WO1999032236A1 - Piezoelektrischer schwinger mit temperaturabhängigem bauelement - Google Patents

Piezoelektrischer schwinger mit temperaturabhängigem bauelement Download PDF

Info

Publication number
WO1999032236A1
WO1999032236A1 PCT/DE1998/003300 DE9803300W WO9932236A1 WO 1999032236 A1 WO1999032236 A1 WO 1999032236A1 DE 9803300 W DE9803300 W DE 9803300W WO 9932236 A1 WO9932236 A1 WO 9932236A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
electrode
temperature
piezoelectric
piezoelectric vibrator
Prior art date
Application number
PCT/DE1998/003300
Other languages
English (en)
French (fr)
Inventor
Thomas Hahn
Hans-Joachim Welsch
Martin Staut
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO1999032236A1 publication Critical patent/WO1999032236A1/de

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/176Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of ceramic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0651Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element of circular shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2968Transducers specially adapted for acoustic level indicators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/802Drive or control circuitry or methods for piezoelectric or electrostrictive devices not otherwise provided for
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means

Definitions

  • the present invention relates to a piezoelectric vibrator that can be used as an ultrasonic transducer.
  • a temperature measurement is therefore generally required before or during operation.
  • the temperature is realized in many cases by an external temperature sensor.
  • the external temperature sensor for recording the temperature must be led to the measuring point directly at the acoustic measuring point next to the ultrasonic transducer. This requires additional wiring and complicates the whole arrangement.
  • the piezoelectric vibrator consists of a piezoelectric substrate, preferably a piezoceramic, which has a first electrode on a first surface and a second electrode on a second surface opposite the first surface.
  • the first electrode does not completely cover the first surface of the vibrator, so that there is an electrode-free edge surface.
  • this can be achieved by selecting the diameter of the preferably circular electrode to be smaller than the diameter of the circular substrate surface.
  • the diameter of the piezoelectric substrate used is larger than the necessary radiating area (aperture) of the piezoelectric vibrator. This aperture is approximately determined by the overlap of the two opposite electrodes.
  • a component with temperature-dependent behavior is attached or integrated on the electrode-free edge surface.
  • a connection of this component is conductively connected to at least one of the two electrodes.
  • This design of the piezoelectric vibrator allows the temperature to be measured directly at the acoustic measuring point via the temperature-dependent component. Due to the integration of the component on the surface of the piezoelectric substrate, an uncomplicated Ornate temperature detection guaranteed. By connecting the component in parallel or in series with the capacitor formed by the two electrodes, the temperature can be measured directly via the two-pole lead for the electrodes. An additional supply line for the temperature sensor or the temperature-dependent component is therefore not necessary, so that complex cabling is avoided.
  • connection pads which are formed by the first and / or second electrode on a surface of the piezoelectric substrate
  • the integration of the temperature-dependent component can be implemented using a simple connection technology. Claims 3 and 4 ⁇ . There is no additional wiring between the or the electrodes and the component is required.
  • the piezoelectric vibrator according to the invention can therefore be produced with little effort.
  • Fig. 1 shows an example of a piezoceramic transducer according to the invention before attaching the component in rear view (a), front view (b) and side view (O;
  • FIG. 2 shows the rear view of the vibrator from FIG. 1 with an integrated component (here: temperature-dependent resistance);
  • 3 shows the oscillator from FIG. 2 in a housing; and 4 shows a basic circuit diagram of the connection of the component with the capacitor formed by the two electrodes, as a parallel connection (a) or a series connection (b).
  • FIG. 1 shows an example of a piezo-ceramic transducer according to the invention in side, rear and front views before it is provided with a temperature-dependent component.
  • a circular, disk-shaped piezoceramic is used as the substrate (1).
  • On the back of the ceramic is also a circular electrode (2) (except for the foothills (4,5)), the diameter of which is smaller than the diameter of the piezoelectric ceramic.
  • the radiating surface of the vibrator is determined by the size of the electrode, a piezoceramic is therefore used in the present case, the diameter of which is larger than the radiating surface (aperture) of the vibrator required for the intended application.
  • an electrode-free edge surface (3) is available on the rear surface of the ceramic.
  • the rear electrode also has two extensions (4, 5) which extend into the electrode-free edge surface. These extensions form connection pads for the subsequent contacting of the electrode with a supply line (extension 4) and with the component with temperature-dependent behavior (extension 5).
  • the front electrode (6) over the entire front surface of the piezoceramic extends.
  • this front electrode also has two extensions (7, 8) which are guided around the edge of the disk-shaped piezoceramic in order to form two connection pads (7, 8) in the electrode-free edge region (3) on the back.
  • these two connection pads are provided for contacting the front electrode with a supply line (extension 7) and with the component (extension 8).
  • a sectional view through the line A-A 'in partial image (a) shows partial image (c).
  • the piezoelectric ceramic (1), the rear electrode (2) and the front electrode (6) with the extension (8) guided around the edge of the piezoceramic can be seen to form a connection pad on the opposite surface.
  • the electrodes are shown at a distance from the piezoceramic. In fact, however, they are in contact with the piezoceramic.
  • PZT lead zirconium titanate
  • Silver, gold or nickel are preferably used as electrode materials.
  • Typical dimensions of the piezoceramic are a thickness of 1 to 4 mm with a diameter of approx. 10 - 30 mm.
  • Fig. 2 shows the embodiment of Fig. 1 with integrated temperature-dependent resistor (9) and attached supply lines (10) to the electrodes.
  • the connection of the temperature-dependent resistor with the capacitor formed by the two electrodes corresponds in the present example to a parallel connection as shown schematically in FIG. 4 (a).
  • the feed approximately lines can be soldered to the connection pads (4, 7), for example.
  • the piezoelectric ceramic is advantageously used simultaneously as a circuit board.
  • the connection pads which are formed by the electrodes themselves, enable a very simple connection technique to be implemented with little wiring effort.
  • Such a vibrator can be used, for example, for external measurement of the filling level of gas cylinders.
  • the temperature-dependent resistor can be a PTC or an NTC, for example.
  • Another type of temperature sensor which should preferably be of SMD design, is also possible.
  • FIG. 3 shows a side view of a vibrator according to the invention, which is built into a housing (11) with a coupling layer (12) and has an integrated temperature-dependent resistor (for example SMD-NTC (9)).
  • the connecting cables (10) can also be seen.
  • FIG. 4 shows the two circuit variants when the component is integrated.
  • a high-resistance NTC should be used in conjunction with a low-resistance ceramic.
  • a 1.5 MHz oscillator which has an impedance of approximately 50 ⁇ (preferably the minimum of impedance at this frequency)
  • a low-resistance PTC should be used in series connection with a high-resistance piezoceramic.
  • the parallel connection or series connection shown makes it possible to transmit the temperature information with its low-frequency signal behavior via the same two-pole feed line (10) which is also used for the high-frequency ultrasound information. It is therefore not necessary to provide additional supply lines.
  • This simplified arrangement in particular allows the structure when using the vibrator to be significantly simplified.
  • the arrangement of the electrodes according to the invention in connection with the provision of a piezoceramic, the diameter of which is larger than the necessary radiating surface, offers the possibility of a very simple connection technique of the component with the electrodes via integrated connection pads.

Abstract

Die vorliegende Erfindung betrifft einen piezoelektrischen Schwinger, wie er zur Ultraschallausbreitung beispielsweise in akustischen Durchflussmessgeräten oder Füllstandsdetektoren verwendet wird. Der piezoelektrische Schwinger besteht vorzugsweise aus einer Piezokeramik (1), die auf einer ersten Oberfläche eine erste Elektrode (2) und auf einer der ersten Oberfläche gegenüberliegenden zweiten Oberfläche eine zweite Elektrode (6) aufweist. Auf der ersten Oberfläche der Piezokeramik ist eine elektrodenfreie Randfläche (3) vorhanden, auf der ein Bauelement (9) mit temperaturabhängigem Verhalten angebracht ist. Dieses Bauelement ist mit zumindest einer der Elektroden (2, 6) leitend verbunden. Mit dem erfindungsgemässen piezoelektrischen Schwinger ist die Messung der Temperatur direkt an der akustischen Messstelle ohne zusätzliche Verkabelung möglich.

Description

PIEZOELEKTRISCHER SCHWINGER MIT TEMPERATURABHÄNGIGEM BAUELEMENT
Die vorl iegende Erf indung betri f f t einen piezoe lektri schen Schwinger , wie er als Ultraschal lwandler zum Einsatz kommen kann .
Die Effekte der Ultraschallausbreitung, insbesondere die Schallgeschwindigkeit und die Schalldämpfung sind temperaturabhängig. Weiterhin ist bei den sehr häufig in Ultraschallwandlern als Materialien zur elektromechanischen Energiekonversion eingesetzten Piezokeramiken eine deutliche Temperaturabhängigkeit der piezoelektrischen Konstanten vorhanden. Dadurch ergibt sich bei piezokerami- schen Ultraschallwandlern oder Schwingern ein temperaturabhängiges akustisches Übertragungsverhalten.
Bei akustischen Durchflußmeßgeräten und Füllstandsdetektoren, die unter Verwendung von Ultraschallwandlern arbeiten, ist daher in der Regel vor oder während des Betriebes eine Temperaturmessung erforderlich. Im Stand der Technik wird die Temperatur hierbei in vielen Fällen durch einen externen Temperatursensor realisiert. Allerdings muß in einem solchen Fall der externe Temperatursensor zur Erfassung der Temperatur direkt an der akustischen Meßstelle neben dem Ultraschallwandler an die Meßstelle geführt werden. Dies erfordert eine zusätzliche Verkabelung und verkompliziert die gesamte Anordnung .
Es ist eine Aufgabe der vorliegenden Erfindung, einen piezoelektrischen Schwinger bereitzustellen, der auf ein- fache Weise eine Erfassung der Temperatur direkt an der akustischen Meßstelle ermöglicht.
Die Aufgabe wird mit den Merkmalen des piezoelektrischen Schwingers nach Anspruch 1 gelöst. Vorteilhafte Ausfüh- rungsformen der Erfindung sind Gegenstand der Unteransprüche .
Erfindungsgemäß besteht der piezoelektrische Schwinger aus einem piezoelektrischen Substrat, vorzugsweise einer Piezokeramik, das auf einer ersten Oberfläche eine erste Elektrode und auf einer der ersten Oberfläche gegenüberliegenden zweiten Oberfläche eine zweite Elektrode aufweist. Die erste Elektrode bedeckt die erste Oberfläche des Schwingers nicht vollständig, so daß eine elektrodenfreie Randfläche vorhanden ist. Dies kann bei einem scheibenförmigen Substrat dadurch realisiert werden, daß der Durchmesser der vorzugsweise kreisförmigen Elektrode kleiner als der Durchmesser der kreisförmigen Substrato- berflache gewählt wird. Dadurch ist der Durchmesser des verwendeten piezoelektrischen Substrates größer als die notwendige abstrahlende Fläche (Apertur) des piezoelektrischen Schwingers. Diese Apertur wird näherungsweise durch den Überlapp der beiden gegenüberliegenden Elektro- den bestimmt.
Auf der elektrodenfreien Randfläche ist ein Bauelement mit temperaturabhängigem Verhalten angebracht bzw. integriert. Ein Anschluß dieses Bauelementes ist mit zumin- dest einer der beiden Elektroden leitend verbunden.
Durch diese Bauweise des piezoelektrischen Schwingers kann über das temperaturabhängige Bauelement die Temperatur direkt an der akustischen Meßstelle erfaßt werden. Aufgrund der Integration des Bauelements auf die Oberfläche des piezoelektrischen Substrates wird eine unkompli- zierte Temperaturerfassung gewährleistet. Durch Parallelschaltung oder Serienschaltung des Bauelementes zu dem durch die beiden Elektroden gebildeten Kondensator kann die Temperaturmessung direkt über die zweipolige Zulei- tung für die Elektroden erfolgen. Eine zusätzliche Zuleitung für den Temperatursensor bzw. das temperaturabhängige Bauelement ist daher nicht erforderlich, so daß eine aufwendige Verkabelung vermieden wird.
Durch das Vorsehen von Verbindungspads, die durch die erste und/oder zweite Elektrode auf einer Oberfläche des piezoelektrischen Substrates gebildet werden, kann die Integration des temperaturabhängigen Bauelementes über eine einfache Verbindungstechnik realisiert werden (Ansprüche 3 und 4} . Es ist keine zusätzliche Verdrahtung zwischen der oder den Elektroden und dem Bauelement erforderlich. Der erfindungsgemäße piezoelektrische Schwinger kann daher mit geringem Aufwand hergestellt werden.
Die vorliegende Erfindung soll im folgenden anhand eines Ausführungsbeispiels in Verbindung mit den Zeichnungen näher erläutert werden. Hierbei zeigen
Fig. 1 ein Beispiel für einen erfindungsgemäßen piezokeramischen Schwinger vor dem Anbringen des Bauelementes in Rückansicht (a) , Vorderansicht (b) und Seitenansicht (O ;
Fig. 2 die Rückansicht des Schwingers aus Fig. 1 mit integriertem Bauelement (hier: temperaturabhängiger Widerstand) ;
Fig. 3 den Schwinger aus Fig. 2 in einem Gehäu- se; und Fig. 4 ein Prinzipschaltbild der Verschaltung des Bauelementes mit dem durch die beiden Elektroden gebildeten Kondensator, als Parallelschaltung (a) oder Serienschal- tung (b) .
Fig. 1 zeigt ein Beispiel eines erfindungsgemäßen piezo- keramischen Schwingers in Seiten-, Rück- und Vorderansicht, bevor dieser mit einem temperaturabhängigen Bau- element versehen wird. Bei der gezeigten Ausführungsform wird eine kreisrunde, scheibenförmige Piezokeramik als Substrat (1) eingesetzt. Auf der Rückseite der Keramik (siehe Fig.l(a)) ist eine ebenfalls (bis auf die Ausläufer (4,5)) kreisrunde Elektrode (2) aufgebracht, deren Durchmesser kleiner als der Durchmesser der piezoelektrischen Keramik ist.
Da die abstrahlende Fläche des Schwingers durch die Größe der Elektrode bestimmt ist, wird im vorliegenden Fall demnach eine Piezokeramik eingesetzt, deren Durchmesser größer ist als die für die vorgesehene Anwendung notwendige abstrahlende Fläche (Apertur) des Schwingers.
Aufgrund der unterschiedlichen Durchmesser der Piezokera- mik und der rückwärtigen Elektrode steht auf der rückseitigen Oberfläche der Keramik eine elektrodenfreie Randfläche (3) zur Verfügung. Die rückwärtige Elektrode weist weiterhin zwei Ausläufer (4, 5) auf, die sich in die elektrodenfreie Randfläche hinein erstrecken. Diese Aus- läufer bilden Verbindungspads für die spätere Kontaktie- rung der Elektrode mit einer Zuführungsleitung (Ausläufer 4) und mit dem Bauelement mit temperaturabhängigem Verhalten (Ausläufer 5) .
In der Frontansicht (b) der Fig. 1 ist zu erkennen, daß sich im vorliegenden Beispiel die Frontelektrode (6) über die gesamte vorderseitige Oberfläche der Piezokeramik erstreckt. Diese Frontelektrode weist in diesem Beispiel ebenfalls zwei Ausläufer (7, 8) auf, die um den Rand der scheibenförmigen Piezokeramik herumgeführt werden, um auf der Rückseite zwei Verbindungspads (7, 8) im elektrodenfreien Randbereich (3) zu bilden. Diese beiden Verbindungspads sind, wie bei der rückseitigen Elektrode (2) , zur Kontaktierung der Frontelektrode mit einer Zuführungsleitung (Ausläufer 7) und mit dem Bauelement (Ausläufer 8) vorgesehen.
Eine Schnittansicht durch die Linie A-A' in Teilbild (a) zeigt Teilbild (c) . Dort sind die piezoelektrische Keramik (1) , die rückwärtige Elektrode (2) und die Frontelek- trode (6) mit dem um den Rand der Piezokeramik herum geführten Ausläufer (8) zur Bildung eines Verbindungspads auf der gegenüberliegenden Oberfläche zu erkennen. In der Abbildung (c) der Fig. 1 sind der Übersichtlichkeit halber die Elektroden in einem Abstand zur Piezokeramik ein- gezeichnet. Tatsächlich stehen sie jedoch in Kontakt mit der Piezokeramik.
Als Materialien für das piezokeramische Material kommen übliche Materialien wie Bleizirkontitanat (PZT) in Frage. Als Elektrodenmaterialien werden vorzugsweise Silber, Gold oder Nickel eingesetzt. Typische Abmessungen der Piezokeramik sind eine Dicke von 1 bis 4 mm bei einem Durchmesser von ca. 10 - 30 mm.
Fig. 2 zeigt die Ausführungsform der Fig. 1 mit integriertem temperaturabhängigen Widerstand (9) und angebrachten Zuführungsleitungen (10) zu den Elektroden. Die Verschaltung des temperaturabhängigen Widerstandes mit dem durch die beiden Elektroden gebildeten Kondensator entspricht im vorliegenden Beispiel einer Parallelschaltung wie in Fig. 4 (a) εchematisch dargestellt. Die Zufüh- rungsleitungen können beispielsweise an die Verbindungspads (4, 7) angelötet werden.
Bei der erfindungsgemäßen Ausführung des piezokeramischen Schwingers wird die piezoelektrische Keramik in vorteilhafter Weise gleichzeitig als Platine eingesetzt. Durch die Verbindungspads, die durch die Elektroden selbst gebildet werden, läßt sich eine sehr einfache Verbindungstechnik mit einem geringen Aufwand an Verkabelung reali- sieren.
Ein derartiger Schwinger kann beispielsweise zur externen Messung des Füllstands von Gasflaschen eingesetzt werden.
Der temperaturabhängige Widerstand kann beispielsweise ein PTC oder ein NTC sein. Auch eine andere Art von Temperatursensor, der vorzugsweise in SMD-Bauweise ausgeführt sein sollte, ist möglich.
In Fig. 3 ist ein in ein Gehäuse (11) mit einer Ankoppelschicht (12) eingebauter erfindungsgemäßer Schwinger mit integriertem temperaturabhängigem Widerstand (beispielsweise SMD-NTC (9)) in Seitenansicht dargestellt. Ebenso sind die Verbindungskabel (10) zu erkennen.
Fig. 4 zeigt die beiden Schaltungsvarianten bei Integration des Bauelements. Bei Verwirklichung der Parallelschaltung wie in Fig. 4a gezeigt (und in Fig. 2 realisiert) ist darauf zu achten, daß der elektrische Wider- stand des Bauelementes (hier temperaturabhängiger Widerstand) das hochfrequente Ultraschallnutzsignal zur An- steuerung der Elektroden nur geringfügig bedämpft. Hierbei sollte beispielsweise ein hochohmiger NTC in Verbindung mit einer niederohmigen Keramik eingesetzt werden. Beispielsweise kommt bei Verwirklichung eines 1,5 MHz- Schwingers, der eine Impedanz von ca. 50 Ω (vorzugsweise das Minimum der Impedanz bei dieser Frequenz) aufweist, der Einsatz eines NTC mit einem Widerstand von mindestens 10 bis 20 kΩ in Eetracht .
Bei Verwirklichung einer Serienschaltung wie in Fig. 4b gezeigt, sollte ein niederohmiger PTC in Serienschaltung mit einer hochoh igen Piezokeramik eingesetzt werden.
Durch die dargestellte Parallelschaltung bzw. Serien- Schaltung ist es möglich, die Temperaturinformation mit ihrem niederfrequenten Signalverhalten über die gleiche zweipolige Zuleitung (10) zu übertragen, die auch für die hochfrequente Ultraschallinformation verwendet wird. Das Vorsehen weiterer Zuleitungen ist daher nicht notwendig. Gerade durch diese vereinfachte Anordnung kann der Aufbau beim Einsatz des Schwingers deutlich vereinfacht werden.
Die erfindungsgemäße Anordnung der Elektroden in Verbindung mit dem Vorsehen einer Piezokeramik, deren Durchmes- ser größer als die notwendige abstrahlende Fläche ist, bietet die Möglichkeit einer sehr einfachen Verbindungstechnik des Bauelementes mit den Elektroden über integrierte Verbindungspads .
Es versteht sich von selbst, daß die Form und die genauen Abmessungen der Piezokeramik und der Elektroden von den jeweiligen Anwendungsfällen abhängen und durch die Lehre der vorliegenden Erfindung in keinster Weise eingeschränkt sind. Ebenso können statt temperaturabhängiger Widerstände andere integrierbare Bauelemente zur Erfassung der Temperatur eingesetzt werden.

Claims

Patentansprüche :
1. Piezoelektrischer Schwinger mit einem Substrat (1) aus piezoelektrischem Material, das auf einer ersten Oberfläche eine erste Elektrode (2) und auf einer der ersten Oberfläche gegenüberliegenden zweiten Oberflä- ehe eine zweite Elektrode (6) aufweist, wobei auf der ersten Oberfläche eine elektrodenfreie Randfläche (3) vorhanden ist, auf der ein Bauelement (9) mit temperaturabhängigem Verhalten angebracht ist, das über einen Anschluß mit zumindest einer der Elektroden (2, 6) leitend verbunden ist.
2. Piezoelektrischer Schwinger nach Anspruch 1, dadurch gekennzeichnet, daß das Substrat (1) aus piezoelektrischem Material eine Piezokeramik ist.
3. Piezoelektrischer Schwinger nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die erste Elektrode (2) eine Form mit einem Ausläufer (5) hat, der auf der ersten Oberfläche ein Verbindungspad bildet, über das der Anschluß des Bauelements (9) mit der ersten Elektrode (2) leitend verbunden ist.
4. Piezoelektrischer Schwinger nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die zweite Elek- trode (6) eine Form mit einem Ausläufer (8) hat, der um den Rand des Substrates (1) herumgeführt ist und auf der ersten Oberfläche ein Verbindungspad bildet, über das der oder ein weiterer Anschluß des Bauelements (9) mit der zweiten Elektrode (6) leitend ver- bunden ist.
5. Piezoelektrischer Schwinger nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der durch die beiden Elektroden (2, 6) gebildete Kondensator in Reihe mit dem Bauelement (9) geschaltet ist, und das Bauelement im Vergleich zum Substrat einen niedrigen Widerstand aufweist.
6. Piezoelektrischer Schwinger nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der durch die beiden Elektroden (2, 6) gebildete Kondensator parallel zum Bauelement (9) geschaltet ist, und das Bauelement im Vergleich zum Substrat einen hohen Widerstand aufweist.
7. Piezoelektrischer Schwinger nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Bauelement (9) ein PTC-Widerstand ist.
8. Piezoelektrischer Schwinger nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Bauelement
(9) ein NTC-Widerstand ist.
9. Piezoelektrischer Schwinger nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Bauelement (9) in SMD-Bauweise ausgeführt ist.
PCT/DE1998/003300 1997-12-18 1998-11-03 Piezoelektrischer schwinger mit temperaturabhängigem bauelement WO1999032236A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19756534 1997-12-18
DE19756534.4 1997-12-18
DE19820208.3 1998-05-06
DE19820208A DE19820208C2 (de) 1997-12-18 1998-05-06 Piezoelektrischer Schwinger

Publications (1)

Publication Number Publication Date
WO1999032236A1 true WO1999032236A1 (de) 1999-07-01

Family

ID=26042612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/003300 WO1999032236A1 (de) 1997-12-18 1998-11-03 Piezoelektrischer schwinger mit temperaturabhängigem bauelement

Country Status (3)

Country Link
EP (1) EP1039975A1 (de)
DE (1) DE19820208C2 (de)
WO (1) WO1999032236A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048713A (zh) * 2014-06-06 2014-09-17 姜跃炜 超声波换能与温度采集器

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10057188C8 (de) * 2000-11-17 2016-10-06 Endress + Hauser Flowtec Ag Ultraschall-Durchflußmeßgerät mit Temperaturkompensation
DK1377804T3 (da) * 2001-04-09 2006-03-06 M & Fc Holding Llc Varmemængdemåleapparat
DE102004045354A1 (de) * 2004-09-17 2006-04-06 Nexans Anordnung zur lokalen Temperaturüberwachung
DE102005012041B4 (de) * 2005-03-16 2008-05-08 Werner Turck Gmbh & Co. Kg Ultraschallsende- und -empfangsvorrichtung für einen Ölpeilstab
DE102007020491A1 (de) * 2007-04-27 2008-10-30 Hydrometer Gmbh Verfahren zur Bestimmung einer Eigenschaft eines strömenden Mediums sowie Ultraschallzähler
DE102010063050B4 (de) * 2010-12-14 2021-02-11 Robert Bosch Gmbh Verfahren zur Herstellung von piezoelektrischen akustischen Wandlern
DE102013100670B4 (de) 2013-01-23 2022-09-29 Endress + Hauser Flowtec Ag Ultraschall-Durchflußmeßgerät mit Temperaturkompensation
DE102015110050A1 (de) 2015-06-23 2016-12-29 Endress + Hauser Flowtec Ag Feldgerät mit Kompensationsschaltung zur Eliminierung von Umgebungseinflüssen
DE102018201404B3 (de) 2018-01-30 2019-04-11 Pi Ceramic Gmbh Ultraschallwandler mit einer Piezokeramik und Verfahren zur Herstellung eines solchen Ultraschallwandlers
DE102021110706A1 (de) 2021-04-27 2022-10-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur parallelen Temperaturmessung und Ultraschallaussendung oder -erfassung
FR3124893B1 (fr) * 2021-07-01 2023-10-27 Areco Finances Et Tech Arfitec Element piezoelectrique pour nebulisateur, avec une duree de vie amelioree

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060506A (en) * 1989-10-23 1991-10-29 Douglas David W Method and apparatus for monitoring the content of binary gas mixtures
JPH0835954A (ja) * 1994-07-22 1996-02-06 Hitachi Constr Mach Co Ltd 超音波探触子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD300585A7 (de) * 1988-12-01 1992-06-25 Adw Inst Physikalisch Tech Verfahren und schaltungsanordnung zur temperaturkompensation eines piezoelektrischen wandlerantriebes
DE9209977U1 (de) * 1991-08-09 1992-11-19 Vega Grieshaber Gmbh & Co, 7620 Wolfach, De

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060506A (en) * 1989-10-23 1991-10-29 Douglas David W Method and apparatus for monitoring the content of binary gas mixtures
JPH0835954A (ja) * 1994-07-22 1996-02-06 Hitachi Constr Mach Co Ltd 超音波探触子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 096, no. 006 28 June 1996 (1996-06-28) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048713A (zh) * 2014-06-06 2014-09-17 姜跃炜 超声波换能与温度采集器

Also Published As

Publication number Publication date
DE19820208A1 (de) 1999-07-01
EP1039975A1 (de) 2000-10-04
DE19820208C2 (de) 2003-08-28

Similar Documents

Publication Publication Date Title
DE2700342C3 (de) Piezoelektrischer Meßwandler
DE2505461A1 (de) Messgroessenumformer
WO1999032236A1 (de) Piezoelektrischer schwinger mit temperaturabhängigem bauelement
EP1744837B1 (de) Ultraschallwandler sowie verfahren zur herstellung desselben
DE4431511B4 (de) Schallschwingungswandler
DE2221062B2 (de) Kapazitiver Druckwandler
DE2411212A1 (de) Druckmesseinrichtung
DE102008038336A1 (de) Ultraschallsensor
DE19649679B4 (de) Schwingungserfassungssensor
EP0495935A1 (de) Druckgeber zur druckerfassung im brennraum von brennkraftmaschinen.
DE4009377A1 (de) Druckgeber zur druckerfassung im brennraum von brennkraftmaschinen
EP3746749A1 (de) Ultraschallwandler mit einer piezokeramik und verfahren zur herstellung eines solchen ultraschallwandlers
DE102006052745A1 (de) Oszilloskop-Tastkopf
DE19601078C2 (de) Druckkraftsensor
EP0166180B1 (de) Hydrophon
DE3124562A1 (de) Mehrelementige ultraschallsonde und verfahren zu ihrer herstellung
DE4103706A1 (de) Druckgeber zur druckerfassung im brennraum von brennkraftmaschinen
DE60117709T2 (de) Tintenstrahldruckmodul
DE3309236A1 (de) Ultraschallwandler
DE2435910C2 (de) Piezoelektrischer Wandler
EP1329875A2 (de) Ultraschallwandler-Einrichtung mit Elektroden aus elektrisch leitenden Kunststoffen
DE3231117A1 (de) Piezoelektrischer koppler, insbesondere elektromechanischer zuendkoppler
DE19902450B4 (de) Miniaturisiertes elektronisches System und zu dessen Herstellung geeignetes Verfahren
EP1145772A2 (de) Ultraschallwandler und Verfahren zur Herstellung eines Ultraschallwandlers
DE8431413U1 (de) Ultraschall-Detektionssensor in Hybridaufbau mit zugehöriger Elektronikschaltung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998962248

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09581565

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998962248

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998962248

Country of ref document: EP