WO1999017060A1 - Systeme de bruleur regeneratif a accumulation de chaleur et a interversion - Google Patents

Systeme de bruleur regeneratif a accumulation de chaleur et a interversion Download PDF

Info

Publication number
WO1999017060A1
WO1999017060A1 PCT/JP1998/004311 JP9804311W WO9917060A1 WO 1999017060 A1 WO1999017060 A1 WO 1999017060A1 JP 9804311 W JP9804311 W JP 9804311W WO 9917060 A1 WO9917060 A1 WO 9917060A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
exhaust
air
parner
switching
Prior art date
Application number
PCT/JP1998/004311
Other languages
English (en)
French (fr)
Inventor
Makoto Miyata
Original Assignee
Nippon Furnace Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Kogyo Kabushiki Kaisha filed Critical Nippon Furnace Kogyo Kabushiki Kaisha
Priority to KR1020007002995A priority Critical patent/KR100345635B1/ko
Priority to EP98944243A priority patent/EP1018619A4/en
Priority to CA002304464A priority patent/CA2304464A1/en
Priority to US09/508,933 priority patent/US6234789B1/en
Publication of WO1999017060A1 publication Critical patent/WO1999017060A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/02Arrangements of regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to an alternately switched thermal storage regeneration parner system. More specifically, the present invention relates to an alternately switched regenerative energy storage and regeneration system suitable as a heat source for an industrial furnace or the like which has a relatively high reheating.
  • a conventional alternating heat storage and regeneration parner system consists of two units each equipped with a heat storage unit, and a pair of parners and an oxidizing agent such as air, oxygen-enriched air, pure oxygen, etc.
  • combustion air (Hereinafter, simply referred to as combustion air) in the present specification, and a supply / exhaust switching means for switching between supply and exhaust.
  • the exhaust gas is recovered from the regenerator by discharging the gas inside the furnace from the burner that is not burning together with the burner (called the exhaust side), and used for preheating the next combustion air. I am trying to do it.
  • This alternate-switching thermal storage regeneration system is usually equipped with multiple systems for an industrial furnace, that is, it has burners of a multiple of two, and half of those burners are alternately burned. Then, the other half of the panner is used as the exhaust side parner, from which the furnace gas is exhausted.
  • the parner capacity is generally determined based on the amount of combustion at the time of rapid heating in order to increase the operation rate. . This is the same in an industrial furnace equipped with an alternately switched regenerative energy storage and regeneration furnace. In actual operation, the furnace is operated at a lower combustion rate than the burner capacity.
  • the ratio of the number of burners to be burned to the number of burners to be stopped is always constant and forms a fixed pair. Therefore, flame localization is limited and may not be sufficient in some cases.
  • the burner capacity during operation increases because the burner capacity is the same between the heating operation and the subsequent operation (operation after the furnace temperature reaches the predetermined temperature).
  • the air velocity could not be kept high because of the low combustion volume, and the agitation of the furnace gas with low oxygen concentration and the entrainment of the furnace gas did not become sufficiently active.
  • a furnace atmosphere with a temperature difference is formed in some places (the flattening of the furnace temperature distribution becomes insufficient), and a region where the furnace temperature is locally high is formed, and the NOX generation amount tends to increase. .
  • the air flow rate is designed to be high in the high-temperature furnace atmosphere during steady operation to reduce NOX, NOx can be kept low, but the combustion capacity at the time of temperature rise cannot be set high.
  • An object of the present invention is to provide an alternately switched heat storage regeneration system that can maintain a high flow rate of air ejected from a burner throat even when operated with a combustion amount lower than a burner capacity. It is another object of the present invention to provide an alternately switched thermal storage regeneration system in which the flow velocity of the air ejected from the burner throat is varied regardless of the change in the combustion amount. Still another object of the present invention is to provide an alternately switched thermal storage regeneration system that can form an indefinite flame in a wide range.
  • an alternately switching heat storage regeneration parner system comprises an alternating-current storage / regeneration system which includes a pallet having a heat storage element and a supply / discharge cut-off device for switching connection of the pier to an air supply system and an exhaust system.
  • the combustion system is composed of three or more units, using a switched heat storage regeneration unit as a unit, so that all the units repeat alternating heat storage combustion sequentially without forming a fixed pair of units.
  • the relationship between the supplied air volume and the exhaust volume does not change.
  • the non-standing flame can be formed over a wider area, and a flat temperature distribution can be formed in which the occurrence of local high-temperature areas is suppressed.
  • the combustion air injection speed can be maintained at a high speed and all the tuners burn with a time delay, the flow of gas in the furnace changes in a short time and becomes active, It is possible to form a flat temperature distribution in which the generation of a high temperature region is suppressed. Therefore, uniform heating can be achieved without uneven heating of the object to be heated, and the generation of NOX is further suppressed.
  • the velocity of the fluid flowing through the heat accumulator is high for air and slow for exhaust, and the heat transfer of cooling heat is better, so the efficiency of the heat accumulator tends to improve. You.
  • the speed of the combustion air and the like ejected from the burner port can be changed by increasing or decreasing the number of combustion side parners, so that the air speed can be maintained at a high speed. Even when a burner that requires a relatively high combustion rate is operated at a steady level with a reduced combustion rate, the air speed can be kept high and NOX can be kept low.
  • the cooling fluid flows continuously or intermittently through the pilot nozzle and the fuel nozzle, overheating and burning are unlikely.
  • the ratio of the number of burners to the number of burners to be stopped is variable in the combustion system.
  • the speed of combustion air or combustion gas ejected from the burner throat (collectively referred to as air speed) changes depending on the increase or decrease in the number of combustion side burners. I can make it.
  • the air velocity can be maintained at a high speed by reducing the number of burner side burners, and the flow of gas in the furnace can be activated to form a flat temperature distribution that suppresses the occurrence of local high-temperature regions.
  • the exhaust pressure loss can be reduced and the power of the exhaust fan can be reduced.
  • the difference between the combustion side and the exhaust side is extremely widened and enlarged, it becomes possible to exhaust by natural ventilation through the blower and chimney while expanding the range of the indeterminate flame, so it is possible to omit the exhaust blower.
  • the temperature inside the furnace can be formed into a flat temperature distribution with no local high-temperature portion irrespective of the combustion amount. To achieve uniform heating and further reduce NOx generation. It is.
  • the parner system of the present invention makes the ratio of the number of burners burned to the number of exhausted burners variable during the heating operation in which the furnace temperature is raised and in the operation after the heating, so that the It is preferable that the operation after the temperature rise is performed with a smaller number of combustion side parners than the number of combustion side parners.
  • the number of burner-side burners is reduced to maintain a high flow velocity of the air ejected from the burner throat of each burner.
  • the circulation of combustion gas in the combustion chamber becomes active, and the temperature of the combustion chamber furnace is evenly agitated and the temperature of the combustion chamber becomes flat. Oxygen concentration drops significantly.
  • the temperature can be raised at the maximum combustion rate, so that the operation can be started in a minimum time.
  • the exhaust gas sequentially exhausted through all the units is set in a range of 1.2 to 0.6 with respect to the combustion air 1. In this case, a suitable heat storage regeneration combustion can be realized.
  • the burner system of the present invention a part of the exhaust gas is directly extracted to the outside of the furnace without passing through the exhaust side burner, and the exhaust gas is cooled through the heat storage body of the exhaust side burner. They are exhausted after being put together. In this case, the exhaust temperature can be lowered.
  • the combustion air supplied via the heat storage body is preheated to a high temperature of at least the combustion stable limit temperature of the air-fuel mixture immediately before combustion. Therefore, since the oxidation exothermic reaction starts when the fuel comes into contact with the combustion air having a high temperature higher than the self-ignition temperature of the air-fuel mixture and a low oxygen concentration, the oxidation exothermic reaction takes place at a very low speed, and It burns everywhere and does not form a local high-temperature zone in the furnace temperature distribution, suppressing NOX generation.
  • the combustion air is injected at a flow rate of at least 6 Om / s, preferably about 60 to 12 Om / s, during rated operation combustion.
  • the circulation of the combustion gas in the furnace becomes active, and the mixture is well stirred, the temperature in the furnace is reduced, and the uneven heating to the object to be heated can be reduced to realize more uniform heating.
  • the exhaust gas recirculation effect is increased by stirring the furnace gas, and NOX Reduction is possible.
  • the supply / discharge switching device is not particularly limited, but has, for example, a three-way valve function in which an air supply system and an exhaust system are always connected, and is directly connected to each of the parner units. Is preferred.
  • the burners of all the units burn while shifting the time and minimizing the purge time at the time of switching, alternate combustion is established while forming a non-standing flame over a wide range. Therefore, the flame is more non-stationary than in the alternate combustion burner system described above, and the temperature distribution in the furnace becomes more uniform.
  • the supply / discharge switching device is provided with an outer housing having two switching ports to which an air supply system and an exhaust system are always connected, and a rotatable housing accommodated in the outer housing.
  • the inner housing has a port that is always connected to a wrench on the center of rotation of the inner housing, and a seating surface that slidably contacts the inner surface of the outer housing and arbitrarily closes the two switching ports.
  • a valve port opened to the seat surface and selectively communicated with one of the two switching ports.
  • the rotation of the housing allows the parner to rotate either the air supply system or the exhaust system. It is preferable to switch to a neutral position, which is connected to either or not connected to the c.
  • the supply / discharge switching device is configured such that the flow is directed to two sides that are inclined with respect to the side where the port connected to the flow path whose flow direction is to be switched is formed.
  • a housing provided with another two ports to which the flow path to be fixed is connected; a switching shaft arranged at a corner between the two slopes; and the two switching shafts supported by the switching shaft.
  • a flap-type three-way valve including a flap that swings between ports on a slope to open and close each port, and an actuator that swings the switching shaft.
  • the flapper occupies the swinging range It consists of a minimum space, the volume to be purged when switching between air supply and exhaust is extremely small, and the time for replacing the remaining exhaust gas with air is shortened so that the time wasted in the switching time is reduced. Can be.
  • all burner units perform alternate combustion while switching between sequential combustion and stop, high-temperature combustion with little furnace pressure fluctuation and high temperature efficiency can be performed.
  • the burners of all units burn while shifting the time and minimizing the purge time at the time of switching, alternating combustion can be established while forming a non-stationary flame over a wide range, Can be further promoted, and the furnace temperature distribution can be made more uniform.
  • FIG. 1 is a schematic diagram showing an example of an embodiment of an alternately switched heat storage regeneration system according to the present invention.
  • FIG. 2 is a schematic principle view showing another embodiment of the alternately switched heat storage and regeneration parner system of the present invention, showing a combustion state at the time of rapid temperature rise.
  • Fig. 3 shows the combustion state during steady-state operation of the alternating thermal storage and regeneration system of Fig. 2 after heating.
  • Fig. 4 is a central longitudinal sectional view schematically showing another example of the supply / discharge switching device of the alternating switching heat storage / regeneration parner system of the present invention.
  • Fig. 5 is a plan cross-sectional view of the supply / discharge switching device of Fig. 4 in a communicating state.
  • Fig. 1 is a schematic diagram showing an example of an embodiment of an alternately switched heat storage regeneration system according to the present invention.
  • FIG. 2 is a schematic principle view showing another embodiment of the alternately switched heat storage and regeneration parner system of the present invention, showing a combustion state at the
  • FIG. 6 is a cross-sectional plan view of the supply / discharge switching device of Fig. 4 in the neutral state.
  • Fig. 7 is a schematic diagram showing the principle of another embodiment of the alternately switched thermal storage and regeneration system.
  • Fig. 8 is a longitudinal sectional view of the supply / discharge switching device used in the parner system of Fig. 7, and
  • Fig. 9 is a sectional view along the line IX-IX of Fig. 8.
  • FIG. 1 shows an embodiment of an alternating switching heat storage parner system (hereinafter, simply referred to as a parner system) of the present invention.
  • This parner system 1 is composed of an alternately switching heat storage and regeneration parner composed of a parner 2 having a heat storage unit 7 and supply / discharge switching devices 12 and 13 for switching connection of the parner 2 to an air supply system and an exhaust system.
  • the unit consists of 7 units of 3 units or more.
  • 9, 10 and 11 are ducts and 18 is a furnace.
  • This parner system 1 is composed of a 7-unit alternately switching heat storage regeneration parner 2 for realizing so-called high-temperature combustion, and a control system for appropriately selecting and burning these. You.
  • the seven parners 2 perform fuel injection independently of each other, and are installed in a supply / discharge throat (hereinafter referred to as an air throat) 6 that is used for both supplying combustion air and discharging furnace gas.
  • the combustion air preheated to a high temperature through the heat storage unit 7 is injected into the furnace 19.
  • An air supply system (collective duct) 17 and an exhaust system (collective duct) 16 that can be controlled independently for each parner 2 are provided to individually control the supply of combustion air or exhaust of furnace gas. I am trying to do it.
  • the fuel line 3 for supplying fuel to the fuel gun 5 of each of the parners 2 is provided with a fuel control valve 4 as an operation end.
  • a fuel control valve 4 for example, an ON-OFF valve may be used, or an automatic control valve may be used to perform both fuel control and ON-OFF.
  • each of the parners 2 is selectively connected to either the air supply system 17 or the exhaust system 16 in conjunction with the fuel supply, and serves as a combustion-side parner or an air throat 6 without combustion. Is provided so as to function as an exhaust side purger for exhausting the furnace gas.
  • Each of the fuel control valves 4 and the supply / discharge switching devices of the air supply system 17 and the exhaust system 16 such as the solenoid valves 12 and 13 are individually opened and closed by, for example, a controller (not shown).
  • the composition and structure of the heat storage element 7 provided in the air throat 6 of each of the parners 2 is not particularly limited, but is preferably a ceramic heat storage element having a honeycomb structure.
  • this heating control is executed by a sequence control or a computer control by a controller as a part of an automatic combustion control system such as a PID control or a fuzzy control, and a controller (not shown) such as a PID control method or a fuzzy control method.
  • the deviation from the target value (temperature) and the corresponding amount of combustion have already been determined in the automatic combustion control executed in step (1). Therefore, the above-described heating / combustion is performed by determining which burner is used to obtain the combustion amount and the like set by the automatic combustion control system such as the PID control system and the fuzzy control system.
  • the controller operates the respective fuel control valves 4 based on these set values and operates the solenoid valves 13 of the air supply system 17 and the solenoid valves 12 of the exhaust system 16 in conjunction therewith.
  • the controller is a control means for selecting the combustion side and the exhaust side in accordance with a certain procedure and switching over in a short time, and includes a programmable controller for performing sequence control and at least one central processing unit. ROM and ROM that store the processing unit and programs And a microcomputer-controlled controller including an interface and the like.
  • a programmable controller is employed. That is, the control system composed of the controller switches the electromagnetic valve 12 or 13 as the supply / discharge switching device of each duct, and thereby controls the parner 2 to either the exhaust system 16 or the air supply system 17. To function as a combustion side burner or an exhaust side burner.
  • the controller makes the ratio of the number of combustion side parners and the number of exhaust side parners variable, so that all units do not form a fixed pair, and the supply amount of combustion air and the exhaust gas amount are reduced. Forces or sequences are programmed to control all units to repeat alternating heat storage combustion in order to be the same.
  • the combustion air combustion air oxidant such high temperature possess high Entaru pin through the regenerator 7 is injected, in order to realize the high-temperature combustion It is preheated to a sufficiently high Entraumi, that is, a temperature above the combustion stability limit of the mixture immediately before combustion, preferably above the auto-ignition temperature.
  • a sufficiently high Entraumi that is, a temperature above the combustion stability limit of the mixture immediately before combustion, preferably above the auto-ignition temperature.
  • the temperature varies depending on the type of fuel, the oxygen concentration, and the like, but in many cases, this is the case if the temperature is preheated to 800 ° C. or more, preferably 100 ° C. or more.
  • high-temperature combustion air is obtained by alternately passing furnace gas and combustion air through a ceramic regenerator 7.
  • the combustion stability limit temperature of the air-fuel mixture immediately before combustion is the blowout temperature in normal combustion (the temperature at which combustion becomes unstable and the flame blows out and disappears due to slight changes in the air ratio value or air flow rate, etc.). If the temperature is lower than that, complete combustion becomes difficult even if blowout does not occur due to the high-temperature air, and the combustion becomes rapidly unstable with the CO component in the final exhaust gas concentration composition. Is the temperature at which
  • the heat storage 7 is filled in a casing or the like, or is provided inside the air throat (the rear part of the burner into which the combustion air is introduced) 6.
  • the heat storage unit 7 uses a structure and materials that have a large heat capacity and high durability in spite of relatively low pressure loss, such as a large number of cells.
  • the heat storage body 7 contains ceramics other than cordierite and mullite, for example, materials other than alumina and ceramics, such as metals such as heat-resistant steel, or composites of ceramics and metals, for example, pores of ceramics having a porous skeleton.
  • the molten metal is spontaneous infiltration, the part of the metal oxide or by nitrided ceramic box of, a 1 2 0 3 of the pores were completely filled - a 1 complexes, S i C- a 1 2 ⁇ 3 - It may be manufactured using an A1 composite or the like.
  • the honeycomb shape includes not only hexagons but also countless square or triangular cells.
  • a honeycomb-shaped regenerator may be obtained by bundling tubes or the like without forming them integrally.
  • the shape of the heat storage body 7 is not particularly limited to the honeycomb shape, and a flat or corrugated heat storage material may be radially arranged in a cylindrical casing, or a pipe-shaped heat storage material may be fluidized in the axial direction. May be filled in a cylindrical casing so that the gas passes therethrough. Alternatively, a cylindrical casing is formed by partitioning into two chambers in the circumferential direction and fluid can pass in the axial direction.
  • a spherical, short pipe, short rod, strip, nugget-shaped It may be constituted by filling a mass of a heat storage material such as a net.
  • the heat storage element 7 is contained in a refractory tube forming each of the parners 2,,..., But is not particularly limited to this.
  • the heat storage element 7 may be filled in a casing or the like and installed in the duct 9. You may do it.
  • the parners 2 are arranged linearly at regular intervals, but are not particularly limited thereto.
  • the parners 2 may be arranged in a staggered manner or arranged throughout the entire surface. Even good ,.
  • the combustion of the parner system 1 configured as described above is controlled as follows. For example, a description will be given based on an application example in which the parner system of the embodiment of Fig. 1 is installed in an industrial furnace where the temperature is relatively high.
  • the unit is a fixed pair. All units alternately heat storage combustion repeat.
  • the burner amount of the burner is limited by the fuel supply mechanism (fuel nozzle or primary combustion chamber) and the capacity of the heat storage, and the resistance (pressure loss) of the heat storage during cold start (when the temperature rises) is small.
  • a large amount of combustion air can be supplied (for example, about 200% after heating) and the exhaust capacity is sufficient (for example, about 200% after heating). It does not change during or after heating.
  • combustion side parner 4 The temperature rises with the exhaust side burner 3, and after the temperature rise, the combustion side parner 2: the exhaust side parner.
  • Driving at 5 is most reasonable.
  • the selection of the combustion side burner and the exhaust side burner at the time of the changeover of the burner is performed in accordance with the regularity that there is always an exhaust stroke after the heat storage stroke. For example, among the seven units A, B, C, D, E, F, and G, first, four units A, B, C, and D become combustion-side panners, and the remaining three units E, F, and G Becomes the exhaust side wrench.
  • the four units B, C, D, and E become combustion-side burners, and the remaining three units F, G, and A become exhaust-side burners.
  • the exhaust volume may be exhausted entirely from the exhaust-side panner, but a part of the exhaust gas is directly drawn out of the furnace without passing through the exhaust-side panner, and is combined with the exhaust gas cooled through the heat storage body of the exhaust-side panner. It may be exhausted from.
  • exhaust gas is distributed and exhausted from a plurality of exhaust side parners in the range of 1.2 to 0.6 for combustion air 1.
  • An exhaust volume of 1.2 is a ratio that can be practically used in a heat storage and regeneration parner, and an exhaust volume of 0.6 is a significant limit in waste heat recovery.
  • the number of burner side burners is, for example, two.
  • the remaining 5 units become exhaust side parners.
  • the air speed is faster when operating with two units than when operating with four units.
  • the combustion air injected from the nozzle keeps the high speed. Therefore, even if the amount of combustion is reduced, the circulation of combustion gas in the combustion chamber is active, and the temperature of the combustion chamber is flattened and the amount of combustion gas accompanying the flow of combustion air is improved. And the oxygen concentration of the mixture decreases significantly. Therefore, it is possible to maintain a low NOX diluted with furnace low ⁇ 2 atmosphere.
  • the parners of all units burn at different times, so that the furnace temperature is made uniform by the non-stationary flame formed over a wide area such as the entire furnace.
  • the method of adjusting the ratio of the combustion side exhaust to the exhaust side parner is not particularly limited.For example, if one cycle from the start of combustion to the completion of exhaust is set to 60 seconds, the combustion / exhaust Change to 1 0 5 0, 3 0/3 0, 5 0/10 seconds, or set the combustion time to be constant and set the combustion / exhaust to 10/10/10/3 0, 10 Z 5 It is also possible to change as 0 seconds.
  • the furnace gas taken out from the exhaust side parner exchanges heat with the heat storage element 7 when passing through the heat storage element 7, and at least the high-temperature air exhaust fan 14 and valves endure. After being cooled to a temperature at which it is obtained, for example, about 400 ° C., and preferably to a low temperature of about 200 ° C. or less, it is released into the atmosphere. Therefore, heat damage to the exhaust fan and the like is reduced. Further, in the combustion side parner, the combustion air pumped from the air supply fan 15 exchanges heat with the regenerator 7 and is preheated to a high temperature before being ejected. Moreover, this air temperature is higher than the self-ignition temperature of the fuel or the mixture.
  • the combustion air can be burned even when injected at a flow velocity of, for example, 60 m / s or more, preferably about 60 to 120 m / s during rated operation combustion. It is. As a result, the circulation of combustion gas in the furnace 19 becomes active, and the temperature of the furnace is flattened and the temperature of the furnace is flattened, and the amount of combustion gas accompanying the flow of combustion air increases. Is greatly reduced.
  • the burner system of the present invention is not particularly limited to the above example, and the number of burners to be burned and the number of burners to be stopped during the heating operation for raising the furnace temperature and during the operation after the heating are increased.
  • the ratio of the number of burners may be made variable, and the operation after the heating may be performed with a smaller number of burning-side parners than the number of burning-side parners during the heating operation.
  • 3 units are used as the combustion side parner and the remaining 4 units are used as the exhaust side burner. Units do not form a fixed pair but all units repeat alternating heat storage combustion.
  • the exhaust gas generated by three units of the combustion side parner is exhausted by four units.
  • the air is exhausted from the side parner in steps of 3/4, and the speed is high when the fluid flowing through the regenerator is air and slow when the exhaust gas is exhausted. Therefore, the efficiency of the heat storage body tends to be higher because the heat transfer of the cooling heat transfer is better. That is, the temperature of the heated air rises and the exhaust temperature falls It becomes a tendency.
  • the number of exhaust-side parners is one more than the number of combustion-side parners, so the exhaust pressure loss can be reduced and the power of the exhaust blower can be reduced.
  • the above embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention.
  • an example in which an independent combustion air supply system and an independent exhaust system are provided for each of the parners 2 has been mainly described, but an air hole and an exhaust hole are formed in a furnace wall or the like remote from each fuel nozzle.
  • the combustion air preheated to a high temperature is continuously injected directly into the furnace while exchanging heat between the exhaust gas and air by rotating the regenerator relatively and continuously exchanging heat from the exhaust holes.
  • the gas in the furnace may be discharged first.
  • the combustion of each burner 2 is individually controlled by providing an independent fuel control valve 4 for each burner 2, but the burners 2 are grouped into several groups and the combustion is controlled. Control may be performed for each group.
  • the parner system 1 is composed of odd units.
  • the present invention is not particularly limited thereto. Even units, for example, 6 units as shown in FIGS.
  • a parner system may be configured.
  • the parner system of the present invention can be configured with at least 3 units.
  • the furnace is composed of an even number of units, when the furnace temperature is rapidly increased, the same number of units (three units) form a combustion side panner and an exhaust side panner. The number is smaller than the number of exhaust-side panners. In this case, at the time of temperature rise, the ratio of the combustion side parner to the exhaust side parner corresponds to 1: 1.
  • the ratio of the number of burners to the number of burners to be stopped during the heating operation for raising the furnace temperature and the operation after the heating is made variable,
  • the embodiment in which the operation after heating is performed with a smaller number of combustion-side parners than the number of combustion-side panners has been mainly described.
  • the present invention is not particularly limited to this, and the temperature must not be repeatedly increased. It can also be applied to burner systems used in furnaces that do not require rapid temperature rise.In this case, the unsteady flame during normal operation is formed over a wide area to make the furnace temperature distribution uniform. Or reduce the exhaust pressure.
  • one unit is composed of 10 unit wrench units, the combustion side burner is 2 units, and the exhaust side wrench is 8 units, so that the combustion side wrench and the exhaust side wrench do not form a fixed pair. All the units are sequentially and alternately stored and burned while being shifted.
  • the heat storage body pressure loss of each burner unit is 4 OmmAq
  • the air pressure loss is 4 OmmAq
  • the exhaust pressure loss is 10 mmAq (40X2 ⁇ 8). Therefore, the fan is designed with a heat storage medium pressure loss of 4 O mmAq, but the fan can be designed with a heat storage medium pressure loss of 1 O mmAq.
  • the size of the exhaust blower can be extremely small, and in some cases, the exhaust can be covered by natural ventilation through the air supply blower and the chimney, so that the exhaust blower can be omitted.
  • the supply / discharge switching device is not particularly limited to the two solenoid valves 12 and 13, and is always connected to the air supply system and the exhaust system and is connected to one of them or a neutral position not connected to any of them. It is also possible to use switching means having, for example, a three-way valve or a three-way valve without a neutral position.
  • a supply / discharge switching device 20 as shown in FIGS. 4 to 6 can be used.
  • the supply / discharge switching device 20 includes a cylindrical outer housing 21, a semi-cylindrical inner housing 22 rotatably housed in the outer housing 21, and an axial direction of the inner housing 22. And a drive motor 24 for rotating or oscillating the inner housing 22.
  • the outer housing 21 is a hollow hollow cylinder formed of a heat-resistant and abrasion-resistant material, and has substantially opposite centers at opposite ends, that is, a bottom surface and a ceiling surface 21a, 2lb. Are provided with shaft holes 25 and 26, respectively, and one end face, for example, the bottom
  • the surface 21a is provided with two switching ports 27, 28.
  • the switching port refers to a port at which the connection to the PANA 2 is switched.
  • the fixed port refers to a port having a fixed connection relationship, and in the case of the present embodiment, refers to a port connected to a spanner.
  • the switching ports 27 and 28 are circular and are symmetrically arranged with 180 degrees open about the shaft hole 25.
  • switching ports 27 and 28 are almost the same diameter as the valve port 29 provided in the inner housing 22 and can communicate with a sufficient area.
  • the valve port 29 is closed by the seating surface 30 when it is not in communication with any of the switching ports 27 and 28, and is not in communication with the two switching ports 27 and 28 at the same time. It is provided so that Although not shown, a mechanical seal is provided on the bottom surface 21 a of the outer housing 21 with which the inner housing 22 abuts, and a seal is formed between the inner housing 22 and the outer end surface of the inner housing 22. I have. If the switching ports 27, 28, the valve port 29, and the seating surface 30 are set so as to have the above relationship, the shapes of the outer housing 21 and the inner housing 22 are limited to the shapes described above. Not something.
  • the air supply system 17 is connected to the switching port 27, the exhaust system 16 is connected to the switching port 28, and the duct 9 connected to the wrench is connected to the fixed port 31.
  • the inner housing 22 is a semi-cylindrical body slidably provided inside the outer housing 21, and one surface 22 a of the inner housing 22 has a fixed port 31 on the inner housing side and two ports of a valve port 29. Is provided.
  • the fixed port 31 on the inner housing side is a circular hole provided at the center of rotation of the inner housing 22.
  • the fixed port 31 on the inner housing side has a duct 9 connected to the flow path in which the heat storage body 7 of the panner 2 is provided. Is connected.
  • the duct 9 is fitted into the shaft hole 25 of the outer housing 21 and is rotatably supported by the bearing 32.
  • the duct 9 is further connected to the swing joint 33 and the like, so that the rotation center shaft of the inner housing 22 is formed. It also plays a role.
  • a mechanical seal is formed between the shaft hole 25 and the duct 9, and is provided so as to secure airtight contact.
  • the inner housing 22 may swing in both the left and right directions, or may rotate in only one direction.
  • the valve port 29 is a circular boat provided so as to match the switching port 27 or 28 provided in the outer housing 21 according to the swing angle of the inner housing 22. This Of the gas switching ports 27, 28 is equal to the distance of the gas switching ports 27, 28 from the pivot axis, and the rotation of the inner housing 22 causes the switching port 27, 2 8 is provided so as to completely or partially overlap.
  • the surface 22a of the inner housing 22 on the side where the inner housing-side fixed port 31 and the valve port 29 are provided is a flat surface, and can close the switching ports 27 and 28.
  • a seat surface 30 is formed. When the valve port 29 is in communication with the other switching port, for example, the switching port 28 as shown in Fig. 4, this seat 30 blocks the other switching port 27 or does not The fluid flow path is sufficiently secured without any part matching. If the inner housing 22 rotates from this communication state, the portion where the valve port 29 and the switching port 28 coincide with each other will decrease, and the force will eventually become zero. Will be closed.
  • the seating surface 30 is provided so that when the valve port 29 is not in communication with any of the switching ports, one or both switching boats are closed by the seating surface 30-
  • the inner housing 22 has a substantially semi-cylindrical shape.
  • the inner housing side fixed port 31 and the duct 9 described above, and the valve port 29 and the seat surface 30 having the above-described relationship are also provided.
  • Other shapes may be used as long as the shape is provided.
  • the shape of the seat surface 30 may be fan-shaped so that only one of the switching ports can be closed during switching. In this case, the other switching port is released before one of the switching ports communicates with the valve port, so that the timing of the flow of the two fluids can be shifted.
  • the inner housing 22 is rotatably supported in the outer housing 21 by the duct 9 and the rotating shaft 34.
  • the rotating shaft 34 is provided on the surface 22 b of the inner housing 22 opposite to the side on which the inner housing-side fixing bolt 31 is provided so that the duct 9 and the swing center axis are equal. And is supported by bearings 35.
  • the rotating shaft 34 is in airtight contact with the shaft hole 26 by using a seal or the like.
  • the inner housing 22 is urged by the urging means 23 in a direction in which the inner housing 22 is pressed against the surface on which the switching ports 27 and 28 of the outer housing 21 are provided, that is, the bottom surface 21 a. Has been obtained.
  • the switching port is air-tightly closed, and the simultaneous closing of the two flow paths, that is, the air supply system and the exhaust system, is further ensured. Therefore, gas leakage hardly occurs from the contact surface of the port, and the inner housing is Even if the contact surface is worn by swinging back and forth, the wear allowance can be automatically supplemented.
  • the urging means 23 is provided in a gap between the ceiling surface 21b of the outer housing 21 and one surface 22b of the inner housing 22, and presses the seat surface 30 to the switching ports 27, 28. Adhere closely. In this embodiment, a compression coil spring is used as the urging means 23.
  • this urging means 23 is provided so as to be located almost directly above the valve port 29, the valve port 29 is urged so as to uniformly contact the switching ports 27 and 28. be able to.
  • a spring accommodating recess 36 recessed in the inner housing 22 is provided above the inner housing 22, and the urging means 23 is installed in the recess 36 in the axial direction. It is preferable because the spring is cooled by the low-temperature side fluid introduced into 2.
  • the upper end of the urging means 23 is received by a rolling element such as a ball (not shown), it is possible to smoothly follow the oscillating inner housing 22 : Instead of providing 23, the inner housing 22 can be biased by its own weight.
  • the drive motor 24 is installed outside the outer housing 21 and rotates the inner housing 22 via the drive shaft 34. If, for example, a stepping motor is used as the motor 24, highly accurate positioning can be performed.
  • valve port 29 When the valve port 29 is in the neutral position and is not in communication with either of the switching boats as shown in Fig. 6, both switching ports 27 and 28 are closed by the seat 30 and the exhaust system 1 is closed. 6 and the air supply system 1 7 are disconnected from the panner 2.
  • this neutral position neither air nor exhaust gas passes through the heat storage element 7 and the state is maintained, so that when the exhaust gas is flown until immediately before and heat is stored, the heat storage state can be maintained and then The process of cooling, ie, preheating the air at a high temperature, can be started. And the pressure on the fluid The flow of the fluid can be cut off without changing the flow or stopping the fluid on the way.
  • the seat surface 30 comes off from above the switching port 28, and the switching port 28 is released. That is, the switching boat 28 is closed by the outer housing 21 and the exhaust system 16 is shut off.
  • the switching port 27 and the valve port 29 overlap, and the fixed port 31 of the inner housing 22 and the switching port 27 communicate with each other via the inner housing 22.
  • the air supply system 17 is connected to the panner 2. It is sufficient for at least one of the switching ports to be closed by the seating surface 30 for switching the flow path. In the present embodiment, it is necessary to create a state in which both the switching boats 27 and 28 are simultaneously closed. I have to.
  • the switching port 27 and the switching port 28 are simultaneously closed by the seating surface 30 of the inner housing 22 (FIG. 6), the supply of the combustion air is stopped, and the combustion of the parner 2 is stopped. At the same time, the flow of the exhaust gas is stopped, and the overheating of the heat storage unit 7 is suppressed. Also at this time, the inner housing 22 is urged by the urging means 23 so that the seat surface 30 is pressed in the axial direction, so that the flow of combustion air and exhaust gas can be shut off. Therefore, by appropriately adjusting the time for closing the switching ports 27, 28 and the valve port 29, it is possible to perform interval control for adjusting the temperature of the parner 2 and the heat storage unit 7.
  • this switching means When this switching means is used, the two communicating states and the closed state can be easily switched by rotating the inner housing 22. In addition, since the seal is made by sliding contact, gas leakage (leakage) hardly occurs. Therefore, for example, if this device is applied to a parner system, combustion air will not leak to the exhaust gas flow path side, and the air ratio for combustion will be able to be accurately controlled. Furthermore, since the inner housing 22 is rotated, the flow path is switched by the overlap of the switching ports 27, 28 and the valve port 29, so that the shock due to the flow change at the time of the flow path switching is reduced. It can be reduced or eliminated. Therefore, it is possible to prevent a large furnace pressure fluctuation or the like from occurring at the time of switching the wrench.
  • the parner system 1 of the present invention employs a flapper-type three-way valve 40 as shown in FIGS. 7 to 9 as a supply / discharge switching device, and is provided at the rear end of the parner main body containing a heat storage element. It is preferable to arrange them so as to be directly connected.
  • the flapper type three-way valve 40 has an air supply system 41 connected to one port to be opened and closed, and an exhaust system 42 connected to the other port.
  • the ducts 41 and 42 are further integrated into a single pipe by a collecting pipe, and then connected to the exhaust fan 14 and the air supply fan 15, respectively.
  • the parner main body is a fire-resistant and heat-insulating block constituting the air throat 6 loaded with the heat storage element 7, as well as a fitting flange and a casing attached to the furnace 18 and, in some cases, a burner tile or a wind box.
  • one unit of the Pana 2 together with at least one combustion unit consisting of fuel nozzles and the like.
  • the combustion unit is arranged in parallel with the air throat 6 and is provided so as to inject fuel directly into the furnace 19. In this case, the fuel and the high-temperature combustion air are mixed slowly in the furnace 19, and the flapper-type three-way valve 40 that contributes to lower NOX is shown in Figs. 8 and 9.
  • a housing 45 having two slopes 44a, 44c oblique to the port 43b directly connected to the wrench main body and two other ports 43a, 43c provided therein.
  • a switching shaft 46 disposed at a corner between the two slopes 44a and 44c, and swinging between the two slopes 44a and 44c supported by the switching shaft 46; It comprises a flapper 47 for opening and closing the ports 43a and 43c, and an actuator 48 for swinging the switching shaft 46 within a predetermined angle.
  • the housing 45 has a seat portion with the port 43b opened, and is fixed to the burner body with bolts or the like.
  • each port 43a, 43c is fitted with a cylindrical valve seat member 51, which is fitted into the hole of the slope 44a, 44c of the housing 45 and fixed with a bolt 50, respectively. Is formed.
  • the valve seat which faces the flapper 47 of the valve seat member 51, has an annular shape which is press-fitted and fixed in the groove of the inverted taper. It is made up of two locks.
  • the valve sheet member 51 is detachably attached to the outside of the housing 45 by abutting the flange portion from the outside of the housing 45 and fixing the flange portion with a bolt 50.
  • the flapper 47 is composed of a disk having an annular flange of the same diameter as the packing 52 on the edge, and a boss 53 at the base end thereof is rotatably supported by the housing 45 via a bearing 54.
  • the switching shaft 46 is fixed so as to rotate left and right by a slight angle, for example, 26 degrees. At this time, the swing angle of the flapper 47 is Even after the flapper 47 comes in contact with the packing 52, the size is set so that the flapper 47 is slightly pressed against the backing 52, and the packing 52 is elastically deformed and sealed to minimize leakage. I try to suppress it.
  • the position of the flapper 47 is detected by a proximity switch (not shown), fed back, and used for control.
  • the switching shaft 46 is made of hardened steel subjected to a quenching and tempering process, and is fixed using a flapper 47 and a connection key 55.
  • the switching shaft 46 is provided with a labyrinth 56 at a position closer to the inside than the bearing 54. That is, the bearing 54 and the valve space are separated by the labyrinth seal 56. Further, a space 57 communicating with the outside of the housing and a communication hole 58 are formed between the labyrinth 56 and the bearing 54 so that the exhaust gas leaking from the valve space does not pass through the bearing 54. It is provided so as to be discharged to the outside of the housing.
  • reference numeral 59 denotes a fixing member such as a collar or a lock-up nut
  • reference numeral 60 denotes an oil cover having an oil supply port. Have been. This makes it possible to replace grease that has deteriorated under high temperature conditions. In addition, due to the bearing structure that allows grease to be applied from the outside, the problem of grease deterioration can be solved by regular grease exchange.
  • the flapper type three-way valve 40 configured as described above has a minimum space occupied by the oscillating range of the flapper 47, and the volume to be purged when switching between supply and exhaust is extremely small. It is possible to shorten the time for replacing the exhaust gas to be replaced with air and reduce the ratio of wasted time to the switching time.
  • the switching time is set so that the purging time is extremely short (for example, the purging time is within 0.3 seconds until the battery is extinguished), and is ignited simultaneously with the extinguishing.
  • all the parunites perform alternate combustion while sequentially switching between combustion and stop, high-temperature combustion with little furnace pressure fluctuation and high temperature efficiency can be performed.
  • the purge volume is reduced by the amount that the purge volume for the duct between the parner body 2 and the three-way valve 40 as the supply / discharge switching device is not required, and the time required to replace the remaining exhaust gas with air can be shortened, resulting in high speed. Enables switching. For this reason, it is possible to ignite almost simultaneously with extinguishing. This makes it possible to suppress fluctuations in the furnace pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

明細書
交互切換蓄熱再生パーナシステム
技術分野
本発明は、 交互切換蓄熱再生パーナシステムに関する。 更に詳述すると、 比較 的再昇温の多い工業炉等の熱源として好適な交互切換蓄熱再生パーナシステムに 関する。
背景技術
従来の交互切換蓄熱再生パーナシステムは、 蓄熱体を各々備える 2台で 1組の パーナとこれら 1組のパーナの間で空気や酸素富化空気、 純酸素などの酸化剤
(本明細書では、 以下単に燃焼用空気と呼ぶ) の供給と排気とを切換える給排切 換手段とを備え、 1組のパーナを交互に燃焼させる (燃焼させている方のパーナ を燃焼側パーナと呼ぶ) と共に燃焼させていない方のパーナ (排気側パーナと呼 ぶ) から炉内ガスを排出するようにして蓄熱体から排ガスの熱を回収して次の燃 焼用空気の予熱に使用するようにしている。 この交互切換蓄熱再生パーナシステ ムは、 工業炉に対して通常複数システムが備えられ、 即ち 2の倍数のバ一ナが備 えられ、 それらパーナの半分ずつが交互に燃焼させられている。 そして、 残りの 半分のパーナが排気側パーナとして利用され、 そこから炉内ガスが排気される。 一方、 一日に一回とか、 一週に一回のように再昇温の多い炉においては、 運転 稼働率を上げるために急速昇温時の燃焼量を基準にしてパーナ容量が一般に決定 される。 このことは交互切換蓄熱再生パーナを備えた工業炉においても同様で、 実操業時にはパーナ容量と比較して低レ、燃焼量で運転される。
しかしながら、 燃焼させるパーナの台数と停止させておくパーナの台数の比率 が常に一定で固定的な対を成すため、 不定在火炎が形成されるといっても対を成 すパーナ間で火炎が移り変わるだけであるため火炎の不定在化には限界があり、 場合によっては十分でないこともある。
また、 昇温運転時とその後の操業運転 (炉内温度が所定温度に達した後の運 転) 時とでパーナの総燃焼量が同じになってしまうため、 操業運転時には、 バー ナ容量に比較して低い燃焼量のために空気速度を高く保つことができず、 酸素濃 度の低い炉内ガスの攪拌と炉内ガスの巻き込みが十分に活発なものとならずに場 所により温度差のある炉内雰囲気を形成することとなり (炉内温度分布の平坦化 が不十分となり) 、 局所的に炉内温度が高い領域を形成して N O X発生量が高く なる傾向にある。 一方、 N O X減少の為に定常運転の高温炉内雰囲気で空気流速 が高くなるように設計すると、 N O xを低く保つことができるが、 昇温時の燃焼 容量を高く設定することはできないので昇温速度を遅くせざるを得ない。 この急 速昇温と定常運転時の N O x低減の矛盾を解決するために、 一部のパーナを休止 する方法もあるが、 定常運転中に休止するパーナの過熱保護、 スペースや一部の パーナ欠落による炉内温度不均一の問題がある。 もう一つの矛盾を解決する方法 として、 空気ノズルの大きさや数を変更することも考えられるが、 高温部分で開 閉するバルブ機構が必要となり、 実用上困難である。
本発明は、 バ一ナ容量よりも低い燃焼量で運転してもバーナスロートから噴出 される空気流速を高速に保つことを可能とした交互切換蓄熱再生パーナシステム を提供することを目的とする。 また、 本発明は、 燃焼量の変更に関係なくバ一ナ スロートから噴出される空気流速を可変にした交互切換蓄熱再生パーナシステム を提供することを目的とする。 更に、 本発明は不定在火炎を広い範囲に形成でき る交互切換蓄熱再生パーナシステムを提供することを目的とする。
発明の開示
かかる目的を達成するために、 本発明の交互切換蓄熱再生パーナシステムは、 蓄熱体を備えるパーナと該パーナの給気系と排気系への接続を切り換える給排切 换装置とで構成される交互切換蓄熱再生パーナを単位ュニッ トとして 3ユニット 以上で燃焼システムを構成し、 ュニッ トが固定的な対を組まないで順次全ュニッ トが交互蓄熱燃焼を繰り返すようにしている。 ここで、 燃焼側パーナと蓄熱バー ナの数が異なっても、 供給空気量と排気量との関係は変わらない。 即ち、 燃焼側 パーナと排気側パーナとの台数比率が 1 : 1であっても 1 : 2であっても、 1行 程内でみれば、 空気の流れる量も排気量も変わらない。 ただし、 燃焼側パーナの 比率が減ればその分だけ空気時間の比率が減ることとなり、 蓄熱体の中を流れる 流体速度は空気のときは速く、 排気のときは遅くなり、 冷却の伝熱の伝熱の方が 良好となるため、 蓄熱体の効率は良くなる傾向となる。 即ち、 加熱空気の温度が 上がり、 排気温度が下がる傾向となる。 したがって、 全てのユニットのパーナが時間をずらして燃焼するので、 非定在 火炎をより広範囲に形成し、 局所的な高温域の発生を抑制した平坦な温度分布を 形成できる。 しかも、 燃焼用空気の噴射速度を高速に保持できた上で全てのュ- ットのパーナが時間をずらして燃焼するため、 炉内ガスの流動が短時間に変化し て活発になり、 局所的な高温域の発生を抑制した平坦な温度分布を形成できる。 したがって、 被加熱物への偏熱をなく して均一加熱を可能とすると共に N O Xの 発生が一層抑制される。
また、 蓄熱体の中を流れる流体速度は空気のときは速く、 排気のときは遅くな り、 冷却の伝熱の伝熱の方が良好となるため、 蓄熱体の効率は良くなる傾向とな る。 しかも、 同じ燃焼量であっても、 燃焼側パーナの数の増減によりバ一ナス口 ートから噴出される燃焼用空気等の速度を変化させ得るので、 空気速度を高速に 維持できるので、 一時的に高い燃焼量が必要なパーナを燃焼量を下げて定常運転 する時でも空気速度を高く保って N O Xを低く抑えることができる。 更に、 パイ 口ットゃ燃料ノズルには連続的にまたは断続的に冷却流体が流れるので過熱焼損 し難い。
また、 本発明のパーナシステムにおいて、 燃焼システムは、 燃焼させるパーナ の台数と停止させるパーナの台数の比率を可変とすることが好ましい。 この場合、 同じ燃焼量であっても、 燃焼側バ一ナの数の増減によってバ一ナスロートから噴 出される燃焼用空気あるいは燃焼ガスの速度 (これらを総称して空気速度と呼 ぶ) を変化させ得る。 このため、 燃焼側パーナ数の低減により空気速度を高速に 維持でき、 炉内ガスの流動を活発にして局所的な高温域の発生を抑制した平坦な 温度分布を形成可能とする。 更に、 燃焼側パーナ数を減らして燃焼量を下げる場 合、 排気圧損を下げて排気用ファンの動力を下げることができる。 特に、 燃焼側 パーナと排気側パーナとの差を極端に広げて大きくすれば、 不定在火炎の範囲を 広げつつ送風機と煙突による自然通風で排気が可能となるので、 排気用送風機の 省略が可能となる。
したがって、 本発明のパーナシステムを適用した炉によれば、 燃焼量に関係な く炉内温度を局所的高温部分が生じない平坦な温度分布に形成できるので、 被加 熱物への偏熱をなく して均一加熱を可能とすると共に N O Xの発生が一層抑制さ れる。
更に、 本発明のパーナシステムは、 炉内温度を上昇させる昇温運転時と昇温後 の運転時とで燃焼させるパーナの台数と排気させるパーナの台数の比率を可変と し、 昇温運転時の燃焼側パーナ台数よりも少ない燃焼側パーナ台数で昇温後の運 転を行うようにすることが好ましい。 この場合、 昇温後にパーナ容量よりも低い 燃焼量で運転する際にも、 燃焼側パーナ数を減らすことによつて各パーナのバー ナスロートから噴出される空気流速が高速に保たれる。 このため、 燃焼室内での 燃焼ガスの循環が活発になり、 よく撹拌されて燃焼室炉內温度が平坦化されると 共に燃焼用空気の流れに随伴される燃焼ガス量が増えて混合気の酸素濃度が大幅 に低下する。 しかも、 炉の立ち上げ時には最大燃焼量で昇温できるため、 最小時 間で操業運転を開始できる。
また、 本発明のパーナシステムにおいて、 順次全ユニットを通して排気される 排ガスが燃焼用空気 1に対して 1 . 2から 0 . 6の範囲にされることが好ましレ、。 この場合、 好適な蓄熱再生燃焼を実現できる。
更に、 本発明のバ一ナシステムにおいて、 排気ガスは、 その一部が排気側バー ナを通さずに直接炉外へ抜き取られ、 排気側バ一ナの蓄熱体を経て冷却された排 ガスと一緒にしてから排気されるようにしている。 この場合、 排気温度をより低 くできる。
更に、 本発明のパーナシステムにおいて、 蓄熱体を経て供給される燃焼用空気 は、 燃焼直前における混合気の少なく とも燃焼安定限界温度以上の高温に予熱さ れている。 したがって、 混合気の自己着火温度以上の高温でかつ低酸素濃度の燃 焼用空気と燃料とが接触した所で酸化発熱反応を開始するため、 極めて低速の酸 化発熱反応となって炉内の至るところで燃焼し、 炉内温度分布に局所的な高温域 を形成せず、 N O Xの発生を抑制する。
更に、 本発明のパーナシステムにおいて、 燃焼用空気は、 定格運転燃焼時に 6 O m/ s以上、 好ましくは 6 0〜 1 2 O m/ s程度の流速で噴射されている。 こ の場合、 炉内での燃焼ガスの循環が活発になり、 よく撹袢されて炉内温度が平均 ィ匕され、 被加熱物への偏熱を少なく してより均一な加熱を実現できる。 しかも、 炉內ガスの撹袢により排ガス再循環効果が上がり、 酸素濃度の低下による N O X 低減が可能となる。
また、 本発明のパーナシステムにおいて、 給排切換装置は特に限定されるもの ではないが、 例えば給気系と排気系とが常時接続される三方弁機能を有し、 かつ 各パーナユニットに直結されていることが好ましい。 この場合、 全てのユニッ ト のパーナが時間をずらして尚かつ切替の際のパージ時間をできるだけなくして燃 焼するため、 広い範囲で非定在火炎を形成しながら交互燃焼を成立させる。 した がって、 上述の交互燃焼パーナシステムよりも火炎の非定在化が進み、 炉内温度 分布がより均一化される。
更に、 本発明のパーナシステムにおいて、 給排切換装置は、 給気系と排気系と が常時接続される 2つの切換ポートを備える外ハウジングと、 該外ハウジング内 に収容されて回転自在に設けられた内ハゥジングとから構成され、 かつ前記内ハ ウジングはその回転中心上にパーナに常時接続されるポートと、 前記外ハウジン グの内面と摺接して前記 2つの切換ポートを任意に閉塞する座面と、 この座面に 開口されて前記 2つの切換ポートの一方と選択的に連通可能な弁口とを備え、 前 記内ハゥジングの回転によつて前記パーナが給気系あるいは排気系のいずれかに 接続されるか若しくはいずれにも接続されない中立位置に切換わるようにしてい ることが好ましい c この場合、 パーナを給気系または排気系のいずれかに接続す ることによって燃焼側パーナあるいは排気側バーナとすることができ、 中立位置 では蓄熱体には空気も排ガスも通過させずにその状態を保持することができる c したがって、 直前まで排ガスを流して蓄熱している場合には、 その蓄熱状態を保 持でき、 次にそれを冷却する行程即ち空気を高温予熱する行程から始めることが できる。
更に、 本発明のバ一ナシステムにおいて、 給排切換装置は、 流れ方向が切り換 えられる対象となる流路に接続されるポートが形成された辺に対し斜面となる 2 つの辺に流れが固定される流路が接続される他の 2つのポートを設けたハゥジン グと、 前記 2つの斜面の間のコーナー部分に配置される切替シャフ トと、 該切替 シャフ卜に支持されて前記 2つの斜面のポート間で揺動し各ポートを開閉するフ ラツバと、 前記切替シャフトを揺動させるァクチユエ一タとを備えるフラツバ式 三方弁とすることが好ましい。 この場合、 フラッパが揺動する範囲で占められる 最小の空間から成り、 給気と排気との切替時にパージする容積が極めて小さくな り、 残留する排ガスを空気に入れ換えるための時間を短く して無駄な時間が切替 時間に占める割合を小さくすることができる。 また、 全てのパーナユニットが順 次燃焼と停止とを切換えながら交互燃焼を成立させるので、 炉圧変動が少なく温 度効率の良い高温燃焼を実施できる。 そして、 全てのユニットのパーナが時間を ずらして尚かつ切替の際のパージ時間をできるだけなく して燃焼するため、 広い 範囲で非定在火炎を形成しながら交互燃焼を成立させることができ、 火炎の非定 在化をより促進し、 炉内温度分布をより均一化することができる。
図面の簡単な説明
Fig. 1は本発明の交互切換蓄熱再生パーナシステムの実施形態の一例を示す概 略原理図である。 Fig. 2は本発明の交互切換蓄熱再生パーナシステムの他の実施 形態を示す概略原理図で、 急速昇温時の燃焼状態を示す。 Fig. 3は Fig. 2の交互 切換蓄熱再生パーナシステムの昇温後の定常運転時の燃焼状態を示す。 Fig. 4は 本発明の交互切換蓄熱再生パーナシステムの給排切換装置の他の実施形態の一例 を示す概略的に示す中央縦断面図である。 Fig. 5は連通状態にある Fig. 4の給排 切換装置の平面横断面図である。 Fig. 6は中立状態にある Fig. 4の給排切換装置 の平面横断面図である。 Fig. 7は交互切換蓄熱再生パーナシステムの他の実施形 態を示す概略原理図である。 Fig. 8は Fig. 7のパーナシステムで使用された給排 切換装置の縦断面図、 Fig. 9は Fig. 8の IX— IX線に沿う断面図である。
発明を実施するための最良の形態
以下、 本発明の構成を図面に示す最良の実施の形態に基づいて詳細に説明する Fig. 1に本発明の交互切換蓄熱パーナシステム (以下、 単にパーナシステムと 呼ぶ) の一実施形態を示す。 このパーナシステム 1は、 蓄熱体 7を備えるパーナ 2と該パーナ 2の給気系と排気系への接続を切り換える給排切換装置 1 2, 1 3 とで構成される交互切換蓄熱再生パーナを単位ュニットとして 3ュニット以上の 7ユニットで構成されている。 尚、 図中 9, 1 0, 1 1はダク ト、 1 8は炉であ る。
このパーナシステム 1は、 いわゆる高温燃焼を実現する 7ュニッ トの交互切換 蓄熱再生パーナ 2と、 これらを適宜選択して燃焼させる制御系とで構成されてい る。 7台のパーナ 2は、 互いに独立して燃料噴射を行う一方、 燃焼用空気の供給 と炉内ガスの排出とに併用される給排用スロート (以下、 エアスロートと呼ぶ) 6に内装された蓄熱体 7を介して高温に予熱された燃焼用空気を炉内 1 9へ噴射 させる。 各パーナ 2毎にそれぞれ独立制御可能な給気系 (集合ダク ト) 1 7と排 気系 (集合ダク ト) 1 6とを設け、 個別に燃焼用空気の供給あるいは炉内ガスの 排気を制御するようにしている。 各パーナ 2の燃料ガン 5に燃料を供給する燃料 ライン 3には、 操作端である燃料調節弁 4が設けられている。 燃料調節弁 4とし ては、 例えば O N— O F Fバルブを使用したり、 若しくは自動調節弁を使用して 燃料調節と O N— O F Fを兼用するようにしても良い。 他方、 各パーナ 2には燃 料の供給と連動させて空気供給系 1 7か排気系 1 6のいずれかが選択的に接続さ れ、 燃焼側パーナとしてか、 あるいは燃焼させずにエアスロート 6を炉内ガスを 排気させる排気側パーナとして機能させるように設けられている。 各燃料調節弁 4及び空気供給系 1 7と排気系 1 6の給排切換装置例えば電磁弁 1 2 , 1 3は、 例えば図示していない調節計 (コントローラ) によって個々に開閉操作される。 尚、 各パーナ 2のエアスロート 6に内装される蓄熱体 7は、 その組成および構造 については特に限定されるものではないが、 セラミック製のハニカム構造の蓄熱 体とすることが好ましい。
因みに、 この加熱制御は、 P I D制御ゃフアジィ制御などの自動燃焼制御シス テムの一環として調節計でのシーケンス制御あるいはコンピュータ制御によって 実行されており、 図示しない P I D制御方式ゃフアジィ制御方式などの調節計で 実行される自動燃焼制御で目標値 (温度) に対する偏差分やそれに対応する燃焼 量などは既に決定されている。 したがって、 上述の加熱 ·燃焼は、 P I D制御系 ゃフアジィ制御系などの自動燃焼制御系で設定された燃焼量等をいずれのパーナ の燃焼によって得るのかを決定して実行するものである。 調節計は、 これらの設 定値に基づいて各燃料調節弁 4の操作及びそれと連動させて空気供給系 1 7の電 磁弁 1 3並びに排気系 1 6の電磁弁 1 2の操作を行う。
図示していないが、 調節計は、 燃焼側パーナと排気側パーナとを一定の手順に 従って選定して短時間で切換る制御手段であり、 シーケンス制御するプログラマ ブル調節計や少なくとも 1つの中央演算処理部とプログラムを格納する R OM及 びインターフェースなどで構成されるマイコン制御のコントローラなどから成り、 本実施形態の場合にはプログラマブル調節計が採用されている。 即ち、 調節計か ら成る制御系は、 各ダク トの給排切換装置たる電磁弁 1 2, 1 3を切換操作する ことによって、 パーナ 2を排気系 1 6あるいは給気系 1 7のいずれかに選択的に 接続させて燃焼側パーナあいるは排気側バ一ナとして機能させる。 ここで、 調節 計は燃焼側パーナの台数と排気側パーナの台数の比率を可変とし、 全ュニッ卜が 固定的な対を組まないで且つ燃焼用空気の給気量と排ガスの排気量とが同じにな るように順次全ュニットを交互蓄熱燃焼を繰り返させるように制御するようにプ 口グラムされている力 \ あるいはシーケンスが組まれている。
なお、 燃焼側パーナ 2のエアスロ一ト 6からは、 蓄熱体 7を経て高いェンタル ピを保有する酸化剤例えば高温の燃焼用空気が噴射される = この燃焼用空気は、 高温燃焼を実現するに充分高いェンタルビ、 即ち燃焼直前における混合気の燃焼 安定限界温度以上、 好ましくは自己着火温度以上の高温に予熱されている。 その 温度は燃料種別や酸素濃度などによって異なるが、 多くの場合例えば 8 0 0 °C以 上、 好ましくは 1 0 0 0 °C以上に予熱されていれば該当する。 この燃焼システム 1では、 セラミックス製の蓄熱体 7に炉内ガスと燃焼用空気とを交互に通過させ ることで高温の燃焼用空気を得る。 ここで、 燃焼直前における混合気の燃焼安定 限界温度とは、 通常燃焼における吹き消え温度 (燃焼が不安定になり空気比の値 や空気流速の僅かな変化などによって火炎が吹き消えて消失しまう温度) に相当 するもので、 それよりも温度が低くなると高温空気のため吹き消えは起こらない までも完全燃焼が困難となり最終排ガス濃度組成中に C O成分を伴うようになつ て燃焼が急激に不安定となる温度である。
各ュニットのパーナ 2は、 酸化剤として高いェンタルピを有する空気即ち混合 気の自己着火温度付近あるいはそれ以上の高温 (例えば 8 0 0〜1 0 0 0 DCある いはそれ以上の高温) にまで予熱された燃焼用空気を使用して高温燃焼を実現す るパーナ (以下高温燃焼側パーナと呼ぶ) である。 したがって、 このパーナ 2に は、 蓄熱体 7がケーシングなどに充填されてあるいはエアスロート (燃焼用空気 が導入されるパーナ後部) 6に内装されている。 蓄熱体 7は、 比較的圧力損失が 低い割に熱容量が大きく耐久性の高い構造並びに材料の使用、 例えば多数のセル 孔を有するハニカム形状のセラミックス製筒体の使用が好ましい。 例えば、 排ガ スのような 1 0 0 o °c前後の高温流体との間で行う熱交換には、 コ一ジライ トゃ ムライ ト等のセラミックス材料の押し出し成形によって製造されるハニカム形状 のものの使用が好ましい。 また、 蓄熱体 7は、 コージライ ト、 ムライ ト以外のセ ラミックス例えばアルミナやセラミックス以外の素材例えば耐熱鋼等の金属ある いはセラミックスと金属の複合体例えばポーラスな骨格を有するセラミックスの 気孔中に溶融した金属を自発浸透させ、 その金属の一部を酸化あるいは窒化させ てセラミ ックス化し、 気孔を完全に埋めた A 1 2 0 3 — A 1複合体、 S i C— A 1 2 θ 3 — A 1複合体などを用いて製作しても良い。 尚、 ハニカム形状とは、 本 来六角形のみならず四角形や三角形のセルを無数にあけたものを含む。 また、 一 体成形せずに管などを束ねることによってハニカム形状の蓄熱体を得るようにし ても良い。 しかし、 蓄熱体 7の形状も特にハニカム形状に限定されず、 平板形状 や波板形状の蓄熱材料を筒状のケ一シング内に放射状に配置したり、 パイプ形状 の蓄熱材料を軸方向に流体が通過するように筒状のケーシング内に充填したもの であっても良い。 または、 隔壁によって周方向に 2室に区画形成され、 軸方向に 流体が通過可能とした筒状のケーシングを用意し、 これの各室に球状、 短管、 短 棒、 細片、 ナゲット状、 網状などの蓄熱材料の塊を充填することによって構成さ れたものでも良い。 尚、 この蓄熱体 7は各パーナ 2, ' · ·, 2を形成する耐火物の筒 に内装されているが、 これに特に限定されず、 ケーシングなどに充填してダク ト 9に設置するようにしても良い。
尚、 パーナ 2は、 Fig. 1に示すように、 直線的に一定間隔で配列されているが、 これに特に限定されず、 千鳥状に配列したりあるいは全面の至る所に配置するよ うにしても良レ、。
以上のように構成されたパーナシステム 1は次のようにしてその燃焼が制御さ れる。 例えば、 Fig. 1の実施形態のパーナシステムを比較的再昇温の多い工業炉 に据え付けた適用例を元に説明する。
まず、 昇温時には、 1つのパーナシステム 1を構成する 7ユニットのパーナ 2 のうちから、 半分以上のュニットを燃焼側パーナとし残りのュニッ トを排気側バ ーナとして、 ュニットが固定的な対を組まないで順次全ュニッ トが交互蓄熱燃焼 を繰り返す。 ここで、 パーナ 2は燃料供給機構 (燃料ノズルや一次燃焼室) 及び 蓄熱体の容量により燃焼量が制限され、 冷起動 (昇温時) には蓄熱体の抵抗 (圧 力損失) が少なくより多くの燃焼用空気を供給することができる (例えば昇温後 に対して 2 0 0 %程度) し排気能力も十分である (例えば昇温後に対して 2 0 0 %程度) 、 燃料供給機構は昇温中も昇温後も変わらない。 このことから、 送風 機ゃ排風機の設計容量によっても異なり一概にはいえないが、 燃焼側パーナ 4 : 排気側バ一ナ 3で昇温し、 昇温後は燃焼側パーナ 2 :排気側パーナ 5で運転する ことが最も合理的となる。 そして、 パーナ切換の際の燃焼側パーナと排気側バ一 ナとの選定は、 蓄熱行程の後には必ず排気行程があるという規則性に従って行わ れる。 例えば、 A、 B、 C、 D、 E、 F、 Gの 7ユニッ トのうち、 まず、 A、 B、 C、 Dの 4ユニットが燃焼側パーナとなり、 残りの E、 F、 Gの 3ユニットが排 気側パーナとなる。 そして、 所定の切換時間の経過後は、 B、 C、 D、 Eの 4ュ ニットが燃焼側バ一ナとなり、 残りの F, G , Aの 3ユニットが排気側バ一ナと なる。 斯様にして燃焼側バ一ナとなる 4ュニットを 1つずつずらすことによって、 ュニットが固定的な対を組まないで順次全ュニットが交互蓄熱燃焼を繰り返す。 排気量は全量を排気側パーナから排気させるようにしても良いが、 一部を排気側 パーナを通さずに直接炉外へ抜き取り、 排気側パーナの蓄熱体を経て冷却された 排ガスと一緒にしてから排気されることもある。 例えば、 燃焼用空気 1に対して 排気量 1 . 2から 0 . 6の範囲で排ガスが複数の排気側パーナから分配されて排 気される。 排気量 1 . 2は蓄熱再生パーナで排気が実用上成り立つ比率で、 排気 量 0 . 6は廃熱回収で意義のある限界である。 勿論、 昇温時 (起動時) の燃焼側 パーナの比率をもっと上げて燃焼量を増やし昇温速度を高めることも可能である。 そして、 設定温度に近くなつたところで、 燃焼側パーナ数を減らすことによつ て燃焼量を少なく して (全ュニットで対を構成した時のパーナ容量よりも低い燃 焼量で運転) 交互蓄熱燃焼を行う。 燃焼側パーナ数は、 例えば 2台にして運転す る。 このとき、 残りの 5ユニットは排気側パーナとなる。 なお、 蓄熱体 7が加熱 する状況においては、 一部の蓄熱体 7の排気を停止し蓄熱状態を保持することが 好ましい。 例えば、 7ユニットのパーナ 2のうち、 2ユニッ トのパーナ 2を燃焼 させているとき、 4ユニットのパーナ 2から排気し、 1ユニットのバ一ナ 2を停 止させることができる。 このような状態は、 Fig. 4〜Fig. 6に示す給排切換装置 を使用すれば中立状態を得て容易にパーナ 2を停止させることができる。 これに よって、 蓄熱状態を保持したまま蓄熱体 7の加熱を防止することができる。 そし て、 この状態のまま給気行程に移行することができる。
また、 燃焼量の低減により給気量は削減されるが、 4台で運転した時と比べて 2台で運転するときの方が空気の速度は早くなることから、 結果として燃焼側バ —ナから噴射される燃焼用空気は高速を保持したままである。 このため、 燃焼量 を落としても、 燃焼室内での燃焼ガスの循環が活発であり、 よく撹拌されて燃焼 室炉内温度が平坦化されると共に燃焼用空気の流れに随伴される燃焼ガス量が増 えて混合気の酸素濃度が大幅に低下する。 したがって、 炉内低〇2雰囲気で希釈さ れ N O Xを低く維持することができる。 しかも、 一部のパーナを間引きした場合 と異なり、 すべてのユニットのパーナが時間をずらして燃焼するので、 炉内全域 といった広レ、範囲で形成される非定在火炎により炉内温度を均一にすることがで きると共に、 パイ口ットゃ燃料ノズルには連続的にまたは断続的に冷却流体が流 れるので過熱焼損し難い。 ここで、 燃焼側パーナと排気側パーナとの比率の調整 方法としては、 特に限定されるものではないが、 例えば燃焼開始から排気完了ま での 1サイクルを 6 0秒と定めると、 燃焼/排気を 1 0 5 0、 3 0 / 3 0 , 5 0 / 1 0秒のように変化させたり、 燃焼時間を一定として燃焼/排気を 1 0 / 1 0、 1 0 / 3 0、 1 0 Z 5 0秒のように変化させることも可能である。
ここで、 排気側パーナから取り出された炉内ガスは、 蓄熱体 7を通過する際に 当該蓄熱体 7との間で熱交換を行って、 少なくとも高温空気用排気ファン 1 4や バルブなどが耐え得る温度例えば 4 0 0 °C程度まで、 好ましくは 2 0 0 °C程度以 下の低温まで冷却されてから大気中などに放出される。 したがって、 排気ファン などが受ける熱によるダメージが緩和される。 また、 燃焼側パーナでは、 給気フ アン 1 5から圧送される燃焼用空気が蓄熱体 7との間で熱交換を行って高温に予 熱されてから噴出される。 しかも、 この空気温度は燃料あるいは混合気の自己着 火温度以上の高温である。 このため、 高速で炉内 1 9へ噴射されても、 火炎が吹 き消えることがない。 そこで、 燃焼用空気は、 例えば定格運転燃焼時において 6 0 m/ s以上、 好ましくは 6 0〜 1 2 0 m/ s程度の流速で噴射しても燃焼可能 である。 これにより炉内 1 9での燃焼ガスの循環が活発になり、 よく撹拌されて 炉内温度が平坦化されると共に燃焼用空気の流れに随伴される燃焼ガス量が増え て混合気の酸素濃度が大幅に低下する。 そして、 混合気の自己着火温度以上の高 温でかつ低酸素濃度の燃焼用空気と燃料とが接触した炉内 1 9の至る所で極めて 低速な酸化発熱反応を開始する。 加えて、 全てのユニットのパーナが時間をずら して燃焼するため、 燃焼ガスの流動が短時間に変化して非定在火炎を形成し、 炉 内の温度場が均一化 '平坦化される。 このため、 炉内 1 9全域が均一な温度とな り局部的に高温となる領域が生成されない。 したがって、 被加熱物への偏熱をな く して均一加熱を可能とすると共に N O Xの発生が抑制される。 斯く して、 バ一 ナ容量を有効に利用して炉温を急上昇させる。
また、 本発明のバ一ナシステムは、 上述の例に特に限定されず、 炉内温度を上 昇させる昇温運転時と昇温後の運転時とで燃焼させるパーナの台数と停止させる パーナの台数の比率を可変とし、 昇温運転時の燃焼側パーナ台数よりも少ない燃 焼側パーナ台数で昇温後の運転を行うようにしても良い。 例えば、 昇温時には、 1つの交互切換型蓄熱再生パーナシステムを構成する 7ュニッ トのバ一ナ 2のう ちから、 3ュニッ トを燃焼側パーナとし残りの 4ュニットを排気側バ一ナとして、 ュニットが固定的な対を組まないで順次全ュニッ 卜が交互蓄熱燃焼を繰り返す。 即ち、 A、 B、 C、 D、 E、 F、 Gの 7ユニットのうち、 まず、 A、 B、 Cの 3 ユニットが燃焼側パーナとなり、 残りの D、 E、 F、 Gの 4ユニットが排気側バ ーナとなる。 そして、 所定の切換時間の経過後は、 B、 C、 Dの 3ユニッ トが燃 焼側パーナとなり、 残りの 4ユニットが排気側パーナとなる。 斯様にして燃焼側 パーナとなるュニットを 1つずつずらすことによって、 全ュニッ トが固定的な対 を組まないで順次交互蓄熱燃焼を繰り返す。 即ち、 2台 (ユニット) のパーナで 対を組まないこととなる。 ここで、 燃焼側パーナと排気側パーナの数が異なって も、 供給空気量と排気量との関係は大きく変わらないので、 3ユニッ トの燃焼側 パーナによつて発生する排ガスを 4ユニットの排気側パーナから 3 / 4ずつ排気 されることとなり、 蓄熱体の中を流れる流体速度が空気のときは速く排ガスのと きは遅くなる。 したがって、 冷却の伝熱の伝熱の方が良好となるため、 蓄熱体の 効率は良くなる傾向となる。 即ち、 加熱空気の温度が上がり、 排気温度が下がる 傾向となる。 しかも、 定常運転時のみならず急速な昇温時にも、 排気側パーナ数 の方が燃焼側パーナ数よりも 1台多いので、 排気圧損を下げ排気用送風機の動力 を下げることができる。
なお、 上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるも のではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。 例 えば、 本実施形態では、 パーナ 2毎に独立した燃焼用空気供給系 ·排気系を備え た例について主に説明したが、 各燃料ノズルから離れた炉壁などに空気孔と排気 孔とをそれぞれ設け、 蓄熱体を相対的に回転させて排ガスと空気との間で熱交換 を行いながら炉内へ直接高温に予熱された燃焼用空気を連続的に噴出する一方、 排気孔からも連続的に炉内ガスを排出するようにしても良い。 また、 上述の説明 では、 各パーナ 2毎に独立した燃料調節弁 4を備えて各バ一ナ 2の燃焼を個々に 制御しているが、 パーナ 2を幾つかの群にまとめてその燃焼を群毎に制御しても 良い。
また、 本実施形態では奇数ュニッ トでパーナシステム 1を構成する例を挙げて 主に説明したがこれに特に限定されず、 偶数のュニッ ト例えば Fig. 2, 3 1に示 すような 6ュニットなどでパーナシステムを構成するようにしても良い。 本発明 のパーナシステムは少なくとも 3ュニットあれば構成できる。 偶数のュニットで 構成する場合、 炉温を急上昇させる時などは同数ユニッ ト (3ユニット) で燃焼 側パーナと排気側パーナとを形成し、 所定温度に昇温後の運転では燃焼側バ一ナ 数を排気側パーナ数よりも少なく例えば 2燃焼側パーナと 4排気側パーナとして 燃焼量を所定量に落とす。 この場合、 昇温時には、 燃焼側パーナと排気側パーナ の比は 1 : 1の対応であり、 空気と排気の流量が同じであれば空気の圧力損失と 排気の圧力損失はほぼ同じである。 しカゝし、 昇温後の運転時には、 燃焼側パーナ を 2台に減らし、 燃焼側パーナと排気側パーナの比を 1対 2の対応とすると、 空 気の速度は 3台で運転した時と比べて 2台で運転するときの方が早くなるので、 燃焼量を減らしても燃焼空気は高速を維持でき、 炉内ガスを良く撹拌しかつ巻き 込んで炉内温度を平均化すると共に N O Xを低く維持することができる。 しかも、 一部のパーナを間引きした場合と異なり、 全てのパーナが時間をずらして燃焼す るので、 炉内温度を均一にすることができる。 また、 パイロッ トや燃料ノズルに は連続的にまたは断続的に冷却流体が流れるので過熱焼損し難レ、。
更に、 上述の各実施形態では、 炉内温度を上昇させる昇温運転時と昇温後の運 転時とで燃焼させるパーナの台数と停止させるパーナの台数の比率を可変とし、 昇温運転時の燃焼側パーナ台数よりも少ない燃焼側パーナ台数で昇温後の運転を 行うようにした実施形態について主に説明したがこれに特に限定されず、 頻繁に 再昇温を繰り返さなレ、炉ゃ急速な昇温を必要とないような炉に使用するバーナシ ステムに適用することも可能であり、 この場合には通常運転時の不定在火炎を広 範囲に形成して炉内温度分布を均一にしたり、 排気圧力の低減を可能とすること ができる。 例えば、 1 0ュニットのパーナで 1つのシステムを構成し、 燃焼側バ ーナを 2ュニッ ト、 排気側パーナを 8ュニットとして固定的な対を構成しないよ うに燃焼側パーナと排気側パーナとをずらしながら全ユニッ トを順次交互蓄熱燃 焼させる。 この場合における各バーナュニットの蓄熱体圧力損失が 4 O mmAqとす ると、 空気圧力損失は 4 O mmAqとなり、 排気圧力損失は 1 0 mmAq ( 4 0 X 2 ÷ 8 ) となる。 したがって、 送風機は蓄熱体圧力損失 4 O mmAqで設計されるが、 送 風機は蓄熱体圧力損失 1 O mmAqで設計可能となる。 このため、 排気用の送風機を 極めて小さくでき、 場合によっては給気用の送風機と煙突による自然通風で排気 を賄うことができることから排気用送風機を省略することができる。
更に、 給排切換装置は 2個の電磁弁 1 2 , 1 3に特に限られず、 給気系と排気 系とに常時接続されいずれかに接続されるかあるいはいずれにも接続されない中 立位置を有する切換手段例えば三方弁、 若しくは中立位置を有さない三方弁など を使用することも可能である。 例えば、 Fig. 4〜Fig. 6に示すような給排切換装 置 2 0を使用することが可能である。 この給排切換装置 2 0は、 円筒から成る外 ハウジング 2 1と、 該外ハウジング 2 1の内部に回転可能に収容された半円筒形 の内ハウジング 2 2と、 この内ハウジング 2 2を軸方向に付勢し外ハウジング 2 1の底面に押しつける付勢手段 2 3と、 内ハウジング 2 2を回転ないし揺動させ る駆動モータ 2 4と力、らなる。
外ハウジング 2 1は、 耐熱性及び耐摩耗性を有する材料を用いて成形された中 空の略円筒体であり、 その対向する両端面即ち底面と天井面 2 1 a、 2 l bのほ ぼ中心にはそれぞれ軸孔 2 5, 2 6が設けられるとともに、 一方の端面例えば底 面 2 1 aには 2つの切換ポート 2 7, 2 8が設けられている。 ここで、 切換ポー トとは、 パーナ 2に対する接続が切り換えられるポートをいう。 また、 固定ポー トとは、 接続関係が固定されているポートをいい、 本実施形態の場合パーナに接 続されたポートをいう。 本実施形態ではこの切換ポート 2 7, 2 8は円形とされ るとともに軸孔 2 5を中心に 1 8 0度開いて対称配置されている。 これらの切換 ポート 2 7, 2 8は内ハウジング 2 2に設けられた弁口 2 9とほぼ同径で必要十 分な面積をもって連通可能である。 弁口 2 9は、 いずれの切換ポート 2 7, 2 8 とも連通していないときには座面 3 0により閉塞され、 なおかつ同時に 2つの切 換ポート 2 7, 2 8と連通されることがない位置関係となるように設けられてい る。 また、 内ハウジング 2 2が当接する外ハウジング 2 1の底面 2 1 aには、 図 示していないが、 メカニカルシールが配設され、 内ハウジング 2 2の外端面との 間にシールを構成している。 以上の関係を有するように切換ポート 2 7, 2 8や 弁口 2 9及び座面 3 0が設定されていれば、 外ハウジング 2 1や内ハウジング 2 2の形状等は上述の形状に限定されるものではない。 切換ポート 2 7には給気系 1 7力 切換ポート 2 8には排気系 1 6が、 固定ポート 3 1にはパーナに接続さ れるダク ト 9がそれぞれ接続される。
内ハウジング 2 2は外ハウジング 2 1の内部に揺動自在に設けられた半円筒体 であり、 その一方の面 2 2 aには内ハウジング側固定ポート 3 1、 弁口 2 9の 2 つのポートが設けられている。 内ハウジング側固定ポート 3 1は内ハウジング 2 2の回転中心に設けられる円孔であり、 この内ハウジング側固定ポート 3 1には パーナ 2の蓄熱体 7が内装された流路に繋がるダク ト 9が接続されている。 この ダク ト 9は外ハウジング 2 1の軸孔 2 5に嵌合されるとともに軸受け 3 2により 回転自在に支持され、 さらに揺動継手 3 3等と接続されて、 内ハウジング 2 2の 回転中心軸としての役目も果たしている。 軸孔 2 5とダク ト 9との間には図示し ていないが例えばメカニカルシールが構成され、 気密な接触を確保するように設 けられている。 なお、 内ハウジング 2 2は左右両方向に揺動するようにしてもよ いし、 あるいは一方向のみに回転するようにしてもよレ、。
弁口 2 9は内ハウジング 2 2の揺動角度に応じて外ハウジング 2 1に設けられ た切換ポート 2 7又は 2 8と合致するように設けられた円形のボ一トである。 こ の弁口 2 9はその揺動軸からの距離が気体切換ポ一ト 2 7、 2 8の揺動軸からの 距離と等しいものとされ、 内ハウジング 2 2の回転によって切換ポート 2 7又は 2 8と全面的にあるいは部分的に重なるように設けられている。
上述の内ハウジング側固定ポート 3 1や弁口 2 9が設けられた側の内ハウジン グ 2 2の面 2 2 aは平面とされ、 切換ポ一ト 2 7や 2 8を閉塞することができる 座面 3 0が形成されている。 弁口 2 9がー方の切換ポート、 例えば Fig. 4に示す ように切換ポート 2 8と連通しているときにはこの座面 3 0はもう一方の切換ポ —ト 2 7を閉塞したりあるいは一部合致したりすることなく、 流体流路が十分に 確保されるようになっている。 この連通状態から内ハウジング 2 2が回動すれば 弁口 2 9と切換ポ一ト 2 8とが合致している部分が少なくなりやがて 0になる力 このとき切換ポート 2 8は座面 3 0により閉塞されることになる。 このように、 弁口 2 9がいずれの切換ポ一トとも連通していないときには一方あるいは両方の 切換ボートが座面 3 0により閉塞されるように座面 3 0は設けられている- なお、 本実施形態では内ハウジング 2 2を略半円筒の形状としているが、 上述の内ハウ ジング側固定ポート 3 1及びダク ト 9、 さらには上述の関係を有する弁口 2 9及 び座面 3 0を備える限りにおいて他の形状であっても構わない。 例えば座面 3 0 の形状は扇形にして、 切換え途中には一方の切換ポー卜のみを閉鎖できるように しても良い。 この場合、 一方の切換ポートと弁口とが連通する前に他方の切換ポ ートが解放されるため、 2つの流体の流れのタイミングをずらすことができる。 内ハウジング 2 2は、 前述のダク ト 9と回転軸 3 4とによって外ハウジング 2 1内に回転自在に支承されている。 回転軸 3 4は、 内ハウジング 2 2の内ハウジ ング側固定ボ一ト 3 1が設けられた側の反対側の面 2 2 bにダク ト 9と揺動中心 軸が等しくなるように設けられており、 軸受け 3 5により軸支されている。 この 回転軸 3 4はシール等を用いることにより、 軸孔 2 6と気密に接触している。 また、 内ハウジング 2 2は、 付勢手段 2 3によつて外ハゥジング 2 1の切換ポ ート 2 7, 2 8が設けられた面即ち底面 2 1 aに押しつけられる方向へ付勢され 気密性が得られている。 これによつて、 気密に切換ポートが閉塞されることにな り 2系統の流路即ち給気系と排気系との同時閉塞がより確実なものとされる。 し たがって、 ポートの接触面から気体の洩れが生じ難く、 また、 内ハウジングが繰 り返し揺動して接触面が摩耗した場合にも、 その摩耗代を自動的に補完すること ができる。 付勢手段 2 3は外ハウジング 2 1の天井面 2 1 bと、 内ハウジング 2 2の一方の面 2 2 bとの間隙に設けられ、 座面 3 0を切換ポート 2 7, 2 8に押 し付け密着する。 本実施形態では付勢手段 2 3として圧縮コイルばねを用いてい る。 また、 この付勢手段 2 3を弁口 2 9のほぼ真上に位置するように設ければ弁 口 2 9を均一的に切換ポ一ト 2 7, 2 8に密着させるように付勢させることがで きる。 このとき、 内ハウジング 2 2の上部に内ハウジング 2 2内に凹むばね収容 凹部 3 6を設けて、 該凹部 3 6に付勢手段 2 3を軸方向に設置するようにすれば、 内ハウジング 2 2内に導入される低温側流体によってばねが冷却されるので好ま しい。 さらに、 付勢手段 2 3の上端部を図示していないボール等の転動体で受け るようにすれば、 揺動する内ハウジング 2 2に滑らかに追従させることができる :; なお、 付勢手段 2 3を設ける代わりに内ハウジング 2 2の自重によって付勢させ ることも可能である。
駆動モータ 2 4は、 外ハウジング 2 1の外に設置され、 駆動軸 3 4を介して内 ハウジング 2 2を回動させる。 モータ 2 4としては、 例えばステッピングモータ を用いれば、 精度の高い位置決めを行うことができる。
以上のように構成された給排切換装置によると、 Fig. 4に示すように弁口 2 9 がー方の切換ポート 2 8に連通されている場合には、 もう一方の切換ポ一ト 2 7 は座面 3 0から解放され閉塞されていない。 したがつてこの切換ポート 2 7は外 ハウジング 2 1によって閉塞される。 これにより内ハウジング 2 2の内側を排ガ スが流れる。 また、 内ハウジング 2 2が駆動モータ 2 4により 1 8 0 ° 回転され ることによって、 弁口 2 9が切換ポート 2 7と連通したときには、 今までとは逆 に排気系 1 6が遮断され、 内ハウジング 2 2を燃焼用空気が流れる。
また、 Fi g. 6で示すように弁口 2 9が中立位置にありどちらの切換ボートとも 連通していないときには、 両切換ポート 2 7 , 2 8が座面 3 0により閉塞され、 排気系 1 6と給気系 1 7とがパーナ 2から遮断される。 この中立位置では、 蓄熱 体 7には空気も排ガスも通過せず、 その状態を保持するので、 直前まで排ガスを 流して蓄熱している場合には、 その蓄熱状態を保持でき、 次にそれを冷却する行 程即ち空気を高温予熱する行程から始めることができる。 しかも、 流体への圧力 を変化させたりあるいは途中で流体を止めたりすることなく流体の流通を遮断す ることができる。
そして、 内ハウジング 2 2を更に図上反時計回転方向へ回動させれば、 座面 3 0が切換ポート 2 8の上から外れ、 切換ポート 2 8を解放する。 即ち、 切換ボー ト 2 8は外ハウジング 2 1によって閉塞され、 排気系 1 6は遮断される。 更に内 ハウジング 2 2の回転が進むと、 切換ポート 2 7と弁口 2 9とが重なり、 内ハウ ジング 2 2の固定ポート 3 1と切換ポート 2 7とが内ハウジング 2 2を介して連 通され、 給気系 1 7がパーナ 2に接続される。 なお、 流路の切換えには少なくと も一方の切換ポートを座面 3 0により閉塞すれば足りるが、 本実施形態の場合切 換ボート 2 7, 2 8を両方とも同時に閉塞する状態を作り出すようにしている。 切換ポート 2 7及び切換ポート 2 8を内ハウジング 2 2の座面 3 0により同時 に閉塞させれば (Fi g, 6の状態) 、 燃焼用空気の供給が止められてパーナ 2の燃 焼が停止されるとともに排ガスの流れも止められ、 蓄熱体 7の過熱が抑止される。 このときも内ハウジング 2 2は付勢手段 2 3により軸方向へ座面 3 0が押し付け られるように付勢されており、 燃焼用空気ゃ排ガスの流れを遮断することができ る。 したがって、 この切換ポート 2 7, 2 8及び弁口 2 9を閉塞させる時間を適 宜調節することによって、 パーナ 2や蓄熱体 7の温度を調節するインターバル制 御を行うことができる。
この切換手段を使用すると、 内ハウジング 2 2を回転させることにより 2つの 連通状態と閉塞状態とを簡便に切り換えることができる。 しかも、 面摺接による シールであるため、 気体洩れ (リーク) が起こり難い。 このため、 例えばこの装 置をパーナシステムに適用すれば、 燃焼用空気が排ガス流路側に洩れることがな くなり燃焼の空気比を正確にコントロールできるようになる。 さらに、 内ハウジ ング 2 2を回転させることによって切換ポート 2 7, 2 8と弁口 2 9との重なり により流路を切り換えるようにしているので、 流路切換時の流れの変化によるシ ョックを少なくする力、 あるいはなくすことができる。 したがって、 パーナの切 換時に大きな炉圧変動等が起きるのを防ぐことができる。
更に、 本発明のパーナシステム 1は、 給排切換装置として Fig. 7〜Fig. 9に示 すようなフラッパ式三方弁 4 0を採用し、 蓄熱体を内装したパーナ本体の後端に 直結するように配置することが好ましい。 このフラッパ式三方弁 4 0は、 開閉さ れる一方のポートに空気供給系 4 1を連結すると共に他方のポートに排気系 4 2 を連結している。 また、 各ダク ト 4 1, 4 2は更に集合管で 1本にまとめられて から排気ファン 1 4並びに給気ファン 1 5にそれぞれ連結されている。
ここで、 パーナ本体とは、 蓄熱体 7を装填したエアスロート 6を構成する耐火 断熱ブロックの他、 炉 1 8に取り付けられる取り合いフランジゃケ一シング、 場 合によってはバ一ナタイルやウィンドボックス等を含めたものを意味し、 燃料ノ ズルなどから成る少なくとも 1つの燃焼ュニットと共に 1ュニットのパーナ 2を 構成している。 尚、 燃焼ユニットはエアスロート 6と平行に配置され、 炉内 1 9 に燃料を直接噴射するように設けられている。 この場合、 燃料と高温の燃焼用空 気との混合が炉内 1 9において緩慢に行われるので、 より低 N O X化に寄与する フラッパ式三方弁 4 0は、 Fig. 8及び Fig. 9に示すように、 パーナ本体に直結 されるポート 4 3 bに対し斜交する 2つの斜面 4 4 a, 4 4 cに他の 2つのポー ト 4 3 a , 4 3 cを設けたハウジング 4 5と、 2つの斜面 4 4 a, 4 4 cの間の コーナー部分に配置される切替シャフト 4 6と、 該切替シャフト 4 6に支持され て 2つの斜面 4 4 a, 4 4 cの間で揺動し各ポート 4 3 a, 4 3 cを開閉するフ ラッパ 4 7と、 切替シャフト 4 6を所定角度内で揺動させるァクチユエータ 4 8 とから構成されている。 ハウジング 4 5はポート 4 3 bを開けた座部分がバ一ナ 本体にボルト等で固定されている。 また、 各ポート 4 3 a, 4 3 cは、 ハウジン グ 4 5の斜面 4 4 a, 4 4 cの孔に各々はめ込まれてボルト 5 0で固定される円 筒形のバルブシート部材 5 1によって形成されている。 そして、 バルブシート部 材 5 1のフラッパ 4 7と相対する弁座は、 逆テ一パの溝に圧入固定された環状の ノ、。ッキング 5 2によって構成されている。 このバルブシ一ト部材 5 1は、 フラン ジ部分をハウジング 4 5の外側から当接してボルト 5 0で固定されることによつ て、 ハウジング 4 5の外側から取り外し可能に取り付けられている。
フラッパ 4 7はパッキング 5 2と同径の円環状のフランジを縁に有する円板で 構成され、 その基端部のボス部 5 3がベアリング 5 4を介してハウジング 4 5に 回転自在に支持された切替シャフト 4 6に固定され、 左右に僅かな角度例えば 2 6度づっ回転するように設けられている。 このとき、 フラッパ 4 7の揺動角は、 フラッパ 4 7がパッキング 5 2に当接した後も僅かにフラッパ 4 7をバッキング 5 2に押しつける大きさに設定され、 パッキング 5 2を弾性変形させてシールす ることによってリ一クを極めて少ない値に抑制するようにしている。 ここで、 フ ラッパ 4 7の位置は図示していない近接スィツチで検出され、 フィードバックさ れ、 制御に使われる。
切替シャフト 4 6は焼き入れ焼き戻し処理が施された焼き入れ鋼によって構成 され、 フラッパ 4 7と連結キー 5 5を利用して固定されている。 また、 切替シャ フト 4 6は、 ベアリング 5 4よりも内側寄りの部位にラビリンス 5 6が設けられ ている。 即ち、 ベアリング 5 4と弁内空間とはラビリンスシール 5 6で仕切られ ている。 更に、 このラビリンス 5 6とベアリング 5 4との間にはハウジング外部 と連通する空間 5 7及び連通孔 5 8が形成され、 弁内空間から漏れ出た排気がベ ァリング 5 4を通過せずにハウジング外部に排出されるように設けられている。 したがって、 ベアリング 5 4が排ガスで直接加熱されることがないため、 切替シ ャフ ト 4 6を介した伝熱により排ガスである程度加熱されても 1 0 0 °C前後にし か達しない。 依ってベアリング 5 4の硬度保持の面での問題がなくなった。 尚、 図中の符号のうち、 5 9はカラ一やロックアップナッ トなどの固定部材、 6 0は 給油口を有するオイルカバーであり、 外側からグリスアップが可能な給油口付き 油溜め構造とされている。 このため、 高温状態で劣化したグリスを交換可能とな る。 しかも、 外部からグリスアップできる軸受け構造をとつているので、 定期的 なグリス交換によってグリスの変質の問題も解消される。
このように構成されたフラッパ式三方弁 4 0は、 フラッパ 4 7が揺動する範囲 で占められる最小の空間から成り、 給気と排気との切替時にパージする容積が極 めて小さくなり、 残留する排ガスを空気に入れ換えるための時間を短く して無駄 な時間が切替時間に占める割合を小さくすることができる。 切替時間にはパージ 時間が極めて短時間 (例えば消して着けるまでが 0 . 3秒以内のパージ時間) し か採られず、 消すと同時に着火するように設けられている。 また、 全てのパーナ ュニットが順次燃焼と停止とを切換えながら交互燃焼を成立させるので、 炉圧変 動が少なく温度効率の良い高温燃焼を実施できる。 本実施形態のパーナシステム は、 パーナ本体のエアスロ一ト 6とフラッパ式三方弁 4 0とを直結しているので、 パーナ本体 2と給排切換装置たる三方弁 4 0との間のダク ト分のパージ容積が不 要となる分だけパージ容積が小さくなり、 残留する排ガスを空気と入れ換える時 間を短くでき、 高速切替を可能とする。 このため、 消すとほぼ同時に着火するこ とができる。 これによつて、 炉圧変動を小さく抑えることができる。 本発明者の 実験によると、 例えば、 今まで 2 0 O mm A q程度の炉圧変動が起きていた設備 において本発明のバ一ナシステムを採用すると、 3 O m m A q程度の炉圧変動に 抑制することができた。 また、 高速切替が可能であるため、 温度効率を向上させ てより高温の予熱空気を得て高温空気燃焼を実現させることができる。
この場合、 全てのュニットのパーナが時間をずらして尚かつ切替の際のパージ 時間をできるだけなく して燃焼するため、 広い範囲で非定在火炎を形成しながら 交互燃焼を成立させる。 したがって、 上述の Fig. 1から Fig. 6に示す実施形態の 交互燃焼パーナシステムよりも火炎の非定在化が進み、 炉内温度分布がより均一 化される。

Claims

請求の範囲
1 . 蓄熱体を備えるパーナと該パーナの給気系と排気系への接続を切り換える 給排切換装置とで構成される交互切換蓄熱再生パーナを単位ュニッ トとして 3ュ ニット以上で燃焼システムを構成し、 前記ュニットが固定的な対を組まないで順 次全ュニットが交互蓄熱燃焼を繰り返すことを特徴とする交互切換蓄熱再生バー ナシステム。
2 . 前記燃焼システムの燃焼させるパーナの台数と停止させるパーナの台数の 比率を可変としたことを特徴とする請求の範囲第 1項記載の交互切換蓄熱再生バ
3 . 炉内温度を上昇させる昇温運転時と昇温後の運転時とで燃焼させるパーナ の台数と停止させるパーナの台数の比率を可変とし、 昇温運転時の燃焼側バ一ナ 台数よりも少ない燃焼側バ一ナ台数で昇温後の運転を行うことを特徴とする請求 の範囲第 1項記載の交互切換蓄熱再生バ一ナシステム。
4 . 全ユニッ トを通して順次排気される排ガスが燃焼用空気 1に対して 1 . 2 から 0 . 6の範囲であることを特徴とする請求の範囲第 1項記載の交互切換蓄熱 再生バ一ナシステム。
5 . 排気ガスはその一部が排気側パーナを通さずに直接炉外へ抜き取られ、 排 気側パーナの蓄熱体を経て冷却された排ガスと一緒にしてから排気されることを 特徴とする請求の範固第 1項記載の交互切換蓄熱再生パーナシステム。
6 . 前記蓄熱体を経て供給される燃焼用空気は、 燃焼直前における混合気の少 なくとも燃焼安定限界温度以上の高温に予熱されていることを特徴とする請求の 範囲第 1項記載の交互切換蓄熱再生パーナシステム。
7 . 前記燃焼用空気は、 定格運転燃焼時に 6 0 m/ s以上の流速で噴射される ことを特徴とする請求の範囲第 1項記載の交互切換蓄熱再生パーナシステム
8 . 前記給排切換装置は、 前記給気系と排気系とが常時接続される三方弁機能 を有し、 かつ前記各パーナュニットに直結されていることを特徴とする請求の範 囲第 1項記載の交互切換蓄熱再生バ一ナシステム。
9 . 前記給排切換装置は、 前記給気系と排気系とが常時接続される 2つの切換 ポートを備える外ハウジングと、 該外ハゥジング内に収容されて回転自在に設け られた内ハゥジングとから構成され、 かつ前記内ハゥジングはその回転中心上に パーナに常時接続されるポートと、 前記外ハウジングの内面と摺接して前記 2つ の切換ボートを任意に閉塞する座面と、 この座面に開口されて前記 2つの切換ポ 一トの一方と選択的に連通可能な弁口とを備え、 前記内ハウジングの回転によつ て前記パーナが給気系あるいは排気系のいずれかに接続されるか若しくはいずれ にも接続されない中立位置に切換わることを特徴とする請求の範囲第 1項記載の 交互切換蓄熱再生パーナシステム。
1 0 . 前記給排切換装置は、 流れ方向が切り換えられる対象となる流路に接続 されるポートが形成された辺に対し斜面となる 2つの辺に流れが固定される流路 が接続される他の 2つのポートを設けたハウジングと、 前記 2つの斜面の間のコ ーナ一部分に配置される切替シャフトと、 該切替シャフトに支持されて前記 2つ の斜面のボート間で揺動し各ポートを開閉するフラッパと、 前記切替シャフトを 揺動させるァクチユエ一タとを備えることを特徴とする請求の範囲第 1項記載の 交互切換蓄熱再生パーナ
PCT/JP1998/004311 1997-09-26 1998-09-25 Systeme de bruleur regeneratif a accumulation de chaleur et a interversion WO1999017060A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020007002995A KR100345635B1 (ko) 1997-09-26 1998-09-25 인터스위칭 축열 재생 버너시스템
EP98944243A EP1018619A4 (en) 1997-09-26 1998-09-25 HEAT STORAGE REGENERATIVE BURNER SYSTEM WITH INTERMEDIATION
CA002304464A CA2304464A1 (en) 1997-09-26 1998-09-25 Inter-switching heat accumulating regenerative burner system
US09/508,933 US6234789B1 (en) 1997-09-26 1998-09-25 Inter-switching heat accumulating regenerative burner system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9262506A JPH1194239A (ja) 1997-09-26 1997-09-26 交互切換蓄熱再生バーナシステム及びその燃焼制御方法
JP9/262506 1997-09-26

Publications (1)

Publication Number Publication Date
WO1999017060A1 true WO1999017060A1 (fr) 1999-04-08

Family

ID=17376757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004311 WO1999017060A1 (fr) 1997-09-26 1998-09-25 Systeme de bruleur regeneratif a accumulation de chaleur et a interversion

Country Status (7)

Country Link
US (1) US6234789B1 (ja)
EP (1) EP1018619A4 (ja)
JP (1) JPH1194239A (ja)
KR (1) KR100345635B1 (ja)
CA (1) CA2304464A1 (ja)
TW (1) TW366399B (ja)
WO (1) WO1999017060A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200326070A1 (en) * 2019-04-11 2020-10-15 Hertwich Engineering Gmbh Method for the continuous firing of combustion chambers with at least three regenerative burners

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5932553A (en) * 1996-07-18 1999-08-03 The Regents Of The University Of California Illudin analogs useful as antitumor agents
IT1316951B1 (it) * 2000-11-23 2003-05-13 Ift S R L Forno intermittente a combustione, particolarmente per manufatticeramici.
IT1316952B1 (it) * 2000-11-23 2003-05-13 Ift S R L Forno continuo, particolarmente per manufatti ceramici.
ATE499860T1 (de) * 2003-11-18 2011-03-15 Trisa Holding Ag Zahnbürstenkörper
DE102004035276A1 (de) * 2004-07-21 2006-02-16 WS - Wärmeprozesstechnik GmbH Brennerdüsenfeld mit integrierten Wärmetauschern
US7452400B2 (en) * 2005-07-07 2008-11-18 The North American Manufacturing Company, Ltd. Method and apparatus for melting metal
JP5051828B2 (ja) * 2007-03-19 2012-10-17 日本碍子株式会社 蓄熱式バーナ
US20090117503A1 (en) * 2007-11-07 2009-05-07 Cain Bruce E Burner Control
KR101478865B1 (ko) * 2008-01-18 2015-01-02 에이에스티씨 테크놀로지아 엘티디에이. 개량된 연소시스템
DE102008009372A1 (de) * 2008-02-14 2009-11-05 Feuerfest & Brennerbau Gmbh Strahlungsbrenner mit Regenerationsfunktion
FR2934033B1 (fr) * 2008-07-15 2010-09-03 Fives Stein Dispositif de pilotage de bruleurs regeneratifs.
DE102009014223A1 (de) * 2009-03-25 2010-09-30 Hitachi Power Europe Gmbh Feuerungssystem eines für den Oxyfuel-Betrieb ausgelegten Dampferzeugers
DE212009000229U1 (de) * 2009-08-18 2012-04-12 Fbb Engineering Gmbh Strahlungsbrenner sowie Strahlungsbrenneranordnung
US8740612B2 (en) * 2010-06-30 2014-06-03 Bryan Joseph Kraus Regenerative firing system
US8961169B2 (en) 2011-03-29 2015-02-24 Fives North American Combustion, Inc. High uniformity heating
WO2015043295A1 (zh) * 2013-09-24 2015-04-02 湖南巴陵炉窑节能股份有限公司 一种交替切换蓄热式燃烧设备及其控制方法
JP6541050B2 (ja) * 2014-04-28 2019-07-10 日本ファーネス株式会社 高温酸素燃焼装置及び高温酸素燃焼方法
CN105570926B (zh) * 2016-02-17 2018-08-14 湖南巴陵炉窑节能股份有限公司 一种蓄热式燃烧设备的控制系统
DE102016125210A1 (de) * 2016-12-21 2018-06-21 Beteiligungen Sorg Gmbh & Co. Kg Verfahren zum Betreiben einer Glasschmelzanlage sowie Glasschmelzanlage
JP7054839B2 (ja) * 2018-07-24 2022-04-15 パナソニックIpマネジメント株式会社 流体加熱装置、原動機システム、移動体、及び油圧システム
DE102018006493A1 (de) * 2018-08-17 2020-02-20 Truma Gerätetechnik GmbH & Co. KG Anordnung mit zwei Brennern

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146772A (ja) * 1982-02-22 1983-09-01 Choshiro Yamauchi 高温流体用ダンパ−
JPH0797619A (ja) * 1993-09-30 1995-04-11 Nkk Corp 蓄熱型交番燃焼バーナシステムを備えた加熱炉
JPH08110040A (ja) * 1994-10-07 1996-04-30 Nkk Corp 蓄熱式バーナの点火方法
JPH08128546A (ja) * 1994-11-01 1996-05-21 Sumitomo Rubber Ind Ltd 弁装置及びこれを用いたガス吸着装置
JPH08247442A (ja) * 1995-03-07 1996-09-27 Sanken Sangyo Kk 給排気兼用燃焼装置
JPH08338625A (ja) * 1995-06-15 1996-12-24 Chugai Ro Co Ltd 蓄熱式バーナの運転方法
JPH0953114A (ja) * 1995-08-16 1997-02-25 Nippon Steel Corp 加熱炉の燃焼制御方法
JPH0968304A (ja) * 1995-08-31 1997-03-11 Nkk Corp ラジアントチューブ式加熱装置
JPH09222223A (ja) * 1996-02-14 1997-08-26 Nkk Corp 燃焼バーナ及びその炉内燃焼方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894834A (en) * 1973-10-17 1975-07-15 Airco Inc Ignition and flame stabilization system for coal-air furnace
GB2214625B (en) * 1987-12-24 1992-01-02 British Steel Plc Regenerative burner system
US5456216A (en) * 1992-12-21 1995-10-10 Chiyoda Corporation Method and apparatus of combustion for a pipestill heater
US5490776A (en) * 1993-03-29 1996-02-13 Chiyoda Corporation Industrial furnace provided with rotary regenerative burner
US6027333A (en) * 1994-09-24 2000-02-22 Nkk Corporation Radiant tube burner
US6071116A (en) * 1997-04-15 2000-06-06 American Air Liquide, Inc. Heat recovery apparatus and methods of use

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146772A (ja) * 1982-02-22 1983-09-01 Choshiro Yamauchi 高温流体用ダンパ−
JPH0797619A (ja) * 1993-09-30 1995-04-11 Nkk Corp 蓄熱型交番燃焼バーナシステムを備えた加熱炉
JPH08110040A (ja) * 1994-10-07 1996-04-30 Nkk Corp 蓄熱式バーナの点火方法
JPH08128546A (ja) * 1994-11-01 1996-05-21 Sumitomo Rubber Ind Ltd 弁装置及びこれを用いたガス吸着装置
JPH08247442A (ja) * 1995-03-07 1996-09-27 Sanken Sangyo Kk 給排気兼用燃焼装置
JPH08338625A (ja) * 1995-06-15 1996-12-24 Chugai Ro Co Ltd 蓄熱式バーナの運転方法
JPH0953114A (ja) * 1995-08-16 1997-02-25 Nippon Steel Corp 加熱炉の燃焼制御方法
JPH0968304A (ja) * 1995-08-31 1997-03-11 Nkk Corp ラジアントチューブ式加熱装置
JPH09222223A (ja) * 1996-02-14 1997-08-26 Nkk Corp 燃焼バーナ及びその炉内燃焼方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1018619A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200326070A1 (en) * 2019-04-11 2020-10-15 Hertwich Engineering Gmbh Method for the continuous firing of combustion chambers with at least three regenerative burners
US11585531B2 (en) * 2019-04-11 2023-02-21 Hertwich Engineering Gmbh Method for the continuous firing of combustion chambers with at least three regenerative burners

Also Published As

Publication number Publication date
CA2304464A1 (en) 1999-04-08
JPH1194239A (ja) 1999-04-09
TW366399B (en) 1999-08-11
KR20010030645A (ko) 2001-04-16
KR100345635B1 (ko) 2002-07-27
US6234789B1 (en) 2001-05-22
EP1018619A1 (en) 2000-07-12
EP1018619A4 (en) 2001-06-06

Similar Documents

Publication Publication Date Title
WO1999017060A1 (fr) Systeme de bruleur regeneratif a accumulation de chaleur et a interversion
US6027333A (en) Radiant tube burner
US6926516B1 (en) Combustion method and burner
KR970000103B1 (ko) 철강 가열로
KR100583819B1 (ko) 자기 축열식 단일 라디안트 튜브 버너
JP2774751B2 (ja) 超低発熱量ガス燃焼装置
KR200276859Y1 (ko) 축열식 버너용 연료 및 공기 분사장치
JP3796343B2 (ja) 蓄熱式バーナシステム
JP3198207B2 (ja) アルミ溶湯保温炉
JPH01222102A (ja) 熱回収式燃焼装置
KR101742282B1 (ko) 풀타임 축열연소식 단일 라디안트 튜브 버너
JP3325105B2 (ja) 浸漬チューブ加熱型アルミ溶湯保温炉
JP4060990B2 (ja) 交互燃焼式蓄熱型バーナシステム及びそれを利用した加熱炉
KR200254429Y1 (ko) 축열식 버너의 연소용 공기 온도균일화장치
JP3767414B2 (ja) 蓄熱式バーナ炉の操業方法および蓄熱式バーナ炉
KR0118983B1 (ko) 축열식 열교환기를 이용한 가열로의 연소용 공기예열방법
KR101074761B1 (ko) 자기축열식 버너 및 상기 버너에서의 연소용 공기와 배기가스의 유출입 제어방법
CN217154309U (zh) 一种无动力旋转式陶瓷蓄热装置
JP2001027412A (ja) 蓄熱燃焼用バーナ
JP3274931B2 (ja) アルミニウム切粉溶解炉
KR200276857Y1 (ko) 축열식 버너의 축열기용 균등축열장치
JP4071842B2 (ja) 工業炉及びその加熱制御方法
KR200338013Y1 (ko) 공업용로용 축열식 연소버너
JP3852212B2 (ja) ビレットの加熱方法
JP3180050B2 (ja) 熱回収式燃焼装置及びその制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998944243

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09508933

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007002995

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2304464

Country of ref document: CA

Ref country code: CA

Ref document number: 2304464

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1998944243

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007002995

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007002995

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998944243

Country of ref document: EP