WO1999015323A1 - Procede de fabrication d'un profile composite ondule - Google Patents

Procede de fabrication d'un profile composite ondule Download PDF

Info

Publication number
WO1999015323A1
WO1999015323A1 PCT/US1997/016686 US9716686W WO9915323A1 WO 1999015323 A1 WO1999015323 A1 WO 1999015323A1 US 9716686 W US9716686 W US 9716686W WO 9915323 A1 WO9915323 A1 WO 9915323A1
Authority
WO
WIPO (PCT)
Prior art keywords
plies
fiber
tool
valleys
applying
Prior art date
Application number
PCT/US1997/016686
Other languages
English (en)
Inventor
Peter Gregory Donecker
Lawrence Nicholas Varholak, Jr.
Mark John Schmitz
Harold Marion Goodridge
Jeffrey A. Lauder
Kirk Douglas Skaggs
Original Assignee
Dow-United Technologies Composite Products, Inc.
The Boeing Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow-United Technologies Composite Products, Inc., The Boeing Company filed Critical Dow-United Technologies Composite Products, Inc.
Priority to PCT/US1997/016686 priority Critical patent/WO1999015323A1/fr
Priority to AU44874/97A priority patent/AU4487497A/en
Publication of WO1999015323A1 publication Critical patent/WO1999015323A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/22Corrugating
    • B29C53/24Corrugating of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics

Definitions

  • This invention relates to a method of preparing a fiber preform and more particularly, to a method for preparing a corrugated fiber preform for producing a corrugated composite channel
  • a typical channel such as an I-beam, has a web section and upper and lower flange sections In a corrugated composite channel, the web section is not planar, but has undulations with peaks and valleys, which provides strength characteristics with particular application in aircraft because of their unique structural properties
  • corrugated channel refers to such a structure
  • a "preform" is a group of fiber plies having the shape of the finished part, with the plies being suitably debulked and stabilized for placement in a closed mold for resin injection in accordance with a resin transfer molding process
  • a method which comprises (i) providing one or more fiber plies containing a stabilizer and having a thickness no greater than 0 07 inch, (n) placing the plies over a shaping tool, having peaks and valleys to form corrugations, (in) forcing the fiber plies to conform to the corrugations, using a plurality of corrugating tools, each corrugating tool having a shape to match a single valley, for holding the plies against the shaping tool, (iv) wiping portions of the fiber plies over sides of the shaping tool to form channel flange portions, (v) applying restraining means sequentially in each of the valleys, as each individual corrugating tool is lifted, to hold the fiber plies on the shaping tool, (vi) subjecting the plies to a compressive force and heating the plies to debulk and stabilize the fiber plies such that they maintain the corrugated shape; (vn) cooling the assembly; (VIM) removing the compressive force and restraining means, and then (
  • preforms of virtually any thickness can be assembled into the proper shape, without wrinkling of the individual plies, thus assuring higher yields in part production, while avoiding weaknesses in the finished structure.
  • Figure 1 a is a side view of the tool for forming a corrugated composite channel, and a ply of fiber material
  • Figure 1 b is a side view showing the forming of the ply to the first valley
  • Figure 1 c is a side view showing all of the corrugating tools in place.
  • Figure 1 d is a side view showing the application of restraining straps to the shaped ply.
  • Figure 2 is a transverse cross-sectional view of the fiber ply located on the preforming tool with a corrugation foot located in one of the undulations of the tool, taken along line 2-2 of Figure 1 c.
  • Figure 3 is a transverse cross-sectional view showing the formation of the flange portions of the channel during wiping of the fiber ply against the sides of the shaping tool.
  • Figure 4 is a transverse cross-sectional view of the preform tool and fiber ply taken along line 3-3 of Figure 1 d.
  • Figure 5 is a transverse cross-sectional view, showing the application of a vacuum bag over the fiber ply.
  • Figure 6 is a transverse cross-sectional view, similar to Figure 2, showing the application of a second fiber ply for the sequential assembly of additional plies to increase the preform thickness.
  • Figure 7 is a transverse cross-sectional view, showing a multi-ply assembly
  • Figure 8 is a schematic perspective view of a corrugated channel preform produced in accordance with the method of the invention.
  • a preforming tool 1 includes a shaped surface 2 which has the features of the article to be produced
  • the tool has a plurality of undulations, with peaks 3 and valleys 4, for forming a corrugated surface which will be a web section of a structural channel
  • the side surfaces 5 of the tool are of sufficient length to produce and form a pair of flanges disposed on opposite sides of the corrugated web of the channel.
  • a fiber reinforced composite channel may require the provision of up to 30 or more fiber plies to be assembled, shaped, and debulked, meaning compacted to form a dense fiber preform. It is also preferred to stabilize the preform so that it maintains its compacted shape and this is usually accomplished by using fiber plies containing a stabilizer, which will be discussed further below. Such a preform is later placed into a mold where the fiber plies are infiltrated with resin which is then cured to produce the finished part.
  • a single ply 6 of fiber material is shown adjacent to the surface 2
  • the process will be described in relation to a single ply, but the process is applicable to using a group of plies, so long as the thickness is no greater than about 0.07 inch, with graphite fibers. The following description is thus not limited to treating a single ply alone
  • Such ply material is typically provided in a flat sheet, similar to cloth, which is taken from a roll and cut to the length and width required.
  • a fiber ply is typically of sufficient pliability to be adapted to most shaped surfaces.
  • there is a natural tendency to return to the flat shape which may cause shifting of the fiber ply after it is applied to the tool.
  • means are required to secure the plies during assembly.
  • a corrugating tool 7 is shown which is used to press the fiber ply 6 so as to conform to the valley 4 of the shaping tool.
  • Each tool has an end 8 which corresponds in shape to the shape of the valley.
  • a second tool 9 is inserted into the next valley 10, with the process continuing until all the valleys are filled, as shown in Figure 1 c.
  • all the corrugating tools can be used at the same time, if done slowly to allow the ply to shift to conform to the surface.
  • the sequence of application of the corrugating tools is left to the user's discretion. However, in some instances, it is preferred to begin at the middle and then apply the tools out to the ends, while in others it may be preferred to work from a first end to a second end of the shaping tool Further, it should be recognized that the shaping tool itself may be the actual mold such that the plies are assembled on the mold surface, avoiding the need to remove the shaped preform from the mold Rather, after assembly, the mold is closed and resin injected to produce the part, avoiding an intermediate handling step.
  • side portions 1 1 and 12 of the fiber ply 6 are in essence draped over the tool 1.
  • these portions must be pressed against the sides 5 of the preforming tool, so as to substantially attain the shape of the flange portions.
  • a tool 13 is used to press or wipe the side portion 11 against the tool 1.
  • the wiping step should be repeated several times so as to assure that the fiber ply maintains substantially the side flange shape. Excess fiber 1 1 a at the periphery of the side portion may be removed at this time.
  • a resilient strap 14 is located within the valley 10 to hold the fiber ply 6 in position, after the corrugating tool 9 is removed. Once strapped to prevent movement, the tool is relocated in the valley, as shown in Figure 1 d. The sequence is repeated, that is, the next tool is lifted, an elastic strap or other restraining means are placed into the valley to hold the fiber ply in position and the tool returned.
  • an elastic strap 14 is tensioned and anchored on opposite sides of the tool so as to hold the fiber ply in the shaped condition. After all the shapes are in position, the corrugating tools are removed.
  • a release film 15 is applied over the fiber ply. This is done over the elastic straps to assure that fiber shifting does not occur.
  • An air impermeable barrier layer 16, such as a vacuum bag is then placed over the release film, with the ends sealed with a clamp 17. It should be understood that vacuum bag systems are available that have integral seals and that function without clamps, and such systems, among others known in the industry may be used in the present invention.
  • the fiber ply 6 is subjected to a compressive force, preferably using vacuum, that is, air is removed from the beneath the ply and atmospheric pressure thus compresses the fiber ply.
  • the fiber ply is then heated to a melting temperature of a polymeric material referred to as a "stabilizer" which is used to hold the fabric layer in the shape of the tool.
  • a stabilizer which contains either (i) a single resin that is capable of at least partially curing with itself, or (n) a mixture containing resin and hardener that is capable of at least partial curing, such as described in U.S.
  • Patents 5,427,725 or 5,427,726 examples include epoxy resins, polyamide and particularly bismaleimide resins, polycyanate ester resins, vinyl ester resins (with suitable initiators and promoters) and benzocyclobutene resins. The most preferred example is 1 ,1 '-MDA bismaleimide resin.
  • suitable polyamide and bismalemide resins are described in Stenzenberger, "Recent Advances in Thermosetting Polyimides,", 20 British Polymer Journal 383,393 (1988).
  • suitable commercially available resins that can cure with themselves include 5250-4-RTM BMI resin, manufactured by Cytec Chemical Co.
  • any fiber material such as glass, graphite, silicon carbide or aramid may be used, as well as any fiber type or size, for producing the fiber ply.
  • the fibers themselves may be of any particular orientation desired in the finished part and may comprise weaved, or braided fibers, among others.
  • the impermeable layer, restraining means and release film are removed.
  • a second fiber ply is placed over the first ply using the same sequence of steps described in relation to the first ply.
  • Figure 6 shows a second ply 20 placed over the first shaped and stabilized ply 6, using the same tool 8. The process is repeated until the desired number of fiber plies are properly assembled.
  • the number of fiber plies can be from 2 to 30 or more, depending on the construction sought.
  • Figure 7 shows a stabilized preform 21 on the tool 1 having four plies 6, 20, 22 and 23 which have been processed through the stabilization step More plies could be added as required.
  • Figure 8 shows a final preform 23 removed from the tool and ready for molding.
  • the final step in producing the corrugated composite channel is to place the preform 23 into a mold, injecting resin into the mold and curing the resin
  • any resin can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une préforme ondulée et renforcée par des fibres permettant d'obtenir un profilé ondulé. Ce procédé consiste à appliquer successivement des couches de fibres sur un outil de façonnage, chacune des couches étant formée individuellement selon les contours de l'outil de façonnage, au moyen d'un outil d'ondulation. Des moyens de retenue servent à maintenir les couches en conformité avec l'outil. Le procédé consiste ensuite à réduire le volume des couches et à les chauffer pour stabiliser les couches de fibres une fois qu'elles adoptent la forme voulue. On applique des couches supplémentaires au moyen de processus d'application, de formage, de retenue et de stabilisation permettant de produire une préforme fibreuse épaisse et réduite en volume. On évite ainsi le plissement des fibres dans la partie arrondie comprise entre l'âme et les parties latérales du profilé ondulé.
PCT/US1997/016686 1997-09-19 1997-09-19 Procede de fabrication d'un profile composite ondule WO1999015323A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/US1997/016686 WO1999015323A1 (fr) 1997-09-19 1997-09-19 Procede de fabrication d'un profile composite ondule
AU44874/97A AU4487497A (en) 1997-09-19 1997-09-19 Method for fabricating a corrugated composite channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1997/016686 WO1999015323A1 (fr) 1997-09-19 1997-09-19 Procede de fabrication d'un profile composite ondule

Publications (1)

Publication Number Publication Date
WO1999015323A1 true WO1999015323A1 (fr) 1999-04-01

Family

ID=22261678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/016686 WO1999015323A1 (fr) 1997-09-19 1997-09-19 Procede de fabrication d'un profile composite ondule

Country Status (2)

Country Link
AU (1) AU4487497A (fr)
WO (1) WO1999015323A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002092330A1 (fr) * 2001-05-11 2002-11-21 Saab Ab Procede et dispositif de fabrication de materiaux composites et d'elements en feuilles liees
FR2850900A1 (fr) * 2003-02-07 2004-08-13 Habasit Italiana Procede et equipement pour profiler en continu un cable en matiere plastique selon un profil ondule
WO2011039484A1 (fr) * 2009-10-01 2011-04-07 Airbus Operations (S.A.S) Procédé et dispositif pour la fabrication automatisée de préformes fibreuses sèches
WO2014033390A1 (fr) * 2012-08-28 2014-03-06 Snecma Dispositif et procédé pour la réalisation de préformes
WO2019178072A1 (fr) * 2018-03-12 2019-09-19 Cytec Industries Inc. Fabrication de structures composites tridimensionnelles
US10583617B2 (en) 2016-11-28 2020-03-10 General Electric Company Automatic systems and methods for stacking composite plies
FR3088570A1 (fr) * 2018-11-16 2020-05-22 Institut De Recherche Technologique Jules Verne Procede de fabrication d'une preforme fibreuse
EP4043190A4 (fr) * 2020-01-17 2022-10-26 Mitsubishi Heavy Industries, Ltd. Méthode de fabrication d'une structure de matériau composite, et corps stratifié

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329194A (en) * 1980-08-18 1982-05-11 Composite Technology, Inc. Method for constructing fiberglass articles
EP0350633A1 (fr) * 1988-06-13 1990-01-17 Honda Giken Kogyo Kabushiki Kaisha Moule et procédé pour le moulage de plastiques renforcé de fibres
EP0368734A1 (fr) * 1988-11-08 1990-05-16 AEROSPATIALE Société Nationale Industrielle Outillage pour le moulage de panneaux auto-raidis en matériau composite
WO1991010547A1 (fr) * 1990-01-11 1991-07-25 Freeman Chemical Corporation Procede pour former des articles en plastique moule renforce par des fibres et preformes pour ce faire utilisant un liant photodurcissable
DE4234002A1 (de) * 1992-10-09 1994-04-14 Eurocopter Deutschland Verfahren und Vorrichtung zum Herstellen eines Faserverbundbauteils
JPH08156087A (ja) * 1994-12-09 1996-06-18 Showa Aircraft Ind Co Ltd コルゲート成形装置、パネル成形装置、および繊維強化プラスチック製のハニカムコア
JPH0911371A (ja) * 1995-06-27 1997-01-14 Showa Aircraft Ind Co Ltd 繊維強化プラスチック製のハニカムコアの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329194A (en) * 1980-08-18 1982-05-11 Composite Technology, Inc. Method for constructing fiberglass articles
EP0350633A1 (fr) * 1988-06-13 1990-01-17 Honda Giken Kogyo Kabushiki Kaisha Moule et procédé pour le moulage de plastiques renforcé de fibres
EP0368734A1 (fr) * 1988-11-08 1990-05-16 AEROSPATIALE Société Nationale Industrielle Outillage pour le moulage de panneaux auto-raidis en matériau composite
WO1991010547A1 (fr) * 1990-01-11 1991-07-25 Freeman Chemical Corporation Procede pour former des articles en plastique moule renforce par des fibres et preformes pour ce faire utilisant un liant photodurcissable
DE4234002A1 (de) * 1992-10-09 1994-04-14 Eurocopter Deutschland Verfahren und Vorrichtung zum Herstellen eines Faserverbundbauteils
JPH08156087A (ja) * 1994-12-09 1996-06-18 Showa Aircraft Ind Co Ltd コルゲート成形装置、パネル成形装置、および繊維強化プラスチック製のハニカムコア
JPH0911371A (ja) * 1995-06-27 1997-01-14 Showa Aircraft Ind Co Ltd 繊維強化プラスチック製のハニカムコアの製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 9634, Derwent World Patents Index; Class AP, AN 96-337906 (34) *
DATABASE WPI Section Ch Week 9712, Derwent World Patents Index; Class AP, AN 97-127679 (12) *
G. MUSCH (HUBER & SUHNER AG, SWITZERLAND) AND W. BISHOP (AEROCONSULTANTS LTD. UNITED KINGDOM): "TOOLING WITH REINFORCED ELASTOMERIC MATERIALS", COMPOSITES MANUFACTURING, vol. 3, no. 2, 1992, OXFORD, GB, pages 101 - 111, XP000300776 *
PATENT ABSTRACTS OF JAPAN vol. 96, no. 10 31 October 1996 (1996-10-31) *
PATENT ABSTRACTS OF JAPAN vol. 97, no. 5 30 May 1997 (1997-05-30) *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002092330A1 (fr) * 2001-05-11 2002-11-21 Saab Ab Procede et dispositif de fabrication de materiaux composites et d'elements en feuilles liees
US6967000B2 (en) 2001-05-11 2005-11-22 Saab Ab Method and device for fabricating composite materials and bonded sheet items
FR2850900A1 (fr) * 2003-02-07 2004-08-13 Habasit Italiana Procede et equipement pour profiler en continu un cable en matiere plastique selon un profil ondule
DE102004005703B4 (de) * 2003-02-07 2015-04-02 Habasit Italiana Spa Verfahren und Apparatur zur kontinuierlichen Formung eines Streifens aus Kunststoff mit einem gewellten Profil
CN102596547A (zh) * 2009-10-01 2012-07-18 空中客车运营简化股份公司 用于自动生产干纤维预成型件的方法及设备
US9010395B2 (en) 2009-10-01 2015-04-21 Airbus Operations S.A.S. Method and device for the automated production of dry fibrous preforms
FR2950833A1 (fr) * 2009-10-01 2011-04-08 Airbus Operations Sas Procede et dispositif pour la fabrication automatisee de preformes seches circulaires
WO2011039484A1 (fr) * 2009-10-01 2011-04-07 Airbus Operations (S.A.S) Procédé et dispositif pour la fabrication automatisée de préformes fibreuses sèches
CN102596547B (zh) * 2009-10-01 2014-12-03 空中客车运营简化股份公司 用于自动生产干纤维预成型件的方法及设备
RU2537012C2 (ru) * 2009-10-01 2014-12-27 Эрбюс Операсьон (С.А.С) Способ и устройство для автоматизированного изготовления сухих волокнистых заготовок
FR2994887A1 (fr) * 2012-08-28 2014-03-07 Snecma Dispositif et procede pour la realisation de preformes
WO2014033390A1 (fr) * 2012-08-28 2014-03-06 Snecma Dispositif et procédé pour la réalisation de préformes
US9919457B2 (en) 2012-08-28 2018-03-20 Snecma Method for producing preforms
RU2648322C2 (ru) * 2012-08-28 2018-03-23 Снекма Устройство и способ изготовления заготовок
US10583617B2 (en) 2016-11-28 2020-03-10 General Electric Company Automatic systems and methods for stacking composite plies
WO2019178072A1 (fr) * 2018-03-12 2019-09-19 Cytec Industries Inc. Fabrication de structures composites tridimensionnelles
US11654647B2 (en) 2018-03-12 2023-05-23 Cytec Industries Inc. Fabrication of three-dimensional composite structures
FR3088570A1 (fr) * 2018-11-16 2020-05-22 Institut De Recherche Technologique Jules Verne Procede de fabrication d'une preforme fibreuse
WO2020099364A1 (fr) * 2018-11-16 2020-05-22 Institut De Recherche Technologique Jules Verne Procede de fabrication d'une preforme fibreuse
EP4043190A4 (fr) * 2020-01-17 2022-10-26 Mitsubishi Heavy Industries, Ltd. Méthode de fabrication d'une structure de matériau composite, et corps stratifié

Also Published As

Publication number Publication date
AU4487497A (en) 1999-04-12

Similar Documents

Publication Publication Date Title
US5882462A (en) Method for fabricating a corrugated composite channel
KR920003060B1 (ko) 섬유 강화 플라스틱 성형품 및 그의 제조방법
US4747898A (en) Method of making a plastic leaf spring
US5204033A (en) Method of fabricating a preform in a resin transfer molding process
JP4425424B2 (ja) 繊維強化複合材からなるジョグル付き半硬化物品の製造方法、及びそれを用いた予備成形構造体の製造方法
CN101287587B (zh) 制造rtm复合材料部件的方法和由此得到的复合材料连杆
US7655168B2 (en) Tools for manufacturing composite parts and methods for using such tools
US7815160B2 (en) Composite mandrel
RU2479424C2 (ru) Способ формования заготовки
EP0585545B1 (fr) Tampon de dégavage en fibres de nylon
US8034268B2 (en) Method for manufacturing lightweight composite fairing bar
US4892772A (en) Fiber reinforced resin sheets
US5176949A (en) Textile reinforcements for composite materials and method of manufacturing thereof
JPH02209929A (ja) 繊維強化プラスチック成形用プリフォーム及びその製造方法
EP0082202A4 (fr) Procede de fabrication d'une preforme a partir d'un materiau composite renforce avec des fibres.
WO1999015323A1 (fr) Procede de fabrication d'un profile composite ondule
WO2019012242A1 (fr) Appareil et méthode de superposition composite
JP2009073918A (ja) プリフォームの製造方法
GB2147850A (en) "Fibre-reinforced thermoplastic laminate
US5312579A (en) Low pressure process for continuous fiber reinforced polyamic acid resin matrix composite laminates
CN115256998A (zh) 在复合材料构件压实过程中抑制纤维起皱的方法
US20220118718A1 (en) Fabrication of three-dimensional structures from preform blanks
EP0337648A2 (fr) Méthode de renforcement continue pour paliers laminés flexibles
JPS5929829A (ja) 繊維強化プラスチツク製板バネ
JPH11286055A (ja) 繊維強化樹脂製品の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase