WO1999010435A1 - Heat-resistant, lowly dielectric high-molecular material, and films, substrates, electric components and heat-resistant resin moldings produced therefrom - Google Patents

Heat-resistant, lowly dielectric high-molecular material, and films, substrates, electric components and heat-resistant resin moldings produced therefrom Download PDF

Info

Publication number
WO1999010435A1
WO1999010435A1 PCT/JP1998/003764 JP9803764W WO9910435A1 WO 1999010435 A1 WO1999010435 A1 WO 1999010435A1 JP 9803764 W JP9803764 W JP 9803764W WO 9910435 A1 WO9910435 A1 WO 9910435A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
resin
dielectric
resistant
segment
Prior art date
Application number
PCT/JP1998/003764
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiaki Yamada
Takeshi Takahashi
Yoshiyuki Yasukawa
Kenji Endou
Shigeru Asami
Michihisa Yamada
Yasuo Moriya
Original Assignee
Tdk Corporation
Nof Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation, Nof Corporation filed Critical Tdk Corporation
Priority to DE69840379T priority Critical patent/DE69840379D1/en
Priority to EP98938977A priority patent/EP0953608B1/en
Publication of WO1999010435A1 publication Critical patent/WO1999010435A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/442Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from aromatic vinyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0838Copolymers of ethene with aromatic monomers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer
    • Y10T428/31917Next to polyene polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31924Including polyene monomers

Definitions

  • the present invention relates to a novel heat-resistant low-dielectric polymer material, and a film, a substrate, an electronic component and a heat-resistant resin molded product using the same. More specifically, it has low dielectric constant, low dielectric loss tangent, high heat resistance up to high temperature range, excellent adhesion or adhesion to metal and metal foil, especially in high frequency band, injection molding, pressing
  • the present invention relates to a low dielectric constant polymer material having a molding capability of molding, transfer molding, and extrusion molding. Further, the low dielectric constant polymer material can be formed into a film by itself, and the obtained film is thermally fused. And a substrate obtained by stacking. Background art
  • the frequency band of radio waves used in portable mobile communications such as car phones and digital cellular phones, and satellite communications is in the high-frequency band from mega to giga Hz.
  • housings, substrates, and electronic devices are being miniaturized and densely mounted, etc., with the rapid development of communication devices used.
  • electrical insulating material that combines excellent high-frequency transmission characteristics with appropriate low dielectric properties. is necessary.
  • the Enerugi losses in the transmission process is said to dielectric loss Sunawa Chi element circuit occurs This energy loss is not preferable because it is consumed as heat energy in the element circuit and released as heat.
  • This energy loss is caused by the change in the electric field of the dipole caused by the dielectric polarization in the low frequency region, and is caused by the ionic polarization and the electronic polarization in the high frequency region.
  • the ratio of the energy consumed in the dielectric per cycle of the alternating electric field to the energy stored in the dielectric is called the dielectric loss tangent and is expressed as tan ⁇ .
  • the dielectric loss is proportional to the product of the relative permittivity ⁇ and the dielectric loss tangent of the material. Therefore, ta ⁇ ⁇ increases with increasing frequency in the high frequency range.
  • thermoplastic resins such as polyolefin, vinyl chloride resin, and fluororesin, unsaturated polyester resins, polyimide resins, epoxy resins, and the like.
  • thermosetting resins such as vinyl triazine resin ( ⁇ resin), crosslinkable polyphenylene oxide, and curable poly (phenylene ether) have been proposed.
  • polyolefins such as polyethylene and polypropylene as in Japanese Patent Publication No. 52-31272 have covalent bonds such as C-C bonds. Since it has no large polar group and has excellent electrical resistance, it has excellent insulation resistance, but has the disadvantage of low heat resistance. For this reason, the electrical characteristics (dielectric loss, dielectric constant, etc.) in use at high temperatures deteriorate, and it cannot be said that it is suitable as an insulating film (layer) such as a capacitor. Furthermore, polyethylene-polypropylene is once formed as a film, and this is coated and adhered to a conductive material using an adhesive, but this method not only complicates the processing steps but also forms the film. There are also problems with coating formation, such as making it very difficult to reduce the thickness of the layer.
  • Vinyl chloride resin has high insulation resistance, excellent chemical resistance and flame retardancy, but has the same drawback of poor heat resistance and large dielectric loss as polyolefin.
  • Polymers containing fluorine atoms in the molecular chain such as vinylidene fluoride resin, trifluoroethylene resin, and perfluoroethylene resin, have electrical properties (low dielectric constant and low dielectric loss), heat resistance, and chemical stability. Although it is excellent in formability, it has difficulty in forming workability such as obtaining a molded product or film by heat treatment like thermoplastic resin, film forming ability, and it is quite difficult to make a device. Cost. Furthermore, there is a disadvantage that the application field is limited due to low transparency.
  • the low-dielectric general-purpose polymer materials described above all have an allowable maximum temperature of less than 130 ° C, so the heat-resistant category specified in JIS-C4003 as Class B for electrical equipment insulation materials is Class B. Below, the heat resistance is insufficient.
  • resins having relatively good heat resistance include thermosetting resins such as epoxy resin, polyphenylene ether (PPE), unsaturated polyester resin, and phenol resin.
  • PPE polyphenylene ether
  • Epoxy resin satisfies the required performance in insulation resistance, dielectric breakdown strength and heat resistance temperature as seen in JP-A-6-192392.
  • the dielectric constant is relatively high at 3 or more, and satisfactory characteristics have not been obtained. It also has the drawback of poor thin film forming ability.
  • a dilute solution is prepared by dissolving the polymer in an organic solvent, and after spin coating, the solvent is evaporated to form an insulating film.
  • Solvents such as dimethylacetoamide / N-methylpyrrolidone, which are good solvents, are polar solvents and high boiling solvents, and therefore have a low evaporation rate and partially remain in the insulating film. Also, it is difficult to control the surface smoothness, homogeneity, etc. when thinning.
  • Epoxy-modified poly (phenylene ether) resin or poly (phenylene ether) resin also has poor workability and adhesiveness, and lacks reliability.
  • the viscosity of the polymer solution is relatively high, it is a fact that considerable technology is required to form a uniform and smooth film.
  • the object of the present invention is, firstly, to have heat resistance and good adhesion or adhesion to a metal conductor layer.
  • An object of the present invention is to provide a low-dielectric polymer material which is favorable, has a thin film forming ability, has a low dielectric constant and a low dielectric loss, has excellent insulating properties, and further has excellent weather resistance and workability.
  • a film is formed by itself using this low dielectric constant polymer material, and has low dielectric properties, excellent insulation, and excellent workability such as heat resistance, weather resistance, and moldability.
  • a resin composition comprising one or more resins having a weight average absolute molecular weight of 100 or more, wherein the sum of the number of carbon atoms and hydrogen atoms of the composition is at least 99% And a heat-resistant low-dielectric polymer material in which some or all of the resin molecules have a chemical bond with each other.
  • the resin composition is a copolymer in which a non-polar ⁇ -olefin polymer segment and / or a non-polar conjugated gen polymer segment and a vinyl aromatic polymer segment are chemically bonded.
  • (1) or (2) above which is a thermoplastic resin exhibiting a multiphase structure in which the dispersed phase formed by one segment is finely dispersed in the continuous phase formed by the other segment. Heat resistant low dielectric polymer material.
  • a heat-resistant low dielectric polymer material obtained by adding a non-polar ⁇ -olefin polymer containing a monomer of 4-methylpentene-11 to the resin composition according to any one of the above (1) to (6). .
  • FIG. 1 is a TEM photograph of the graft copolymer of the present invention.
  • FIG. 2 is a schematic configuration diagram illustrating a ring resonator used for evaluating the characteristics of a substrate.
  • FIG. 3 is a graph showing the relationship between the Q value and the frequency of the substrate.
  • FIG. 4 is a schematic configuration diagram illustrating chip induction. BEST MODE FOR CARRYING OUT THE INVENTION
  • the heat-resistant low-dielectric polymer material of the present invention is a resin composition comprising one or more resins having a weight-average absolute molecular weight of 100 or more, and comprises a carbon atom and a hydrogen atom.
  • the total number of atoms is at least 99%, and some or all of the resin molecules are chemically bonded to each other.
  • the weight-average absolute molecular weight is less than 10 °, the mechanical properties, heat resistance, etc. become insufficient, which is not suitable. It is particularly preferably at least 300, and most preferably at least 500.
  • the upper limit of the weight average absolute molecular weight at this time is not particularly limited, but is usually about 1,000,000.
  • the reason why the sum of the number of atoms of carbon and hydrogen is set to 99% or more in the resin composition of the present invention is to make the existing chemical bond a non-polar bond, thereby providing heat resistance and low dielectric constant.
  • the electric characteristics when used as a polymer material are sufficient.
  • the sum of the numbers of carbon and hydrogen atoms is less than 99%, especially when the number of atoms forming polar molecules such as oxygen atoms and nitrogen atoms is more than 1%, the electrical properties, In particular, the dielectric loss tangent is high, which is not suitable.
  • the resin constituting the polymer material include low-density polyethylene, ultra-low-density polyethylene, ultra-low-density polyethylene, high-density polyethylene, low-molecular-weight polyethylene, ultra-high-molecular-weight polyethylene, ethylene-propylene copolymer, Homo- or copolymers of non-polar ⁇ -olefins such as propylene, polybutene, poly 4-methylpentene, etc.
  • (co) polymers butadiene, isoprene, pendugen, hexadiene, hexadiene, octadiene, Fenilbu (Co) polymer of conjugated monomer such as styrene, diphenylbutadiene, styrene, nucleus-substituted styrene, such as methylstyrene, dimethylstyrene, ethylstyrene, isopropylstyrene, chlorostyrene, ⁇ -substituted styrene, such as ⁇ Examples include (co) polymers of each monomer of carbon ring-containing vinyl such as methyl styrene, ethyl styrene, divinylbenzene, and vinylcyclohexane.
  • polymers of non-polar ⁇ -olefins, conjugated monomers, and carbon ring-containing vinyl monomers are mainly exemplified.
  • conjugated monomers, non-polar ⁇ -olefin and carbon ring-containing vinyl monomers You may.
  • a resin composition is composed of one or more of these polymers, that is, a resin, and a part or all of these resin molecules must be chemically bonded to each other. . Therefore, some may be in a mixed state.
  • a chemical bond at least in part as described above, the strength, adhesion to metal, and heat resistance when used as a heat-resistant low-dielectric high-molecular material are sufficient.
  • it is a mere mixture and has no chemical bond, it is insufficient from the viewpoint of heat resistance and mechanical properties.
  • the form of the chemical bond in the present invention is not particularly limited, and examples thereof include a crosslinked structure, a block structure, and a graft structure.
  • a known method may be used to generate such a chemical bond. Preferred embodiments of the graft structure and the block structure will be described later.
  • As a specific method for generating a crosslinked structure crosslinking by heat is preferable, and the temperature at this time is preferably about 50 to 300 ° C.
  • the presence or absence of a chemical bond according to the present invention can be confirmed by determining the degree of crosslinking and, in the case of a graft structure, the graft efficiency.
  • FIG. 1 R U_ ⁇ 2 stained ultra thin TEM photograph of the graph Bok copolymer detailing (graft polymer A of Example 9 described later) is shown below.
  • the other polymer segment is dispersed in one polymer segment as fine particles of about 10 / xm or less, more specifically, 0.01 to 10 / xm. Understand.
  • a mere mixture (blend polymer) does not show compatibility between the two polymers, such as a graft copolymer, and the dispersed particles have a large particle size.
  • the resin composition of the present invention is a copolymer in which a non-polar ⁇ -olefin polymer segment and a vinyl aromatic copolymer segment are chemically bonded, and is formed by one segment.
  • a preferable example is a thermoplastic resin having a multiphase structure in which the dispersed phase is finely dispersed in a continuous phase formed from the other segment.
  • the non-polar ⁇ -olefin polymer which is one of the segments in the thermoplastic resin having the specific multiphase structure as described above, is a non-polar polymer obtained by high-pressure radical polymerization, medium-low pressure ion polymerization, or the like. It must be a homopolymer of a refining monomer or a copolymer of two or more non-polar ⁇ -refining monomers. Copolymers with polar vinyl monomers are unsuitable because of their high dielectric loss tangent.
  • Examples of the nonpolar ⁇ -olefin monomer of the above polymer include ethylene, propylene, butene-11, hexene-1, octene-1,4-methylpentene-1. Among them, ethylene, propylene, butene— 1,4-methylpentene is preferred because the dielectric constant of the obtained non-polar olefin polymer is low.
  • non-polar ⁇ -polyolefin (co) polymer examples include low-density polyethylene, ultra-low-density polyethylene, ultra-low-density polyethylene, high-density polyethylene, low-molecular-weight polyethylene, ultra-high-molecular-weight polyethylene, and ethylene-propylene. Copolymers, polypropylene, polybutene, poly 4-methylpentene, and the like. Also, These non-polar ⁇ -olefin refin (co) polymers can be used alone or in combination of two or more.
  • the preferred molecular weight of such a non-polar polyolefin (co) polymer is 100,000 or more in absolute weight.
  • the upper limit is not particularly limited, but is about 1,000,000.
  • the vinyl aromatic polymer which is one of the segments in the thermoplastic resin exhibiting a specific multiphase structure, is a non-polar polymer, specifically, styrene, styrene with a nuclear substitution, For example, methyl styrene, dimethyl styrene, ethyl styrene, isopropyl styrene, chloro styrene, 0; -substituted styrene, for example, ⁇ -methyl styrene, ⁇ -ethyl styrene, o_, m—, p-divinylbenzene (preferably m—, p— It is a (co) polymer of each monomer such as divinylbenzene, particularly preferably p-divinylbenzene.
  • the reason why the non-polar one is used is that if a monomer having a polar functional group is introduced by copolymerization, the dielectric loss tangent becomes high, which is not suitable.
  • the vinyl aromatic polymer may be used alone or in combination of two or more.
  • the vinyl aromatic copolymer is preferably a vinyl aromatic copolymer containing a divinylbenzene monomer from the viewpoint of improving heat resistance.
  • the vinyl aromatic copolymer containing divinylbenzene include styrene, a nucleus-substituted styrene such as methylstyrene, dimethylstyrene, ethylstyrene, isopropylstyrene, chlorostyrene, and ⁇ -substituted styrene such as ⁇ -methylstyrene.
  • copolymers of monomers such as ⁇ -ethyl styrene and divinylbenzene.
  • the ratio of the divinylbenzene monomer to the other vinyl aromatic monomer as described above is not particularly limited, but in order to satisfy the solder heat resistance, the ratio of the divinylbenzene monomer is reduced. It is preferable that the content is 1% by weight or more.
  • the divinylbenzene monomer may be 100% by weight, but the upper limit is 90% by weight due to synthesis problems. Is preferred.
  • the molecular weight of the vinyl aromatic polymer as one of the segments is 100 or more in terms of weight average absolute molecular weight.
  • the upper limit is not particularly limited, but is about 1,000,000.
  • the thermoplastic resin having a specific multiphase structure according to the present invention contains 5 to 95% by weight, preferably 40 to 90% by weight, and most preferably 50 to 80% by weight of the olefin polymer segment. It becomes. Therefore, the content of the vinyl polymer segment is 95 to 5% by weight, preferably 60 to 10% by weight, and most preferably 50 to 20% by weight. If the number of the olefin polymer segments is small, the molded product becomes brittle, which is not preferable. Further, when the number of the olefin polymer segments is large, the adhesion to the metal is low, which is not preferable.
  • the weight average absolute molecular weight of such a thermoplastic resin is 1000 or more.
  • the upper limit is not particularly limited, but is about 1,000,000 from the viewpoint of moldability.
  • the copolymer having a structure in which the olefin polymer segment and the vinyl polymer segment are chemically bonded include a block copolymer and a graft copolymer. Above all, a graft copolymer is particularly preferred because of ease of production. Note that these copolymers may include an olefin polymer or a vinyl polymer without departing from the characteristics of the block copolymer, the graft copolymer, and the like.
  • the method for producing the thermoplastic resin having a specific multiphase structure of the present invention may be any method such as a chain transfer method and an ionizing radiation irradiation method which are generally well-known as a grafting method. Is based on the method shown below. This is because the grafting efficiency is high and secondary aggregation due to heat does not occur, so that the expression of performance is more effective and the manufacturing method is simple.
  • the graft copolymer which is a thermoplastic resin showing a specific multiphase structure of the present invention
  • the manufacturing method will be specifically described in detail. That is, 100 parts by weight of the olefin polymer is suspended in water, and separately added to 5 to 400 parts by weight of a vinyl aromatic monomer, the following general formula:
  • One to one or a mixture of two or more of the radically polymerizable organic peroxides represented by (1) or (2) is used in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the vinyl monomer.
  • the vinyl monomer, the radical polymerizable organic peroxide and the radical polymerization initiator are impregnated into the olefin-based polymer, and the temperature of the aqueous suspension is increased. And a radical polymerizable organic peroxide are copolymerized in an olefin copolymer to obtain a graft precursor.
  • the graft copolymer of the present invention can be obtained by kneading the grafting precursor under melting at 100 to 300 ° C.
  • a graphitic copolymer can be obtained by separately mixing an olefin polymer or a vinyl polymer with the grafting precursor and kneading the mixture under melting.
  • a graft copolymer obtained by kneading a grafting precursor General formula (1)
  • R represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms
  • R " represents a hydrogen atom or a methyl group
  • R :, and R. respectively represent 1 to 4 carbon atoms
  • R 5 represents an alkyl group having 1 to 12 carbon atoms, a phenyl group, or an alkyl-substituted alkyl group.
  • ir is 1 or 2.
  • R fi represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 7 represents a hydrogen atom or a methyl group
  • R 8 and R 9 each represent an alkyl group having 1 to 4 carbon atoms.
  • R 1 (> represents an alkyl group having 1 to 12 carbon atoms, a phenyl group, an alkyl-substituted phenyl group, or a cycloalkyl group having 3 to 12 carbon atoms.
  • M 2 is 0, 1 or 2 is there.
  • Examples of the radically polymerizable organic peroxide represented by the general formula (1) include t-butyl benzoylacryloyloxetyl carbonate; t-amylperoxy acryloyloxetyl carbonate; —T; t—Hexylperoxyacryloyl mouth quichetyl carbonate; 1,1,3,3-tetramethylbutyl peroxyacyl royloxetyl carbonate; cumylperoxya creroyloxie Circa-carbonate; p-Isopropircumylperoxyacryloyloxyshetyl carbonate; t-Butylperoxime acryloyloxyshetyl carbonate; t-milperoxymethacryloyloxyshetyl carbonate; t —Hexylperoxy methacryloyloxetyl carbonate; 1,1,3,3-tetramethylbutyroperoxymethac Roy Loki Chez chill carbonate; cumyl O
  • compounds represented by the general formula (2) include t-butylperoxyarylcarbonate; t-amylperoxyaryl force-bonnet; t-hexylperyl. 1,1,3,3-tetramethylbutylperoxyarylcarbonate; p-menthaneperoxyarylcarbonate; cumylbenzyloxyarylcarbonate; t-butylperoxymethallylcarbonate; t T-hexylperoxymethallyl carbonate; 1,1,3,3-tetramethylbutylbenzyloxymethallyl carbonate; p-menthamperoxymethallyl carbonate; cumylbell Oxymethalyl ruperoxyaryloxyshetyl carbonate; t-hexylperoxyaryloxyshetyl carbonate; t-butylperoxymetalaryloxyshetyl carbonate; t-amylperoxymethyloxylyl carbonate; t-hexyl belo Tyl buty
  • t-butyl peroxyacryloyloxyshetyl carbonate preferred are t-butyl peroxime acryloyloxyshetyl carbonate; t-butyl peroxyaryl carbonate; t-butyl peroxylime carbonate Taryl carbonate.
  • the graft efficiency of the graft copolymer thus obtained is 20 to 100% by weight.
  • the grafting efficiency can be determined from the ratio of the ungrafted polymer after solvent extraction.
  • the thermoplastic resin having a specific multiphase structure according to the present invention includes a graft copolymer of the above-mentioned non-polar ⁇ -olefin polymer segment and a vinyl aromatic polymer segment.
  • a coalescence is preferable, in such a graft copolymer, a nonpolar conjugated polymer segment may be used instead of, or in addition to, the non-polar conjugated polymer segment.
  • the nonpolar conjugated gen-based polymer those described above can be used, and they may be used alone or in combination of two or more.
  • the non-polar ⁇ -olefin polymer in the above graft copolymer may contain a co-gen monomer, and the non-polar conjugated polymer may contain a single monomer of ⁇ -olefin.
  • the body may be included.
  • the obtained graft copolymer can be further crosslinked using divinylbenzene or the like.
  • a graphitic copolymer containing no divinylbenzene monomer is preferable from the viewpoint of improving heat resistance.
  • the thermoplastic resin having a specific multiphase structure of the present invention may be a block copolymer, and the block copolymer may be at least one polymer of a vinyl aromatic monomer,
  • a block copolymer containing one polymer of a conjugated gen can be mentioned, and it may be a linear type or a radial type, that is, a type in which a hard segment and a soft segment are radially bonded.
  • the polymer containing a co-gen may be a random copolymer with a small amount of a vinyl aromatic monomer, and is a so-called tapered block copolymer, that is, a vinyl aromatic unit in one block. The amount of the monomer may be gradually increased.
  • the structure of the block copolymer is not particularly limited, and may be any of ( ⁇ - ⁇ ) ⁇ - type, ( ⁇ - ⁇ ) ⁇ - ⁇ -type, or (A, B) n- C type.
  • A represents a polymer of a vinyl aromatic monomer
  • B represents a polymer of a conjugated gen
  • C represents a residue of a coupling agent
  • n represents an integer of 1 or more.
  • this block copolymer it is also possible to use a block copolymer in which the conjugated gen moiety is hydrogenated.
  • the non-polar conjugated Alternatively or additionally, the above-mentioned non-polar ⁇ -olefin polymer may be used, and the non-polar conjugated diene polymer may contain an ⁇ -olefin monomer, The non-polar ⁇ -olefin olefin polymer may contain a conjugated diene monomer.
  • the ratio of each segment in the block copolymer and the preferred embodiment are the same as those of the graft copolymer.
  • the resin composition of the present invention preferably a thermoplastic resin having a specific multiphase structure (particularly preferably a graft copolymer) is used in order to improve heat resistance. It is preferred to add a non-polar ⁇ -refined polymer containing a polymer.
  • a non-polar ⁇ -olefin polymer containing a monomer of 4-methylpentene-11 may be contained in the resin composition without a chemical bond in some cases. In such a case, the addition is not necessarily required. However, it may be further added to obtain predetermined characteristics.
  • the proportion of 4-methylpentene-11 monomer in such a non-polar ⁇ -olefin copolymer containing 4-methylpentene-11 monomer is preferably 50% by weight or more.
  • such a non-polar ⁇ -olefin-based copolymer may include a conjugated diene monomer.
  • non-polar ⁇ -methyl olefin copolymers containing 4-methylpentene-1 monomer include poly-4-methylpentene-11, which is a homopolymer of 4-methylpentene-1 monomer. Preferably, there is.
  • Poly 4-methyl pentene-1 is crystalline poly 4-methyl pentene-1 and is isotactic poly 4 obtained by polymerizing 4-methyl pentene-1 which is a dimer of propylene with a Ziegler-Natta catalyst or the like. -Methylpentene-1 is preferred.
  • the ratio of poly 4-methylpentene-1 to a thermoplastic resin exhibiting a specific multiphase structure is not particularly limited, but in order to satisfy heat resistance and adhesion to metals, poly 4-methyl
  • the ratio of chillpentene-1 is 10 to 90% by weight. If the ratio of poly (4-methylpentene) -11 is small, the solder heat resistance tends to be insufficient. Also, when the proportion of poly (4-methylpentene) -11 increases, the adhesion to metal tends to be insufficient.
  • the amount of addition when the copolymer is used may be based on this.
  • the softening point of the resin composition of the present invention (including those to which a non-polar a-olefin polymer containing a monomer of 4-methylpentene-1 is added) is 200 to 260 ° C, Sufficient solder heat resistance can be obtained by appropriately selecting and using.
  • the heat-resistant low-dielectric polymer material of the present invention can be obtained by, for example, a method of molding a resin material composed of the resin composition into a desired shape such as a thin film (film) by hot pressing or the like.
  • a method that melts and mixes with other thermoplastic resin with a shearing force for example, a roll mixer, a Banbury mixer, a kneader, a single-screw or twin-screw extruder, etc., and forms it into a desired shape.
  • a shearing force for example, a roll mixer, a Banbury mixer, a kneader, a single-screw or twin-screw extruder, etc.
  • the resin material of the present invention can be used in various forms, such as a film or a bulk-shaped molded article having a predetermined shape, and a film-shaped lamination. Therefore, various substrates for high-frequency electronic devices and electronic components (resonators, filters, capacitors, inductors, antennas, etc.), filters as chip components (for example, C filters that are multilayer substrates) and resonators (for example, a support plate for a triplate-type resonator) or a dielectric resonator, as well as a housing for various substrates or electronic components (for example, an antenna rod housing), a casing, or an electronic component or its housing / casing. be able to.
  • Substrates are expected to be used as substitutes for conventional glass epoxy substrates, and specific examples include on-board components mounting boards and Cu-clad laminates. Furthermore, it can also be used for circuit-embedded substrates and antenna substrates (such as patch antennas). It also requires heat treatment and is for high frequency bands of 10 O MH'z or more, but it is used for CPU on-board. It can also be used for a single substrate.
  • a multi-layer substrate can be obtained by laminating a metal conductor layer, which is a metal conductor film of copper or the like, between the films and / or the outermost layer and heat-sealing them. Also in this case, a film having good adhesion to the metal conductor film can be obtained.
  • a film having a thickness of 50 zm or more can be obtained by molding or the like, and for such a purpose, the thickness is set to 100 to 100 x m. In other words, it includes the thickness of what can be called a substrate.
  • the thickness of the copper foil preferably used as the metal conductor film is 18 to 35 m.
  • the thickness of the entire substrate, including the laminated type is usually 0.1 to 1.6i. However, depending on the case, the thickness may be larger than this, and the thickness may be about 10 Oimn.
  • the metal conductor film When the metal conductor layer is formed in a pattern, the metal conductor film may be patterned into a predetermined shape and then adhered. However, when the metal conductor film and the electrical insulating film are brought into close contact with each other by lamination, the outermost metal conductor layer may be patterned and then adhered, or may be patterned after being adhered and removed by etching. Good.
  • the metal conductor layer may be formed by a vacuum evaporation method or the like.
  • the silica powder used in the rigid substrate or the like conventionally as a reinforcing filler, an alumina powder, precipitated barium (B a S_ ⁇ 4) powder or the like, the thermal conductivity of control, expansion
  • the compound it is preferable to use the compound within a range that does not impair the low dielectric property (low dielectric constant, low dielectric loss tangent).
  • the reinforcing filler can be used alone or in combination.
  • the content of the resin material in the reinforcing filler-containing film is suitably from 10 to 70% by weight.
  • a film or substrate having sufficient strength, low dielectric properties, and heat resistance can be obtained.
  • Such a content is determined when laminating films or laminating substrates.
  • the resin paste may be realized by maintaining an amount (10% by weight or more) at which the resin material, that is, the resin material itself, can be thermally fused.
  • Examples of the molding method for forming the resin material of the present invention into a predetermined shape include those already described, and include a molding method, a compression method, an extrusion method, and the like. What is necessary is just to select the method which can be formed at low cost according to the intended use of the material.
  • the heat-resistant low-dielectric polymer material composed of the resin material of the present invention is preferably used in a high frequency band of 1 MHz or more.
  • the dielectric constant ( ⁇ ) is 1 or more, particularly in a frequency band of 60 MHz or more, particularly in a high frequency band of 60 MHz to 10 GHz.
  • a low-dielectric electrical insulating material having a dielectric loss tangent (t an ⁇ 5) of 0.0 to 3.0, usually having a dielectric loss tangent (t an ⁇ 5) of not more than 0.001 to 0.01.
  • the insulation resistivity of the polymer material of the present invention is 2 to 5 ⁇ 10 14 Qcm or more as a volume resistivity in a normal state.
  • the dielectric breakdown strength is strong, exhibiting excellent characteristics of 15 KV / mni or more, especially 18-30 KV thigh.
  • the polymer material of the present invention has excellent heat resistance and can withstand the heating temperature at the time of soldering. Therefore, it is preferably used not only for substrates and electronic components, but also for housing and packaging that requires such processing.
  • Example 1 Polyethylene “G401” l OOO g (trade name, manufactured by Nippon Polyolefin Co., Ltd.) was blended with 10 g of Park Mill D (trade name, manufactured by NOF Corporation), and the cylinder temperature was set to 140 ° C. The mixture was supplied to a coaxial twin-screw extruder having a screw diameter of 30 mm, extruded, and granulated to obtain a thermocrosslinkable polyethylene resin. The molecular weight of polyethylene was determined by measuring the weight average absolute molecular weight using high temperature GPC (manufactured by Waters Corporation). The contents of carbon and hydrogen in this resin were determined by elemental analysis.
  • GPC manufactured by Waters Corporation
  • the resin particles were hot-pressed at 220 ° C. by a hot press molding machine (manufactured by Kamishima Kikai Co., Ltd.) to produce a 1 Ocm ⁇ 1 Ocm ⁇ 0.1 cm test piece of an electrically insulating material.
  • 13 min x 65 x 6 mm test pieces were prepared as Izod impact test pieces and solder heat resistance test pieces using an injection molding machine. The following measurements were performed using the obtained test pieces, and the volume resistivity, dielectric strength, dielectric constant, dielectric loss tangent, solder heat resistance, Izod impact strength, and adhesion to metal were evaluated. The water absorption was measured using the obtained resin pellets.
  • Solder heat resistance 200 ° C, 230t: The test piece was immersed in the solder heated to 260 ° C for 2 minutes, and the degree of deformation was observed.
  • Izod impact strength (notched) (. In the table, marked with Izod also unit is kg ⁇ cmZcm 2.); JISK 71 10
  • Moldability The moldability when preparing an Izod impact test specimen with an injection molding machine, the moldability with a press machine, and the moldability when forming a film by extrusion molding were evaluated.
  • Table 1 shows the results of each test.
  • the dielectric constant in Table 1 indicates "the capacitance of the test piece as a dielectric in the case of no vacuum”.
  • the solder heat resistance indicates “ ⁇ is not deformed”, “deformation is weak”, and “X is largely deformed”.
  • the adhesiveness to metal indicates that “ ⁇ is good”, “ ⁇ part is peeled”, and “X is whole peeling”.
  • Bolylene having a weight average absolute molecular weight of 1000, 3000, and 5000 was melt-blended with Parkmill D in the same manner as in Example 1, and the obtained resin particles were molded in the same manner as in Example 1 and subjected to each test. .
  • the results are shown in Table 1.
  • the grafting precursor (a) is extruded at 200 ° C. with a Labo Plastomill single screw extruder (manufactured by Toyo Seiki Seisaku-sho, Ltd.), and the grafting reaction is carried out to obtain the graft copolymer (A). Obtained.
  • the graft efficiency of the styrene polymer segment was 50.1% by weight.
  • the grafting efficiency was calculated by extracting a non-grafted styrene polymer with ethyl acetate using a Soxhlet extractor and calculating the ratio.
  • the thermoplastic resin obtained in Example 9 was molded in the same manner as in Example 1, and each test was performed. Table 3 shows the results.
  • PE Polyethylene “G401” (trade name, manufactured by Nippon Polyolefin Co., Ltd.)
  • the grafted precursor (b) is extruded at 200 ° C. by a Lapoplast mill single screw extruder (manufactured by Toyo Seiki Seisaku-sho, Ltd.), and a grafting reaction is carried out to obtain a graft copolymer (K). Obtained.
  • the graft efficiency of the divinylbenzene-styrene copolymer was 50.1% by weight.
  • Example 2 The same test as in Example 1 was performed on the graft copolymer (K) obtained here. Table 5 shows the results of each test.
  • PE Polyethylene “G401” (trade name, manufactured by Nippon Polyolefin Co., Ltd.)
  • Example 1 9 20 2 1 2 2 23 24 Graft copolymer K and M N ⁇ P Charge composition PP: DVB PP-.DVB PP: ⁇ PP: PE: DVB PP: DVB
  • St St: St: St: St: DMS: St
  • St St: St: St: St: DMS: St
  • melt mixing method is as follows: After dry blending each resin, it is fed to a coaxial twin screw extruder with a screw diameter of 30 mm set at a cylinder temperature of 260 ° C, extruded, and granulated. I got
  • Resin (b) to (j) were obtained in the same manner as in Example 25.
  • Tables 6 and 7 show the types and proportions of the blended poly 4-methylpentene-11 and the graft copolymer. Tables 6 and 7 also show the results of each test.
  • Ethylene-ethyl acrylate copolymer “DPD J 916” (trade name, manufactured by Nippon Tunica Co., Ltd.), ethylene: vinyl acetate copolymer (EVA) “Ultracene 751” (Trade name, manufactured by Tosoh Corporation), ethylene, glycidyl methacrylate copolymer (EGMA) "RA3150” (trade name, Nippon Polyolefin)
  • EVA ethylene: vinyl acetate copolymer
  • Graft copolymers (Q) to (U) were obtained in the same manner as in Example 19.
  • Table 11 shows the charged composition of the graft copolymer and the result of composition analysis by pyrolysis gas chromatography.
  • Table 11 also shows the results of each test. Abbreviations in the table indicate the following.
  • PE polyethylene
  • EVA Ethylene: vinyl acetate copolymer “Ultracene 751” (trade name, manufactured by Tosohichi Co., Ltd.)
  • EGMA Ethylene-daricidyl methacrylate copolymer “RA 3150” (trade name, manufactured by Nippon Polyolefin Co., Ltd.)
  • HEMA hydroxypropyl methacrylate
  • Composition analysis result EEA DVB: PP: St: EVA: St EGMA: St
  • Teflon CGP 500: manufactured by Nakashika Kasei Co., Ltd.
  • BT resin vinyl triazine resin: CCL-HL870: manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • polyphenylene oxide PPO R 4726: Matsushita Electrician
  • Substrates using the respective resin materials of Polyphenylene ether PPE (CS 3376: Asahi Kasei Kogyo Co., Ltd.) were prepared. Etching was performed only on one side of each of these substrates, and as shown in FIG. 2, a substrate S was provided with a ring-shaped resonator 1 having a diameter (inner diameter) of 38 ⁇ and a width of 2 rain, an excitation electrode 2 and a detection electrode 3. The coupling between the ring resonator 1 and the excitation and detection electrodes 2 and 3 was adjusted so that the attenuation at each resonance point was -30 dB or more by actually measuring the pass characteristics. Note that the positions of the excitation electrode 2 and the detection electrode 3 are not symmetric as shown in FIG.
  • the excitation electrode 2 was installed at a distance of 21.5 mm from the center of the ring resonator, as shown in the figure, so as to cover the arc corresponding to 15 degrees of the ring resonator.
  • FIG. 2 shows the Q values obtained at each frequency of the various substrates thus obtained.
  • the product using the graft polymer (P) of the present invention shows a high Q value in a high frequency band of 1 to 6 GHz.
  • the graft polymer (P) of the present invention was evaluated for Cu tensile strength, etching resistance, and linear expansion coefficient ⁇ ; as follows, all were at favorable levels. As described above, since the graft polymer of the present invention exhibits good adhesion to the A1 vapor-deposited film, it is expected that sufficient adhesion will be obtained with Cu. It showed adhesion.
  • test piece with a length of 10 mm, a width of 10 mm, and a thickness of 1.2 ⁇ was cut out and subjected to a 180-degree pilling test with a cellophane tape of copper foil as an external conductor, and a peeling of 2.0 kg / The case where a force of 2 cm 2 or more was required was defined as good.
  • the substrate was immersed in a 10% by weight solution of ferric chloride at 25 ° C. for 72 hours to evaluate the state of the substrate. Those with no swelling or gloss deterioration were considered good.
  • Example 41 the same evaluation was performed using the resin (a) of the present invention in Example 25 instead of the graft copolymer (P), and the graft polymer (P) was used. The same good results as those obtained for the substrate were obtained.
  • Example 41 In Examples 1 and 42, a graft copolymer (P) was used in which a reinforcing filler was appropriately selected from alumina, crystalline silica, etc., and was added so as to be 35% by weight of the whole. Obtained a substrate in the same manner. This substrate was evaluated in the same manner as in Example 41. The results showed similar good results, and furthermore, it was found that the Cu tensile peel strength and the thermal conductivity were improved. In addition, if the reinforcing filler was set to 60 to 90 w ⁇ %, it could be reduced to a level of 30 ppm / ° C or less.
  • a chip inductor as shown in FIG. 4 was produced by the following steps.
  • the 2012 chip-inductor 10 obtained in this manner has a conductor (Cu foil) 12 wound spirally around a bobbin (bar material) 11, which is used as an exterior material (resin). This is covered with a square at 13. End electrodes 14 and 14 are provided on both end surfaces.
  • Example 44 the same evaluation was performed using a resin obtained by crosslinking the graft copolymer I of Example 40 with DVB instead of the resin (a) of the present invention. The same good characteristics as those using a) were exhibited. The invention's effect
  • the heat-resistant low-dielectric polymer material of the present invention has a low dielectric constant, a low dielectric loss tangent, excellent solder heat resistance, high workability such as moldability, high mechanical strength, It has the effect of having excellent adhesion to metals and the like. Therefore, the polymer material of the present invention is useful for applications requiring electrical insulation, solder heat resistance and mechanical properties, such as printed wiring boards and computer components, and has excellent performance for substrates and electronic components. Is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Organic Insulating Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A heat-resistant, lowly dielectric high-molecular material comprising a thermoplastic resin having a multi-layer structure composed of prefereably a non-polar α-olefinic polymer segment chemically bonded to a vinyl aromatic copolymer segment, wherein a dispersed phase formed by one segment is finely dispersed in a continuous phase formed by another segment. It has an excellent heat resistance, a high strength, a low permittivity suitable for high-frequency electric insulating materials, and a low dielectric loss.

Description

明 細 書 耐熱性低誘電性高分子材料ならびにそれを用いたフィルム、 基板、 電子部品およ び耐熱性樹脂成形品 技術分野  Description Heat-resistant low-dielectric polymer materials and films, substrates, electronic components, and heat-resistant resin molded products using the same
本発明は新規な耐熱性低誘電性高分子材料ならびにそれを用いたフィルム、 基 板、 電子部品および耐熱性樹脂成形品に関するものである。 さらに詳しくは特に 高周波帯域における電気特性において、 低誘電率、 低い誘電正接を有し、 かつ高 温領域までの耐熱性、 金属および金属箔に対する密着性ないし接着性に優れ、 し かもインジェクション成形、 プレス成形、 トランスファー成形、 押出成形の成形 能を有する低誘電率性高分子材料に関し、 更にはこの低誘電率高分子材料をそれ 自体でフィルム化することができ、 得られたフィルムを熱融着させ、 積層するこ とにより得られる基板等に関する。 背景技術  The present invention relates to a novel heat-resistant low-dielectric polymer material, and a film, a substrate, an electronic component and a heat-resistant resin molded product using the same. More specifically, it has low dielectric constant, low dielectric loss tangent, high heat resistance up to high temperature range, excellent adhesion or adhesion to metal and metal foil, especially in high frequency band, injection molding, pressing The present invention relates to a low dielectric constant polymer material having a molding capability of molding, transfer molding, and extrusion molding. Further, the low dielectric constant polymer material can be formed into a film by itself, and the obtained film is thermally fused. And a substrate obtained by stacking. Background art
近年、 通信情報の急増に伴い、 通信機の小型化、 軽量化、 高速化が強く望まれ ており、 これに対応できる低誘電性電気絶縁材料が要求されている。 特に自動車 電話、 デジタル携帯電話等の携帯移動体通信、 衛星通信に使用される電波の周波 数帯域はメガからギガ H z帯の高周波帯域のものが使用されている。 これらの通 信手段として、 使用される通信機器の急速な発展の中で、 匡体および基板、 電子 素子の小型高密度実装化等が図られている。 このメガからギガ H z帯のような高 周波領域に対応した通信機器の小型化、 軽量化のためには、 優れた高周波伝送特 性と適当な低誘電特性とを合わせ持つ電気絶縁材料の開発が必要である。 すなわ ち素子回路内では誘電損失といわれる伝送過程におけるェネルギー損失が生じる t このエネルギー損失は熱エネルギーとして素子回路内に消費され熱として放出さ れるため好ましくない。 このエネルギー損失は低周波領域においては、 誘電分極 によって生じた双極子の電界の変化により生ずるものであり、 高周波領域におい てはイオン分極や電子分極によって生ずるものである。 交番電界 1サイクル当た り誘電体中で消費されるエネルギーと誘電体中に蓄えられるエネルギーの比を誘 電正接といい、 t a n δで表される。 誘電損失は比誘電率 εと材料の誘電正接の 積に比例する。 従って t a η δは高周波領域では、 周波数の増加に伴って増大す る。 また、 電子素子の高密度実装化により単位面積当たりの発熱量が多くなるの で、 絶縁材料の誘電損失を少しでも小さくするためには、 t a n δの小さい材料 を用いる必要がある。 誘電損失の小さい低誘電性高分子材料を用いることで誘電 損失および電気抵抗による発熱が抑制され、 その結果信号の誤作動も少なくなる ことから、 高周波通信分野においては伝送損失 (エネルギーロス) の少ない材料 が強く望まれている。 このように電気絶縁性で、 低誘電率である等の電気特性を 有する材料として、 通常、 ポリオレフイン、 塩化ビニル樹脂、 フッ素系樹脂等の 熱可塑性樹脂、 不飽和ポリエステル樹脂、 ポリイミド樹脂、 エポキシ樹脂、 ビニ ルトリアジン樹脂 (Β Τレジン) 、 架橋性ポリフエ二レンオキサイド、 硬化性ポ リフエ二レンエーテル等の熱硬化性樹脂などが種々提案されている。 In recent years, with the rapid increase in communication information, there has been a strong demand for smaller, lighter, and faster communication devices, and low-dielectric insulating materials that can cope with such demands have been demanded. In particular, the frequency band of radio waves used in portable mobile communications such as car phones and digital cellular phones, and satellite communications is in the high-frequency band from mega to giga Hz. As a means of these communications, housings, substrates, and electronic devices are being miniaturized and densely mounted, etc., with the rapid development of communication devices used. To reduce the size and weight of telecommunications equipment compatible with high-frequency ranges such as the mega to giga-Hz band, we must develop an electrical insulating material that combines excellent high-frequency transmission characteristics with appropriate low dielectric properties. is necessary. T the Enerugi losses in the transmission process is said to dielectric loss Sunawa Chi element circuit occurs This energy loss is not preferable because it is consumed as heat energy in the element circuit and released as heat. This energy loss is caused by the change in the electric field of the dipole caused by the dielectric polarization in the low frequency region, and is caused by the ionic polarization and the electronic polarization in the high frequency region. The ratio of the energy consumed in the dielectric per cycle of the alternating electric field to the energy stored in the dielectric is called the dielectric loss tangent and is expressed as tan δ. The dielectric loss is proportional to the product of the relative permittivity ε and the dielectric loss tangent of the material. Therefore, ta η δ increases with increasing frequency in the high frequency range. In addition, since the heat generation per unit area increases due to the high-density mounting of electronic elements, it is necessary to use a material having a small tan δ in order to reduce the dielectric loss of the insulating material as much as possible. By using a low-dielectric polymer material with low dielectric loss, heat generation due to dielectric loss and electric resistance is suppressed, and as a result, signal malfunctions are reduced. Materials are strongly desired. Materials having such electrical properties as being electrically insulating and having a low dielectric constant include thermoplastic resins such as polyolefin, vinyl chloride resin, and fluororesin, unsaturated polyester resins, polyimide resins, epoxy resins, and the like. Various thermosetting resins such as vinyl triazine resin (Βresin), crosslinkable polyphenylene oxide, and curable poly (phenylene ether) have been proposed.
しかしながら、 低誘電率の材料として電子部品 (素子) 材料に使用する場合、 特公昭 5 2 - 3 1 2 7 2号のようなポリエチレン、 ポリプロピレン等のポリオレ フィンは C一 C結合等の共有結合を有し、 且つ大きな極性基を持たないため電気 特性としては絶縁抵抗性に優れているが、 耐熱性が低いという欠点がある。 この ため高温下での使用における電気特性 (誘電損失、 誘電率など) が悪化して、 コ ンデンサ一等の絶縁膜 (層) として好適とはいえない。 さらにポリエチレンゃポ リプロピレンは一旦フィルムとして形成させ、 これを接着剤を用いて導電材料に 被覆接着しているが、 この方法は加工工程が複雑となるばかりでなくフィルム形 成層の厚みを薄くすることが非常に難しいなど、 被覆形成上の問題もある。 However, when low dielectric constant materials are used for electronic components (elements), polyolefins such as polyethylene and polypropylene as in Japanese Patent Publication No. 52-31272 have covalent bonds such as C-C bonds. Since it has no large polar group and has excellent electrical resistance, it has excellent insulation resistance, but has the disadvantage of low heat resistance. For this reason, the electrical characteristics (dielectric loss, dielectric constant, etc.) in use at high temperatures deteriorate, and it cannot be said that it is suitable as an insulating film (layer) such as a capacitor. Furthermore, polyethylene-polypropylene is once formed as a film, and this is coated and adhered to a conductive material using an adhesive, but this method not only complicates the processing steps but also forms the film. There are also problems with coating formation, such as making it very difficult to reduce the thickness of the layer.
塩化ビニル樹脂は絶縁抵抗性が高く、 耐薬品性、 難燃性に優れているがポリオ レフィンと同様耐熱性に欠け、 誘電損失が大きいという欠点がある。  Vinyl chloride resin has high insulation resistance, excellent chemical resistance and flame retardancy, but has the same drawback of poor heat resistance and large dielectric loss as polyolefin.
フッ化ビニリデン樹脂、 トリフルォロエチレン樹脂、 およびパーフルォロェチ レン樹脂のようなフッ素原子を分子鎖中に含有している重合体は、 電気特性 (低 誘電率、 低誘電損失) 、 耐熱性、 化学安定性に優れているが、 熱可塑性樹脂のよ うに熱処理加工することによって成形物、 あるいはフィルム等を得るというよう な成形加工性、 塗膜形成能に難があり、 且つデバイス化を行う際、 かなりのコス ト高となる。 さらに透明性が低いため応用分野が限られているという欠点がある。 上記のような低誘電性汎用高分子材料は、 いずれも許容最高温度が 1 3 0 °C未満 であるため、 電気機器絶縁材料として J I S — C 4 0 0 3に規定される耐熱区分 が B種以下であり、 耐熱性が不十分である。  Polymers containing fluorine atoms in the molecular chain, such as vinylidene fluoride resin, trifluoroethylene resin, and perfluoroethylene resin, have electrical properties (low dielectric constant and low dielectric loss), heat resistance, and chemical stability. Although it is excellent in formability, it has difficulty in forming workability such as obtaining a molded product or film by heat treatment like thermoplastic resin, film forming ability, and it is quite difficult to make a device. Cost. Furthermore, there is a disadvantage that the application field is limited due to low transparency. The low-dielectric general-purpose polymer materials described above all have an allowable maximum temperature of less than 130 ° C, so the heat-resistant category specified in JIS-C4003 as Class B for electrical equipment insulation materials is Class B. Below, the heat resistance is insufficient.
一方比較的耐熱性が良好な樹脂としてエポキシ樹脂、 ポリフエ二レンエーテル ( P P E ) 、 不飽和ポリエステル樹脂、 フエノール樹脂等の熱硬化性樹脂が挙げ られる。 エポキシ樹脂に関しては、 特開昭 6— 1 9 2 3 9 2号にみられるように、 絶縁抵抗性、 絶縁破壊強度と耐熱温度においては要求性能を満たしている。 しか し、 誘電率が 3以上と比較的高く、 満足される特性が得られていない。 そして薄 膜形成能に乏しいといった欠点もある。 ポリフエ二レンオキサイド (P P O) 樹 脂と多官能シアン酸エステル樹脂類、 さらにこれら樹脂に他の樹脂を配合し、 ラ ジカル重合開始剤を添加し、 予備反応させてなる硬化可能な変性 P P〇樹脂組成 物が知られているが、 誘電率の低下は充分満足できるレベルまで到つていない。 さらに耐熱性の乏しいエポキシ樹脂の改良目的で、 例えばフエノ一ルノボラッ ク樹脂、 ビニルトリアジン樹脂等の組合せも検討されているが、 フィルムとして 力学的特性が著しく低下するという欠点がある。  On the other hand, resins having relatively good heat resistance include thermosetting resins such as epoxy resin, polyphenylene ether (PPE), unsaturated polyester resin, and phenol resin. Epoxy resin satisfies the required performance in insulation resistance, dielectric breakdown strength and heat resistance temperature as seen in JP-A-6-192392. However, the dielectric constant is relatively high at 3 or more, and satisfactory characteristics have not been obtained. It also has the drawback of poor thin film forming ability. Polyphenylene oxide (PPO) resin and polyfunctional cyanate ester resins, and a curable modified PP resin obtained by blending other resins with these resins, adding a radical polymerization initiator, and pre-reacting Although compositions are known, the decrease in dielectric constant has not reached a sufficiently satisfactory level. Further, for the purpose of improving epoxy resins having poor heat resistance, combinations of, for example, phenolic novolak resins and vinyltriazine resins have been studied, but they have a drawback that the mechanical properties of the film are significantly reduced.
そこで、 電気特性を維持したまま上記の問題点、 具体的には加熱加工性の改良、 銅などの金属導電体 (層) との密着性や接着性の改良を目的として、 分岐シクロ 環アモルファスフッ素ポリマ一、 パーフルォロエチレンモノマーと他のモノマー との共重合体等が提案されているが、 誘電率、 誘電損失等の電気特性は満たすも のの、 高分子主鎖に存在するメチレン鎖の影響のため耐熱性が悪化し、 デバイス 基板等に対する密着性が良好なものはまだ得られていない。 Therefore, while maintaining the electrical characteristics, the above-mentioned problems, specifically, improvement of the heat processability, For the purpose of improving adhesion and adhesion to metal conductors (layers) such as copper, branched cyclo-ring amorphous fluoropolymers, copolymers of perfluoroethylene monomers and other monomers, and the like have been proposed. Although it satisfies the electrical properties such as dielectric constant and dielectric loss, heat resistance deteriorates due to the influence of the methylene chain present in the polymer main chain, and good adhesion to device substrates etc. is still not obtained. Not been.
このように誘電性 ·絶縁抵抗性に優れた低誘電率材料にさらに求められる性能 として、 デバイス化工程のなかに必ず半田付け工程が入るため少なくとも 2 6 0 °Cで 1 2 0秒の加熱に耐え得るだけの耐熱性が要求され、 耐熱性、 耐アルカリ 性等の化学的安定性、 および耐湿性や機械的特性に優れたものでなければならな レ これらの要求を満足する高分子素材はさらに限られ、 例えばポリイミド、 ポ リエーテルスルホン、 ポリフエ二レンスルフイ ド、 ポリスルフォン、 熱硬化性ポ リフエ二レンエーテル (P P E ) 、 ポリエチレンテレフ夕レート等が知られてい るにすぎない。 これらの高分子は薄膜形成能を有し、 基板に対する密着性はある 力 取り扱い上やや難がある。 例えばスピンコート法による絶縁素子膜の製造法 においては前記高分子を有機溶媒に溶かして稀薄溶液を作成し、 スピンコートし た後、 溶媒を蒸発させて絶縁膜を形成する際、 ポリイミドゃポリスルホンの良溶 媒であるジメチルァセトアミドゃ N—メチルピロリ ドン等の溶剤は、 極性溶媒で しかも高沸点溶媒であるため、 蒸発速度が遅く絶縁膜中に一部残存する。 また、 薄膜化する際に表面平滑度、 均質性等を制御することが困難である。 エポキシ変 性ポリフエ二レンエーテル樹脂あるいはポリフエ二レンエーテル樹脂等も作業性、 接着性が悪く信頼性に欠ける。 またポリマー溶液の粘度は比較的高くなるために、 均一でしかも平滑な膜を作成するにはかなりの技術を要するのが実状である。  As a performance further required for a low dielectric constant material having excellent dielectric and insulation resistance as described above, since a soldering process is always included in the device fabrication process, heating at 260 ° C for at least 120 seconds is required. It must have heat resistance that can withstand it, and it must be excellent in chemical stability such as heat resistance, alkali resistance, etc., and moisture resistance and mechanical properties. Further limited, for example, only polyimide, polyethersulfone, polyphenylene sulfide, polysulfone, thermosetting polyphenylene ether (PPE), polyethylene terephthalate, etc. are known. These polymers have the ability to form a thin film, and have a certain degree of adhesion to the substrate. For example, in a method of manufacturing an insulating element film by spin coating, a dilute solution is prepared by dissolving the polymer in an organic solvent, and after spin coating, the solvent is evaporated to form an insulating film. Solvents such as dimethylacetoamide / N-methylpyrrolidone, which are good solvents, are polar solvents and high boiling solvents, and therefore have a low evaporation rate and partially remain in the insulating film. Also, it is difficult to control the surface smoothness, homogeneity, etc. when thinning. Epoxy-modified poly (phenylene ether) resin or poly (phenylene ether) resin also has poor workability and adhesiveness, and lacks reliability. In addition, since the viscosity of the polymer solution is relatively high, it is a fact that considerable technology is required to form a uniform and smooth film.
発明の開示 Disclosure of the invention
本発明の目的は、 第 1に耐熱性を有し金属導体層との密着性ないし接着性が良 好で、 かつ薄膜形成能を兼ね備え、 しかも誘電率および誘電損失が低く絶縁性に 優れ、 さらには耐候性、 加工性に優れた低誘電率性高分子材料を提供することで ある。 The object of the present invention is, firstly, to have heat resistance and good adhesion or adhesion to a metal conductor layer. An object of the present invention is to provide a low-dielectric polymer material which is favorable, has a thin film forming ability, has a low dielectric constant and a low dielectric loss, has excellent insulating properties, and further has excellent weather resistance and workability.
そして第 2に、 この低誘電率性高分子材料を用いてこれ自体でフィルム化して、 低誘電性で絶縁性に優れ、 しかも耐熱性、 耐候性、 成形性等の加工性に優れたフ イルムを提供することであり、 第 3にこのフィルムを積層して得られる低誘電性 で絶縁性に優れ、 しかも耐熱性、 耐候性、 成形性等の加工性に優れた基板を提供 することである。 さらに第 4に上記低誘電率性高分子材料から得られる高周波領 域での使用に適する電子部品を提供することであり、 第 5に耐熱性および成形性 に優れた耐熱性樹脂成形品を提供することである。  Second, a film is formed by itself using this low dielectric constant polymer material, and has low dielectric properties, excellent insulation, and excellent workability such as heat resistance, weather resistance, and moldability. Thirdly, it is to provide a substrate obtained by laminating this film and having a low dielectric property, excellent insulation properties, and excellent workability such as heat resistance, weather resistance and moldability. . Fourth, to provide electronic components suitable for use in the high-frequency region obtained from the above low dielectric constant polymer materials.Fifth, to provide heat-resistant resin molded products with excellent heat resistance and moldability. It is to be.
このような目的は、 下記 (1 ) 〜 (1 4 ) の本発明により達成される。  Such an object is achieved by the present invention described in the following (1) to (14).
( 1 ) 重量平均絶対分子量 1 0 0 0以上の樹脂の 1種または 2種以上からなる 樹脂組成物であって、 その組成物の炭素原子と水素原子の原子数の和が 9 9 %以 上であり、 かつ樹脂分子間の一部またはすべてが相互に化学的結合を有する耐熱 性低誘電性高分子材料。  (1) A resin composition comprising one or more resins having a weight average absolute molecular weight of 100 or more, wherein the sum of the number of carbon atoms and hydrogen atoms of the composition is at least 99% And a heat-resistant low-dielectric polymer material in which some or all of the resin molecules have a chemical bond with each other.
( 2 ) 化学的結合が、 架橋、 ブロック重合およびグラフト重合から選ばれる 1 種以上である上記 (1 ) の耐熱性低誘電性高分子材料。  (2) The heat-resistant low-dielectric polymer material according to (1), wherein the chemical bond is at least one selected from cross-linking, block polymerization and graft polymerization.
( 3 ) 樹脂組成物が、 非極性 α—才レフイン系重合体セグメントおよび/また は非極性共役ジェン系重合体セグメン卜とビニル芳香族系重合体セグメントとが 化学的結合をした共重合体であって、 一方のセグメントにより形成された分散相 が他方のセグメントより形成された連続相中に微細に分散している多相構造を示 す熱可塑性樹脂である上記 (1 ) または (2 ) の耐熱性低誘電性高分子材料。  (3) The resin composition is a copolymer in which a non-polar α-olefin polymer segment and / or a non-polar conjugated gen polymer segment and a vinyl aromatic polymer segment are chemically bonded. (1) or (2) above, which is a thermoplastic resin exhibiting a multiphase structure in which the dispersed phase formed by one segment is finely dispersed in the continuous phase formed by the other segment. Heat resistant low dielectric polymer material.
( 4 ) 非極性 ο;—才レフイン系重合体セグメントとビニル芳香族系重合体セグ メントとが化学的結合をした共重合体である上記 ( 3 ) の耐熱性低誘電性高分子 材料。 (5) ビニル芳香族系重合体セグメントがジビニルベンゼンの単量体を含むビ ニル芳香族系共重合体セグメントである上記 (3) または (4) の耐熱性低誘電 性高分子材料。 (4) The heat-resistant low-dielectric polymer material according to (3) above, wherein the non-polar ο; —refined polymer segment and the vinyl aromatic polymer segment are copolymers chemically bonded to each other. (5) The heat-resistant low-dielectric polymer material according to (3) or (4), wherein the vinyl aromatic polymer segment is a vinyl aromatic copolymer segment containing a divinylbenzene monomer.
(6) グラフト重合により化学的に結合した共重合体である上記 (4) または ( 5 ) の耐熱性低誘電性高分子材料。  (6) The heat-resistant low-dielectric polymer material according to (4) or (5), which is a copolymer chemically bonded by graft polymerization.
(7) 上記 (1) 〜 (6) のいずれかの樹脂組成物に 4ーメチルペンテン一 1 の単量体を含む非極性 α—才レフィン系重合体を加えた耐熱性低誘電性高分子材 料。 (7) A heat-resistant low dielectric polymer material obtained by adding a non-polar α -olefin polymer containing a monomer of 4-methylpentene-11 to the resin composition according to any one of the above (1) to (6). .
(8) 1 MHz以上の高周波帯域で使用される上記 (1) 〜 (7) のいずれか に記載の耐熱性低誘電性高分子材料。  (8) The heat-resistant low-dielectric polymer material according to any one of (1) to (7) above, which is used in a high-frequency band of 1 MHz or more.
(9) 上記 (1) 〜 (8) のいずれかの耐熱性低誘電性高分子材料を用いた厚 さ 50 / m以上のフィルム。  (9) A film having a thickness of 50 / m or more using the heat-resistant low-dielectric polymer material according to any one of (1) to (8).
(10) 上記 (9) のフィルムを積層した基板。  (10) A substrate on which the film of (9) is laminated.
(11) 1 MHz以上の高周波帯域で使用される上記 (9) のフィルム。 (11) The film according to (9), which is used in a high-frequency band of 1 MHz or more.
(12) 1 MHz以上の高周波帯域で使用される上記 (10) の基板。 (12) The substrate according to (10), which is used in a high-frequency band of 1 MHz or more.
(13) 上記 (1) 〜 (8) のいずれかの耐熱性低誘電性高分子材料を用いた 1 MH z以上の高周波帯域で使用される電子部品。  (13) An electronic component used in a high-frequency band of 1 MHz or more, using the heat-resistant low-dielectric polymer material according to any one of (1) to (8).
(14) 上記 (1) 〜 (8) のいずれかの耐熱性低誘電性高分子材料を所定形 状に成形した耐熱性樹脂成形品。 図面の簡単な説明  (14) A heat-resistant resin molded product obtained by molding the heat-resistant low-dielectric polymer material according to any one of the above (1) to (8) into a predetermined shape. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明のグラフト共重合体の TEM写真である。  FIG. 1 is a TEM photograph of the graft copolymer of the present invention.
図 2は、 基板の特性評価に用いるリングレゾネー夕を説明する概略構成図であ る。  FIG. 2 is a schematic configuration diagram illustrating a ring resonator used for evaluating the characteristics of a substrate.
図 3は、 基板の周波数に対する Q値の関係を示すグラフである。 図 4は、 チッブインダク夕を説明する概略構成図である。 発明を実施するための最良の形態 FIG. 3 is a graph showing the relationship between the Q value and the frequency of the substrate. FIG. 4 is a schematic configuration diagram illustrating chip induction. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の耐熱性低誘電性高分子材料は、 重量平均絶対分子量が 1 0 0 0以上の 1種または 2種以上の樹脂で構成される樹脂組成物であって、 炭素原子と水素原 子の原子数の和が 9 9 %以上からなり、 かつ樹脂分子間の一部またはすべてが相 互に化学的結合しているものである。 このような重量平均絶対分子量の樹脂組成 物とすることによって、 耐熱性低誘電性高分子材料として用いるときの強度、 金 属との密着性、 耐熱性が十分になる。 これに対し、 重量平均絶対分子量が 1 0◦ 0より小さいと、 機械的物性、 耐熱性等が不足になり不適である。 特に好ましく は 3 0 0 0以上、 最も好ましくは 5 0 0 0以上である。 このときの重量平均絶対 分子量の上限に特に制限はないが、 通常 1 0 0 0万程度である。  The heat-resistant low-dielectric polymer material of the present invention is a resin composition comprising one or more resins having a weight-average absolute molecular weight of 100 or more, and comprises a carbon atom and a hydrogen atom. The total number of atoms is at least 99%, and some or all of the resin molecules are chemically bonded to each other. By using a resin composition having such a weight average absolute molecular weight, the strength, adhesion to metal, and heat resistance when used as a heat-resistant low-dielectric polymer material are sufficient. On the other hand, if the weight-average absolute molecular weight is less than 10 °, the mechanical properties, heat resistance, etc. become insufficient, which is not suitable. It is particularly preferably at least 300, and most preferably at least 500. The upper limit of the weight average absolute molecular weight at this time is not particularly limited, but is usually about 1,000,000.
また、 本発明の樹脂組成物において炭素と水素の原子数の和を 9 9 %以上とす るのは、 存在する化学的結合を非極性結合とするためであり、 これにより耐熱性 低誘電性高分子材料として用いるときの電気的特性が十分になる。 これに対し、 炭素と水素の原子数の和が 9 9 %より少ない場合、 特に酸素原子や、 窒素原子な どの有極性分子を形成する原子数が 1 %より多く含まれる場合、 電気的特性、 特 に誘電正接が高くなるため不適である。  The reason why the sum of the number of atoms of carbon and hydrogen is set to 99% or more in the resin composition of the present invention is to make the existing chemical bond a non-polar bond, thereby providing heat resistance and low dielectric constant. The electric characteristics when used as a polymer material are sufficient. On the other hand, when the sum of the numbers of carbon and hydrogen atoms is less than 99%, especially when the number of atoms forming polar molecules such as oxygen atoms and nitrogen atoms is more than 1%, the electrical properties, In particular, the dielectric loss tangent is high, which is not suitable.
上記高分子材料を構成する樹脂の具体例としては、 低密度ポリエチレン、 超低 密度ポリエチレン、 超超低密度ポリエチレン、 高密度ポリエチレン、 低分子量ポ リエチレン、 超高分子量ポリエチレン、 エチレン一プロピレン共重合体、 ポリプ ロピレン、 ポリブテン、 ポリ 4ーメチルペンテン等の非極性 α—ォレフィンの単 独ないし共重合体 [以下、 (共) 重合体ともいう] 、 ブタジエン、 イソプレン、 ペン夕ジェン、 へキサジェン、 へブタジエン、 ォクタジェン、 フエニルブ夕ジェ ン、 ジフエニルブタジエン等の共役ジェンの各単量体の (共) 重合体、 スチレン、 核置換スチレン、 例えばメチルスチレン、 ジメチルスチレン、 ェチルスチレン、 イソプロピルスチレン、 クロルスチレン、 α—置換スチレン、 例えば α —メチル スチレン、 ひ一ェチルスチレン、 ジビニルベンゼン、 ビニルシクロへキサン等の 炭素環含有ビニルの各単量体の (共) 重合体等が挙げられる。 Specific examples of the resin constituting the polymer material include low-density polyethylene, ultra-low-density polyethylene, ultra-low-density polyethylene, high-density polyethylene, low-molecular-weight polyethylene, ultra-high-molecular-weight polyethylene, ethylene-propylene copolymer, Homo- or copolymers of non-polar α-olefins such as propylene, polybutene, poly 4-methylpentene, etc. [hereinafter also referred to as (co) polymers], butadiene, isoprene, pendugen, hexadiene, hexadiene, octadiene, Fenilbu (Co) polymer of conjugated monomer such as styrene, diphenylbutadiene, styrene, nucleus-substituted styrene, such as methylstyrene, dimethylstyrene, ethylstyrene, isopropylstyrene, chlorostyrene, α-substituted styrene, such as α Examples include (co) polymers of each monomer of carbon ring-containing vinyl such as methyl styrene, ethyl styrene, divinylbenzene, and vinylcyclohexane.
上記では、 非極性 α—ォレフィンの単量体同士、 共役ジェンの単量体同士、 炭 素環含有ビニルの単量体同士の重合体を主に例示したが、 例えば非極性 α—ォレ フィンの単量体と共役ジェンの単量体、 非極性 α—ォレフィンの単量体と炭素環 含有ビニルの単量体のように、 異なる化合物種の単量体から得られた共重合体で あってもよい。  In the above description, polymers of non-polar α-olefins, conjugated monomers, and carbon ring-containing vinyl monomers are mainly exemplified. And conjugated monomers, non-polar α-olefin and carbon ring-containing vinyl monomers. You may.
このように、 これらの重合体、 すなわち樹脂の 1種または 2種以上により樹脂 組成物が構成されるが、 これらの樹脂分子間の一部またはすべてが相互に化学的 結合をしていなければならない。 したがって、 一部は混合状態であってもよい。 このように少なくとも一部に化学的結合を有することによつて耐熱性低誘電性高 分子材料として用いるときの強度、 金属との密着性、 耐熱性が十分になる。 これ に対し、 単なる混合で、 化学的結合を有しないときは、 耐熱性、 機械的物性の観 点から不十分である。  Thus, a resin composition is composed of one or more of these polymers, that is, a resin, and a part or all of these resin molecules must be chemically bonded to each other. . Therefore, some may be in a mixed state. By having a chemical bond at least in part as described above, the strength, adhesion to metal, and heat resistance when used as a heat-resistant low-dielectric high-molecular material are sufficient. On the other hand, if it is a mere mixture and has no chemical bond, it is insufficient from the viewpoint of heat resistance and mechanical properties.
本発明における化学的結合の形態は特に限定はないが、 架橋構造、 ブロック構 造、 グラフト構造などが挙げられる。 このような化学的結合を生じさせるには公 知の方法によればよく、 グラフ卜構造、 ブロック構造の好ましい態様については 後述する。 架橋構造を生じさせる具体的方法としては、 熱による架橋が好ましく、 このときの温度は 5 0 - 3 0 0 °C程度が好ましい。 このほか電子線照射による架 橋等も挙げられる。  The form of the chemical bond in the present invention is not particularly limited, and examples thereof include a crosslinked structure, a block structure, and a graft structure. A known method may be used to generate such a chemical bond. Preferred embodiments of the graft structure and the block structure will be described later. As a specific method for generating a crosslinked structure, crosslinking by heat is preferable, and the temperature at this time is preferably about 50 to 300 ° C. In addition, there are bridges by electron beam irradiation.
本発明による化学的結合の有無は架橋度、 グラフト構造においてはグラフト効 率等を求めることによって確認することができる。 また、 透過型電子顕微鏡 (T E M) 写真や走査型電子顕微鏡 (S E M) 写真によっても確認することができる。 例えば、 図 1には、 後に詳述するグラフ卜共重合体 (後記実施例 9のグラフト共 重合体 A) の R u〇2 染色した超薄片 T E M写真が示されている。 これによれば、 一方の重合体セグメンド中に他方の重合体セグメントがほぼ 1 0 /x m 以下、 より 具体的には、 0 . 0 1〜 1 0 /x m の微細粒子として分散しているのがわかる。 こ れに対し、 単なる混合物 (ブレンドポリマー) では、 グラフト共重合体のような 両ポリマー同士の相溶性はみられず、 分散粒子の粒径は大きいものとなる。 The presence or absence of a chemical bond according to the present invention can be confirmed by determining the degree of crosslinking and, in the case of a graft structure, the graft efficiency. In addition, a transmission electron microscope (T It can also be confirmed by EM) or scanning electron microscope (SEM). For example, in FIG. 1, R U_〇 2 stained ultra thin TEM photograph of the graph Bok copolymer detailing (graft polymer A of Example 9 described later) is shown below. According to this, the other polymer segment is dispersed in one polymer segment as fine particles of about 10 / xm or less, more specifically, 0.01 to 10 / xm. Understand. In contrast, a mere mixture (blend polymer) does not show compatibility between the two polymers, such as a graft copolymer, and the dispersed particles have a large particle size.
本発明における樹脂組成物としては、 まず、 非極性 α—ォレフィン系重合体セ グメン卜とビニル芳香族系共重合体セグメントとが化学的に結合した共重合体で あって、 一方のセグメントにより形成された分散相が他方のセグメントより形成 された連続相中に微細に分散している多相構造を示す熱可塑性樹脂が好ましいも のとして挙げられる。  The resin composition of the present invention is a copolymer in which a non-polar α-olefin polymer segment and a vinyl aromatic copolymer segment are chemically bonded, and is formed by one segment. A preferable example is a thermoplastic resin having a multiphase structure in which the dispersed phase is finely dispersed in a continuous phase formed from the other segment.
上記のような特定の多相構造を示す熱可塑性樹脂中のセグメントの一つである 非極性 α—才レフイン系重合体とは、 高圧ラジカル重合、 中低圧イオン重合等で 得られる非極性ひ一才レフィン単量体の単独重合体または 2種類以上の非極性 α 一才レフィン単量体の共重合体でなければならない。 極性ビニル単量体との共重 合体は誘電正接が高くなるため不適である。 上記重合体の非極性 α—才レフィン 単量体としてはエチレン、 プロピレン、 ブテン一 1、 へキセン一 1、 ォクテン— 1、 4ーメチルペンテン— 1類が挙げられ、 なかでもエチレン、 プロピレン、 ブ テン— 1、 4ーメチルペンテン一 1力^ 得られる非極性 ォレフィン系重合体 の誘電率が低いため好ましい。  The non-polar α-olefin polymer, which is one of the segments in the thermoplastic resin having the specific multiphase structure as described above, is a non-polar polymer obtained by high-pressure radical polymerization, medium-low pressure ion polymerization, or the like. It must be a homopolymer of a refining monomer or a copolymer of two or more non-polar α-refining monomers. Copolymers with polar vinyl monomers are unsuitable because of their high dielectric loss tangent. Examples of the nonpolar α-olefin monomer of the above polymer include ethylene, propylene, butene-11, hexene-1, octene-1,4-methylpentene-1. Among them, ethylene, propylene, butene— 1,4-methylpentene is preferred because the dielectric constant of the obtained non-polar olefin polymer is low.
上記非極性 α—才レフイン (共) 重合体の具体例としては、 低密度ポリエチレ ン、 超低密度ポリエチレン、 超超低密度ポリエチレン、 高密度ポリエチレン、 低 分子量ポリエチレン、 超高分子量ポリエチレン、 エチレン—プロピレン共重合体、 ポリプロピレン、 ポリブテン、 ポリ 4ーメチルペンテン等が挙げられる。 また、 これらの非極性 α—才レフイン (共) 重合体は、 単独で使用することも、 2種以 上併用することもできる。 Specific examples of the above-mentioned non-polar α-polyolefin (co) polymer include low-density polyethylene, ultra-low-density polyethylene, ultra-low-density polyethylene, high-density polyethylene, low-molecular-weight polyethylene, ultra-high-molecular-weight polyethylene, and ethylene-propylene. Copolymers, polypropylene, polybutene, poly 4-methylpentene, and the like. Also, These non-polar α-olefin refin (co) polymers can be used alone or in combination of two or more.
このような非極性ひ一才レフイン (共) 重合体の好ましい分子量は重量平均絶 対分子量で 1 0 0 0以上である。 この上限には特に制限はないが、 1 0 0 0万程 度である。  The preferred molecular weight of such a non-polar polyolefin (co) polymer is 100,000 or more in absolute weight. The upper limit is not particularly limited, but is about 1,000,000.
一方、 特定の多相構造を示す熱可塑性樹脂中のセグメントの一つであるである ビニル芳香族系重合体とは、 非極性のものであり、 具体的には、 スチレン、 核置 換スチレン、 例えばメチルスチレン、 ジメチルスチレン、 ェチルスチレン、 イソ プロピルスチレン、 クロルスチレン、 0;—置換スチレン、 例えば α—メチルスチ レン、 α—ェチルスチレン、 o _, m—, p—ジビニルベンゼン (好ましくは m ―, p—ジビニルベンゼン、 特に好ましくは p—ジビニルベンゼン) 等の各単量 体の (共) 重合体である。 このように非極性のものとするのは、 極性官能基を持 つた単量体を共重合で導入すると、 誘電正接が高くなるため不適であるからであ る。 ビニル芳香族系重合体は単独で使用することも、 2種以上併用することもで さる。  On the other hand, the vinyl aromatic polymer, which is one of the segments in the thermoplastic resin exhibiting a specific multiphase structure, is a non-polar polymer, specifically, styrene, styrene with a nuclear substitution, For example, methyl styrene, dimethyl styrene, ethyl styrene, isopropyl styrene, chloro styrene, 0; -substituted styrene, for example, α-methyl styrene, α-ethyl styrene, o_, m—, p-divinylbenzene (preferably m—, p— It is a (co) polymer of each monomer such as divinylbenzene, particularly preferably p-divinylbenzene. The reason why the non-polar one is used is that if a monomer having a polar functional group is introduced by copolymerization, the dielectric loss tangent becomes high, which is not suitable. The vinyl aromatic polymer may be used alone or in combination of two or more.
なかでもビニル芳香族系共重合体は、 ジビニルベンゼンの単量体を含むビニル 芳香族共重合体が耐熱性を向上させる上で好ましい。 ジビニルベンゼンを含むビ ニル芳香族共重合体とは、 具体的には、 スチレン、 核置換スチレン、 例えばメチ ルスチレン、 ジメチルスチレン、 ェチルスチレン、 イソプロピルスチレン、 クロ ルスチレン、 α—置換スチレン、 例えば α —メチルスチレン、 α—ェチルスチレ ン等の各単量体とジビニルベンゼンの単量体の共重合体である。  Among them, the vinyl aromatic copolymer is preferably a vinyl aromatic copolymer containing a divinylbenzene monomer from the viewpoint of improving heat resistance. Specific examples of the vinyl aromatic copolymer containing divinylbenzene include styrene, a nucleus-substituted styrene such as methylstyrene, dimethylstyrene, ethylstyrene, isopropylstyrene, chlorostyrene, and α-substituted styrene such as α-methylstyrene. And copolymers of monomers such as α-ethyl styrene and divinylbenzene.
ジビニルベンゼンの単量体と、 これ以外の上記のようなビニル芳香族の単量体 との割合は特に限定はないが、 半田耐熱性を満足するために、 ジビニルベンゼン の単量体の割合が 1重量%以上含まれていることが好ましい。 ジビニルベンゼン の単量体は 1 0 0重量%でもかまわないが、 合成上の問題から上限は 9 0重量% が好ましい。 The ratio of the divinylbenzene monomer to the other vinyl aromatic monomer as described above is not particularly limited, but in order to satisfy the solder heat resistance, the ratio of the divinylbenzene monomer is reduced. It is preferable that the content is 1% by weight or more. The divinylbenzene monomer may be 100% by weight, but the upper limit is 90% by weight due to synthesis problems. Is preferred.
このような一方のセグメントであるビニル芳香族系重合体の分子量は、 重量平 均絶対分子量で 1 0 0 0以上であることが好ましい。 この上限には特に制限はな いが、 1 0 0 0万程度である。  It is preferable that the molecular weight of the vinyl aromatic polymer as one of the segments is 100 or more in terms of weight average absolute molecular weight. The upper limit is not particularly limited, but is about 1,000,000.
本発明の特定の多相構造を示す熱可塑性樹脂は、 ォレフィン系重合体セグメン 卜が 5〜9 5重量%、 好ましくは 4 0〜9 0重量%、 最も好ましくは 5 0〜8 0 重量%からなるものである。 したがって、 ビニル系重合体セグメントは 9 5〜5 重量%、 好ましくは 6 0〜 1 0重量%、 最も好ましくは 5 0〜2 0重量%である。 ォレフィン系重合体セグメントが少なくなると、 成形物が脆くなるため好まし くない。 また、 ォレフィン系重合体セグメントが多くなると、 金属との密着性が 低く好ましくない。  The thermoplastic resin having a specific multiphase structure according to the present invention contains 5 to 95% by weight, preferably 40 to 90% by weight, and most preferably 50 to 80% by weight of the olefin polymer segment. It becomes. Therefore, the content of the vinyl polymer segment is 95 to 5% by weight, preferably 60 to 10% by weight, and most preferably 50 to 20% by weight. If the number of the olefin polymer segments is small, the molded product becomes brittle, which is not preferable. Further, when the number of the olefin polymer segments is large, the adhesion to the metal is low, which is not preferable.
このような熱可塑性樹脂の重量平均絶対分子量は 1 0 0 0以上である。 この上 限には特に制限はないが、 成形性の点から 1 0 0 0万程度である。  The weight average absolute molecular weight of such a thermoplastic resin is 1000 or more. The upper limit is not particularly limited, but is about 1,000,000 from the viewpoint of moldability.
ォレフィン系重合体セグメントとビニル系重合体セグメントとが化学的に結合 した構造の共重合体としては具体的にはプロック共重合体やグラフト共重合体を 例示することができる。 なかでも製造の容易さからグラフト共重合体が特に好ま しい。 なお、 これらの共重合体にはブロック共重合体、 グラフト共重合体等の特 徵を逸脱しない範囲で、 ォレフィン系重合体やビニル系重合体が含まれていても かまわない。  Specific examples of the copolymer having a structure in which the olefin polymer segment and the vinyl polymer segment are chemically bonded include a block copolymer and a graft copolymer. Above all, a graft copolymer is particularly preferred because of ease of production. Note that these copolymers may include an olefin polymer or a vinyl polymer without departing from the characteristics of the block copolymer, the graft copolymer, and the like.
本発明の特定の多相構造を示す熱可塑性樹脂を製造する方法は、 グラフト化法 として一般によく知られている連鎖移動法、 電離性放射線照射法等いずれの方法 によってもよいが、 最も好ましいのは、 下記に示す方法によるものである。 なぜ ならグラフト効率が高く熱による二次的凝集が起こらないため、 性能の発現がよ り効果的であり、 また製造方法が簡便であるためである。  The method for producing the thermoplastic resin having a specific multiphase structure of the present invention may be any method such as a chain transfer method and an ionizing radiation irradiation method which are generally well-known as a grafting method. Is based on the method shown below. This is because the grafting efficiency is high and secondary aggregation due to heat does not occur, so that the expression of performance is more effective and the manufacturing method is simple.
以下、 本発明の特定の多相構造を示す熱可塑性樹脂であるグラフ卜共重合体の 製造方法を具体的に詳述する。 すなわち、 ォレフィン系重合体 1 0 0重量部を水 に懸濁させて、 別にビニル芳香族系単量体 5〜4 0 0重量部に、 下記一般式Hereinafter, the graft copolymer which is a thermoplastic resin showing a specific multiphase structure of the present invention The manufacturing method will be specifically described in detail. That is, 100 parts by weight of the olefin polymer is suspended in water, and separately added to 5 to 400 parts by weight of a vinyl aromatic monomer, the following general formula:
( 1 ) または (2 ) で表されるラジカル重合性有機過酸化物の 1種または 2種以 上の混合物を上記ビニル単量体 1 0 0重量部に対して 0 . 1〜 1 0重量部と、 1 0時間の半減期を得るための分解温度が 4 0〜9 0 °Cであるラジカル重合開始剤 をビニル単量体とラジカル重合性有機過酸化物との合計 1 0 0重量部に対して 0 . 0 1〜5重量部とを溶解させた溶液を加え、 ラジカル重合開始剤の分解が実質的 One to one or a mixture of two or more of the radically polymerizable organic peroxides represented by (1) or (2) is used in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the vinyl monomer. And a radical polymerization initiator having a decomposition temperature of 40 to 90 ° C. for obtaining a half life of 10 hours in a total of 100 parts by weight of a vinyl monomer and a radical polymerizable organic peroxide. 0.01 to 5 parts by weight of a solution in which the radical polymerization initiator is substantially decomposed
2  Two
に起こらない条件で加熱し、 ビニル単量体、 ラジカル重合性有機過酸化物および ラジカル重合開始剤をォレフイン系重合体に含浸させて、 この水性懸濁液の温度 を上昇させ、 ビニル単量体とラジカル重合性有機過酸化物とをォレフィン共重合 体中で共重合させて、 グラフト化前駆体を得る。 The vinyl monomer, the radical polymerizable organic peroxide and the radical polymerization initiator are impregnated into the olefin-based polymer, and the temperature of the aqueous suspension is increased. And a radical polymerizable organic peroxide are copolymerized in an olefin copolymer to obtain a graft precursor.
ついでグラフト化前駆体を 1 0 0〜3 0 0 °Cの溶融下、 混練することにより、 本発明のグラフト共重合体を得ることができる。 このとき、 グラフ卜化前駆体に、 別にォレフィン系重合体またはビニル系重合体を混合し、 溶融下に混練してもグ ラフト共重合体を得ることができる。 最も好ましいのはグラフト化前駆体を混練 して得られたグラフト共重合体である。 一般式 ( 1 )  Next, the graft copolymer of the present invention can be obtained by kneading the grafting precursor under melting at 100 to 300 ° C. At this time, a graphitic copolymer can be obtained by separately mixing an olefin polymer or a vinyl polymer with the grafting precursor and kneading the mixture under melting. Most preferred is a graft copolymer obtained by kneading a grafting precursor. General formula (1)
Figure imgf000014_0001
Figure imgf000014_0001
一般式 (1 ) 中、 R ,は水素原子または炭素数 1〜2のアルキル基を示し、 R」, は水素原子またはメチル基を示し、 R :,および R .,はそれぞれ炭素数 1〜4のアル キル基を示し、 R 5は炭素数 1〜 1 2のアルキル基、 フエニル基、 アルキル置換 フエニル基または炭素数 3〜 1 2のシクロアルキル基を示す。 ir は 1または 2 である。 In the general formula (1), R, represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, R ", represents a hydrogen atom or a methyl group, and R :, and R., respectively represent 1 to 4 carbon atoms. R 5 represents an alkyl group having 1 to 12 carbon atoms, a phenyl group, or an alkyl-substituted alkyl group. And represents a phenyl group or a cycloalkyl group having 3 to 12 carbon atoms. ir is 1 or 2.
一般式 (2 )  General formula (2)
CH2=C-CH2— 0— (CH2—— CH一〇)m2— C—O— O— C— R10 R6 R7 〇 RQ CH 2 = C-CH 2 — 0— (CH 2 —— CH one) m2 — C—O— O— C— R 10 R6 R 7 〇 R Q
一般式 (2 ) 中、 R fiは水素原子または炭素数 1〜4のアルキル基を示し、 R 7 は水素原子またはメチル基を示し、 R 8および R 9はそれぞれ炭素数 1〜4のアル キル基を示し、 R 1 (>は炭素数 1〜 1 2のアルキル基、 フエニル基、 アルキル置換 フエニル基または炭素数 3〜 1 2のシクロアルキル基を示す。 m2は 0、 1また は 2である。 In the general formula (2), R fi represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R 7 represents a hydrogen atom or a methyl group, and R 8 and R 9 each represent an alkyl group having 1 to 4 carbon atoms. R 1 (> represents an alkyl group having 1 to 12 carbon atoms, a phenyl group, an alkyl-substituted phenyl group, or a cycloalkyl group having 3 to 12 carbon atoms. M 2 is 0, 1 or 2 is there.
一般式 (1 ) で表されるラジカル重合性有機過酸化物として、 具体的には、 t —ブチルベルォキシァクリロイロキシェチルカ—ボネ—ト ; tーァミルペルォキ シァクリロイロキシェチルカーボネ—ト ; t—へキシルペルォキシァクリロイ口 キシェチルカ—ボネート ; 1 , 1 , 3, 3—テトラメチルプチルペルォキシァク リロイロキシェチルカーボネート ; クミルペルォキシァクリロイロキシェチルカ —ボネート ; p—イソプロビルクミルペルォキシァクリロイロキシェチルカーボ ネート ; t —ブチルペルォキシメ夕クリロイロキシェチルカーボネート ; tーァ ミルペルォキシメタクリロイロキシェチルカーボネート ; t—へキシルペルォキ シメタクリロイロキシェチルカーボネート ; 1, 1, 3, 3—テトラメチルブチ ルペルォキシメタクリロイロキシェチルカーボネート ; クミルペルォキシメ夕ク リロイロキシェチルカーボネート ; p—イソプロビルクミルペルォキシメタクリ ロイロキシェチルカーボネート ; t—ブチルペルォキシメ夕クリロイロキシェチ ルカーボネーボネ—ト ; tーァミルペルォキシァクリロイ口キシェトキシェチル カーボネート ; t一へキシルペルォキシァクリロイ口キシェトキシェチルカーボ ネート ; 1, 1 , 3, 3—テトラメチルブチルペルォキシァクリロイロキシエト キシェチルカーボネ—卜 ; クミルペルォキシァクリロイ口キシェトキシェチルカ ーボネート ; P Γソプロビルクミルペルォキシァクリロイ口キシェトキシェチ ルカ—ボネート ; t 一ブチルペルォキシメタクリロイ口キシェトキシェチルカ一 ボネート ; tーァミルペルォキシメタクリロイ口キシェトキシェチルカ—ボネ— ト ; t—へキシルペルォキシメタクリロイ口キシェトキシェチルカーボネ一卜 ; 1, 1, 3 , 3—テトラメチルブチルペルォキシメタクリロイロキシエトキシェ チルカーボネート ; クミルペルォキシメタクリロイロキシエトキシェチルカーボ カーボネート ; t 一ブチルペルォキシァクリロイロキシイソプロピルカーボネー ト ; tーァミルペルォキシァクリロイロキシイソプロピルカーボネート ; t —へ キシルペルォキシァクリロイロキシイソプロピルカーボネー卜 ; 1, 1, 3, 3 ーテトラメチルブチルペルォキシァクリロイ口キシィソプロピルカーボネー卜 ; クミルペルォキシァクリロイロキシイソプロピルカーボネート ; p—イソプロピ ルクミルペルォキシァクリロイロキシイソプロピルカーボネート ; t—ブチルぺ ルォキシメタクリロイロキシイソプロピルカーボネート ; t 一アミルベルォキシ メタクリロイロキシイソプロピルカーボネート ; t一へキシルペルォキシメ夕ク リロイロキシイソプロピルカーボネート ; 1, 1, 3, 3—テトラメチルブチル ペルォキシメタクリロイロキシイソプロピルカーボネー卜 ; クミルペルォキシメ 夕クリロイロキシイソプロピルカーボネ一ト ; p Γソプロビルクミルペルォキ シメ夕クリロイロキシイソプロピルカーボネート等を例示することができる。 さらに、 一般式 (2 ) で表される化合物としては、 t 一ブチルペルォキシァリ ルカ—ボネート ; t —ァミルペルォキシァリル力—ボネ—卜 ; t—へキシルペル ォキシァリルカーボネート ; 1, 1, 3, 3—テトラメチルブチルペルォキシァ リルカーボネート ; p—メンタンペルォキシァリルカーボネート ; クミルベルォ キシァリルカーボネート ; t 一ブチルペルォキシメタリルカーボネート ; tーァ ミルペルォキシメタリルカーボネート ; t—へキシルペルォキシメタリルカーボ ネート ; 1, 1 , 3, 3—テトラメチルプチルベルォキシメタリルカーボネー ト ; p—メンタンペルォキシメタリルカーボネート ; クミルベルォキシメタリル ルペルォキシァリロキシェチルカーボネート ; t一へキシルペルォキシァリロキ シェチルカ—ボネート ; t 一ブチルペルォキシメタリロキシェチルカーボネー 卜 ; t —ァミルペルキシメ夕リロキシェチルカ—ボネート ; t一へキシルベルォ キシメ夕リロキシェチルカーボネート ; t 一ブチルペルォキシァリロキシイソプ 口ピルカーボネー卜 ; tーァミルペルォキシァリロキシイソプロピル力—ボネ— 卜 ; t一へキシルペルォキシァリロキシイソプロピルカーボネート ; t 一ブチル ペルォキシメタリロキシイソプロピルカーボネート ; t—ァミルペルォキシメタ リ口キシィソプロピルカーボネー卜 ; t一へキシルペルォキシメ夕リ口キシィソ プロピルカーボネート等を例示することができる。 Examples of the radically polymerizable organic peroxide represented by the general formula (1) include t-butyl benzoylacryloyloxetyl carbonate; t-amylperoxy acryloyloxetyl carbonate; —T; t—Hexylperoxyacryloyl mouth quichetyl carbonate; 1,1,3,3-tetramethylbutyl peroxyacyl royloxetyl carbonate; cumylperoxya creroyloxie Circa-carbonate; p-Isopropircumylperoxyacryloyloxyshetyl carbonate; t-Butylperoxime acryloyloxyshetyl carbonate; t-milperoxymethacryloyloxyshetyl carbonate; t —Hexylperoxy methacryloyloxetyl carbonate; 1,1,3,3-tetramethylbutyroperoxymethac Roy Loki Chez chill carbonate; cumyl O Kishime Yuku Leroy Loki Chez chill carbonate; p-isopropenyl Bilk mill peroxide O carboxymethyl methacryloyloxy Loki Chez chill carbonate; t-butyl peroxide O Kishime evening methacryloyl Loki Chez Ji Lecarbonebonate; t-amylperoxyacryloyl mouth chethetoxystil carbonate; t-hexylperoxyacryloyl mouth chethetoxystil carbonate; 1,1,3,3-tetramethylbutyl Peroxyacryloyloxyethyxetyl carbonate; cumylperoxyacryloyl octylhetoxycarbonate; 1-butylperoxymethacryloy-mouth chelette-kistilka carbonate; t-amylperoxymethacryloy-mouth chethetoxystilka-bonate; t-hexylperoxymethacryloy-mouth kisshetoxyshercarbonate 1,1, 3,3-tetramethylbutylperoxymethacryloyloxyethoxysiloxane carbonate; Cumyl peroxy methacryloyloxy ethoxyxyl carbonate carbonate; t-butyl peroxy acryloyloxy isopropyl carbonate; t-amyl peroxy acryloyloxy isopropyl carbonate; t—hexyl peroxy Acryloyloxyisopropyl carbonate; 1,1,3,3-tetramethylbutylperoxyacryloyl mouth xyisopropyl carbonate; cumylperoxyacryloyloxyisopropyl carbonate; p-isopropyl L-cumyl peroxy acryloyloxy isopropyl carbonate; t-butyl peroxy methacryloyloxy isopropyl carbonate; t-amyl benzoyl methacryloyloxy isopropyl carbonate; 1,1,3,3-tetramethylbutyl peroxymethacryloyloxyisopropyl carbonate; cumylperoxime cryloyloxyisopropyl carbonate; p psoprovir cumylperoxysimate Cryloyloxyisopropyl carbonate and the like can be exemplified. Further, compounds represented by the general formula (2) include t-butylperoxyarylcarbonate; t-amylperoxyaryl force-bonnet; t-hexylperyl. 1,1,3,3-tetramethylbutylperoxyarylcarbonate; p-menthaneperoxyarylcarbonate; cumylbenzyloxyarylcarbonate; t-butylperoxymethallylcarbonate; t T-hexylperoxymethallyl carbonate; 1,1,3,3-tetramethylbutylbenzyloxymethallyl carbonate; p-menthamperoxymethallyl carbonate; cumylbell Oxymethalyl ruperoxyaryloxyshetyl carbonate; t-hexylperoxyaryloxyshetyl carbonate; t-butylperoxymetalaryloxyshetyl carbonate; t-amylperoxymethyloxylyl carbonate; t-hexyl belo Tyl butyl carbonate; t-butyl peroxyaryloxy isop Mouth pill carbonate; t-amyl peroxyaryloxy isopropyl force-bonnet; t-hexyl peroxyaryloxy isopropyl carbonate; Peroxymetalaryloxyisopropyl carbonate; t-amylperoxymetallic xyisopropyl carbonate; t-hexylperoxymethyl xyxopropyl carbonate; and the like.
中でも好ましくは、 t 一ブチルペルォキシァクリロイロキシェチルカーボネー ト ; t —ブチルペルォキシメ夕クリロイロキシェチルカーボネート ; t—ブチル ペルォキシァリルカーボネート ; t 一ブチルペルォキシメタリルカーボネートで ある。  Among them, preferred are t-butyl peroxyacryloyloxyshetyl carbonate; t-butyl peroxime acryloyloxyshetyl carbonate; t-butyl peroxyaryl carbonate; t-butyl peroxylime carbonate Taryl carbonate.
このようにして得られるグラフ卜共重合体のグラフ卜効率は 2 0〜 1 0 0重 量%である。 グラフト効率はグラフト化していない重合体の溶媒抽出を行い、 そ の割合から求めることができる。  The graft efficiency of the graft copolymer thus obtained is 20 to 100% by weight. The grafting efficiency can be determined from the ratio of the ungrafted polymer after solvent extraction.
本発明の特定の多相構造を示す熱可塑性樹脂としては、 上記の非極性 α—ォレ フィン系重合体セグメントとビニル芳香族系重合体セグメントとのグラフ卜共重 合体が好ましいが、 このようなグラフト共重合体において、 非極性ひ—ォレフィ ン系重合体セグメントのかわりに、 あるいはこれに加えて非極性共役ジェン系重 合体セグメントを用いたものであってもよい。 非極性共役ジェン系重合体として は、 前述のものを用いることができ、 単独で使用しても 2種以上を併用してもよ い。 The thermoplastic resin having a specific multiphase structure according to the present invention includes a graft copolymer of the above-mentioned non-polar α-olefin polymer segment and a vinyl aromatic polymer segment. Although a coalescence is preferable, in such a graft copolymer, a nonpolar conjugated polymer segment may be used instead of, or in addition to, the non-polar conjugated polymer segment. . As the nonpolar conjugated gen-based polymer, those described above can be used, and they may be used alone or in combination of two or more.
なお、 以上のグラフト共重合体における非極性 α—ォレフィン系重合体には共 役ジェン単量体が含まれていてもよく、 非極性共役ジェン系重合体には α—ォレ フィンの単量体が含まれていてもよい。  The non-polar α-olefin polymer in the above graft copolymer may contain a co-gen monomer, and the non-polar conjugated polymer may contain a single monomer of α-olefin. The body may be included.
また、 本発明では、 得られたグラフト共重合体にさらにジビニルベンゼン等を 用いて架橋することもできる。 特に、 ジビニルベンゼンの単量体を含まないグラ フト共重合体において、 耐熱性向上の観点から好ましい。  Further, in the present invention, the obtained graft copolymer can be further crosslinked using divinylbenzene or the like. Particularly, a graphitic copolymer containing no divinylbenzene monomer is preferable from the viewpoint of improving heat resistance.
一方、 本発明の特定の多相構造を示す熱可塑性樹脂としては、 ブロック共重合 体であってもよく、 ブロック共重合体としては、 少なくとも 1つのビニル芳香族 単量体の重合体と、 少なくとも 1つの共役ジェンの重合体とを含むブロック共重 合体を挙げることができ、 直鎖型であっても、 ラジアル型、 すなわちハードセグ メントとソフトセグメントが放射線状に結合したものであってもよい。 また、 共 役ジェンを含む重合体が少量のビニル芳香族の単量体とのランダム共重合体であ つてもよく、 いわゆるテーパー型ブロック共重合体、 すなわち 1つのブロック内 でビニル芳香族の単量体が漸増するものであってもよい。  On the other hand, the thermoplastic resin having a specific multiphase structure of the present invention may be a block copolymer, and the block copolymer may be at least one polymer of a vinyl aromatic monomer, A block copolymer containing one polymer of a conjugated gen can be mentioned, and it may be a linear type or a radial type, that is, a type in which a hard segment and a soft segment are radially bonded. Further, the polymer containing a co-gen may be a random copolymer with a small amount of a vinyl aromatic monomer, and is a so-called tapered block copolymer, that is, a vinyl aromatic unit in one block. The amount of the monomer may be gradually increased.
ブロック共重合体の構造については特に制限はなく、 (Α— Β ) η 型、 (Α— Β ) η —Α型または (A、 B ) n 一 C型のいずれであってもよい。 式中、 Aはビ ニル芳香族の単量体の重合体、 Bは共役ジェンの重合体、 Cはカップリング剤残 基、 nは 1以上の整数を示す。 なお、 このブロック共重合体において、 共役ジェ ン部分が水素添加されたブロック共重合体を使用することも可能である。 The structure of the block copolymer is not particularly limited, and may be any of (Α-Β) η- type, (Α-Β) η- Α-type, or (A, B) n- C type. In the formula, A represents a polymer of a vinyl aromatic monomer, B represents a polymer of a conjugated gen, C represents a residue of a coupling agent, and n represents an integer of 1 or more. In addition, in this block copolymer, it is also possible to use a block copolymer in which the conjugated gen moiety is hydrogenated.
このようなブロック共重合体において、 上記の非極性共役ジェン系共重体のか わりに、 あるいはこれに加えて、 前述の非極性 α—才レフイン系重合体を用いて もよく、 非極性共役ジェン系重合体は α—ォレフィン単量体を含んでいるもので あってもよく、 非極性 α—才レフイン系重合体は、 共役ジェンの単量体を含んで いるものであってもよい。 ブロック共重合体における各セグメントの量比や好ま しい態様についてはグラフト共重合体に準じる。 In such a block copolymer, the non-polar conjugated Alternatively or additionally, the above-mentioned non-polar α-olefin polymer may be used, and the non-polar conjugated diene polymer may contain an α-olefin monomer, The non-polar α-olefin olefin polymer may contain a conjugated diene monomer. The ratio of each segment in the block copolymer and the preferred embodiment are the same as those of the graft copolymer.
本発明の樹脂組成物、 好ましくは特定の多相構造を示す熱可塑性樹脂 (特に好 ましくはグラフト共重合体) には、 耐熱性を向上させるために、 4—メチルペン テン— 1の単量体を含む非極性 α—才レフィン系重合体を加えることが好ましい。 なお、 本発明では、 4—メチルペンテン一 1の単量体を含む非極性 α—ォレフィ ン系重合体が化学的結合をすることなく樹脂組成物に含有されている場合もあり うるが、 このような場合には必ずしもその添加は必要とはされない。 ただし、 所 定の特性を得るためにさらに添加してもよい。  In order to improve heat resistance, the resin composition of the present invention, preferably a thermoplastic resin having a specific multiphase structure (particularly preferably a graft copolymer) is used in order to improve heat resistance. It is preferred to add a non-polar α-refined polymer containing a polymer. In the present invention, a non-polar α-olefin polymer containing a monomer of 4-methylpentene-11 may be contained in the resin composition without a chemical bond in some cases. In such a case, the addition is not necessarily required. However, it may be further added to obtain predetermined characteristics.
このような 4—メチルペンテン一 1の単量体を含む非極性 α—ォレフィン系共 重合体における 4ーメチルペンテン一 1の単量体の割合は 5 0重量%以上である ことが好ましい。 なお、 このような非極性 α—才レフイン系共重合体は、 共役ジ ェンの単量体を含むものであってもよい。  The proportion of 4-methylpentene-11 monomer in such a non-polar α-olefin copolymer containing 4-methylpentene-11 monomer is preferably 50% by weight or more. In addition, such a non-polar α-olefin-based copolymer may include a conjugated diene monomer.
特に、 4—メチルペンテン— 1の単量体を含む非極性 α—才レフィン系共重合 体としては、 4—メチルペンテン— 1の単量体の単独重合体であるポリ 4ーメチ ルペンテン一 1であることが好ましい。  In particular, non-polar α-methyl olefin copolymers containing 4-methylpentene-1 monomer include poly-4-methylpentene-11, which is a homopolymer of 4-methylpentene-1 monomer. Preferably, there is.
ポリ 4ーメチルペンテン— 1は、 結晶性のポリ 4ーメチルペンテン— 1であつ て、 プロピレンの 2量体である 4ーメチルペンテン— 1をチーグラ一 ·ナッタ系 触媒等を用いて重合されるアイソ夕クチック ·ポリ 4ーメチルペンテン— 1が好 ましい。  Poly 4-methyl pentene-1 is crystalline poly 4-methyl pentene-1 and is isotactic poly 4 obtained by polymerizing 4-methyl pentene-1 which is a dimer of propylene with a Ziegler-Natta catalyst or the like. -Methylpentene-1 is preferred.
ポリ 4 —メチルペンテン一 1と特定の多相構造を示す熱可塑性樹脂の割合は、 特に限定はないが、 耐熱性および金属との接着性を満足するために、 ポリ 4ーメ チルペンテン— 1の割合が 1 0〜9 0重量%であることが好ましい。 ポリ 4ーメ チルペンテン一 1の割合が少ないと半田耐熱性が不足する傾向がある。 またポリ 4ーメチルペンテン一 1の割合が多くなると金属との密着性が不足する傾向があ る。 ポリ 4ーメチルペンテン— 1にかえて、 共重合体を使用するときの添加量は、 これに準じるものとすればよい。 The ratio of poly 4-methylpentene-1 to a thermoplastic resin exhibiting a specific multiphase structure is not particularly limited, but in order to satisfy heat resistance and adhesion to metals, poly 4-methyl Preferably, the ratio of chillpentene-1 is 10 to 90% by weight. If the ratio of poly (4-methylpentene) -11 is small, the solder heat resistance tends to be insufficient. Also, when the proportion of poly (4-methylpentene) -11 increases, the adhesion to metal tends to be insufficient. Instead of poly-4-methylpentene-1, the amount of addition when the copolymer is used may be based on this.
本発明の樹脂組成物 (4ーメチルペンテン— 1の単量体を含む非極性 a—ォレ フィン系重合体を加えたものを含む) の軟化点は 2 0 0〜2 6 0 °Cであり、 適宜 選択して用いることにより、 十分な半田耐熱性を得ることができる。  The softening point of the resin composition of the present invention (including those to which a non-polar a-olefin polymer containing a monomer of 4-methylpentene-1 is added) is 200 to 260 ° C, Sufficient solder heat resistance can be obtained by appropriately selecting and using.
' 本発明の耐熱性低誘電性高分子材料は、 前記樹脂組成物から構成される樹脂材 料を熱プレス等により例えば薄膜 (フィルム) 等の所望形状に成形する方法等に より得ることができるほか、 せん断力のある、 例えばロールミキサー、 バンバリ 一ミキサー、 ニーダー、 単軸あるいは二軸の押出成型機等で、 他の熱可塑性樹脂 と溶融混合し、 所望形状に成形する方法等によっても得ることができる。 The heat-resistant low-dielectric polymer material of the present invention can be obtained by, for example, a method of molding a resin material composed of the resin composition into a desired shape such as a thin film (film) by hot pressing or the like. In addition, it can be obtained by a method that melts and mixes with other thermoplastic resin with a shearing force, for example, a roll mixer, a Banbury mixer, a kneader, a single-screw or twin-screw extruder, etc., and forms it into a desired shape. Can be.
本発明の樹脂材料は、 フィルムとして、 あるいはバルク状ゃ所定形状の成形体 で、 そしてフィルム状のラミネ一シヨンとして、 など種々の形態で用いることが できる。 したがって高周波用の電子機器や電子部品 (共振器、 フィル夕、 コンデ ンサ、 インダク夕、 アンテナ等) の各種基板、 チップ部品としてのフィル夕 (例 えば多層基板である Cフィル夕) や共振器 (例えばトリプレート型共振器) 、 あ るいは誘電体共振器等の支持台、 さらには各種基板ないし電子部品のハウジング (例えばアンテナ棒ハウジング) 、 ケーシング、 あるいは電子部品やそのハウジ ングゃケーシング等に用いることができる。  The resin material of the present invention can be used in various forms, such as a film or a bulk-shaped molded article having a predetermined shape, and a film-shaped lamination. Therefore, various substrates for high-frequency electronic devices and electronic components (resonators, filters, capacitors, inductors, antennas, etc.), filters as chip components (for example, C filters that are multilayer substrates) and resonators ( For example, a support plate for a triplate-type resonator) or a dielectric resonator, as well as a housing for various substrates or electronic components (for example, an antenna rod housing), a casing, or an electronic component or its housing / casing. be able to.
基板としては、 従来のガラエポ基板の代替品としての用途が期待され、 具体的 には部品搭載用オンボード基板、 C u張積層板等が挙げられる。 さらには回路内 蔵基板、 アンテナ基板 (パッチアンテナ等) にも用いることができる。 また、 放 熱処理を必要とし、 1 0 O MH'z以上の高周波数帯域用であるが、 C P U用オンボ 一ド基板にも用いることができる。 Substrates are expected to be used as substitutes for conventional glass epoxy substrates, and specific examples include on-board components mounting boards and Cu-clad laminates. Furthermore, it can also be used for circuit-embedded substrates and antenna substrates (such as patch antennas). It also requires heat treatment and is for high frequency bands of 10 O MH'z or more, but it is used for CPU on-board. It can also be used for a single substrate.
例えば、 フィルム間および/または最外層に銅等の金属導体フィルムである金 属導体層を積層し、 熱融着することで多層基板を得ることができる。 この場合も 金属導体フィルムとの密着性が良好なものが得られる。 この場合のフィルムは成 形等によって 5 0 z m 以上の厚さのものが得られ、 このような目的では 1 0 0〜 1 0 0 0 x m の厚さとされる。 すなわち、 いわゆる基板といえる厚さのものまで 含む。 また、 金属導体フィルムとして好ましく使用される銅箔の厚さは 1 8〜3 5 m である。 そして、 基板全体の厚さは、 積層タイプのものも含め、 通常、 0 . 1〜 1 . 6 i である。 但し、 場合によってはこれ以上の厚さとされることもあり、 1 0 . O imn程度の厚さで用いられることもある。  For example, a multi-layer substrate can be obtained by laminating a metal conductor layer, which is a metal conductor film of copper or the like, between the films and / or the outermost layer and heat-sealing them. Also in this case, a film having good adhesion to the metal conductor film can be obtained. In this case, a film having a thickness of 50 zm or more can be obtained by molding or the like, and for such a purpose, the thickness is set to 100 to 100 x m. In other words, it includes the thickness of what can be called a substrate. The thickness of the copper foil preferably used as the metal conductor film is 18 to 35 m. The thickness of the entire substrate, including the laminated type, is usually 0.1 to 1.6i. However, depending on the case, the thickness may be larger than this, and the thickness may be about 10 Oimn.
なお、 金属導体層をパターン状に形成するときは、 金属導体フィルムを所定の 形状にパターン化してから密着してもよい。 ただし、 積層によって金属導体フィ ルムと電気絶縁フィルムとを密着する場合、 最外層となる金属導体層はパターン 化してから密着しても、 密着してからエッチングによる除去を行ってパターン化 してもよい。  When the metal conductor layer is formed in a pattern, the metal conductor film may be patterned into a predetermined shape and then adhered. However, when the metal conductor film and the electrical insulating film are brought into close contact with each other by lamination, the outermost metal conductor layer may be patterned and then adhered, or may be patterned after being adhered and removed by etching. Good.
また、 金属導体層は真空蒸着法等によって形成してもよい。  Further, the metal conductor layer may be formed by a vacuum evaporation method or the like.
上記において樹脂材料のみならず、 補強用充填材として従来よりリジッド基板 等に用いられているシリカ粉、 アルミナ粉、 沈降性バリウム (B a S〇4 ) 粉等 を、 熱伝導性のコントロール、 膨張係数コントロール、 メツキによる銅等の付着、 密着性の向上、 低価格化を目的として、 低誘電性 (低誘電率、 低誘電損失正接) を害さない範囲で使用することが好ましい。 補強用充填剤は単独で使用すること も、 複数使用することもできる。 Not only the resin material in the above, the silica powder used in the rigid substrate or the like conventionally as a reinforcing filler, an alumina powder, precipitated barium (B a S_〇 4) powder or the like, the thermal conductivity of control, expansion For the purpose of controlling the coefficient, adhering copper or the like by adhesion, improving the adhesion, and reducing the cost, it is preferable to use the compound within a range that does not impair the low dielectric property (low dielectric constant, low dielectric loss tangent). The reinforcing filler can be used alone or in combination.
補強用充填剤含有フィルム中の樹脂材料の含有量は 1 0〜7 0重量%が適当で ある。 これにより強度が十分で、 低誘電性を有し、 耐熱性のあるフイルムないし 基板となる。 このような含有量は、 フィルムを積層する際、 あるいは基板を積層 する際に樹脂のりとして樹脂材料、 すなわち樹脂材料自体が熱融着できる量 (1 0重量%以上) を維持することによって実現されるものであってもよい。 The content of the resin material in the reinforcing filler-containing film is suitably from 10 to 70% by weight. As a result, a film or substrate having sufficient strength, low dielectric properties, and heat resistance can be obtained. Such a content is determined when laminating films or laminating substrates. In this case, the resin paste may be realized by maintaining an amount (10% by weight or more) at which the resin material, that is, the resin material itself, can be thermally fused.
本発明の樹脂材料を所定形状にする成形方法としては、 すでに述べたものもあ るが、 モールディング法、 コンプレツシヨン法、 押し出し法などが挙げられ、 公 知の方法に準じ、 本発明の樹脂材料の使用目的に応じ安価に成形できる方法を選 択すればよい。  Examples of the molding method for forming the resin material of the present invention into a predetermined shape include those already described, and include a molding method, a compression method, an extrusion method, and the like. What is necessary is just to select the method which can be formed at low cost according to the intended use of the material.
本発明の樹脂材料で構成される耐熱性低誘電性高分子材料は 1 MHz以上の高周 波数帯域での使用が好ましい。  The heat-resistant low-dielectric polymer material composed of the resin material of the present invention is preferably used in a high frequency band of 1 MHz or more.
本発明の耐熱性低誘電性高分子材料の電気的性能においては、 特に周波数帯域 が 6 0 MHz 以上、 特に 6 0 MHz 〜 1 0 GHz の高周波数帯域において、 誘電率 (ε) が 1以上、 特に 2. 0〜3. 0を示し、 かつ誘電損失正接 ( t an <5) 力^ 0. 01以下、 通常 0. 00 1〜 0. 0 1を有する低誘電性電気絶縁材料を得る ことができ、 また電気素子となる補強用充填剤含有電気絶縁基板にすることによ つて、 基板強度を改善し、 低誘電性電気絶縁基板そのものよりも膨張係数を小さ くし、 熱伝導性を向上させることができる。  In the electrical performance of the heat-resistant low-dielectric polymer material of the present invention, the dielectric constant (ε) is 1 or more, particularly in a frequency band of 60 MHz or more, particularly in a high frequency band of 60 MHz to 10 GHz. In particular, it is possible to obtain a low-dielectric electrical insulating material having a dielectric loss tangent (t an <5) of 0.0 to 3.0, usually having a dielectric loss tangent (t an <5) of not more than 0.001 to 0.01. It is possible to improve the strength of the substrate, to reduce the expansion coefficient and to improve the thermal conductivity compared to the low-dielectric electrically insulating substrate itself by using a reinforcing filler-containing electric insulating substrate that can be used as an electric element. Can be.
なお、 本発明の高分子材料の絶縁抵抗率は常態における体積抵抗率で 2〜 5 X 1 014Qcm以上である。 また、 絶縁破壊強度も強く、 1 5KV/mni以上、 特に 1 8 〜30KV腿 とすぐれた特性を示す。 The insulation resistivity of the polymer material of the present invention is 2 to 5 × 10 14 Qcm or more as a volume resistivity in a normal state. In addition, the dielectric breakdown strength is strong, exhibiting excellent characteristics of 15 KV / mni or more, especially 18-30 KV thigh.
また、 本発明の高分子材料は、 耐熱性に優れ、 半田付けの際の加熱温度に耐え 得る。 したがって、 基板や電子部品のみならず、 このような処理が必要なハウジ ングゃケ一シングに使用することが好ましい。 実施例  Further, the polymer material of the present invention has excellent heat resistance and can withstand the heating temperature at the time of soldering. Therefore, it is preferably used not only for substrates and electronic components, but also for housing and packaging that requires such processing. Example
以下本発明を実施例によりさらに詳しく説明する。  Hereinafter, the present invention will be described in more detail with reference to examples.
(実施例 1 ) ポリエチレン 「G 401」 l O O O g (商品名、 日本ポリオレフィン (株) 製) にパークミル D (商品名、 日本油脂 (株) 製) を 10 gブレンドし後、 シリ ンダー温度 140°Cに設定されたスクリユー径 30 mmの同軸方向二軸押出機に供 給し、 押出後造粒し、 熱架橋性ポリエチレン樹脂を得た。 なお、 ポリエチレンの 分子量は、 高温 GPC (ウォーターズ (株) 製) を用いて重量平均絶対分子量を 測定した。 この樹脂の炭素と水素の含有量は元素分析法で定量した。 (Example 1) Polyethylene “G401” l OOO g (trade name, manufactured by Nippon Polyolefin Co., Ltd.) was blended with 10 g of Park Mill D (trade name, manufactured by NOF Corporation), and the cylinder temperature was set to 140 ° C. The mixture was supplied to a coaxial twin-screw extruder having a screw diameter of 30 mm, extruded, and granulated to obtain a thermocrosslinkable polyethylene resin. The molecular weight of polyethylene was determined by measuring the weight average absolute molecular weight using high temperature GPC (manufactured by Waters Corporation). The contents of carbon and hydrogen in this resin were determined by elemental analysis.
この樹脂粒子をを熱プレス成型機 (上島機械 (株) 製) により 220°Cで熱プ レス成形して 1 Ocmx 1 Ocmx 0. 1 cmの電気絶縁材料試験片を作製した。 また、 アイゾット衝撃試験片、 および半田耐熱性試験片として射出成型機で、 13minx 65匪 X 6mmの試験片を作成した。 得られた試験片を用いて以下の測定を行い、 体積抵抗率、 絶縁破壊強さ、 誘電率、 誘電正接、 半田耐熱性、 アイゾット衝撃強 度および金属との接着性の評価を行った。 また、 得られた樹脂ペレットを用いて 吸水率の測定を行った。 また、 熱プレスで成形し、 熱架橋させたポリエチレン樹 脂を粉砕し、 キシレン中で加熱し、 その溶解性から架橋度を確認した。 試験法を 以下に示す。 絶縁抵抗試験 (体積抵抗率) ; J I S K 691 1 (試験電圧 500 V) 絶縁破壊試験 (絶縁破壊強さ) ; J I S C 21 10  The resin particles were hot-pressed at 220 ° C. by a hot press molding machine (manufactured by Kamishima Kikai Co., Ltd.) to produce a 1 Ocm × 1 Ocm × 0.1 cm test piece of an electrically insulating material. In addition, 13 min x 65 x 6 mm test pieces were prepared as Izod impact test pieces and solder heat resistance test pieces using an injection molding machine. The following measurements were performed using the obtained test pieces, and the volume resistivity, dielectric strength, dielectric constant, dielectric loss tangent, solder heat resistance, Izod impact strength, and adhesion to metal were evaluated. The water absorption was measured using the obtained resin pellets. In addition, the polyethylene resin molded and thermally cross-linked with a hot press was ground and heated in xylene, and the degree of cross-linking was confirmed from its solubility. The test method is shown below. Insulation resistance test (Volume resistivity); J I S K 691 1 (Test voltage 500 V) Dielectric breakdown test (Insulation breakdown strength); J I S C 21 10
誘電率試験; J I S L 1094 B法に準拠  Dielectric constant test; Conforms to JIS L 1094 B method
誘電正接; AS TM D 150 に準拠  Dielectric loss tangent; according to ASTM D150
半田耐熱性; 200°C, 230t:、 260°Cに加熱した半田中に 2分間試験片 を浸漬し、 変形の度合いを観察した。  Solder heat resistance: 200 ° C, 230t: The test piece was immersed in the solder heated to 260 ° C for 2 minutes, and the degree of deformation was observed.
アイゾット衝撃強度 (ノッチ付き) (表中、 アイゾットと記した。 また単位は k g · cmZcm2である。 ) ; J I S K 71 10 Izod impact strength (notched) (. In the table, marked with Izod also unit is kg · cmZcm 2.); JISK 71 10
金属との接着性;試験片にアルミを真空蒸着した後、 布で軽くこすった際の薄 膜の接着性を調べた。 Adhesion to metal; thin when lightly rubbed with cloth after vacuum deposition of aluminum on test specimen The adhesion of the membrane was examined.
吸水率; A S TM D 570 に準拠  Water absorption; according to ASTM D570
架橋度;粉砕した樹脂 1 gをキシレン 70m 1中に入れ、 環流しながら 12 0°Cに加熱し、 10分間撹拌した。 その後、 樹脂の溶解性を観察した。  Degree of crosslinking: 1 g of the crushed resin was placed in 70 ml of xylene, heated to 120 ° C. while refluxing, and stirred for 10 minutes. Thereafter, the solubility of the resin was observed.
成形性;射出成形機にてアイゾット衝撃試験片を作成したときの成形性と、 プ レス機での成形性、 および押出成形でフィルムをを作成したときの成形性につい て評価した。  Moldability: The moldability when preparing an Izod impact test specimen with an injection molding machine, the moldability with a press machine, and the moldability when forming a film by extrusion molding were evaluated.
各試験の結果を表 1に示す。 なお、 表 1中の誘電率は、 「誘電体としての試験 片の静電容量ノ真空の場合の静電容量」 を表す。 また、 半田耐熱性は、 「〇が変 形無し」 、 「厶がー部変形」 、 「Xが大きく変形」 を表す。 また、 金属との接着 性は、 「〇が良好」 、 「△がー部剥離」 、 「Xが全面剥離」 であることを表す。  Table 1 shows the results of each test. The dielectric constant in Table 1 indicates "the capacitance of the test piece as a dielectric in the case of no vacuum". In addition, the solder heat resistance indicates “〇 is not deformed”, “deformation is weak”, and “X is largely deformed”. In addition, the adhesiveness to metal indicates that “〇 is good”, “△ part is peeled”, and “X is whole peeling”.
(実施例 2〜 4)  (Examples 2 to 4)
重量平均絶対分子量が 1000、 3000、 5000のボリェチレンを実施例 1と同様の方法でパークミル Dと溶融ブレンドし、 得られた樹脂粒子を実施例 1 と同様の方法で成形し、 各試験を行った。 結果を表 1に示した。  Bolylene having a weight average absolute molecular weight of 1000, 3000, and 5000 was melt-blended with Parkmill D in the same manner as in Example 1, and the obtained resin particles were molded in the same manner as in Example 1 and subjected to each test. . The results are shown in Table 1.
(実施例 5 )  (Example 5)
ポリプロピレン 「 Jァロイ 1 50 G」 (商品名、 日本ポリオレフイン (株) 製) 1000 gにジビニルベンゼンを 10 g、 パークミル D (商品名、 日本油脂 (株) 製) を 0. 5 g添加し、 シリンダー温度 170°Cに設定されたスクリュー 径 3 Ominの同軸方向二軸押出機に供給し、 押出後造粒し、 熱架橋性ポリプロピレ ン樹脂を得た。 この樹脂を実施例 1と同様の方法で成形し、 各評価を行った。 結 果を表 1に示した。 実施例 1 2 3 4 5 樹脂 P E Ρ Ε Ρ Ε Ρ Ε Ρ Ρ Polypropylene “Jalloy 150 G” (trade name, manufactured by Nippon Polyolefin Co., Ltd.) 1000 g of divinylbenzene and 0.5 g of Park Mill D (trade name, manufactured by Nippon Oil & Fats Co., Ltd.) are added. The mixture was fed to a coaxial twin-screw extruder having a screw diameter of 3 Omin set at a temperature of 170 ° C., followed by extrusion and granulation to obtain a thermo-crosslinkable polypropylene resin. This resin was molded in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 1. Example 1 2 3 4 5 Resin PE Ρ Ε Ρ Ε Ρ Ε Ρ Ρ
炭素原子と水素原子 Carbon and hydrogen atoms
の和の割 ( % 〉99 >99 >99 >99 >99 分子量  (%〉 99> 99> 99> 99> 99 molecular weight
(Mw) 171000 1000 3000 5000 300000 体積抵抗率  (Mw) 171000 1000 3000 5000 300000 Volume resistivity
(XI 0 "* Q - cm) 3.0 3, η ·? η •χ η 絶縁破壊強さ  (XI 0 "* Q-cm) 3.0 3, η ·? Η • χ η Breakdown strength
(KV/mm) 20 20 22 22 20 誘電率 1GHz 2. 10 2.06 2.08 2. 10 2. 10  (KV / mm) 20 20 22 22 20 Dielectric constant 1GHz 2.10 2.06 2.08 2.10 2.10
2GHz 2. 12 2GHz 2.12
5GHz 2.08 2. 08 2.06 2.08 2. 255GHz 2.08 2.08 2.06 2.08 2.25
10GHz 2. 25 言秀電正捽 1GHz 2.40 2.38 2.33 2.30 0.9610GHz 2.25 Words Hideden Masa 捽 1GHz 2.40 2.38 2.33 2.30 0.96
(X10— :i) 2GHz 0. 16 (X10— : i ) 2GHz 0.16
5GHz 1. 53 2. 72 2.20 2. 21 0. 23 5GHz 1.53 2.72 2.20 2.21 0.23
10GHz 0. 2910GHz 0.29
200°C 〇 厶 Δ 〇 〇 半田耐熱性 230 Δ X Δ 〇 C 200 ° C Column Δ 〇 耐熱 Soldering heat resistance 230 Δ X Δ 〇 C
260で X X X X Δ アイ',ット衝撃値  260 at X X X X Δ Eye ', Cut impact value
(Kg-cm/cm') 破壊せず 破壊せず 破壊せず 破壊せず 9 金属との密着性 厶 △ Δ Δ △ 吸水率 (%) <0.03 く 0.03 <0. 03 <0.03 <0.03 成形性 良 良 良 良 良 架橋度(溶解性) 不溶 不溶 不溶 不溶 不溶 (実施例 6、 7) (Kg-cm / cm ') Not destroyed Not destroyed Not destroyed Not destroyed 9 Adhesion to metal mm △ Δ Δ △ Water absorption (%) <0.03 <0.03 <0.03 <0.03 <0.03 Formability Good Good Good Good Good Good Degree of crosslinking (solubility) Insoluble Insoluble Insoluble Insoluble Insoluble (Examples 6 and 7)
ポリエチレン 「G401」 (商品名、 日本ポリオレフイン (株) 製) 、 ポリス チレン 「ダイヤレックス HF 77」 (商品名、 三菱モンサント (株) 製) 、 およ びジビニルベンゼンを 70 : 29 : 1および 50 : 49 : 1 (重量%) の割合で 溶融混練した。 得られた樹脂を実施例 1と同様の方法で成形し、 各評価を行った。 結果を表 2に示した。  Polyethylene “G401” (trade name, manufactured by Nippon Polyolefin Co., Ltd.), Polystyrene “Dialex HF 77” (trade name, manufactured by Mitsubishi Monsanto Co., Ltd.), and divinylbenzene 70: 29: 1 and 50: The mixture was melt-kneaded at a ratio of 49: 1 (% by weight). The obtained resin was molded in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 2.
(実施例 8 )  (Example 8)
容積 5リットルのステンレス製ォ—トクレーブに、 純水 2000 gを入れ、 さ らに懸濁剤としてポリビニルアルコール 2. 5 gを溶解させた。 この中にスチレ ンモノマー 990 gとジビニルベンゼン 10 g、 重合開始剤としてのベンゾィル ペルォキシド 5 gを投入 ·攪はんした。 次いでォートクレーブを 80〜85°Cに 上げ、 その温度で 7時間維持して重合を完結させ、 濾過後、 水洗および乾燥して スチレンージビニルベンゼン共重合体を得た。 この樹脂を実施例 1と同様の方法 で成形し、 各評価を行った。 結果を表 2に示した。 In a 5-liter stainless steel autoclave, 2000 g of pure water was added, and 2.5 g of polyvinyl alcohol was dissolved as a suspending agent. Into this, 990 g of styrene monomer, 10 g of divinylbenzene, and 5 g of benzoyl peroxide as a polymerization initiator were added and stirred. Then, the autoclave was heated to 80 to 85 ° C and maintained at that temperature for 7 hours to complete the polymerization. After filtration, the polymer was washed with water and dried to obtain a styrenedivinylbenzene copolymer. This resin was molded in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 2.
表 2 Table 2
実施例 6 7 8 樹脂 PE/PS PE/PS St/DVB  Example 6 7 8 Resin PE / PS PE / PS St / DVB
/DVB /DVB  / DVB / DVB
(70:29 (50:49 (99:1) (70:29 (50:49 (99: 1)
.1) - t .1)-t
炭素原子と水素原子 Carbon and hydrogen atoms
¾ jtifrt τ)\ ΐ不π U
Figure imgf000027_0001
( o/
¾ jtifrt τ) \ ΐ non-π U
Figure imgf000027_0001
(o /
分子量 171000/ 171000/ Molecular weight 171000/171000 /
(Mw) 146000 146000 測定不能 体積抵抗率  (Mw) 146000 146000 Unmeasurable Volume resistivity
(X10 ' s Ω - cm) 3.0 3.0 3.0 絶縁破壊強さ (X10 ' s Ω-cm) 3.0 3.0 3.0 Breakdown strength
(KV/ 20 20 22 誘電率 1GHz 2.37 2.44 2.59  (KV / 20 20 22 Dielectric constant 1GHz 2.37 2.44 2.59
2GHz 2.36 2.41 2.66 2GHz 2.36 2.41 2.66
5GHz 2.33 2.43 2.585GHz 2.33 2.43 2.58
10GHz 2.22 1.35 2.44 绣電正接 1GHz 0.53 0.60 0.4510GHz 2.22 1.35 2.44 Electric tangent 1GHz 0.53 0.60 0.45
(Χ1(Γ'Ί) 2GHz 0.57 0.59 0.50 (Χ1 (Γ ' Ί ) 2GHz 0.57 0.59 0.50
5GHz 0.62 0.66 0.58 5GHz 0.62 0.66 0.58
10GHz 0.71 0.68 0.6310GHz 0.71 0.68 0.63
200で 〇 〇 〇 半田耐熱性 230^ 〇 △ 〇 At 200 〇 〇 〇 Solder heat resistance 230 ^ 〇 △ 〇
260"C △ Δ 〇 アイ'尸ツト衝撃値  260 "C △ Δ 〇 Eye impact
(Kg-cm/cni-) 1 2 8 1 金属との密着性 〇 〇 〇 吸水率 (%) <0.03 く 0.03 <0.03 成形性 良 良 良 架犒度(溶解性) 不溶 不溶 不溶 (実施例 9 ) (Kg-cm / cni-) 1 2 8 1 Adhesion to metal 〇 〇 〇 Water absorption (%) <0.03 Cr 0.03 <0.03 Formability Good Good Good Multiplicity (solubility) Insoluble Insoluble Insoluble (Example 9)
容積 5リットルのステンレス製オートクレープに、 純水 2 5 0 0 gを入れ、 さ らに懸濁剤としてポリビニルアルコール 2 . 5 gを溶解させた。 この中にォレフ イン系重合体としてポリプロピレン 「 Jァロイ 1 5 0 G」 (商品名、 日本ポリオ レフイン (株) 製) 7 0 0 gを入れ、 攪はん ·分散した。 別にラジカル重合開始 剤としてのベンゾィルペルォキシド 1 . 5 g、 ラジカル重合性有機過酸化物とし て t 一ブチルペルォキシメタクリロイロキシェチルカ—ボネート 9 gを、 ビニル 芳香族単量体としてスチレン 3 0 0 g中に溶解させ、 この溶液を前記ォー卜クレ ーブ中に投入 ·攪はんした。 次いでォ—トクレーブを 6 0〜6 5 °Cに昇温し、 2 時間攪はんすることによりラジカル重合開始剤およびラジカル重合性有機過酸化 物を含むビニル単量体をポリプロピレン中に含浸させた。 次いで、 温度を 8 0〜 8 5 °Cに上げ、 その温度で 7時間維持して重合を完結させ、 濾過後、 水洗および 乾燥してグラフト化前駆体 (a ) を得た。  In a 5-liter stainless steel autoclave, 250 g of pure water was added, and 2.5 g of polyvinyl alcohol was dissolved as a suspending agent. Into this, 700 g of polypropylene “J-alloy 150 G” (trade name, manufactured by Nippon Polyolefin Co., Ltd.) was added as a olefin polymer, and stirred and dispersed. Separately, 1.5 g of benzoylperoxide as a radical polymerization initiator, 9 g of t-butylperoxymethacryloyloxetyl carbonate as a radical polymerizable organic peroxide, and a vinyl aromatic monomer Was dissolved in 300 g of styrene, and this solution was charged and stirred in the autoclave. Next, the autoclave was heated to 60 to 65 ° C and stirred for 2 hours to impregnate the polypropylene with a vinyl monomer containing a radical polymerization initiator and a radically polymerizable organic peroxide. . Next, the temperature was raised to 80 to 85 ° C., and the temperature was maintained for 7 hours to complete the polymerization. After filtration, the polymer was washed with water and dried to obtain a grafting precursor (a).
次いで、 このグラフト化前駆体 (a ) をラボプラストミル一軸押出機 ( (株) 東洋精機製作所製) で 2 0 0 °Cにて押し出し、 グラフト化反応させることにより グラフト共重合体 (A) を得た。  Next, the grafting precursor (a) is extruded at 200 ° C. with a Labo Plastomill single screw extruder (manufactured by Toyo Seiki Seisaku-sho, Ltd.), and the grafting reaction is carried out to obtain the graft copolymer (A). Obtained.
このグラフト共重合体 (A) を熱分解ガスクロマトグラフィーによって分析し たところ、 ポリプロピレン:スチレンの重量割合は 7 0 : 3 0であった。  When this graft copolymer (A) was analyzed by pyrolysis gas chromatography, the weight ratio of polypropylene: styrene was 70:30.
なおこのとき、 スチレン重合体セグメントのグラフト効率は 5 0 . 1重量%で あった。 グラフ卜効率は、 ソックスレー抽出器で酢酸ェチルにより、 グラフ卜化 していないスチレン重合体を抽出し、 この割合を求めることによって算出した。 実施例 9で得られた熱可塑性樹脂を実施例 1と同様の方法で成形し、 各試験を 行った。 結果を表 3に示した。  At this time, the graft efficiency of the styrene polymer segment was 50.1% by weight. The grafting efficiency was calculated by extracting a non-grafted styrene polymer with ethyl acetate using a Soxhlet extractor and calculating the ratio. The thermoplastic resin obtained in Example 9 was molded in the same manner as in Example 1, and each test was performed. Table 3 shows the results.
(実施例 1 0〜: 1 8 )  (Example 10 to: 18)
実施例 9と同様の方法でグラフト共重合体 (B ) から (J ) を得た。 グラフ卜 ポリマーの仕込み組成と熱分解ガスクロマトグラフィ一による組成分析結果を表 3、 4に示した。 また、 各試験結果も表 3、 4に示した。 なお、 表中の略号は次 のものを示す。 (J) was obtained from the graft copolymer (B) in the same manner as in Example 9. Graph Tables 3 and 4 show the charged composition of the polymer and the results of composition analysis by pyrolysis gas chromatography. Tables 3 and 4 also show the results of each test. Abbreviations in the table indicate the following.
P P :ポリプロピレン 「】ァロィ 1 50〇」 (商品名、 日本ポリオレフィン (株) 製)  PP: Polypropylene [] Alloy 150〇 (trade name, manufactured by Nippon Polyolefin Co., Ltd.)
PE:ポリエチレン 「G401」 (商品名、 日本ポリオレフイン (株) 製) PE: Polyethylene “G401” (trade name, manufactured by Nippon Polyolefin Co., Ltd.)
S t :スチレン St: Styrene
DMS :ジメチルスチレン  DMS: dimethyl styrene
MS t : メチルスチレン MS t: Methylstyrene
表 3 Table 3
Figure imgf000030_0001
表 4
Figure imgf000030_0001
Table 4
Figure imgf000031_0001
(実施例 1 9 )
Figure imgf000031_0001
(Example 19)
容積 5リットルのステンレス製オートクレーブに、 純水 2 5 0 0 gを入れ、 さ らに懸濁剤としてポリビニルアルコール 2 . 5 gを溶解させた。 この中にォレフ イン系重合体としてポリプロピレン 「 Jァロイ 1 5 0 G」 (商品名、 日本ポリオ レフイン (株) 製) 8 0 0 gを入れ、 攪はん '分散した。 別にラジカル重合開始 剤としてのベンゾィルペルォキシド 1 . 5 g、 ラジカル重合性有機過酸化物とし て t一ブチルペルォキシメタクリロイロキシェチルカーボネート 6 gを、 ジビニ ルベンゼン 1 0 0 g、 ビニル芳香族単量体としてスチレン 1 0 0 gの混合液に溶 解させ、 この溶液を前記ォ—トクレーブ中に投入 ·攪はんした。 次いでォ—トク レーブを 6 0〜6 5 °Cに昇温し、 2時間攪はんすることによりラジカル重合開始 剤およびラジカル重合性有機過酸化物を含むビニル単量体をポリプロピレン中に 含浸させた。 次いで、 温度を 8 0〜8 5 °Cに上げ、 その温度で 7時間維持して重 合を完結させ、 水洗および乾燥してグラフト化前駆体 (b ) を得た。  In a 5-liter stainless steel autoclave, 250 g of pure water was added, and 2.5 g of polyvinyl alcohol was dissolved as a suspending agent. 800 g of polypropylene “J-alloy 150 G” (trade name, manufactured by Nippon Polyolefin Co., Ltd.) was added as the olefin polymer, and the mixture was stirred and dispersed. Separately, 1.5 g of benzoylperoxide as a radical polymerization initiator, 6 g of t-butylperoxymethacryloyloxetyl carbonate as a radical polymerizable organic peroxide, 100 g of divinylbenzene, The vinyl aromatic monomer was dissolved in a mixed solution of 100 g of styrene, and this solution was charged and stirred in the autoclave. Next, the autoclave was heated to 60 to 65 ° C and stirred for 2 hours to impregnate the vinyl monomer containing the radical polymerization initiator and the radically polymerizable organic peroxide into the polypropylene. Was. Next, the temperature was raised to 80 to 85 ° C, and the temperature was maintained for 7 hours to complete the polymerization, followed by washing with water and drying to obtain a graft precursor (b).
次いで、 このグラフト化前駆体 (b ) をラポプラストミル一軸押出機 ( (株) 東洋精機製作所製) で 2 0 0 °Cにて押し出し、 グラフト化反応させることにより グラフト共重合体 (K) を得た。  Next, the grafted precursor (b) is extruded at 200 ° C. by a Lapoplast mill single screw extruder (manufactured by Toyo Seiki Seisaku-sho, Ltd.), and a grafting reaction is carried out to obtain a graft copolymer (K). Obtained.
このグラフト共重合体 (K) を熱分解ガスクロマトグラフィーによって分析し たところ、 ポリプロピレン: ジビニルベンゼン:スチレンの重量割合は 8 0 : 1 0 : 1 0であった。  When the graft copolymer (K) was analyzed by pyrolysis gas chromatography, the weight ratio of polypropylene: divinylbenzene: styrene was 80:10:10.
なおこのとき、 ジビニルベンゼン一スチレン共重合体のグラフト効率は 5 0 . 1重量%であった。  At this time, the graft efficiency of the divinylbenzene-styrene copolymer was 50.1% by weight.
ここで得られたグラフト共重合体 (K) についても実施例 1と同様の試験を行 つた。 各試験の結果を表 5に示した。  The same test as in Example 1 was performed on the graft copolymer (K) obtained here. Table 5 shows the results of each test.
(実施例 2 0〜 2 4 )  (Examples 20 to 24)
実施例 1 9と同様の方法でグラフト共重合体 (L ) から (P ) を得た。 グラフ トポリマーの仕込み組成と熱分解ガスクロマトグラフィ一による組成分析結果を 表 1に示した。 また、 各試験結果も表 5に示した。 なお、 表中の略号は次のもの を示す。 (P) was obtained from the graft copolymer (L) in the same manner as in Example 19. Graph Table 1 shows the charge composition of the polymer and the result of composition analysis by pyrolysis gas chromatography. Table 5 also shows the results of each test. Abbreviations in the table indicate the following.
P P :ポリプロピレン 「】ァロィ 1 50 G」 (商品名、 日本ポリオレフィン (株) 製)  PP: Polypropylene [] Arrow 150G (trade name, manufactured by Nippon Polyolefin Co., Ltd.)
PE :ポリエチレン 「G401」 (商品名、 日本ポリオレフイン (株) 製) PE: Polyethylene “G401” (trade name, manufactured by Nippon Polyolefin Co., Ltd.)
DVB:ジビニルベンゼン DVB: divinylbenzene
S t :スチレン  St: Styrene
DMS : ジメチルスチレン DMS: dimethylstyrene
表 5 Table 5
実施例 1 9 20 2 1 2 2 23 24 グラフト共重合体 K し M N Ο P 仕込み組成 PP:DVB PP-.DVB PP:鹏 PP:議 PE:DVB PP:DVB Example 1 9 20 2 1 2 2 23 24 Graft copolymer K and M N Ο P Charge composition PP: DVB PP-.DVB PP: 鹏 PP: PE: DVB PP: DVB
: St : St : St : St : DMS : St: St: St: St: St: DMS: St
(重量 80:10: 50: 1: 5:10: 95:4: 1 70:5 70:10: (Weight 80: 10: 50: 1: 5: 10: 95: 4: 1 70: 5 70:10:
10 49 85 :25 20 組成分析結果 PP:DVB pp :DVB pp :DVB pp :DVB PE:DVB PP:DVB 10 49 85: 25 20 Composition analysis result PP: DVB pp: DVB pp: DVB pp: DVB PE: DVB PP: DVB
: St : St : St : St : DMS : St: St: St: St: St: DMS: St
(重量; ¾) 80:10: 50: 1: 5:10: 95:4: 1 70:5 70:10: (Weight; ¾) 80:10: 50: 1: 5:10: 95: 4: 1 70: 5 70:10:
10 49 85 :25 20 炭素原子と水素原子  10 49 85: 25 20 Carbon atom and hydrogen atom
数の和の割合 (%) >99 〉99 >99 >99 >99 >99 体積抵抗率 Ratio of the sum of numbers (%)> 99 > 99> 99> 99> 99> 99 Volume resistivity
(Χ10'6Ω -cm) 3.0 3.1 2.9 3.5 2.5 3.0 絶縁破壊強さ (Χ10 ' 6 Ω -cm) 3.0 3.1 2.9 3.5 2.5 3.0 Dielectric breakdown strength
(KV/mm) 22 20 19 22 18 22 誘電率 1GHz 2.27 2.33 2.51 2.20 2.35 2.37  (KV / mm) 22 20 19 22 18 22 Dielectric constant 1GHz 2.27 2.33 2.51 2.20 2.35 2.37
2GHz 2.33 2.30 2.46 2.36 2GHz 2.33 2.30 2.46 2.36
5GHz 2.30 2.28 2.38 2.50 2.44 2.335GHz 2.30 2.28 2.38 2.50 2.44 2.33
10GHz 2.15 2.32 2.43 2.22 誘電正接 1GHz 0.59 0.95 0.67 0.87 2.65 0.53 10GHz 2.15 2.32 2.43 2.22 Dissipation factor 1GHz 0.59 0.95 0.67 0.87 2.65 0.53
0.53 0.93 0.62 0.57 0.53 0.93 0.62 0.57
5GHz 0.68 0.87 0.60 0.68 2.82 0.625GHz 0.68 0.87 0.60 0.68 2.82 0.62
10GHz 0.66 0.81 G.69 0.7110GHz 0.66 0.81 G.69 0.71
2oo 〇 〇 〇 〇 〇 〇 半田耐熱性 230で 〇 〇 〇 〇 〇 〇 2oo 〇 〇 〇 〇 〇 〇 Solder heat resistance 230 with 〇 〇 〇 〇 〇 〇
26trc 〇 △ 〇 〇 〇 〇 26trc 〇 △ 〇 〇 〇 〇
7 if ット衝撃値 7 ift impact value
(Kg-cm/cm^ 9 8 2 9 破壊せず 9 金属との密着性 〇 〇 〇 Δ 〇 〇 吸水率 (%) <0.03 <0.0;) <0.03 <0.03 〈0.03 <0.03 成形性 良 良 良 良 良 良 架橋度(溶解性) 不溶 不溶 不溶 不溶 不溶 不溶 (実施例 25 ) (Kg-cm / cm ^ 9 8 2 9 No breakage 9 Adhesion to metal 〇 〇 〇 Δ 〇 水 Water absorption (%) <0.03 <0.0;) <0.03 <0.03 <0.03 <0.03 Formability Good Good Good Good Good Good Degree of crosslinking (solubility) Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble (Example 25)
ポリ 4ーメチルペンテン一 1 「TPX RT 18」 (商品名、 三井石油化学ェ 業 (株) 製) 2700 gと実施例 1で得たグラフト共重合体 (A) 300 gを溶 融混合した。 溶融混合の方法は、 各樹脂をドライブレンドした後、 シリンダー温 度 260°Cに設定されたスクリュー径 30 mmの同軸方向二軸押出機に供給し、 押 出後造粒し、 樹脂 (a) を得た。  2700 g of poly 4-methylpentene-1 “TPX RT 18” (trade name, manufactured by Mitsui Petrochemicals Co., Ltd.) and 300 g of the graft copolymer (A) obtained in Example 1 were melt-mixed. The melt mixing method is as follows: After dry blending each resin, it is fed to a coaxial twin screw extruder with a screw diameter of 30 mm set at a cylinder temperature of 260 ° C, extruded, and granulated. I got
ここで得られた樹脂 (a) についても実施例 1と同様の試験を行った。 各試験 の結果を表 6に示す。  The same test as in Example 1 was performed on the resin (a) obtained here. Table 6 shows the results of each test.
(実施例 26〜34)  (Examples 26 to 34)
実施例 25と同様の方法で樹脂 (b) から (j ) を得た。 ブレンドしたポリ 4 ーメチルペンテン一 1とグラフト共重合体の種類と割合を表 6、 7に示した。 ま た、 各試験結果も表 6、 7に示した。 Resin (b) to (j) were obtained in the same manner as in Example 25. Tables 6 and 7 show the types and proportions of the blended poly 4-methylpentene-11 and the graft copolymer. Tables 6 and 7 also show the results of each test.
表 6 Table 6
実施例 2 5 2 6 2 7 2 8 2 9 樹脂 a b c d e ポリ 4ーメチルペン  Example 2 5 2 6 2 7 2 8 2 9 Resin a b c d e Poly 4-methyl pen
テン一 1 Ten One 1
(重量%) 7 0 1 0 9 0 5 9 5 グラフト共重合体 A B E A A  (Wt%) 7 0 1 0 9 0 5 9 5 Graft copolymer A B E A A
3 0 9 0 1 0 9 5 5 炭素原子と水素原子 3 0 9 0 1 0 9 5 5 Carbon atom and hydrogen atom
数の和の割合 (%) 〉99 >99 >99 >99 >99 体積抵抗率 Ratio of the sum of numbers (%)〉 99> 99> 99> 99> 99 Volume resistivity
"10" Ω。 - cレm) 3. l 3.0 "λ n 絶縁破壊強さ  "10" Ω. -c m) 3.l 3.0 "λ n Breakdown strength
(KV/mm) 22 20 19 21 22 誘電率 1GHz 2.09 2. 15 2. 11 2.30 2. 16  (KV / mm) 22 20 19 21 22 Dielectric constant 1GHz 2.09 2.15 2.11 2.30 2.16
2GHz 2.21 2.20  2GHz 2.21 2.20
5GHz 2. 10 2.18 2.08 2.35 2.30 5GHz 2.10 2.18 2.08 2.35 2.30
10GHz 1.99 2.00 10GHz 1.99 2.00
言秀雷 TE接 1GHz 0.63 0_ 73 0.93 0.88 0.66Kato Hiderai TE contact 1GHz 0.63 0_ 73 0.93 0.88 0.66
(xltT1) 2GHz 0.65 0.69 (xltT 1 ) 2GHz 0.65 0.69
5GHz 0.61 0.63 1.08 0.63 0.72 5GHz 0.61 0.63 1.08 0.63 0.72
1 nr η ςτ 0.55 1 nr η ςτ 0.55
20CC 〇 〇 o o o 半田耐熱性 〇 〇 〇 〇 〇  20CC 〇 〇 o o o Soldering heat resistance 〇 〇 〇 〇 〇
260 〇 〇 〇 △ 〇 ァイソ'ツ卜衝搫値  260 〇 〇 〇 △ 〇
(Kg- cm/cm2) 4 7 2 8 2 金属との密着性 〇 〇 〇 〇 △ 吸水率 (%) <0.0 〈0.02 〈0.0 く 0.02 成形性 良 良 良 良 良 架橋度(溶解性) 不溶 不溶 不溶 不溶 不溶 表 7 (Kg-cm / cm 2 ) 4 7 2 8 2 Adhesion to metal 〇 〇 〇 〇 △ Water absorption (%) <0.0 〈0.02 〈0.0 Ku 0.02 Moldability Good Good Good Good Good Degree of crosslinking (solubility) Insoluble Insoluble insoluble insoluble insoluble Table 7
実施例 30 3 1 32 3 3 34 樹脂 f g h i j ポリ 4ーメチルペン  Example 30 3 1 32 3 3 34 Resin f g h i j Poly 4-methyl pen
テン一 1 Ten One 1
(重量%) 70 70 60 30 50 グラフト共重合体 K I A A A oU 40 70 50 炭素原子と水素原子  (Wt%) 70 70 60 30 50 Graft copolymer K I A A A oU 40 70 50 Carbon atom and hydrogen atom
数の和の割合 (%) >99 >99 〉99 >99 >99 体積抵抗率 Ratio of sum of numbers (%)> 99> 99 > 99> 99> 99 Volume resistivity
(Χ1016Ω -cm) 3.0 3.0 3.0 3. l 3.1 絶縁破壊強さ (Χ10 16 Ω-cm) 3.0 3.0 3.0 3.l 3.1 Dielectric breakdown strength
(KV/mm) 22 22 21 22 22 誘電率 1GHz 2.25 2.06 2.15 2.18 2.13  (KV / mm) 22 22 21 22 22 Dielectric constant 1GHz 2.25 2.06 2.15 2.18 2.13
2GHz 2.00 2.11 2.15 2.19 2GHz 2.00 2.11 2.15 2.19
5GHz 2.33 2.12 2.12 2.11 2.105GHz 2.33 2.12 2.12 2.11 2.10
10GHz 1.95 1.98 2.20 2.07 誘電正接 1GHz 0.57 0.62 0.65 0.59 0.5810GHz 1.95 1.98 2.20 2.07 Dielectric loss tangent 1GHz 0.57 0.62 0.65 0.59 0.58
(ΧΙΟ-') 2GHz 0.61 0.62 0.63 0.55 (ΧΙΟ- ') 2GHz 0.61 0.62 0.63 0.55
5GHz 0.66 0.59 0. δ4 0.75 0.57 5GHz 0.66 0.59 0.δ4 0.75 0.57
10GHz 0.56 0.59 0.87 0. 610GHz 0.56 0.59 0.87 0.6
200で 〇 〇 〇 〇 〇 半田耐熱性 230で 〇 〇 〇 〇 〇 At 200 〇 〇 〇 〇 200 Soldering heat resistance At 230 at 〇 〇 〇 〇 〇
260で 〇 〇 〇 〇 〇 ァイリ'ツト衝撃値  260 で 〇 260 260 260
( g-cm/cm-) 4 4 5 8 7 金属との密着性 〇 〇 〇 〇 〇 吸水率 (%) <0.02 く 0.02 く 0.0 く 0.02 <0.02 成形性 良 良 良 良 良 架撝度(溶解性) 不溶 不溶 不溶 不溶 不溶 (実施例 35〜 40 ) (g-cm / cm-) 4 4 5 8 7 Adhesion to metal 〇 〇 〇 〇 水 Water absorption (%) <0.02 0.0 0.02 <0.0 0.0 0.02 <0.02 Formability Good Good Good Good Good Insoluble Insoluble Insoluble Insoluble Insoluble (Examples 35 to 40)
グラフト共重合体 (A) 、 (B) 、 (C) 、 (D) 、 (E) 、 (I) の各々に ジビニルベンゼンを 1重量%、 パークミル D (商品名、 日本油脂 (株) 製) を 0. 01%添加した。 これらの樹脂を実施例 1と同様の方法で成形し、 各評価を行つ た。 結果を表 8に示した。 Graft copolymer (A), (B), (C), (D), (E), and (I) each containing 1% by weight of divinylbenzene, Parkmill D (trade name, manufactured by NOF Corporation) Was added at 0.01%. These resins were molded in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 8.
表 8 Table 8
実施例 3 δ 36 3 7 3 8 3 9 40 グラフト共重合体 A B C D E I 炭素原子と水素原子  Example 3 δ 36 3 7 3 8 3 9 40 Graft copolymer A B C D E I Carbon atom and hydrogen atom
数の和の割合 (%) >99 >99 〉99 >99 〉99 〉99 体積抵抗率 Ratio of sum of numbers (%)> 99> 99〉 99> 99〉 99〉 99 Volume resistivity
(Χ10'°Ω -cm) 3.1 3.0 2.9 3.5 3.0 3.1 絶縁破壊強さ  (Χ10 '° Ω -cm) 3.1 3.0 2.9 3.5 3.0 3.1 Dielectric breakdown strength
(KV/ram) 22 20 19 22 19 2? 誘電率 1GHz 2.30 2.28 2.50 2.35 2.30 2.26  (KV / ram) 22 20 19 22 19 2? Dielectric constant 1GHz 2.30 2.28 2.50 2.35 2.30 2.26
2GHz 2.15 2GHz 2.15
5GHz 2.25 2.20 2.58 2.26 2.40 2.185GHz 2.25 2.20 2.58 2.26 2.40 2.18
10GHz 2.09 誘電正接 1GHz 0.78 1.60 1.20 1.80 2.25 0.75 10GHz 2.09 Dissipation factor 1GHz 0.78 1.60 1.20 1.80 2.25 0.75
0.70 0.70
5GHz 0.76 1.52 1.22 1.78 2.33 0.725GHz 0.76 1.52 1.22 1.78 2.33 0.72
10GHz 0.7010GHz 0.70
200 〇 〇 〇 〇 〇 〇 半田耐熱性 230で 〇 〇 〇 〇 〇 〇 200 〇 〇 〇 〇 〇 〇 Solder heat resistance 230 at 〇 〇 230 〇 〇 〇
2B0t: 〇 〇 〇 〇 〇 〇 アイ', ";ト衝撃値  2B0t: 衝 撃 〇 〇 〇 〇 'Eye', ";
( g-cm/cm-) 9 8 2 9 破壊せず 9 金属との密着性 〇 〇 〇 △ 〇 O 吸水率 (%) <0.03 <0.03 <0.04 <0.03 <0.03 成形性 良 良 良 良 良 良 架橋度(溶解性) 不溶 不溶 不溶 不溶 不溶 不溶 (比較例 1〜4 ) (g-cm / cm-) 9 8 2 9 Not destroyed 9 Adhesion to metal 〇 〇 〇 △ 〇 O Water absorption (%) <0.03 <0.03 <0.04 <0.03 <0.03 Formability Good Good Good Good Good Good Good Degree of crosslinking (solubility) Insoluble Insoluble Insoluble Insoluble Insoluble Insoluble (Comparative Examples 1-4)
ポリプロピレン 「 Jァロイ 1 5 0 G」 (商品名、 日本ポリオレフイン (株) 製) 、 ポリエチレン 「G 4 0 1」 (商品名、 日本ポリオレフイン (株) 製) 、 ポ リスチレン 「ダイヤレックス H F 7 7」 (商品名、 三菱モンサント (株) 製) お よびポリプロピレンとポリスチレンを 7 0 : 3 0 (重量%) の割合で溶融混練し た。 これらの樹脂を実施例 1と同様の方法で成形し、 各評価を行った。 結果を表 9に示した。 Polypropylene "Jalloy 150 G" (trade name, manufactured by Nippon Polyolefin Co., Ltd.), Polyethylene "G 401" (trade name, manufactured by Nippon Polyolefin Co., Ltd.), Polystyrene "Dialex HF77" ( (Mitsubishi Monsanto Co., Ltd.) and polypropylene and polystyrene were melt-kneaded at a ratio of 70:30 (% by weight). These resins were molded in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 9.
表 9 Table 9
比較例 1 2 3 4 樹脂 p p Ρ Ε Ρ ς ΡΡ/ρςComparative Example 1 2 3 4 Resin pp Ρ Ε Ρ ς ΡΡ / ρς
(混合比) 70:30 炭素原子と水素 子 (Mixing ratio) 70:30 carbon atom and hydrogen
数の和の割合 (%) >99 >99 >99 >99 分子量 300000/Ratio of sum of numbers (%)> 99> 99> 99> 99 Molecular weight 300000 /
(MW) 300000 171000 146000 146000 体積抵抗率 (MW) 300000 171000 146000 146000 Volume resistivity
n υ U υ Q Π U 絶緣破壊強さ  n υ U υ Q Π U
(KV/mm) 20 20 22 22 言秀電率 1GHz 2.10 2.09 2.45 2.31  (KV / mm) 20 20 22 22 Word power 1GHz 2.10 2.09 2.45 2.31
2GHz 2.12 2.10 2.53 2GHz 2.12 2.10 2.53
5GHz 2.25 2.07 2.585GHz 2.25 2.07 2.58
10GHz 2.25 2.05 10GHz 2.25 2.05
雷 TFf* 1Γ.Η7 0.96 0_ 15 0, 34 Lightning TFf * 1Γ.Η7 0.96 0_ 15 0, 34
(XIO-3) 2GHz 0.16 0.17 0.17 (XIO- 3 ) 2GHz 0.16 0.17 0.17
SGHz 0.23 0.16 0.36 SGHz 0.23 0.16 0.36
10GHz 0.29 0.18 10GHz 0.29 0.18
200"C X X X X 半田耐熱性 230で X X X X  200 "C X X X X Solder heat resistance 230 with X X X X
26(TC X X X X ァイリ'ッ卜衝撃値  26 (TC X X X X Air impact value
(Kg-cm/cm-; 9 破壊せず 2 5 金属との密着性 X X 〇 Δ 吸水率 (%) <0.03 〈0.03 <0.03 く 0.03 成形性 良 良 良 良 架橋度(溶解性) 溶解 溶解 溶解 溶解 (比較例 5〜 9 ) (Kg-cm / cm-; 9 Not destroyed 25 Adhesion to metal XX 〇 Δ Water absorption (%) <0.03 <0.03 <0.03 Excellent 0.03 Formability Good Good Good Good Degree of crosslinking (solubility) Dissolution Dissolution Dissolution (Comparative Examples 5 to 9)
エチレン—ェチルァクリレート共重合体 (EEA) 「DPD J 9 1 6 9」 (商 品名、 日本ュニカー (株) 製) 、 エチレン:酢酸ビニル共重合体 (EVA) 「ゥ ルトラセン 7 5 1」 (商品名、 東ソー (株) 製) 、 エチレン、 グリシジルメタク リレー卜共重合体 (EGMA) 「RA3 1 5 0」 (商品名、 日本ポリオレフイン Ethylene-ethyl acrylate copolymer (EEA) “DPD J 916” (trade name, manufactured by Nippon Tunica Co., Ltd.), ethylene: vinyl acetate copolymer (EVA) “Ultracene 751” (Trade name, manufactured by Tosoh Corporation), ethylene, glycidyl methacrylate copolymer (EGMA) "RA3150" (trade name, Nippon Polyolefin)
(株) 製) 、 ポリカーボネート (PC) 「ユーピロン E 2 0 0 0、 (商品名、 三 菱ガス化学 (株) 製) およびポリフエ二レンオキサイド (P PO) 「ノリル S E 1」 (商品名、 GEプラスチック (株) 製) を用いて実施例 1と同じ評価を行つ た。 結果を表 1 0に示した。 Co., Ltd.), polycarbonate (PC) "Iupilone E200," (trade name, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and polyphenylene oxide (PPO) "Noryl SE 1" (trade name, GE The same evaluation as in Example 1 was performed by using Plastic Co., Ltd.). The results are shown in Table 10.
(比較例 1 0)  (Comparative Example 10)
重量平均絶対分子量が 9 0 0の P Pワックス 1 0 0 0 gにジビニルベンゼン 1 0 gパークミル D (商品名、 日本油脂 (株) 製) を 0. 5 gを添加し、 シリンダ —温度 1 7 0°Cに設定されたスクリュー径 3 O IMの同軸方向二軸押出機に供給し、 押出後造粒し、 熱架橋性ポリプロピレン樹脂を得た。 この樹脂を実施例 1と同様 の方法で成形し、 各評価を行った。 結果を表 1 0に示した。 なお、 表中の略号は 次のものを示す。  To 100 g of a PP wax having a weight-average absolute molecular weight of 900, add 0.5 g of 10 g of divinylbenzene and Park Mill D (trade name, manufactured by Nippon Oil & Fats Co., Ltd.), and press the cylinder. The mixture was fed to a coaxial twin-screw extruder with a screw diameter of 3 OIM set to ° C, extruded, and granulated to obtain a thermocrosslinkable polypropylene resin. This resin was molded in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 10. Abbreviations in the table indicate the following.
EEA:エチレン一ェチルァクリレート共重合体  EEA: Ethylene ethyl acrylate copolymer
EVA:エチレン:酢酸ビニル共重合体  EVA: ethylene: vinyl acetate copolymer
EGMA:エチレン一ダリシジルメタクリレ一ト共重合体  EGMA: Ethylene-dalicidyl methacrylate copolymer
P C ポリカーボネー卜  PC polycarbonate
P PO:ポリフエ二レンォキサイド 表 1 0 P PO: Polyphenylene oxide Table 10
比較例 o 6 7 8 9 1 0 樹脂 E E A E V A EGMA P C Ρ Ρ 0 P Pワックス 炭素原子と水素原子  Comparative example o 6 7 8 9 1 0 Resin E E A E V A EGMA P C Ρ Ρ 0 P P Wax Carbon atom and hydrogen atom
π 1 ( ¾ ノ; ί 分子量  π 1 (¾ ノ; ί 分子量
(MW) 68000 36000 131000 34000 未測定 900 体積抵抗率  (MW) 68000 36000 131000 34000 Unmeasured 900 Volume resistivity
(ΧΙΟ'Ώ - cm) 1.0 1.0 1.0 2.0 10 3.0  (ΧΙΟ'Ώ-cm) 1.0 1.0 1.0 2.0 10 3.0
1 絶縁破壊強さ  1 Dielectric breakdown strength
(KV/mm) 17 18 17 18 20 20 誘電率 1GHz 2.45 2.30 2.45 2.72 2.86 2. 11  (KV / mm) 17 18 17 18 20 20 Dielectric constant 1GHz 2.45 2.30 2.45 2.72 2.86 2.11
2GHz 2.48 2.28 2.30 2.77 2.93 2. 18 2GHz 2.48 2.28 2.30 2.77 2.93 2.18
5GHz 2.40 2.21 2.25 2.84 2.63 2.50
Figure imgf000043_0001
5GHz 2.40 2.21 2.25 2.84 2.63 2.50
Figure imgf000043_0001
誘電正接 1GHz 21.01 25.59 6.01 4.40 0.86Dissipation factor 1GHz 21.01 25.59 6.01 4.40 0.86
(X10— :') 2GHz 30.05 20.09 24.33 5.33 8.06 0.20 (X10— : ') 2GHz 30.05 20.09 24.33 5.33 8.06 0.20
5GHz 28.37 2!.27 21.30 2.07 5.74 0.22 5GHz 28.37 2! .27 21.30 2.07 5.74 0.22
10GHz 10GHz
200t: X X X 〇 〇 X 半田 Iff熱性 230TC X X X 〇 〇 X  200t: X X X 〇 〇 X Solder Iff Thermal 230TC X X X 〇 〇 X
26 ΟΤ: X X X 〇 〇 X アイ',ット衝撃値  26 ΟΤ: X X X 〇 〇 X
(Kg- cm/cm-) 破壊せず 破壊せず 破壊せず 7 δ 2 0 2 金属との密着性 〇 〇 〇 〇 〇 X 吸水率 (%) <0.03 <0.03 <0.03 <0. 0 0.07 0.03 成形性 良 良 良 良 良 不良 架橋度(溶解性) 溶解 溶解 溶解 溶解 溶解 膨潤 (比較例 1 1〜: L 5) (Kg- cm / cm-) Not broken Not broken Not broken 7 δ 2 0 2 Adhesion to metal 〇 〇 〇 〇 〇 X Water absorption (%) <0.03 <0.03 <0.03 <0.0 0.07 0.03 Moldability Good Good Good Good Good Good Bad Degree of crosslinking (solubility) Dissolve Dissolve Dissolve Dissolve Swell (Comparative Example 11: L5)
実施例 19と同様の方法でグラフト共重合体 (Q) 〜 (U) を得た。 グラフト 共重合体の仕込み組成と熱分解ガスクロマトグラフィーによる組成分析結果を表 1 1に示した。 また、 各試験結果も表 1 1に示した。 なお、 表中の略号は次のも のを示す。  Graft copolymers (Q) to (U) were obtained in the same manner as in Example 19. Table 11 shows the charged composition of the graft copolymer and the result of composition analysis by pyrolysis gas chromatography. Table 11 also shows the results of each test. Abbreviations in the table indicate the following.
PP :ポリプロピレン  PP: polypropylene
PE:ポリエチレン PE: polyethylene
P S :ポリスチレン P S: polystyrene
EE A:エチレン—ェチルァクリレート共重合体 「DPD J 9169」 (商品名、 日本ュニカー (株) 製)  EE A: Ethylene-ethyl acrylate copolymer "DPD J 9169" (trade name, manufactured by Nippon Tunicar Co., Ltd.)
EVA:エチレン:酢酸ビニル共重合体 「ウルトラセン 751」 (商品名、 東ソ 一 (株) 製)  EVA: Ethylene: vinyl acetate copolymer “Ultracene 751” (trade name, manufactured by Tosohichi Co., Ltd.)
EGMA:エチレン—ダリシジルメタクリレート共重合体 「RA 3150」 (商 品名、 日本ポリオレフイン (株) 製)  EGMA: Ethylene-daricidyl methacrylate copolymer “RA 3150” (trade name, manufactured by Nippon Polyolefin Co., Ltd.)
DVB: ジビニルベンゼン DVB: divinylbenzene
S t :スチレン  St: Styrene
HEMA: ヒドロキシプロピルメタクリレート  HEMA: hydroxypropyl methacrylate
AN:ァクリロニトリル AN: Acrylonitrile
表 1 table 1
1 1 1 2 1 3 1 4 1 5 グラフト共重合体 Q R S T じ 仕込み組成 EEA:DVB: PP:St: EVA:St EGMA:St  1 1 1 2 1 3 1 4 1 5 Graft copolymer Q R S T J Charge composition EEA: DVB: PP: St: EVA: St EGMA: St
l  l
(重量%) 70:10: 60:20: 90: 10 70:30 50:35: 15  (% By weight) 70:10: 60:20: 90: 10 70:30 50:35: 15
20 20  20 20
組成分析結果 EEA:DVB: PP:St: EVA:St EGMA:St Composition analysis result EEA: DVB: PP: St: EVA: St EGMA: St
St HEMA  St HEMA
(重量%) 70:10: 60:20: 90: 10 70:30 50:35: 15 炭素原子と水素原子  (% By weight) 70:10: 60:20: 90:10 10:30:30 50:35:15 Carbon atom and hydrogen atom
g (の和の剖口 (, % bo 97 98 96 体積抵抗率 g (Normal mouth of the sum (,% bo 97 98 96 Volume resistivity
(Χ10"Ώ - cm) 1.0 3.0 1.0 1.0 1.0 絶縁破壊強さ  (Χ10 "Ώ-cm) 1.0 3.0 1.0 1.0 1.0 Breakdown strength
( V/mm) 19 22 18 19 18 誘電率 1GHz 2.45 2.52 2.20 2.44 2.36  (V / mm) 19 22 18 19 18 Dielectric constant 1GHz 2.45 2.52 2.20 2.44 2.36
2GHz 2.40 2.31 2.25 2.53 2.26  2GHz 2.40 2.31 2.25 2.53 2.26
 >
5GHz 2.33 2.25 2.40 2.40 * Q5GHz 2.33 2.25 2.40 2.40 * Q
10GHz 10GHz
誘電正接 1GHz 0 7 n 9 1.42 Dielectric tangent 1GHz 0 7 n 9 1.42
28.51 6.62 6.81 26.35 1.09 28.51 6.62 6.81 26.35 1.09
5GHz 26.33 7.02 5.95 25.58 1.215GHz 26.33 7.02 5.95 25.58 1.21
10GHz 10GHz
2oo o o X Δ 〇 半田耐熱性 230で Δ 〇 X X 〇  2oo o o X Δ 半 田 Solder heat resistance 230 with Δ 〇 X X 〇
260 X X X X X ァイソ'ツト衝撃値  260 X X X X X
(Kg-cm/cm-; 破壊せず 9 破壊せず 破壊せず 9 金属との密着性 〇 〇 〇 〇 〇 吸水率 (%) 0. 1 0.05 0. I 0. 1 0.05 成形性 良 良 良 良 良 架撝度(溶解性) 膨潤 不溶 膨潤 膨潤 膨潤 表 1〜表 1 1の結果より、 本発明の樹脂材料は比較例のものに比べすぐれた性 能を示すことがわかる。 炭素、 水素の原子数が本発明の範囲にないものは、 誘電 正接が大きく、 樹脂分子間に化学的結合を有しないものや分子量が本発明の範囲 にないものでは耐熱性が悪く、 金属の密着性や強度が十分でなかったりする。(Kg-cm / cm-; Not broken 9 Not broken Not broken 9 Adhesion to metal 〇 〇 〇 〇 〇 Water absorption (%) 0.1 1 0.05 0. I 0. 1 0.05 Formability Good Good Good Good Good Flexibility (Solubility) Swelling Insoluble Swelling Swelling Swelling From the results of Tables 1 to 11, it is understood that the resin material of the present invention shows superior performance as compared with those of Comparative Examples. If the number of atoms of carbon and hydrogen is not within the range of the present invention, the dielectric loss tangent is large, and those having no chemical bond between resin molecules or those having a molecular weight not within the range of the present invention have poor heat resistance, and Adhesion and strength are not sufficient.
(実施例 41) (Example 41)
実施例 24の本発明のグラフト共重合体 (P) を所定の形状に成形し、 これら の両面に 18 / m厚の銅箔を各々熱融着して、 両面銅張基板 (厚さ t = 0. 8mm, たて 60腳、 よこ 80mm) を得た。 また、 テフロン ( C G P 500 :中輿化成ェ 業 (株) 製) 、 BTレジン (ビニルトリアジン樹脂: CCL— HL 870 :三菱 ガス化学 (株) 製) 、 ポリフエ二レンォキシド P PO (R 47 26 :松下電工 The graft copolymer (P) of the present invention of Example 24 was molded into a predetermined shape, and a copper foil having a thickness of 18 / m was heat-sealed on both sides of each of these to form a double-sided copper-clad substrate (thickness t = 0.8 mm, vertical 60 mm, horizontal 80 mm). In addition, Teflon (CGP 500: manufactured by Nakashika Kasei Co., Ltd.), BT resin (vinyl triazine resin: CCL-HL870: manufactured by Mitsubishi Gas Chemical Co., Ltd.), polyphenylene oxide PPO (R 4726: Matsushita Electrician
(株) 製) 、 ポリフエ二レンエーテル PPE (C S 3376 :旭化成工業 (株) 製) の各々の樹脂材料を用いた基板を用意した。 これらの各基板の片面のみにェ ツチングを施し、 図 2に示すように、 基板 Sに直径 (内径) 38ππη、 幅 2rainのリ ングレゾネー夕 1と励振電極 2と検出電極 3を設置した。 リングレゾネー夕 1と 励振、 検出用電極 2、 3との結合量は実際に通過特性を測定して各共振点におけ る減衰量が— 30 dB以上となるように調整した。 なお、 高調波を含め複数の周 波数における共振を観測するため励振電極 2と検出電極 3の位置は図 2に示すよ うに対称ではない。 また、 励振電極 2は、 図示のように、 リングレゾネー夕の中 心からの距離 2 1. 5mmの位置に設置し、 リングレゾネー夕の 1 5度に対応する 円弧部分に対するように設置した。 Substrates using the respective resin materials of Polyphenylene ether PPE (CS 3376: Asahi Kasei Kogyo Co., Ltd.) were prepared. Etching was performed only on one side of each of these substrates, and as shown in FIG. 2, a substrate S was provided with a ring-shaped resonator 1 having a diameter (inner diameter) of 38ππη and a width of 2 rain, an excitation electrode 2 and a detection electrode 3. The coupling between the ring resonator 1 and the excitation and detection electrodes 2 and 3 was adjusted so that the attenuation at each resonance point was -30 dB or more by actually measuring the pass characteristics. Note that the positions of the excitation electrode 2 and the detection electrode 3 are not symmetric as shown in FIG. 2 in order to observe resonance at a plurality of frequencies including harmonics. The excitation electrode 2 was installed at a distance of 21.5 mm from the center of the ring resonator, as shown in the figure, so as to cover the arc corresponding to 15 degrees of the ring resonator.
また各種基板の微妙な比誘電率の差により空気中へ輻射されるエネルギーにわ ずかな差があるが、 実際に回路基板等として使用する場合も同様の差が発生する ので今回はこれを含めた値、 すなわち共振器基板としての無負荷の Q値として求 めた。  Also, there is a slight difference in the energy radiated into the air due to the slight difference in the relative dielectric constant of various substrates, but the same difference occurs when actually used as a circuit board, etc. Value, that is, the unloaded Q value of the resonator substrate.
なお、 測定器にはヒユーレツ卜パッカード社製 HP— 8753 Dを用いた。 このようにして求めた各種基板の各周波数における Q値を図 2に示す。 The measuring instrument used was HP-8753D manufactured by Hewlett-Packard Company. FIG. 2 shows the Q values obtained at each frequency of the various substrates thus obtained.
図 2より本発明のグラフト重合体 (P) を用いたものは 1〜6 GHzの高周波 帯域において、 高い Q値を示すことがわかる。  From FIG. 2, it can be seen that the product using the graft polymer (P) of the present invention shows a high Q value in a high frequency band of 1 to 6 GHz.
なお、 本発明のグラフ卜重合体 (P) に対して、 以下のようにして Cu引張り 強度、 耐エッチング性、 線膨張係数 ο;を評価したところいずれも良好なレベルで あった。 なお、 前述のとおり、 本発明のグラフト重合体は A 1蒸着膜と良好な密 着性を示すことから、 Cuとも十分な密着性が得られると予想されるが、 実際 C uとの良好な密着性を示した。  When the graft polymer (P) of the present invention was evaluated for Cu tensile strength, etching resistance, and linear expansion coefficient ο; as follows, all were at favorable levels. As described above, since the graft polymer of the present invention exhibits good adhesion to the A1 vapor-deposited film, it is expected that sufficient adhesion will be obtained with Cu. It showed adhesion.
C u引張り剥離強度 Cu tensile peel strength
1 0 Omm長さ、 1 0mm巾、 1. 2πωι厚の大きさの試験片を切り出し、 外部導体 である銅箔のセロテープによる 1 8 0度ピ一リング試験を行い、 剥離に 2. 0 kg /cm2以上の力を要するときを良好とした。 A test piece with a length of 10 mm, a width of 10 mm, and a thickness of 1.2 πωι was cut out and subjected to a 180-degree pilling test with a cellophane tape of copper foil as an external conductor, and a peeling of 2.0 kg / The case where a force of 2 cm 2 or more was required was defined as good.
耐エッチング性 Etching resistance
塩化第二鉄 1 0重量%溶液に基板を 2 5°Cで 7 2時間浸漬して基板の状態を評 価した。 フクレ、 光沢の劣化がないものを良好とした。  The substrate was immersed in a 10% by weight solution of ferric chloride at 25 ° C. for 72 hours to evaluate the state of the substrate. Those with no swelling or gloss deterioration were considered good.
a_ TMA法にて測定し、 2 0〜 2 0 0°Cの範囲でひが 1 0 0〜 1 2 0卯 m /°C以下のレベルであるものを良好とした。  It was measured by the a_TMA method, and those having a level of 100 to 1200 m / ° C or less in the range of 20 to 200 ° C were evaluated as good.
(実施例 42)  (Example 42)
実施例 4 1において、 グラフト共重合体 (P) のかわりに、 実施例 2 5の本発 明の樹脂 (a) を用いて、 同様の評価を行ったところ、 グラフト重合体 (P) を 用いた基板と同様の良好な結果が得られた。  In Example 41, the same evaluation was performed using the resin (a) of the present invention in Example 25 instead of the graft copolymer (P), and the graft polymer (P) was used. The same good results as those obtained for the substrate were obtained.
(実施例 43)  (Example 43)
実施例 4 1、 42において、 グラフ卜共重合体 (P) に補強用充填剤をアルミ ナ、 結晶性シリカ等から適宜選択して全体の 3 5重量%となるように加えたもの を用いるほかは同様にして基板を得た。 この基板について実施例 4 1と同様の評 価を行ったところ、 同様の良好な結果を示し、 さらにひ、 Cu引張り剥離強度、 熱伝導性の点が改善されることがわかった。 なお、 補強用充填剤を 60〜 90 w \% とするとひは 30ppm/°C以下のレベルにすることも可能であった。 Example 41 In Examples 1 and 42, a graft copolymer (P) was used in which a reinforcing filler was appropriately selected from alumina, crystalline silica, etc., and was added so as to be 35% by weight of the whole. Obtained a substrate in the same manner. This substrate was evaluated in the same manner as in Example 41. The results showed similar good results, and furthermore, it was found that the Cu tensile peel strength and the thermal conductivity were improved. In addition, if the reinforcing filler was set to 60 to 90 w \%, it could be reduced to a level of 30 ppm / ° C or less.
(実施例 44 )  (Example 44)
図 4に示すようなチッブインダク夕を以下の工程で作製した。  A chip inductor as shown in FIG. 4 was produced by the following steps.
1) 実施例 25の本発明の樹脂 (a) を押出成形により、 直径 lmm、 長さ 20cm の棒材とした。  1) The resin (a) of the present invention of Example 25 was extruded into a rod having a diameter of lmm and a length of 20 cm.
2) 上記棒材に無電解メツキおよび電気メツキにより 20 m厚の銅を被覆した。 2) The above bar was coated with 20 m thick copper by electroless plating and electric plating.
3) 銅の被覆をレーザー加工機により螺旋形に除去した。 残った銅箔の幅は 20 0 、 ピッチは 400 Aimである。 3) The copper coating was spirally removed by a laser beam machine. The width of the remaining copper foil is 200 and the pitch is 400 Aim.
4) 銅箔を保護するために棒材の端面が 1. 2mm角の形状となるように樹脂を 2 層被覆した。 この 2層のうち、 内側には本発明の樹脂 (a) を用い、 外側には、 溶剤 (トルエン、 キシレン等) で容易に除去できる樹脂のフマール酸エステル樹 脂を使用した。 なお、 1. 2 mm角は外側の樹脂についてのものである。  4) To protect the copper foil, two layers of resin were coated so that the end face of the bar had a 1.2 mm square shape. Of these two layers, the resin (a) of the present invention was used on the inner side, and a resin fumarate ester resin which can be easily removed with a solvent (toluene, xylene, etc.) was used on the outer side. The 1.2 mm square is for the outer resin.
5) 上記棒材を 2■の長さで切断した。  5) The bar was cut into 2mm length.
6 ) 切断面に電極を形成するため無電解メツキにより銅を被覆した。  6) Copper was coated by electroless plating to form an electrode on the cut surface.
7) 側面に付着した銅を除去するため 4) で施した外側の樹脂層を溶剤により除 去した。  7) The outer resin layer applied in 4) was removed with a solvent to remove copper adhering to the side surface.
8) 端面に電極を N i— Cuメツキを施すことにより設けた。  8) An electrode was provided on the end face by applying a Ni—Cu plating.
なお、 端面に設置した電極にさらにニッケル等をメッキするが今回は省略した。 図 4に示すように、 このようにして得られる 2012チップィンダク夕 10は、 ボビン (棒材) 1 1に導線 (Cu箔) 12が螺旋形に巻きつけられており、 これ を外装材 (樹脂) 13で角状に被覆したものである。 そして両端面には端面電極 14, 14が設置されている。  The electrodes installed on the end faces are further plated with nickel or the like, but this time was omitted. As shown in Fig. 4, the 2012 chip-inductor 10 obtained in this manner has a conductor (Cu foil) 12 wound spirally around a bobbin (bar material) 11, which is used as an exterior material (resin). This is covered with a square at 13. End electrodes 14 and 14 are provided on both end surfaces.
このような 2012チップィンダク夕に対し、 ヒユーレツトパッカード社製 H P— 8 7 5 3 Dを用いて、 自己共振周波数と、 コイル Q特性を評価したところ、 実用可能なレベルであった。 In response to such 2012 Chip Ink evenings, H The self-resonance frequency and coil Q characteristics were evaluated using P-88753D, and were at a practical level.
(実施例 4 5 )  (Example 45)
実施例 4 4において、 本発明の樹脂 (a ) のかわりに実施例 4 0のグラフト共 重合体 Iにさらに D V Bで架橋した樹脂を用いて、 同様の評価を行ったところ、 本発明の樹脂 (a ) を用いたものと同様の良好な特性を示した。 発明の効果  In Example 44, the same evaluation was performed using a resin obtained by crosslinking the graft copolymer I of Example 40 with DVB instead of the resin (a) of the present invention. The same good characteristics as those using a) were exhibited. The invention's effect
以上詳述したように、 本発明の耐熱性低誘電性高分子材料は、 誘電率、 誘電正 接が低く、 半田耐熱性に優れ、 成形性等の加工性が高く、 機械的強度も高く、 か つ金属等との優れた接着性を備えているという効果を奏する。 したがって、 本発 明の高分子材料は、 プリント配線基板やコンピュータ部品等の特に電気絶縁性、 半田耐熱性や機械的物性が要求される用途に有用であり、 すぐれた性能の基板や 電子部品等が得られる。  As described in detail above, the heat-resistant low-dielectric polymer material of the present invention has a low dielectric constant, a low dielectric loss tangent, excellent solder heat resistance, high workability such as moldability, high mechanical strength, It has the effect of having excellent adhesion to metals and the like. Therefore, the polymer material of the present invention is useful for applications requiring electrical insulation, solder heat resistance and mechanical properties, such as printed wiring boards and computer components, and has excellent performance for substrates and electronic components. Is obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 重量平均絶対分子量 1 0 0 0以上の樹脂の 1種または 2種以上からなる樹 脂組成物であって、 その組成物の炭素原子と水素原子の原子数の和が 9 9 %以上 であり、 かつ樹脂分子間の一部またはすべてが相互に化学的結合を有する耐熱性 低誘電性高分子材料。 1. A resin composition comprising one or more resins having a weight-average absolute molecular weight of 100 or more, wherein the sum of the number of carbon atoms and hydrogen atoms in the composition is at least 99%. A heat-resistant low-dielectric polymer material that has a resin bond and some or all of the resin molecules have a chemical bond with each other.
2 . 化学的結合が、 架橋、 ブロック重合およびグラフト重合から選ばれる 1種 以上である請求の範囲第 1項の耐熱性低誘電性高分子材料。  2. The heat-resistant low dielectric polymer material according to claim 1, wherein the chemical bond is at least one selected from crosslinking, block polymerization, and graft polymerization.
3 . 樹脂組成物が、 非極性 —ォレフィン系重合体セグメントおよび/または 非極性共役ジェン系重合体セグメントとビニル芳香族系重合体セグメントとが化 学的結合をした共重合体であって、 一方のセグメントにより形成された分散相が 他方のセグメントより形成された連続相中に微細に分散している多相構造を示す 熱可塑性樹脂である請求の範囲第 1項または第 2項の耐熱性低誘電性高分子材料。 3. The resin composition is a copolymer in which a non-polar olefin polymer segment and / or a non-polar conjugated polymer segment and a vinyl aromatic polymer segment are chemically bonded. 3. The heat-resistant resin according to claim 1 or 2, wherein the dispersed phase formed by said segment is a thermoplastic resin having a multiphase structure in which the dispersed phase is finely dispersed in a continuous phase formed by the other segment. Dielectric polymer material.
4 . 非極性 α—才レフィン系重合体セグメントとビニル芳香族系重合体セグメ ントとが化学的結合をした共重合体である請求の範囲第 3項の耐熱性低誘電性高 分子材料。 4. The heat-resistant, low-dielectric high-molecular material according to claim 3, wherein the non-polar α-refined polymer segment and the vinyl aromatic polymer segment are copolymers chemically bonded to each other.
5 . ビニル芳香族系重合体セグメントがジビニルベンゼンの単量体を含むビニ ル芳香族系共重合体セグメントである請求の範囲第 3項または第 4項の耐熱性低 誘電性高分子材料。  5. The heat-resistant low dielectric polymer material according to claim 3, wherein the vinyl aromatic polymer segment is a vinyl aromatic copolymer segment containing a divinylbenzene monomer.
6 . グラフト重合により化学的に結合した共重合体である請求の範囲第 4項ま たは第 5項の耐熱性低誘電性高分子材料。  6. The heat-resistant low-dielectric polymer material according to claim 4 or 5, which is a copolymer chemically bonded by graft polymerization.
7 . 請求の範囲第 1項〜第 6項のいずれかの樹脂組成物に 4ーメチルペンテン - 1の単量体を含む非極性 α—才レフィン系重合体を加えた耐熱性低誘電性高分 子材料。  7. A heat-resistant, low-dielectric high-molecular compound obtained by adding a non-polar α-methyl olefin polymer containing a monomer of 4-methylpentene-1 to the resin composition according to any one of claims 1 to 6. material.
8 . 1 MH z以上の高周波帯域で使用される請求の範囲第 1項〜第 7項のいず れかに記載の耐熱性低誘電性高分子材料。 8.1 Any of claims 1 to 7 used in the high frequency band above 1 MHz The heat-resistant low-dielectric polymer material according to any one of the above.
9. 請求の範囲第 1項〜第 8項のいずれかの耐熱性低誘電性高分子材料を用い た厚さ 50 m以上のフィルム。  9. A film having a thickness of 50 m or more using the heat-resistant low-dielectric polymer material according to any one of claims 1 to 8.
10. 請求の範囲第 9項のフィルムを積層した基板。  10. A substrate on which the film according to claim 9 is laminated.
1 1. 1 MHz以上の高周波帯域で使用される請求の範囲第 9項のフィルム。  11. The film according to claim 9, wherein the film is used in a high-frequency band of 1 MHz or more.
12. 1 MHz以上の高周波帯域で使用される請求の範囲第 10項の基板。12. The substrate according to claim 10, which is used in a high-frequency band of 1 MHz or more.
13. 請求の範囲第 1項〜第 8項のいずれかの耐熱性低誘電性高分子材料を用 いた 1 MH z以上の高周波帯域で使用される電子部品。 13. An electronic component using the heat-resistant low-dielectric polymer material according to any one of claims 1 to 8 for use in a high frequency band of 1 MHz or more.
14. 請求の範囲第 1項〜第 8項のいずれかの耐熱性低誘電性高分子材料を所 定形状に成形した耐熱性樹脂成形品。  14. A heat-resistant resin molded product obtained by molding the heat-resistant low-dielectric polymer material according to any one of claims 1 to 8 into a predetermined shape.
PCT/JP1998/003764 1997-08-27 1998-08-25 Heat-resistant, lowly dielectric high-molecular material, and films, substrates, electric components and heat-resistant resin moldings produced therefrom WO1999010435A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE69840379T DE69840379D1 (en) 1997-08-27 1998-08-25 HEAT-RESISTANT LOW-DYNTECTRIC HIGH-MOLECULAR MATERIAL AND FILMS, SUBSTRATES, ELECTRICAL COMPONENTS, AND HEAT-RESISTANT RESIN MOLD PRODUCED THEREFROM
EP98938977A EP0953608B1 (en) 1997-08-27 1998-08-25 Heat-resistant, lowly dielectric high-molecular material, and films, substrates, electric components and heat-resistant resin moldings produced therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9246052A JPH1160645A (en) 1997-08-27 1997-08-27 Heat-resistant low-permitivity polymer material, and film, substrate board, electronic part and heat-resistant resin molding prepared from the same
JP9/246052 1997-08-27

Publications (1)

Publication Number Publication Date
WO1999010435A1 true WO1999010435A1 (en) 1999-03-04

Family

ID=17142755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003764 WO1999010435A1 (en) 1997-08-27 1998-08-25 Heat-resistant, lowly dielectric high-molecular material, and films, substrates, electric components and heat-resistant resin moldings produced therefrom

Country Status (7)

Country Link
US (1) US6500535B1 (en)
EP (1) EP0953608B1 (en)
JP (1) JPH1160645A (en)
KR (1) KR100330207B1 (en)
CN (1) CN1190462C (en)
DE (1) DE69840379D1 (en)
WO (1) WO1999010435A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160645A (en) * 1997-08-27 1999-03-02 Tdk Corp Heat-resistant low-permitivity polymer material, and film, substrate board, electronic part and heat-resistant resin molding prepared from the same
WO2004022815A1 (en) * 2002-09-09 2004-03-18 Sumitomo Electric Industries, Ltd. Plated polyester resin article and method for production thereof
JP2006193569A (en) * 2005-01-12 2006-07-27 Nof Corp Crosslinked polyolefin resin composition for use in molded article, and molded circuit component
KR100608200B1 (en) * 1999-05-04 2006-08-04 제이에스알 가부시끼가이샤 Low Dielectric Compositions, Insulating Materials, Sealing Materials and Circuit Boards
EP1862493A1 (en) * 2006-05-30 2007-12-05 Nof Corporation Prepreg and conductive layer-laminated substrate for printed wiring board

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6908960B2 (en) * 1999-12-28 2005-06-21 Tdk Corporation Composite dielectric material, composite dielectric substrate, prepreg, coated metal foil, molded sheet, composite magnetic substrate, substrate, double side metal foil-clad substrate, flame retardant substrate, polyvinylbenzyl ether resin composition, thermosettin
JP4467816B2 (en) * 2001-02-27 2010-05-26 株式会社日立製作所 Low dielectric loss tangent resin composition, curable film, cured product, electrical component using the same, and production method thereof
JP3801117B2 (en) * 2002-08-26 2006-07-26 株式会社日立製作所 Low dielectric loss tangent film and wiring film
JP4325337B2 (en) * 2003-09-19 2009-09-02 日立化成工業株式会社 Resin composition, prepreg, laminate and multilayer printed wiring board using the same
JP2006173460A (en) * 2004-12-17 2006-06-29 Renesas Technology Corp Manufacturing method of semiconductor device
JP2007324236A (en) * 2006-05-30 2007-12-13 Nof Corp Resin composition used for film for printed circuit board, and its use
JP2009161743A (en) * 2007-12-10 2009-07-23 Denki Kagaku Kogyo Kk Post curing resin composition and high frequency electrical insulating material using the same
JP2009185208A (en) * 2008-02-07 2009-08-20 Denki Kagaku Kogyo Kk Wire coating material using resin composition containing olefin-aromatic vinyl compound-based cross copolymer
KR20090108834A (en) * 2008-04-14 2009-10-19 삼성전기주식회사 Method of manufacturing insulating sheet and laminated plate clad with metal foil and printed circuit board and printed circuit board thereof using the same
JP2010232310A (en) * 2009-03-26 2010-10-14 Nof Corp Resin box body with built-in electronic circuit
GB0906680D0 (en) * 2009-04-17 2009-06-03 Univ Surrey A low-k material
CN110744839A (en) * 2019-11-01 2020-02-04 中国电子科技集团公司第四十六研究所 Process for preparing composite dielectric plate based on low dielectric constant turning film
US12091531B2 (en) 2019-12-03 2024-09-17 Denka Company Limited Copolymer and laminate containing same
CN111662515B (en) * 2020-07-07 2021-12-28 西安交通大学 Preparation method of polytetramethylene-pentene-titanium dioxide nanosheet composite film
CN118599040A (en) 2020-07-15 2024-09-06 电化株式会社 Composition and cured body
KR20230065929A (en) 2020-09-11 2023-05-12 덴카 주식회사 composition and cured product thereof
KR102494365B1 (en) 2020-12-02 2023-02-06 한국전자기술연구원 Low-dielectric thermosetting resin composition and low-dielectric material prepared therefrom
KR20230089177A (en) * 2021-12-13 2023-06-20 한화솔루션 주식회사 Multi layer film with low dielectric constant and method for preparing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198714A (en) * 1984-10-19 1986-05-17 Tokuyama Soda Co Ltd Production of modified polyolefin
JPS61258848A (en) * 1985-05-13 1986-11-17 Yazaki Corp Polyolefin based rubber composition
JPH01168741A (en) * 1987-12-24 1989-07-04 Sumitomo Chem Co Ltd Production of vulcanized ethylene/alpha-olefin copolymer rubber composition
JPH03162429A (en) * 1989-11-21 1991-07-12 Mitsui Petrochem Ind Ltd Production of thermoplastic elastomer
JPH05179077A (en) * 1991-06-25 1993-07-20 Nippon Oil & Fats Co Ltd Thermoplastic elastomer composition
JPH06228377A (en) * 1993-01-29 1994-08-16 Mitsui Petrochem Ind Ltd Cycloolefin copolymer composition
JPH0820681A (en) * 1994-07-05 1996-01-23 Toyoda Gosei Co Ltd Polyethylene-based resin composition for automotive side molding
JPH08269137A (en) * 1995-03-31 1996-10-15 Nippon Steel Chem Co Ltd Production of styrene-based resin

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2418978A (en) * 1937-04-15 1947-04-15 Mertens Willi Method for hardening of polymers
BE634061A (en) * 1962-06-26 1900-01-01
US4208356A (en) * 1974-09-17 1980-06-17 Asahi Kasei Kogyo Kabushiki Kaisha Process for producing mixture of block copolymers
CA1330129C (en) 1987-06-16 1994-06-07 Nippon Oil & Fats Co., Ltd. Thermoplastic resin composition and method for preparing the same
US5218037A (en) 1987-08-17 1993-06-08 Nippon Petrochemicals Co., Ltd. Thermoplastic resin composition and method for preparing the same
CA1319771C (en) 1987-10-30 1993-06-29 Yoshinori Maki Thermoplastic resin composition and method for preparing the same
US5037890A (en) * 1987-11-02 1991-08-06 Mitsubishi Petrochemical Company Limited Process for producing graft-modified α-olefin copolymer
EP0338303B1 (en) 1988-04-06 1995-11-15 Nippon Petrochemicals Co., Ltd. Thermoplastic resin composition and method for preparing the same
US5204405A (en) 1988-11-09 1993-04-20 Nippon Petrochemicals Co., Ltd. Thermoplastic resin composition and method for preparing the same
JP3039560B2 (en) 1989-12-27 2000-05-08 日本石油化学株式会社 Thermoplastic resin composition and use thereof
JPH03203943A (en) 1989-12-28 1991-09-05 Nippon Petrochem Co Ltd Thermoplastic composition
US5268427A (en) * 1990-01-16 1993-12-07 Mobil Oil Corporation Solid block and random elastomeric copolymers
JP3162429B2 (en) 1990-07-30 2001-04-25 大日本印刷株式会社 Easy-opening cutting device
US5397842A (en) * 1991-08-20 1995-03-14 Rohm And Haas Company Polyolefin/segmented copolymer blend and process
US5814702A (en) * 1996-02-20 1998-09-29 General Electric Company Elastomer composition and thermoplastic resin composition modified therewith
JPH1160645A (en) * 1997-08-27 1999-03-02 Tdk Corp Heat-resistant low-permitivity polymer material, and film, substrate board, electronic part and heat-resistant resin molding prepared from the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198714A (en) * 1984-10-19 1986-05-17 Tokuyama Soda Co Ltd Production of modified polyolefin
JPS61258848A (en) * 1985-05-13 1986-11-17 Yazaki Corp Polyolefin based rubber composition
JPH01168741A (en) * 1987-12-24 1989-07-04 Sumitomo Chem Co Ltd Production of vulcanized ethylene/alpha-olefin copolymer rubber composition
JPH03162429A (en) * 1989-11-21 1991-07-12 Mitsui Petrochem Ind Ltd Production of thermoplastic elastomer
JPH05179077A (en) * 1991-06-25 1993-07-20 Nippon Oil & Fats Co Ltd Thermoplastic elastomer composition
JPH06228377A (en) * 1993-01-29 1994-08-16 Mitsui Petrochem Ind Ltd Cycloolefin copolymer composition
JPH0820681A (en) * 1994-07-05 1996-01-23 Toyoda Gosei Co Ltd Polyethylene-based resin composition for automotive side molding
JPH08269137A (en) * 1995-03-31 1996-10-15 Nippon Steel Chem Co Ltd Production of styrene-based resin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0953608A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160645A (en) * 1997-08-27 1999-03-02 Tdk Corp Heat-resistant low-permitivity polymer material, and film, substrate board, electronic part and heat-resistant resin molding prepared from the same
KR100608200B1 (en) * 1999-05-04 2006-08-04 제이에스알 가부시끼가이샤 Low Dielectric Compositions, Insulating Materials, Sealing Materials and Circuit Boards
WO2004022815A1 (en) * 2002-09-09 2004-03-18 Sumitomo Electric Industries, Ltd. Plated polyester resin article and method for production thereof
US7182995B2 (en) 2002-09-09 2007-02-27 Sumitomo Electric Industries, Ltd. Plated-polyester article and production process thereof
JP2006193569A (en) * 2005-01-12 2006-07-27 Nof Corp Crosslinked polyolefin resin composition for use in molded article, and molded circuit component
EP1862493A1 (en) * 2006-05-30 2007-12-05 Nof Corporation Prepreg and conductive layer-laminated substrate for printed wiring board
US7820274B2 (en) 2006-05-30 2010-10-26 Nof Corporation Prepreg and conductive layer-laminated substrate for printed wiring board

Also Published As

Publication number Publication date
EP0953608A1 (en) 1999-11-03
DE69840379D1 (en) 2009-02-05
CN1237191A (en) 1999-12-01
KR100330207B1 (en) 2002-03-28
CN1190462C (en) 2005-02-23
EP0953608A4 (en) 2005-07-13
KR20000068847A (en) 2000-11-25
JPH1160645A (en) 1999-03-02
US6500535B1 (en) 2002-12-31
EP0953608B1 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
WO1999010435A1 (en) Heat-resistant, lowly dielectric high-molecular material, and films, substrates, electric components and heat-resistant resin moldings produced therefrom
US6420476B1 (en) Composite dielectric material composition, and film, substrate, electronic part and molded article produced therefrom
US7820274B2 (en) Prepreg and conductive layer-laminated substrate for printed wiring board
US12091531B2 (en) Copolymer and laminate containing same
EP1862505B1 (en) Resin composition for printed wiring board film and use thereof
CN111333965A (en) Dielectric material, prepreg and laminated board based on ethylene propylene diene monomer
WO2022014599A1 (en) Composition and cured body
JPH11274843A (en) Antenna system
JP2000001622A (en) Complex dielectric material composition, film, substrate, electric part and molding product using the same
JP2000091717A (en) Milliwave system
JPH11122033A (en) Antenna system
JP4255073B2 (en) Resin composition and high frequency circuit laminate using the same
JP2003268190A (en) Low dielectric and heat-resistant resin composition, and molded product and metal-plated substrate for use in printed wiring board using the same
JP4391873B2 (en) Laminated plate for high frequency circuit using resin composition
JPH11112217A (en) Antenna device
WO2024106433A1 (en) Multilayer structure including insulating adhesive layer, and cured article of same
JPS63156835A (en) Laminated board
JP2003060359A (en) Multilayer circuit board
JP2024115044A (en) Films, rolls, laminates and communication devices
JP2000101379A (en) High-frequency multilayer laminated parts
JP2022035329A (en) Graft-modified polymethylpentene composition, molding, and copper-clad laminate
JP2001011137A (en) Recyclable dielectric composition, electronic parts and covered electric wire
JPS6131564B2 (en)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98801202.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998938977

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997003691

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998938977

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997003691

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997003691

Country of ref document: KR