Peptide in bestimmten Mischungen) ließen sich damit eindeutig 2 Peptide identifizieren, welche für diese Stimulation verantwortlich waren. Dieses Ergebnis wurde durch die Stimulation mit den jeweils einzelnen Peptiden unter ansonsten gleichen Bedingungen bestätigt. Die identifizierten Peptide waren die benachbarten Peptide pp65365_3 9 und pp65369-383. Diese Sequenzen decken sich weitgehend mit folgenden in der Literatur beschriebenen HLA-DR11 präsentierten Peptidesequenzen, welche auf konventionelle Weise als T-Zellen-stimulierende Sequenzen identifiziert wurden: pp6536i-376 und PP65369-38-J (Khattab et al. (1998) 14 Journal of Medical Virology, Vol. 52, pp68-76), d.h, die stimulierenden Peptide finden sich innerhalb des Abschnitts definiert durch die Aminosäuren 361 und 384. Eine weitere Einengung der Epitopsequenz auf die zu postulierende Länge von 11 Aminosäuren ist noch nicht erfolgt.
Legende zur Abbildung 2/2
Detektion von intrazellulär vorliegendem Interferon-γ in CD3+/CD8" (links) nach Stimulation mit den Peptidmischungen 8, 9, und 20, bzw. CD3+/CD4+ T-Lymphozyten (rechts) nach Stimulation mit den einzelnen Peptiden pp65365-379 und pp65369-383. Beim Screening (rechts) wurden Peptidmischungen verwendet und CD3 und CD8 als T- Zellmarker. Da die INF-γ+ Populationen links CD3+/CD8' sind wurde beim Nachtesten der Marker CD4 verwendet. Die Stimulierten T-Zellen sind eindeutig CD4+. Dargestellt sind ausschließlich CD3+ Zellen, angegeben ist die mittlere Fluoreszenzintensität.
PCT/DE1999/000175 1998-01-19 1999-01-15 Verfahren zum identifizieren von t-zell-stimulierenden proteinfragmenten WO1999036568A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/600,564 US8932806B1 (en) 1998-01-19 1999-01-15 Method for identifying t-cell stimulating protein fragments
DE59913761T DE59913761D1 (de) 1998-01-19 1999-01-15 Verfahren zum identifizieren von t-zell-stimulierenden proteinfragmenten
EP99930888A EP1051619B1 (de) 1998-01-19 1999-01-15 Verfahren zum identifizieren von t-zell-stimulierenden proteinfragmenten
AU32463/99A AU3246399A (en) 1998-01-19 1999-01-15 Method for identifying t-cell stimulating protein fragments
JP2000540269A JP2002509241A (ja) 1998-01-19 1999-01-15 T細胞刺激タンパク質断片の同定方法
DE19980037T DE19980037D2 (de) 1998-01-19 1999-01-15 Verfahren zum Identifizieren von T-Zellstimulierenden Proteinfragmenten

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE1998102174 DE19802174A1 (de) 1998-01-19 1998-01-19 Verfahren zur Identifikation von T-Lymphozyten-stimulierenden Peptiden
DE19802174.7 1998-07-28
DE1998134932 DE19834932A1 (de) 1998-07-28 1998-07-28 Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten
DE19834932.7 1998-07-28

Publications (2)

Publication Number Publication Date
WO1999036568A2 true WO1999036568A2 (de) 1999-07-22
WO1999036568A3 WO1999036568A3 (de) 2000-04-06

Family

ID=26043259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/000175 WO1999036568A2 (de) 1998-01-19 1999-01-15 Verfahren zum identifizieren von t-zell-stimulierenden proteinfragmenten

Country Status (8)

Country Link
US (1) US8932806B1 (de)
EP (1) EP1051619B1 (de)
JP (1) JP2002509241A (de)
AU (1) AU3246399A (de)
DE (2) DE59913761D1 (de)
DK (1) DK1051619T3 (de)
ES (1) ES2272074T3 (de)
WO (1) WO1999036568A2 (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10009341A1 (de) * 2000-02-22 2001-09-06 Florian Kern Verfahren zur antigen-spezifischen Stimulation von T-Lymphozyten
EP1146120A1 (de) * 2000-04-12 2001-10-17 Institut National De La Sante Et De La Recherche Medicale (Inserm) Verfahren zur Gewinnung von T-Lymphozyten und zur Identifizierung von unbekannten Epitopen
WO2001077302A1 (en) * 2000-04-12 2001-10-18 Institut National De La Sante Et De La Recherche Medicale Method for obtaining specific t-lymphocytes, and for identifying unknown epitopes
WO2002072627A2 (en) * 2001-03-09 2002-09-19 Callistogen Ag Induction of anti-tumor cytotoxic t-lymphocytes in humans using peptide epitopes found by computer based algorithms for vaccination
US6740324B2 (en) 2001-02-02 2004-05-25 Chemocentryx, Inc. Methods and compositions useful for stimulating an immune response
WO2005117996A2 (en) 2004-05-24 2005-12-15 Baylor Research Institute Immune response assessment method
US7025968B2 (en) 2000-08-30 2006-04-11 Chemocentryx, Inc. CMV vaccines
EP1655305A2 (de) * 2000-03-21 2006-05-10 Genzyme Corporation Therapeutische Anti-Cytomegalovirus-Verbindungen
WO2013093512A3 (en) * 2011-12-23 2013-11-14 Retroscreen Virology Ltd Vaccine - screening method
US9833506B2 (en) 2011-12-23 2017-12-05 Hvivo Services Limited Vaccine—screening method
CN107663239A (zh) * 2016-12-28 2018-02-06 天津天锐生物科技有限公司 一种识别hla‑a2/nlvpmvatv的单域抗体
US10030065B2 (en) 2007-07-03 2018-07-24 Dako Denmark A/S MHC multimers, methods for their generation, labeling and use
US10336808B2 (en) 2007-03-26 2019-07-02 Dako Denmark A/S MHC peptide complexes and uses thereof in infectious diseases
US10369204B2 (en) 2008-10-02 2019-08-06 Dako Denmark A/S Molecular vaccines for infectious disease
US10611818B2 (en) 2007-09-27 2020-04-07 Agilent Technologies, Inc. MHC multimers in tuberculosis diagnostics, vaccine and therapeutics
US10722562B2 (en) 2008-07-23 2020-07-28 Immudex Aps Combinatorial analysis and repair
US10968269B1 (en) 2008-02-28 2021-04-06 Agilent Technologies, Inc. MHC multimers in borrelia diagnostics and disease

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0817244D0 (en) 2008-09-20 2008-10-29 Univ Cardiff Use of a protein kinase inhibitor to detect immune cells, such as T cells
US11992518B2 (en) 2008-10-02 2024-05-28 Agilent Technologies, Inc. Molecular vaccines for infectious disease
WO2019180243A1 (en) 2018-03-22 2019-09-26 Charité-Universitätsmedizin Berlin Crispr associated protein reactive t cell immunity

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750356A (en) * 1996-05-31 1998-05-12 Anergen, Inc. Method for monitoring T cell reactivity

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
AUSUBEL LJ, KRIEGER JI, HAFLER DA: "Changes in cytokine secretion induced by altered peptide ligands of myelin basic protein peptide 85-99" JOURNAL OF IMMUNOLOGY, Bd. 159, Nr. 4, 1. September 1997 (1997-09-01), Seiten 2502-2512, XP002125048 *
CELLO J, STRANNEGARD O, SVENNERHOLM B: "A study of the cellular immune response to enteroviruses in humans: identification of cross-reactive T cell epitopes on the structural proteins of enteroviruses" JOURNAL OF GENERAL VIROLOGY, Bd. 77, Nr. 9, Januar 1996 (1996-01), Seiten 2097-2108, XP002125049 *
KERN F; SUREL I P; FAULHABER N; FROMMEL C; SCHNEIDER-MERGENER J; SCHONEMANN C; REINKE P; VOLK H D: "Target structures of the CD8(+)-T-cell response to human cytomegalovirus: the 72-kilodalton major immediate-early protein revisited" JOURNAL OF VIROLOGY, Bd. 73, Nr. 10, Oktober 1999 (1999-10), Seiten 8179-8184, XP002125050 *
PICKER LJ ET AL: "Direct demonstration of cytokine synthesis heterogeneity among human memory/effector T cells by flow cytometry" BLOOD,US,PHILADELPHIA, PA, Bd. 86, Nr. 4, Seite 1408-1419-1419 XP002108552 ISSN: 0006-4971 in der Anmeldung erw{hnt *
STEPANIAK, JOLIE A. ET AL: "A comparative study of experimental autoimmune encephalomyelitis in Lewis and DA rats" J. IMMUNOL. (1995), 155(5), 2762-9 , XP002125047 *
SURCEL HM, TROYE-BLOMBERG M, PAULIE S, ANDERSSON G, MORENO C, PASVOL G, IVANYI J: "Th1/Th2 profiles in tuberculosis, based on the proliferation and cytokine response of blood lymphocytes to mycobacterial antigens" IMMUNOLOGY, Bd. 81, Nr. 2, Februar 1994 (1994-02), Seiten 171-176, XP000863031 *
WOITAS RP, LECHMANN M, JUNG G, KAISER R, SAUERBRUCH T, SPENGLER U: "CD30 induction and cytokine profiles in hepatitis C virus core-specific peripheral blood T lymphocytes" JOURNAL OF IMMUNOLOGY, Bd. 159, Nr. 2, 15. Juli 1997 (1997-07-15), Seiten 1012-1018, XP002125046 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10009341A1 (de) * 2000-02-22 2001-09-06 Florian Kern Verfahren zur antigen-spezifischen Stimulation von T-Lymphozyten
WO2001063286A3 (de) * 2000-02-22 2002-03-14 Florian Kern Verfahren zur antigen-spezifischen stimulation von t-lymphozyten mit synthetischen peptidbibliotheken
US8029796B2 (en) 2000-03-21 2011-10-04 Genzyme Corporation Therapeutic anti-cytomegalovirus compounds
EP1655305A2 (de) * 2000-03-21 2006-05-10 Genzyme Corporation Therapeutische Anti-Cytomegalovirus-Verbindungen
EP1655305A3 (de) * 2000-03-21 2006-09-13 Genzyme Corporation Therapeutische Anti-Cytomegalovirus-Verbindungen
EP1146120A1 (de) * 2000-04-12 2001-10-17 Institut National De La Sante Et De La Recherche Medicale (Inserm) Verfahren zur Gewinnung von T-Lymphozyten und zur Identifizierung von unbekannten Epitopen
WO2001077302A1 (en) * 2000-04-12 2001-10-18 Institut National De La Sante Et De La Recherche Medicale Method for obtaining specific t-lymphocytes, and for identifying unknown epitopes
US7025968B2 (en) 2000-08-30 2006-04-11 Chemocentryx, Inc. CMV vaccines
US6740324B2 (en) 2001-02-02 2004-05-25 Chemocentryx, Inc. Methods and compositions useful for stimulating an immune response
WO2002072627A2 (en) * 2001-03-09 2002-09-19 Callistogen Ag Induction of anti-tumor cytotoxic t-lymphocytes in humans using peptide epitopes found by computer based algorithms for vaccination
WO2002072627A3 (en) * 2001-03-09 2003-08-07 Callistogen Ag Induction of anti-tumor cytotoxic t-lymphocytes in humans using peptide epitopes found by computer based algorithms for vaccination
EP1774332A4 (de) * 2004-05-24 2008-06-25 Baylor Res Inst Verfahren zur beurteilung von immunreaktionen
EP1774332A2 (de) * 2004-05-24 2007-04-18 Baylor Research Institute Verfahren zur beurteilung von immunreaktionen
EP2184607A1 (de) * 2004-05-24 2010-05-12 Baylor Research Institute Verfahren zur Beurteilung von Immunreaktionen
EP2253956A3 (de) * 2004-05-24 2011-07-06 Baylor Research Institute Verfahren zur Beurteilung von Immunreaktionen
WO2005117996A2 (en) 2004-05-24 2005-12-15 Baylor Research Institute Immune response assessment method
US10336808B2 (en) 2007-03-26 2019-07-02 Dako Denmark A/S MHC peptide complexes and uses thereof in infectious diseases
US10030065B2 (en) 2007-07-03 2018-07-24 Dako Denmark A/S MHC multimers, methods for their generation, labeling and use
US10611818B2 (en) 2007-09-27 2020-04-07 Agilent Technologies, Inc. MHC multimers in tuberculosis diagnostics, vaccine and therapeutics
US10968269B1 (en) 2008-02-28 2021-04-06 Agilent Technologies, Inc. MHC multimers in borrelia diagnostics and disease
US10722562B2 (en) 2008-07-23 2020-07-28 Immudex Aps Combinatorial analysis and repair
US10369204B2 (en) 2008-10-02 2019-08-06 Dako Denmark A/S Molecular vaccines for infectious disease
US9833506B2 (en) 2011-12-23 2017-12-05 Hvivo Services Limited Vaccine—screening method
WO2013093512A3 (en) * 2011-12-23 2013-11-14 Retroscreen Virology Ltd Vaccine - screening method
CN107663239A (zh) * 2016-12-28 2018-02-06 天津天锐生物科技有限公司 一种识别hla‑a2/nlvpmvatv的单域抗体

Also Published As

Publication number Publication date
EP1051619A2 (de) 2000-11-15
ES2272074T3 (es) 2007-04-16
DK1051619T3 (da) 2006-12-11
AU3246399A (en) 1999-08-02
DE19980037D2 (de) 2001-03-22
US8932806B1 (en) 2015-01-13
WO1999036568A3 (de) 2000-04-06
EP1051619B1 (de) 2006-08-09
DE59913761D1 (de) 2006-09-21
JP2002509241A (ja) 2002-03-26

Similar Documents

Publication Publication Date Title
EP1051619B1 (de) Verfahren zum identifizieren von t-zell-stimulierenden proteinfragmenten
EP1257290B1 (de) Verfahren zur antigen-spezifischen stimulation von t-lymphozyten mit synthetischen peptidbibliotheken
DE69818445T2 (de) Verwendung von verbindungen die an ein zytoplasmatischen dipeptidase binden zur potenzierung des immunantworts
DE69839326T2 (de) ZUSAMMENSETZUNGEN UND METHODEN ZUR MODULIERUNG DER ZELLULÄREN AKTIVITÄT VON NF-kappaB
DE10225144A1 (de) An MHC-Moleküle bindende Tumor-assoziierte Peptide
DE102004026135A1 (de) An MHC-Moleküle bindende Tumor-assoziierte Peptide
DE60114018T2 (de) Von zellen präsentierte peptide
DE69838188T2 (de) Aminoterminalen verkürzten c-c Chemokine und als Chemokine Antagonist
DE10352900A1 (de) Verwendung einer an CD28 bindenden Wirksubstanz zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung von B-CLL
Ramaswamy et al. Evidence for the presence of a pheromonotropic factor in hemolymph and regulation of sex pheromone production in Helicoverpa zea
DE69734451T2 (de) Skorpion-spezifische neuropeptide
DE69426076T3 (de) Gereinigte flt3-liganden von saeugentieren, agonisten und antagonisten davon
DE60124915T2 (de) Synthetische peptide gegen neurologische krankheiten
DE4423392A1 (de) Verfahren zur Identifizierung antigener Peptide
EP1588172A2 (de) Verfahren zur identifizierung bhs-spezifischer proteine und fragmente davon
DE69534178T2 (de) Säugetier Thymokingene
DE19834932A1 (de) Verfahren zum Identifizieren von T-Zell-stimulierenden Proteinfragmenten
EP0637964A1 (de) Medikamente zur tumortherapie mit kontrolliertem und reguliertem immunsystem sowie verwendung der einzelsubstanzen zur kombinierten therapie.
Shelanski Intracellular ionic calcium and the cytoskeleton in living cells
EP1385875A2 (de) Cd4+ t-lymphozyten spezifische hepatitis c virus-epitope
DE102015106731A1 (de) Peptide für die Krebsimmuntherapie
EP1023445B1 (de) Cadherin derived growth factor und seine verwendung
DE10351627B4 (de) Modulation der Angiogenese durch Bartonella henselae
DE19802174A1 (de) Verfahren zur Identifikation von T-Lymphozyten-stimulierenden Peptiden
DE102005002110A1 (de) Regulatorische-T-Zellen enthaltend Proteine zur Therapie und Diagnose von Erkrankungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1999930888

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 09600564

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999930888

Country of ref document: EP

REF Corresponds to

Ref document number: 19980037

Country of ref document: DE

Date of ref document: 20010322

WWE Wipo information: entry into national phase

Ref document number: 19980037

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1999930888

Country of ref document: EP