WO1999007722A1 - Oligonucleotide specifique de l'espece escherichia coli et procede de detection et de visualisation des bacteries de cette espece - Google Patents

Oligonucleotide specifique de l'espece escherichia coli et procede de detection et de visualisation des bacteries de cette espece Download PDF

Info

Publication number
WO1999007722A1
WO1999007722A1 PCT/FR1998/001737 FR9801737W WO9907722A1 WO 1999007722 A1 WO1999007722 A1 WO 1999007722A1 FR 9801737 W FR9801737 W FR 9801737W WO 9907722 A1 WO9907722 A1 WO 9907722A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligonucleotide
hybridization
coli
species
shigella
Prior art date
Application number
PCT/FR1998/001737
Other languages
English (en)
Inventor
Patrick Grimont
Béatrice REGNAULT
Monique Collin
Original Assignee
Institut Pasteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Pasteur filed Critical Institut Pasteur
Priority to EP98941537A priority Critical patent/EP1003765A1/fr
Priority to JP2000506224A priority patent/JP2001512665A/ja
Priority to AU89879/98A priority patent/AU8987998A/en
Priority to CA002299599A priority patent/CA2299599A1/fr
Priority to US09/463,419 priority patent/US6551776B1/en
Publication of WO1999007722A1 publication Critical patent/WO1999007722A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Definitions

  • the invention relates to oligonucleotides for the detection and visualization of bacteria belonging to the genomic species Escherichia coli in a sample. More particularly, it relates to an oligonucleotide capable of hybridizing specifically with ribosomal RNA (rRNA) or with the corresponding gene (rDNA ) of the genomic species Escherichia coli (including Shigella with the exception of S boydu serotype 13) I Escherichia fergusonii
  • a genomic species is a set of strains whose deoxy ⁇ bonucleic acid (DNA) has a homology of more than 70% with the DNA of the type strain of the species considered with a thermal instability of the hybrid DNA of less than 5 ° C. (Grimont, 1988, Wayne et al, 1987) According to these criteria, the genomic species E.
  • E. coli is usually a commensal bacteria from the colon of humans and warm-blooded animals. For this reason, its presence in a sample of water, food, or the environment, is interpreted as an indication of faecal contamination (indicator bacteria).
  • a food product must not contain more than a certain number of living E. coli cells (which can form a colony on a solid culture medium) in a defined mass of product (these numbers vary according to the products).
  • E. coli cells which can form a colony on a solid culture medium
  • drinking water should not contain a living E. coli cell in 100 ml (De Zuane, 1997).
  • the enumeration of E. coli is essential to assess the hygienic quality of a food.
  • E. coli can be pathogenic. Among these strains are all that is commonly called Shigella, agent of human bacillary dysentery. The strains commonly called E. coli, can cause different infections of humans or animals depending on the pathogenicity equipment (urinary tract infections, choleriform or hemorrhagic diarrhea, dysenteric syndrome, hemolytic uremic syndrome, sepsis, neonatal meningitis, infections various purulent).
  • pathogenicity equipment urinary tract infections, choleriform or hemorrhagic diarrhea, dysenteric syndrome, hemolytic uremic syndrome, sepsis, neonatal meningitis, infections various purulent.
  • the identification of a strain of the genomic species E. coli is important to suspect or demonstrate fecal contamination of water or food. It is also important in the case where the bacteria is isolated from a normally sterile or almost sterile biological medium (urine, blood, cerebrospinal fluid, fluid collection in a tissue or in a closed space of the body) In the open spaces of the body (digestive tract) or faeces, the presence of E. coli is commonplace and the identification of the pathogenicity factors of E. coli takes precedence over taxonomic identification. ' The taxonomic identification of E. coli is conventionally based on the isolation and culture of the bacteria on a solid agar medium and the application of some biochemical tests.
  • Ribosomal nucleic acids may or may not have a sequence complementary (target) to the probe, the probe will bind to its target and will not be removed by washing. The bacteria which have thus retained the probe become marked (for example, fluorescent) and visible by microscopic examination.
  • Ribosomal ribosomal acids (rRNA) constitute the preferred target in in situ hybridization because of the number of copies per cell (10,000 to 30,000), higher than the number of copies of messenger RNA after induction (100 to 200) or of a given gene (one to a few).
  • ribosomal RNAs are identified according to their sedimentation constant (for bacteria: 5S, 16S and 23 S), present in the small subunit (16S rRNA) or the large subunit (23 S and RNA 5 S) of the ribosome.
  • rRNAs 16S (approximately 1500 nucleotides) and 23S (approximately 3000 nucleotides).
  • a nucleic acid probe complementary to part of an rRNA will be able to hybridize with this rRNA but also with the complementary strand of the gene (rDNA) which coded this rRNA.
  • rDNA complementary strand of the gene
  • rRNAs have in fact appeared as the most suitable molecules to serve as a molecular chronometer for the evolution of bacteria (Brenner et al., 1969; Doi & Iragashi, 1965; Moore and McCarthy, 1967; Pace & Campbell, 1971; Takahashi et al., 1967).
  • the primary structure (sequence) of rRNAs contains highly conserved regions and others which are hypervariable (Sogin et al., 1972; Woese et al., 1975).
  • the result greatly depends on the temperature and the molarity of sodium ions in the reaction medium.
  • an optimal hybridization temperature is defined. If the temperature is raised, the reassociated strands will eventually separate. The temperature necessary for this separation depends on the length of the perfectly hybridized sequence part (perfect pairing) and on its nucleotide composition. A temperature allowing only the hybridization of the longest sequences is said to be restrictive (as opposed to optimal). Mismatches during hybridization cause the thermal stability of the hybridized molecules to drop.
  • in situ hybridization will therefore depend on the quality of the probe capable of recognizing and hybridizing with a complementary sequence present in an rRNA.
  • Galpin et al. (1981) used hybridization of genes encoding rRNA to detect Mycoplasma pidmonis infections in mice.
  • US 4,851,330 describes a strategy for obtaining nucleic acid fragments which can be used as a probe reacting with rRNAs
  • WO-A-84/02721 describes methods for detecting microorganisms infecting a human or animal body, using probes which hybridize with rRNAs. There is no guidance on how to detect or identify E. coli.
  • French patent 2,596,774 proposes the use of an oligonucleotide complementary to bacterial rRNA as a probe and describes two universal oligonucleotide probes.
  • the invention provides an oligonucleotide for the specific and rapid detection and visualization of bacteria belonging to the genomic species Escherichia coli in a sample. It therefore relates to an oligonucleotide capable of carrying out specific hybridization with
  • this oligonucleotide is capable of hybridizing with the region 637-660 of the 16S RNA of E. coli ⁇ system of
  • the oligonucleotide according to the invention may also specifically hybridize only to at least 10 consecutive nucleotides of the region 637-660 of the 16S RNA of E. coli. Indeed, with two oligonucleotides recognizing adjacent zones and then linked by a ligase, we obtain a longer oligonucleotide and therefore more
  • the oligonucleotide according to the invention corresponds to SEQ ID No. 1.
  • an oligonucleotide of 24 nucleotides, complementary to the above region 637-660 of the 16S RNA of E. coli has been synthesized. It was called Ec637 and identified SEQ ID N ° 1.
  • the labeling was obtained by grafting two chromophores (fluorescein or Texas Red) at each end of the oligonucleotide.
  • the probe oligonucleotide used in in situ hybridization at 42 ° C in the presence of 22% formamide followed by washing at 60 ° C, fluoresces the cells of Escherichia coli, Shigella dysenteriae, Shigella ⁇ exneri, Shigella boydii (except the serotype 13), Shigella rings i and Escherichia fergusonii (genomic group E. coli). It does not react with most of the other species and genera tested. However, it has been observed that the Citrobacter koseri species and the Cedecea species remain fluorescent after washing at 60 ° C.
  • the present invention therefore also relates to an oligonucleotide enabling even better results in terms of specificity to be obtained.
  • the oligonucleotide Ec637 was modified at the level of a nucleotide located at a conserved position (invariant) of the corresponding 16S rRNA sequence to create a voluntary mismatch.
  • This mismatch was carried out in the central part of the oligonucleotide.
  • the sequence obtained was called Colinsitu and identified SEQ TD N ° 2.
  • the purpose of introducing a central mismatch is to weaken the hybrid that will be obtained. If a sequence differs by a single nucleotide from the sequence 637 to 660 of E. coli, this will cause two mismatches with the Colinsitu probe which will not hybridize under the experimental conditions chosen. This probe remains reactive towards the genomic species E. coli and becomes inactive towards all the other species and genera. This specificity is maintained over a wide range of washing temperatures from 51 ° C to 59 ° C.
  • the Colinsitu probe can be used in situ hybridization but also in hybridization on a filter, in a liquid medium, in reverse hybridization, or as a specific primer in a gene amplification system.
  • the invention also relates to oligonucleotides complementary to the oligonucleotides described below.
  • oligonucleotides according to the invention can be labeled at their 3 'or 5' end or at the 3 'and 5' ends.
  • the advantage of this probe is to be able to detect, identify, and count the cells of the genomic species E. coli in various samples such as clinical and veterinary samples (especially urine), water and other drinks, food, environment.
  • the subject of the invention is also a method for detecting and visualizing bacteria of the genomic species Escherichia coli (including all Shigella with the exception of S.
  • RNA of bacteria of said genomic species comprising a step of hybridization of the ribosomal RNA of bacteria of said genomic species with an oligonucleotic according to the invention, and more particularly with an oligonucleotic chosen from SEQ ID N ° 1 and SEQ ED N ° 2.
  • the hybridization in question can be an in situ hybridization, a hybridization on a filter, a hybridization in a liquid medium or a reverse hybridization.
  • reverse hybridization for the purposes of the present invention is meant a hybridization reaction in which the oligonucleotide probe of interest is immobilized on a support, the nucleic acid to be detected and / or the organism containing the nucleic acid to be detected being present in solution.
  • the oligonucleotide probes can be implemented within a detection device comprising a matrix library of oligonucleotides.
  • a matrix bank may consist of a matrix of probe oligonucleotides fixed on a support, the sequence of each probe of a given length being located one or more bases offset from the probe. previous, each probe of the matrix arrangement thus being complementary to a distinct sequence of the target DNA or RNA to be detected and each probe of known sequence being attached at a predetermined position of the support.
  • the target sequence to be detected can advantageously be radioactive or non-radioactive. When the labeled target sequence is brought into contact with the matrix device, this forms hybrids with the probes of complementary sequences. A nuclease treatment, followed by washing, eliminates the probe-target sequence hybrids that are not perfectly complementary.
  • An alternative to the use of a labeled target sequence may consist of the use of a support allowing “bioelectronic” detection of the hybridization of the target sequence on the probes of the matrix support, when said support consists or comprises a material capable of acting, for example, as an electron donor at the positions of the matrix at which a hybrid has been formed.
  • a support consists or comprises a material capable of acting, for example, as an electron donor at the positions of the matrix at which a hybrid has been formed.
  • Such an electron donor material is for example gold.
  • the invention also relates to the use of an oligonucleotide corresponding to SEQ ID No. 1 or SEQ ID No. 2 or different from SEQ ID No.
  • No. 1 with a nucleotide or a complementary oligonucleotide as a primer for the implementation of a gene amplification method, such as PCR.
  • the oligonucleotides in accordance with the invention can also be used in a method of inhibiting hybridization.
  • a support filter, cup or microchip
  • a Identical or homologous oligonucleotide of region 637-660 of E. coli 16S RNA and labeling in any way an oligonucleotide complementary to this region according to the present invention.
  • the two oligonucleotides must re-associate completely.
  • the introduction into the system of a nucleic acid capable of reassociating with one or other of the nucleotides inhibits the binding of the free, labeled oligonucleotide according to the invention to the support.
  • the present invention also relates to a method of detection and visualization of microorganisms by hybridization making it possible to optimize the specificity of the oligonucleotide probe used. Indeed, an oligonucleotide is all the more specific as it presents clear differences in its hybridization capacities with on the one hand the target sequences and on the other hand the other sequences.
  • this difference is all the more detectable as there are differences in sequences (or mismatch) between the aforementioned oligonucleotide and the sequence with which it is capable of hybridizing. Consequently, it becomes advantageous to artificially increase the number of these mismatches by modifying the oligonucleotide used for hybridization at the level of a nucleotide generally very conserved at the level of the sequence which it is sought to detect.
  • the present invention relates to a method for detecting and visualizing microorganisms (or a group of microorganisms) by hybridization using an oligonucleotide complementary to the target sequence of the microorganism with the exception of a nucleotide located in the central part of said oligonucleotide.
  • the nucleotide in question is located at an invariant position of the target sequence of the microorganisms and is preferably in the central position.
  • the non-complementary nucleotide is
  • nucleotide 10 located between positions 7 and 13 inclusive according to a numbering of the oligonucleotide starting at its N-terminal end, preferably, the nucleotide in question is located at position 10.
  • the invention therefore relates to a detection and visualization method as described above, applied to bacteria of the genomic species Escherichia coli (including all Shigella with the exception of S. boydii serotype 13) / Escherichia fergusonii.
  • the complementary oligonucleotide used in the above method is an oligonucleotide in accordance with the present invention which does not differ from SEQ ID NO: 1
  • No. 1 only with a nucleotide and preferably corresponding to SEQ ID No.
  • E. coli infected patients or animals.
  • Most urinary tract infections are due to E. coli and a urinary tract infection or colonization characterized by the presence of more than 1000 or 10 000 bacteria per ml, in situ hybridization with Colinsitu of an appropriate dilution of urine should allow note the presence and enumerate E. coli in the urine in 2 to 3 hours;
  • Escherichia coli is the main biological indicator of faecal contamination of water and food. It suffices to filter a known and sufficient quantity of water and to carry out the in situ hybridization on the filters thus obtained. If, using a micrometer and a reticle, we know the filtered volume relative to a surface observed under the microscope, it is possible to quantify the number of E. coli cells in water. In the case of foods which are not filterable and which must not have an E. coli per 25 g, enrichment may be necessary from 25 g of food, the in situ hybridization then carried out on the medium of culture will indicate if E. coli is present.
  • the invention is not limited to the above description but encompasses all the variants thereof. The examples below make it possible to understand it better while being mentioned for purely illustrative purposes.
  • This Ec465 sequence corresponding to SEQ ID No. 3, was used for the purpose of comparison.
  • a published method (Trebesius et al., 1994) was followed with some modifications.
  • the cultures were diluted in sterile distilled water to obtain an absorbance at 600 nm of 0.010, and 100 ⁇ l were filtered through PC filters (Millipore, St Quentin-en-Yvelines, France) of 0.22 ⁇ m.
  • the fixation was carried out with a 3% aqueous solution of paraformaldehyde.
  • the formamide in the hybridization mixture represented 22% of the volume.
  • the probe was added at the concentration of 25 pmole.
  • Hybridization was performed at 42 ° C for 2 hours. After washing (step determining the specificity: 20 min at 51 ° C for Colinsitu, 60 ° C for Ec637, 48 ° C for Ec465), the filters were placed on glass slides, covered with 5 ⁇ l of Vectashield (Vector Laboratories, Burlingame, CA) and a coverslip.
  • the slide-mounted filters were examined by epifluorescence using an Olympus BX60 microscope equipped with a WTBA (for fluorescein) or NG (for Texas Red) filter and a DEI-470 color camera (Optronics).
  • the table shows the results obtained in in situ hybridization with the fluorescent probes Colinsitu, Ec637, and Ec465. All tested strains of Escherichia coli, Shigella (except S. boydii serotype 13), and Escherichia fergusonii, are made fluorescent by the hybridization reaction using the Colinsitu probe. No other genomic species reacts.
  • the probe is Ec637, a reaction is obtained with Citrobacter koseri and the species of the genus Cedecea.
  • the Ec465 probe used in comparison, reacted weakly with E. coli and with strains of Buttiauxella and the experiment was not carried forward.
  • agglomerans group II 3123-70 group III (Pantoea dispersa) 1429-71 group IV 1471-71 group V 3482-71 group Vf (Pantoea pineapple) 6070-69 group VU 6003-71 group V ⁇ I 5422-69 group IX 4388- 71 group X 1600-71 group XI 5378-71 group XII 219-71 group X ⁇ i (Pantoea agglomerans) E20
  • the "GeneAmp" DNA Amplification Reagent Kit “(Perkin Elmer Cetus, Norwalk, CT) was used according to the manufacturer's instructions, with the DNA polymerase” AmpliTaq 3 "'and a" Thermal Thermal Cycler 480 "thermocycler ( Perkin Elmer Cetus).
  • the reaction volume was 100 ⁇ l comprising 10 ⁇ l of buffer, 2.5 units of AmpliTaq, 200 ⁇ M of each nucleotide dATP, dGTP, dCTP, dTTP, 100 pMole of each primer and 30 to 50 ng of total DNA.
  • the amplification conditions were as follows: initial denaturation at 94 ° C for 3 minutes, 25 cycles from 60 s to 94 ° C for denaturation, 60 s at 65.5 ° C for reassociation, 120 s at 72 ° C for elongation.
  • the amplification product was subjected to electrophoresis in 1.3% agarose (Applégéne, Illkirch, France).
  • the expected size of the amplified fragment was about 600 base pairs. The use of this system effectively makes it possible to amplify this fragment specifically for the genomic species Escherichia coli-Shigella-E. fergusonii. EXAMPLE 3 Hybridization on a Filter
  • Hybridization on a nitrocellulose, nylon or cellulose filter is a practical method allowing the same probe to be applied to a large number (hundreds) of DNA samples. Hybridization can be done on colonies. In this case, the membrane is applied to colonies, impregnated with sodium hydroxide (lyses the bacteria, destroys the RNA, and denatures the DNA), and brings the labeled probe into the presence of an adequate buffer. After a sufficient exposure time (several hours), the membrane is washed, dried in the oven (to irreversibly fix the DNA), and the labeling is revealed. This method requires having colonies on a dish, but allows to select a reactive colony among thousands. A similar protocol makes it possible to filter 96 samples on a membrane treated in the same way as the colonies.
  • a sample is processed to lyse bacteria and extract DNA, it can be denatured and hybridized with a radioactive probe (1251, for example).
  • the radioactivity associated with the hybrid DNA can be counted ( ⁇ count) after separation, by chromatography on hydroxyapatite, of the radioactivity associated with the non-hybridized probe.
  • Oligonucleotide probes can be fixed on a support (filter, microplate, microchip). Several probes can thus be available on the same support.
  • the target gene is amplified and labeled, and the amplicon is put into hybridization conditions with the panel of probes. After washing and revealing the marking, fixing the marking on one of the probes allows identification.
  • This approach also allows the simultaneous detection of several organelles when the amplification is carried out on DNA extracted from a plurimicrobial sample (Rijpens et al., 1995).
  • the published work uses as a target the intergenic space between the genes coding for the 16S and 23S rRNA, this approach is applicable to the gene coding for the 16S rRNA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

L'invention concerne un oligonucléotide capable de s'hybrider spécifiquement à l'ARN ribosomal (ARNr) ou au gène correspondant (ADNr) de l'espèce génomique Escherichia coli (incluant toutes les Shigella à l'exception de S. boydii sérotype 13/Escherichia fergusonii. Elle concerne également un procédé de détection et de visualisation des bactéries de la susdite espèce.

Description

OLIGONUCLEOTIDE SPECIFIQUE DE L'ESPECE
ESCHERICHIA COLI ET PROCEDE DE DETECTION ET DE VISUALISATION DES BACTERIES DE CETTE ESPECE
L'invention concerne des oligonucléotides pour la détection et la visualisation de bactéries appartenant à l'espèce génomique Escherichia coli dans un échantillon Plus particulièrement, elle concerne un oligonucleotide capable de s'hybrider spécifiquement avec TARN ribosomal (ARNr) ou au gène correspondant (ADNr) de l'espèce génomique Escherichia coli (y compris les Shigella à l'exception de S boydu serotype 13) I Escherichia fergusonii
Elle concerne également un procédé de détection de l'espèce génomique en question mettant en oeuvre cet oligonucleotide ainsi que l'utilisation dudit oligonucleotide dans un procédé d'amplification génique Le terme "Escherichia coli" (E. coli) désigne dans ce document l'espèce génomique (genomospecies) contenant la souche-type Escherichia coli ATCC 11775 (= CEP 58-8) Une espèce génomique est un ensemble de souches dont l'acide désoxyπbonucléique (ADN) présente une homologie de plus de 70% avec l'ADN de la souche-type de l'espèce considérée avec une instabilité thermique de l'ADN hybride inférieure à 5°C (Grimont, 1988, Wayne et al , 1987) Suivant ces critères, l'espèce génomique E. col inclut, outre les souches habituellement identifiées comme E coli, les souches traditionnellement classées comme Shigella (S. dysenteriae, S. flexneri, S boydu, S. sonne i) à l'exception du serotype 13 de S. boydu (Brenner et al , 1973) En appliquant strictement ces critères, on peut arguer que Escherichia fergusonii appartient à l'espèce génomique E. coli (Farmer et al , 1985) E. coli est habituellement une bactérie commensale du colon de l'homme et des animaux à sang chaud. Pour cette raison, sa présence dans un échantillon d'eau, d'aliment, ou de l'environnement, est interprétée comme une indication de contamination fécale (bactérie indicatrice). Ainsi, un produit alimentaire ne doit pas contenir plus d'un certain nombre de cellules vivantes de E. coli (pouvant former une colonie sur un milieu de culture solide) dans une masse définie de produit (ces nombres varient selon les produits). Par exemple, l'eau potable ne doit pas contenir de cellule vivante de E. coli dans 100 ml (De Zuane, 1997). Le dénombrement des E. coli est essentiel pour apprécier la qualité hygiénique d'un aliment.
Des souches de l'espèce génomique E. coli peuvent être pathogènes. Parmi ces souches se trouvent tout ce qui est communément appelé Shigella, agent des dysenteries bacillaires humaines. Les souches communément appelées E. coli, peuvent causer différentes infections de l'homme ou des animaux selon l'équipement en gènes de pathogènicité (infections urinaires, diarrhées cholériformes ou hémorragiques, syndrome dysentérique, syndrome hémolytique et urémique, septicémie, méningite néonatale, infections purulentes diverses).
L'identification d'une souche de l'espèce génomique E. coli (identification taxonomique) est importante pour suspecter ou démontrer la contamination fécale de l'eau ou des aliments. Elle est également importante dans le cas où la bactérie est isolée d'un milieu biologique normalement stérile ou presque (urine, sang, liquide céphalo-rachidien, collection liquidienne dans un tissu ou dans un espace fermé du corps) Dans les espaces ouverts du corps (tube digestif) ou les fèces, la présence de E. coli est banale et l'identification des facteurs de pathogènicité de E. coli prime sur l'identification taxonomique. 'L'identification taxonomique de E. coli repose classiquement sur l'isolement et la culture de la bactérie sur un milieu gélose solide et l'application de quelques tests biochimiques. L'apparition de colonies sur un milieu gélose demande au moins 18 heures. Dans le cas de prélèvements de l'environnement, une culture de quelques jours est souvent nécessaire pour que toutes les colonies qui doivent se développer apparaissent. L'application de tests biochimiques à partir d'une colonie isolée demande encore 18 à 48 heures. A titre d'exemple, le dénombrement de E. coli dans l'eau nécessite la filtration d'un volume d'eau à travers une membrane stérile, le dépôt de la membrane sur un milieu semi-sélectif et ou indicateur, l'incubation (48 heures) permettant de faire se développer des colonies d'une couleur caractéristique (mais non absolument spécifique) qui sont alors comptées. Chaque colonie isolée étant supposée dérivée d'une cellule bactérienne, le dénombrement des E. coli par unité de volume peut être réalisé. Il est prudent de vérifier que les colonies isolées correspondent bien à l'espèce E. coli et ceci demande au moins 18 heures de plus.
Récemment, des techniques fondées sur la détection de séquences nucléotidiques spécifiques de l'espèce génomique E. coli ont été décrites. Ainsi, la détection par amplification génique (type PCR) du gène codant la béta-glucuronidase permet d'identifier la présence de E. coli dans un échantillon. Cette méthode est surtout utilisée de manière qualitative et l'interprétation de l'amplification génique est fréquemment gênée par la possibilité d'une contamination due à la dispersion sur les appareils et outils expérimentaux de quelques fragments d'acide nucléique. L'hybridation in situ est une alternative intéressante à l'amplification génique. Une sonde oligonucléotidique marquée (généralement par une substance fluorescente) pénètre dans les cellules bactériennes préalablement traitées pour faciliter cette étape. Selon que les acides nucléiques ribosomiques ont ou non une séquence complémentaire (cible) à la sonde, la sonde se fixera sur sa cible et ne sera pas enlevée par lavage. Les bactéries ayant ainsi retenu la sonde deviennent marquées (par exemple, fluorescentes) et visibles par examen microscopique. Les acides ribonucléiques ribosomaux (ARNr) constituent la cible préférée en hybridation in situ du fait du nombre de copies par cellule (10 000 à 30 000), plus élevé que le nombre de copies d'ARN messager après induction (100 à 200) ou d'un gène donné (une à quelques unes). Ces ARN ribosomaux (ARNr) sont identifiés d'après leur constante de sédimentation (pour les bactéries: 5S, 16S et 23 S), présents dans la petite sous-unité (ARNr 16S) ou la grande sous-unité (ARN 23 S et 5 S) du ribosome.
Les plus grands ARNr sont le 16S (environ 1500 nucléotides) et le 23S (environ 3000 nucléotides). Une sonde nucléique complémentaire d'une partie d'un ARNr pourra s'hybrider avec cet ARNr mais aussi avec le brin complémentaire du gène (ADNr) qui a codé cet ARNr. Diverses applications de cette méthodologie ont été publiées (Amann et al., 1990; DeLong et al., 1989; Giovannoni et al., 1988; Trebesius et al., 1994).
Ces ARNr sont en fait apparus comme les molécules les plus appropriées pour servir de chronomètre moléculaire de l'évolution des bactéries (Brenner et al., 1969; Doi & Iragashi, 1965; Moore et McCarthy, 1967; Pace & Campbell, 1971 ; Takahashi et al., 1967). La structure primaire (séquence) des ARNr contient des régions très conservées et d'autres qui sont hypervariables (Sogin et al., 1972; Woese et al., 1975). La mise au point d'une méthode d'hybridation ADN-ARNr (Gillespie & Spiegelman, 1965) a été suivie d'un très grand nombre de publications appliquant cette approche à la îaxonomie et la phylogénie des bactéries et à l'identification de bactéries mal classées (Johnson et al., 1970; Palleroni et al., 1973; De Smedt & De Ley, 1977).
D'une façon générale, dans une expérience d'hybridation mettant en jeu des séquences données, le résultat dépend beaucoup de la température et de la molarité en ions sodium du milieu reactionnel. Pour un mileu reactionnel de composition donnée, on définit une température optimale d'hybridation. Si l'on élève la température, les brins réassociés finiront par se séparer. La température nécessaire à cette séparation dépend de la longueur de la partie de séquence parfaitement hybridée (appariement parfait) et de sa composition en nucléotides. Une température ne permettant que l'hybridation des séquences les plus longues est dite restrictive (par opposition à optimale). Des mésappariements lors de l'hybridation font chuter la stabilité thermique des molécules hybridées.
La spécificité de l'hybridation in situ va donc dépendre de la qualité de la sonde capable de reconnaître et de s'hybrider avec une séquence complémentaire présente dans un ARNr.
Kohne et al. (1968) ont décrit une méthode pour préparer des sondes réagissant avec l'ARNr sans cependant indiquer comment détecter E. coli spécifiquement. Gόbel et Stanbridge (1984) utilisent un gène ADNr clone pour détecter des mycoplasmes contaminant des cultures de tissus.
Galpin et al. (1981) ont utilisé l'hybridation des gènes codant l'ARNr pour détecter des infections à Mycoplasma pidmonis chez la souris. US 4,851,330 décrit une stratégie pour obtenir des fragments d'acide nucléique utilisables comme sonde réagissant avec les ARNr
WO-A-84/02721 décrit des méthodes pour détecter les microorganismes infectant un corps humain ou animal, en utilisant des sondes qui hybrident avec les ARNr. Il n'est pas indiqué comment détecter ou identifier E. coli.
Berent et al. (1985) montrent l'intérêt des sondes oligonucléotidiques par rapport aux sondes clonées.
Le brevet français 2 596 774 propose l'utilisation d'un oligonucleotide complémentaire de l'ARNr bactérien comme sonde et décrit deux sondes oligonucléotidiques universelles.
Gôbel et al. (1987) utilisent un oligonucleotide de synthèse réagissant avec l'ARNr ou son gène, dans le but d'identifier des mycoplasmes. US 5,084,565 décrit une sonde oligonucléotidique dite spécifique de E. coli. Cette sonde a pour cible la zone nucléotidique 465 à 477 (numérotation des nucléotides selon Brosius et al. [1978]). La sonde réagirait avec Escherichia fergusonii et Shigella boydii serotype 13 (en plus de E. coli et Shigella) et ne réagirait pas avec Citrobacter koseri. Rien n'est dit quant à la réaction de cette sonde avec les espèces du genre Cedecea qui sont phylogénétiquement proches de E. coli.
US 5,593,841 mentionne une sonde réagissant avec la région 995- 1030 de l'ARNr 16S de E. coli. Cette sonde réagit avec E. fergusonii mais ne réagit pas avec toutes les souches de E. coli testées et ne réagit pas avec Shigella dysenteriae . Rien n'est dit quant à la réaction de cette sonde avec Citrobacter koseri (= C. diversus) et les espèces du genre Cedecea qui sont phylogénétiquement proches de E. coli.
Kwok et al. (1990) ont montré qu'un mésappariement au niveau de l'extrémité 3' d'une amorce utilisée en amplification génique (PCR) affectait l'efficacité de l'amplification.
Cha et al (1992) ont décrit un test appelé "Mismatch Amplification Mutation Assay" dans lequel, une amorce présente un mésappariement avec la séquence cible d'une mutation à détecter, et deux 5 mésappariements avec la séquence correspondante de l'allèle sauvage. Ces mésappariements concernent la partie terminale 3' de l'amorce. Dans ces conditions, leur système PCR ne détecte que l'allèle mutant. Cette méthode a été appliquée à la détection spécifique de Salmonella enterica serotype Entérinais (Lampel et al., 1996) en créant un mésappariement à
10 la pénultième position de l'extrémité 3' d'une amorce.
L'invention propose un oligonucleotide pour la détection et la visualisation spécifiques et rapides de bactéries appartenant à l'espèce génomique Escherichia coli dans un échantillon. Elle concerne donc un oligonucleotide capable de réaliser une hybridation spécifique avec
15 l'espèce génomique de Escherichia coli (c'est-à-dire spécifique de toutes les souches de Escherichia coli, de Shigella (à l'exception de S. boydii serotype 13) et de Escherichia fergusonii.
Plus particulièrement, cet oligonucleotide est capable de s'hybrider avec la région 637-660 de l'ARN 16S de E. Coli ^système de
20 numérotation de Brosius et al., 1978). En effet, cette portion de l'ARN 16S est assez bien conservée chez les Enterobactéries mais pas suffisamment pour être spécifique de celles-ci. Cependant, de façon surprenante, elle s'est avérée très intéressante en ce qu'elle permet la détection de l'espèce génomique ci-dessus définie sans réaction croisée
25 avec d'autres espèces. L'oligonucleotide conforme à l'invention peut également ne s'hybrider spécifiquement qu'à au moins 10 nucléotides consécutifs de la région 637-660 de l'ARN 16S de E. coli. En effet, avec deux oligonucléotides reconnaissant des zones adjacentes et ensuite liés par une ligase, on obtient un oligonucleotide plus long et donc plus
3.0 résistant à des conditions d'hybridation plus stringentes.
On peut ainsi utiliser deux oligonucléotides représentant la moitié gauche et la moite droite de l'un des oligonucléotides de l'invention, les faire hybrider avec la cible, les lier par action d'une ligase, et augmenter la température de lavage de manière à éliminer tout petit oligonucleotide non lié. Cette méthode qui réduit le bruit de fond a été proposée par Alves et Carr (1988).
Avantageusement, l'oligonucleotide conforme à l'invention correspond à SEQ ID N° 1. En effet, un oligonucleotide de 24 nucléotides, complémentaire de la susdite région 637-660 de l'ARN 16S de E. coli a été synthétisé. Il a été appelé Ec637 et identifié SEQ ID N° 1.
Le marquage a été obtenu par greffage de deux chromophores (fluoresceine ou Texas Red) à chaque extrémité de l'oligonucleotide. L'oligonucléotide-sonde utilisé en hybridation in situ à 42°C en présence de 22% de formamide suivie d'un lavage à 60°C, rend fluorescentes les cellules de Escherichia coli, Shigella dysenteriae, Shigella βexneri, Shigella boydii (sauf le serotype 13), Shigella sonne i et Escherichia fergusonii (groupe génomique E. coli). Elle ne réagit pas avec la plupart des autres espèces et genres testés. Toutefois, il a été observée que l'espèce Citrobacter koseri et les espèces de Cedecea, restent fluorescentes après lavage à 60°C.
En fait, il faut atteindre une température de l'ordre de 61°C pour que ces espèces ne réagissent plus. Cependant, à 61°C, le groupe génomique E. coli est rendu très faiblement fluorescent.
La présente invention concerne donc également un oligonucleotide permettant l'obtention de résultats encore meilleurs en terme de spécificité.
En effet, l'oligonucleotide Ec637 a été modifié au niveau d'un nucléotide situé à une position conservée (invariante) de la séquence d'ARNr 16S correspondante pour créer un mésappariement volontaire.
Ce mésappariement a été effectué dans la partie centrale de l'oligonucleotide. La séquence obtenue a été appelée Colinsitu et identifiée SEQ TD N° 2. L'introduction d'un mésappariement central a pour but de fragiliser l'hybride qui sera obtenu. Si une séquence diffère par un seul nucléotide de la séquence 637 à 660 de E. coli, cela causera deux mésappariements avec la sonde Colinsitu qui ne s'hybridera pas dans les conditions expérimentales choisies. Cette sonde reste réactive vis-à-vis de l'espèce génomique E. coli et devient inactive vis-à-vis de toutes les autres espèces et genres. Cette spécificité se maintient dans une large gamme de température de lavage allant de 51°C à 59°C.
La sonde Colinsitu peut être utilisée en hybridation in situ mais également, en hybridation sur filtre, en milieu liquide, en hybridation réverse, ou comme amorce spécifique dans un système d'amplification génique.
L'invention a également pour objet des oligonucléotides complémentaires des oligonucléotides ci-dessous décrits.
D'autres types de marquage de la sonde (radioactivité, marquage chimique ou enzymatique) sont utilisables pour l'hybridation in situ.
Plus particulièrement, les oligonucléotides conformes à l'invention peuvent être marqués à leur extrémité 3' ou 5' ou aux extrémités 3' et 5'.
L'intérêt de cette sonde, appliquée en hybridation in situ avec examen microscopique des cellules bactériennes ou détection par cytométrie de flux, est de pouvoir détecter, identifier, et dénombrer les cellules de l'espèce génomique E. coli dans des échantillons divers tels que prélèvements cliniques et vétérinaires (en particulier urine), eau et autres boissons, aliments, environnement. L'invention a également pour objet un procédé de détection et de visualisation de bactéries de l'espèce génomique Escherichia coli (incluant toutes les Shigella à l'exception de S. boydii serotype 13) / Escherichia fergusonii dans un échantillon comprenant une étape d'hybridation de l'ARN ribosomal des bactéries de ladite espèce génomique avec un oligonucléotique selon l'invention, et plus particulièrement avec un oligonucléotique choisi parmi SEQ ID N° 1 et SEQ ED N° 2.
Plus particulièrement, l'hybridation en question peut être une hybridation in situ, une hybridation sur filtre, une hybridation en milieu liquide ou une hybridation reverse.
Par hybridation reverse aux fins de la présente invention, on entend une réaction d'hybridation dans laquelle la sonde oligonucléotidique d'intérêt est immobilisée sur un support, l'acide nucléique à détecter et/ou l'organisme contenant l'acide nucléique à détecter étant présent en solution.
Selon un mode particulier de réalisation d'une réaction d'hybridation reverse selon l'invention, les sondes oligonucléotidiques peuvent être mises en œuvre au sein d'un dispositif de détection comprenant une banque matricielle d'oligonucléotides. Un exemple de réalisation d'une telle banque matricielle peut consister en une matrice d'oligonucléotides-sondes fixés sur un support, la séquence de chaque sonde d'une longueur donnée étant située en décalage d'une ou plusieurs bases par rapport à la sonde précédente, chacune des sondes de l'arrangement matriciel étant ainsi complémentaire d'une séquence distincte de l'ADN ou l'ARN cible à détecter et chaque sonde de séquence connue étant fixée en une position prédéterminée du support. La séquence cible à détecter peut être avantageusement marquée radioactivement ou non radioactivement. Lorsque la séquence cible marquée est mise en contact avec le dispositif matriciel, celle-ci forme des hybrides avec les sondes de séquences complémentaires. Un traitement à la nucléase, suivi d'un lavage, permet d'éliminer les hybrides sondes-séquences cible qui ne sont pas parfaitement complémentaires.
Du fait de la connaissance précise de la séquence d'une sonde à une position déterminée de la matrice, il est alors possible de déduire la séquence nucleotidique de la séquence d'ADN ou d'ARN cible et de détecter en conséquence d'éventuelles mutations localisées dans l'ADN ribosomal de E. coli, et plus particulièrement des mutations affectant la région 637-660 de l'ADN codant pour l'ARNr 16S de E. coli.
Une alternative à l'utilisation d'une séquence cible marquée peut consister en l'utilisation d'un support permettant une détection «bioélectronique» de l'hybridation de la séquence cibles sur les sondes du support matrice, lorsque ledit support est constitué ou comprend un matériau capable d'agir, par exemple, en tant que donneur d'électrons aux positions de la matrice auxquelles un hybride a été formé. Un tel matériau donneur d'électron est par exemple de l'or. La détection de la séquence nucleotidique de l'ADN ou ARN cible est alors déterminée par un dispositif électronique.
Un exemple de réalisation d'un biocapteur, tel que défini ci- dessus, est décrit dans la demande de brevet européen n° EP-0721 016 (Affymax technologies N.V.) ou encore dans le brevet américain n° US 5.202.231 (Crkvenjakov et Drmanac).
L'invention concerne également l'utilisation d'un oligonucleotide correspondant à SEQ ID N° 1 ou SEQ ID N° 2 ou différant de SEQ ID
N° 1 par un nucléotide ou un oligonucleotide complémentaire en tant qu'amorce pour la mise en oeuvre d'un procédé d'amplification génique, tel que la PCR.
Les oligonucléotides conformes à l'invention peuvent également être utilisés dans une méthode d'inhibition de l'hybridation En effet, on peut envisager de fixer sur un support (filtre, cupule ou microchip) un oligonucleotide identique ou homologue de la région 637-660 de l'ARN 16S de E. coli et de marquer d'une façon quelconque un oligonucleotide complémentaire à cette région conforme à la présente invention. En l'absence d'ADN ou d'ARN compétiteurs, les deux oligonucléotides doivent se réassocier complètement. L'introduction dans le système d'un acide nucléique capable de se réassocier avec l'un ou l'autre des nucléotides (par exemple un acide nucléique appartenant à l'une des espèces visées par la présente invention) ou les deux (cas de deux brins séparés) inhibe la fixation de l'oligonucleotide libre, marqué et conforme à l'invention sur le support. La présente invention a également pour objet un procédé de détection et de visualisation de microorganismes par hybridation permettant d'optimiser la spécificité de la sonde oligonucléotidique utilisée. En effet, un oligonucleotide est d'autant plus spécifique qu'il présente des différences nettes dans ses capacités d'hybridation avec d'une part les séquences cibles et d'autre part les autres séquences. Dans les conditions expérimentales d'hybridation, cette différence est d'autant plus décelable qu'il existe des différences de séquences (ou mésappariement) entre le susdit oligonucleotide et la séquence avec laquelle il est susceptible de s'hybrider. Par conséquent, il devient intéressant d'augmenter artificiellement le nombre de ces mésappariements en modifiant l'oligonucleotide utilisé pour l'hybridation au niveau d'un nucléotide généralement très conservé au niveau de la séquence que l'on cherche à détecter.
Par conséquent, la présente invention concerne un procédé de détection et de visualisation de microorganismes (ou d'un groupe de microorganismes) par hybridation mettant en oeuvre un oligonucleotide complémentaire à la séquence cible du microorganisme à l'exception d'un nucléotide localisé dans la partie centrale dudit oligonucleotide. Le 5 nucléotide en question est localisé à une position invariante de la séquence cible des microorganismes et est de préférence en position centrale.
Par exemple, pour un oligonucleotide complémentaire d'une longueur de 20 paires de bases, le nucléotide non complémentaire est
10 localisé entre les positions 7 et 13 incluses selon une numérotation de l'oligonucleotide commençant à son extrémité N-terminale, de préférence, le nucléotide en question est localisé à la position 10.
L'invention concerne donc un procédé de détection et de visualisation telle que ci-dessus décrit appliqué à des bactéries de 15 l'espèce génomique Escherichia coli (incluant toutes les Shigella à l'exception de S. boydii serotype 13) / Escherichia fergusonii.
Ainsi, dans le cadre de la présente invention, l'oligonucleotide complémentaire mis en oeuvre dans le susdit procédé est un oligonucleotide conforme à la présente invention ne différant de SEQ ID
20 N° 1 que par un nucléotide et de préférence correspondant à SEQ ID N°
2.
Parmi les applications potentielles de l'invention, on citera plus particulièrement les suivantes :
- Recherche de la confirmation que des souches atypiques de E. 25 coli appartiennent bien à cette espèce. Les Centres de Référence reçoivent souvent des souches qui pourraient être des E. coli atypiques. Elles donnent des réactions biochimiques inhabituelles pour cette espèce comme une réaction négative pour la production d'indole ou de gaz, l'hydrolyse du o-nitrophényl-β-galactopyranoside, l'hydrolyse des béta- - 30 glucuronides, des réactions de fermentation inhabituelles, ou une croissance très faible dans les milieux usuels. La sonde Colinsitu peut confirmer si ces souches appartiennent à l'espèce génomique E. coli-E. fergusonii. Si la réaction avec la sonde est positive, il est facile de distinguer E. fergusonii par la fermentation de l'adonitol et du cellobiose ;
- Détection, identification et dénombrement de E. coli dans l'urine de malades ou d'animaux infectés. La plupart des infections urinaires étant dues à E. coli et une infection ou colonisation urinaire se caractérisant par la présence de plus de 1000 ou 10 000 bactéries par ml, une hybridation in situ avec Colinsitu d'une dilution appropriée d'urine devrait permettre de constater la présence et de dénombrer E. coli dans les urines en 2 à 3 heures ;
- Détection et dénombrement de E. coli dans l'eau et les aliments. Escherichia coli est le principal indicateur biologique de contamination fécale de l'eau et des aliments. Il suffit de filtrer une quantité connue et suffisante d'eau et de réaliser l'hybridation in situ sur les filtres ainsi obtenus. Si, à l'aide d'un micromètre et d'un réticule, on connait le volume filtré rapporté à une surface observée au microscope, il est possible de quantifier le nombre de cellule de E. coli dans l'eau. Dans le cas d'aliments qui ne sont pas filtrables et qui ne doivent pas avoir un E. coli par 25 g, un enrichissement peut être nécessaire à partir de 25 g d'aliment, l'hybridation in situ effectué ensuite sur le milieu de culture indiquera si E. coli est présent. L'invention ne se limite pas à la description ci-dessus mais en englobe toutes les variantes. Les exemples ci-après permettent de mieux la comprendre tout en n'étant mentionnés qu'à titre purement illustratif.
EXEMPLES Souches bactériennes utilisées Au total, 208 souches ont été utilisées pour évaluer la spécificité des sondes.
L'authenticité des souches a été vérifiée en les réidentifiant sur galeries Biotype-100 (BioMérieux, La Balme-les-Grottes, France). Les galeries ont été inoculées selon les instructions du fabricant. L'identification automatique a été obtenue grâce au programme Recognizer" (Taxolab Institut Pasteur, Paris) et un ordinateur Macintosh Powerbook 5300ce (Apple Computers). EXEMPLE 1 : Hybridation in situ Au cours des essais, une séquence de 23 nucléotides appelée
Ec465, 5' -GGT AAC GTC AAT GAG CAA AGG TA- 3', reconnaissant la région 465 à 487 de l'ARNr 16S, a aussi été synthétisée. Cette séquence Ec465, correspondant à SEQ ID N° 3, a été utilisée dans un but de comparaison. Une méthode publiée (Trebesius et al., 1994) a été suivie avec quelques modifications. Les cultures ont été diluées en eau distillée stérile pour obtenir une absorbance à 600 nm de 0,010, et 100 μl furent filtrés à travers des filtres PC (Millipore, St Quentin-en-Yvelines, France) de 0,22 μm. La fixation a été effectuée par une solution aqueuse à 3% de paraformaldehyde. La formamide dans la mixture d'hybridation représentait 22% du volume. La sonde a été ajoutée à la concentration de 25 pmole. L'hybridation a été réalisée à 42°C pendant 2 heures. Après lavage (étape déterminant la spécificité: 20 min à 51°C pour Colinsitu, 60°C pour Ec637, 48°C pour Ec465), les filtres ont été déposés sur des lames de verre, recouverts de 5μl de Vectashield (Vector Laboratories, Burlingame, CA) et d'une lamelle.
Les filtres montés sur lame ont été examinés par épifluorescence en utilisant un microscope BX60 Olympus équipé d'un filtre WTBA (pour la fluorescéine) ou NG (pour le Texas Red) et d'une caméra couleur DEI- 470 (Optronics).
Le Tableau montre les résultats obtenus en hybridation in situ avec les sondes fluorescentes Colinsitu, Ec637, et Ec465. Toutes les souches testées de Escherichia coli, Shigella (sauf S. boydii serotype 13), et Escherichia fergusonii, sont rendues fluorescentes par la réaction d'hybridation utilisant la sonde Colinsitu. Aucune autre espèce génomique ne réagit. Lorsque la sonde est Ec637, une réaction est obtenue avec Citrobacter koseri et les espèces du genre Cedecea.
La sonde Ec465, utilisée en comparaison a réagit faiblement avec E. coli et avec des souches de Buttiauxella et l'expérience n'a pas été poussée plus avant.
Le résultat de l'hybridation in situ, c'est-à-dire les cellules bactériennes rendues fluorescentes, peut aussi être visualisé par cytométrie de flux plutôt que par microscopie. TABLEAU
Réactions obtenues avec les sondes fluorescentes en hybridation in situ.
Réaction avec Espèces Souche Colinsitu Ec637 Ec465 Espèce génomique Escherichia coli :
Escherichia coli CIP 54.8 + + +f
2430 + + +f
CIP 54-120 + + +f
CIP 54-122 + + +f
CIP 54-124 + + +f
CIP 70-59 + + +f
CIP 70-68 + + +f
044 +
052 +
066 +
O90 +
O103 +
O l Oδ +
01 10 + ou i +
01 13 + 01 19 +
0121 +
0127 +
0132 +
0135 +
0136 +
O140 +
0151 +
O157:H7 +
96-4597 +
6085 +
67 Tunis +
K-12 HB101 +
H19 +
PMK1 +
H30 +
E3251 1 +
B2 F1 H21 +
0X3 H21 +
412 + ffl 8 +
96-302 +
96-303 +
96-301a +
Shigella dysenteriae 1 NCDC 1007-71 + +
Y6R +
60R +
Shigella βexneri la CIP 54-58 + + Shigella boydii 15 NCDC 965-58 + + Shigella sonnei CIP 52-55 + + Escherichia fergusonii 1016-74 + +
85-1 1615 + +
568-73 + + 29586 + +
32-96 + +
1-85 + +
Autres espèces genomiques d u genre Escherichia :
Escherichia hermanii 1158-78 - -
1200-74 - -
3514-77 - -
980-72 - -
E. vulneris CDC 2524-69 - -
394-83 - -
875-72 - -
E. blattae 9005-74 - -
Autres genres
Budvicia aquatica 2377 - -
20186HG - -
Buttiauxella agrestis CUETM 77-167 - -
B. brennerae Sl/6-571 - -
B. cochleae S3/1-49 - -
B.ferragutiae CUETM 78-31 - -
B. gaviniae Sl/14-669 - - +f
CUETM 77-159 - -
B. georgiana CDC 2891-76 - -
B. izardii S3/2-161 - -
B. nockiae NSW 1 1 - -
B. warmboldiae NSW 326 - -
Cedecea davisae 005 - +
C lapagei 004 - +
C. neteri 002 - +
Cedecea sp. 001 - +
Citrobacter amalonaticus 9020-77 -
C. braakii 80-58 -
C. farmeri 2991-81 -
C. freundii 621-64 _ C. koseri (= C. diversus) 3613-63 +
8132-86 +
8127-86 +
C. rodentium 1843-73
C. sedlakii 4696-86
C. werkmanii 876-58
C. youngae 460-61
Citrobacter species 10 4693-86
Citrobacter species 11 2970-59
Edwardsiella hoshinae 2-78
E. ictaluri 92-7041
E. tarda 10396
Enterobacter aerogenes Al
E. agglomerans group II 3123-70 groupe III {Pantoea dispersa) 1429-71 groupe IV 1471-71 groupe V 3482-71 groupe Vf {Pantoea ananas) 6070-69 groupe VU 6003-71 groupe VÏÏI 5422-69 groupe IX 4388-71 groupe X 1600-71 groupe XI 5378-71 groupe XII 219-71 groupe Xπi {Pantoea agglomerans) E20
E. amnigenus 77-118
E. asburiae 1497-78
E. cancerogenes 2176
E. cloacae CIP 60-85
77-21
E. gergoviae 16-74
E. hormaechei 491-62
E. intermedium 77-130 E. nimipressuralis E63
E. persicinus HK204
E. pyrinus 4205-93
E. sakazakii 4562-70
E. taylorae 2126-81
E vinia carotovora 495
E. carotovora subsp. betavasculorum E235
2122
E. chrysanthemi SR32
1451
E. cypripedii EC 155
E. mallotivora 2851
E. nigriβuens EN 104
E. rhapontici 1075
E. rubrifaciens ER 105
E. stewartii CNBP 3157
E. uredovora 158
Ewingella americana 23
Hafnia alvei group I 5632-72
H. alvei group II 4510-75
Klebsiella ornithinolytica 626
K. oxytoca 131-82
K. planticola CIP 100751
K. pneumoniae subsp. pneumoniae 464
K2
12-52
532
K. pneumoniae subsp. ozaenae 10-79
K. pneumoniae subsp. rhinoscleromatis 475
K. terrigena 1
Koserella trabulsii 3518-73
Kluyvera ascorbata 648-74
K. cryocrescens 2065-78 Leclercia adecarboxylata CUETM 77-3
8-82
Leminorella grimontii 1944-81 Leminorella sp. 3346-72 Moellerella wisconsensis 2897-78 Morganella morganii 25830 Obesumbacterium proteus NCIMB 8771
CIP 104862
Pragia fontium 2434 Proteus mirabilis PMI
PR14
P. myxofaciens
P. penneri 8.88
P. vulgaris PR1
Providencia alcalifaciens 3370-67
P. heimbachae 8025-83
P. rettgeri 1163
P. rustigiani 132-68
P. stuartii 282
Rahnella aquatilis 3307
Salmonella enterica subsp. arizonae 44
S. enterica subsp. diarizonae 41
S. enterica subsp. enterica serotype . 6323-88 serotype ... 122 serotype ... 119 serotype Typhimurium LT2 serotype Gallinarum 4-86
S. enterica subsp. houtenae 6700-88
S. enterica subsp. salamae 1492-74
Serratia entomophila Al
S. caria 4024
S. fond cola 5680
S. grimesii 503 S. liquefaciens ATCC 27592
275
S. marcescens 504 S. odorifera 1073 S. plymuthica 510 S. proteomaculans 3630 S. rubidaea 864 Trabulsiella guamensis 370-85
371-85
Yersinia enterocolitica ATCC 27729 Y. frederiksenii CIP 8029
Y. intermedia 29908
Y. kristensenii 9993
Y. pestis EV40
Y. pseudotuberculosis 29833 Y. ruckeri ATCC 29473
Yokenella regensburgei 2403
2405
Espèces d'autres familles :
Acinetobacter .... Al 745 Aeromonas caviae 67.24
Pseudomonas aeruginosa 63-52
Pseudomonas fluorescens DSM 50090
P. putida 2066
Vibrio alginolyticus LMG 4408 V. anguillarum CIP 63-36
V. cholerae CIP 62-13
V. harveyi ATCC 1426
V. hollisae CEP 101886
Xanthomonas maltophilia 2377 Légendes
+ : bonne fluorescence des cellules bactériennes
+f : fluorescence faible
- : absence de fluorescence (rien) : expérience non effectuée.
EXEMPLE 2 : Amplification génique
L'oligonucleotide Colinsitu (non marqué) et le nucléotide suivant (complémentaire de la région conservée 8-32 de l'ARNr 16S): 5'-ATT TGA AGA GTT TGA TCA TGG CTC AG-3' (SEQ ID N° 4) ont été utilisés comme amorce pour l'amplification spécifique du gène codant l'ARNr 16S de E. coli. La trousse d'amplification "GeneAmp" DNA Amplification Reagent Kit" (Perkin Elmer Cetus, Norwalk, CT) a été utilisée selon les instructions du fabricant, avec la DNA polymérase "AmpliTaq3"' et un thermocycleur "DNA Thermal Cycler 480» (Perkin Elmer Cetus). Le volume reactionnel était de 100 μl comprenant 10 μl de tampon, 2,5 unités d' AmpliTaq, 200 μM de chaque nucléotide dATP, dGTP, dCTP, dTTP, 100 pMole de chaque amorce et 30 à 50 ng d'ADN total. Les conditions d'amplification ont été les suivantes: dénaturation initiale à 94°C pendant 3 minutes, 25 cycles de 60 s à 94°C pour la dénaturation, 60 s à 65,5°C pour la réassociation, 120 s à 72°C pour l'élongation. Le produit d'amplification a été soumis à une électrophorése en 1,3% d'agarose (Appligéne, Illkirch, France). La taille attendue du fragment amplifié était d'environ 600 paires de bases. L'utilisation de ce système permet effectivement d'amplifier ce fragment spécifiquement pour l'espèce génomique Escherichia coli-Shigella-E. fergusonii. EXEMPLE 3 : Hybridation sur filtre
L'hybridation sur filtre de nitrocellulose, de nylon, ou de cellulose, est une méthode pratique permettant d'appliquer une même sonde à un grand nombre (une centaine) d'échantillons d'ADN. L'hybridation peut se faire sur colonies. Dans ce cas, la membrane est appliquée sur des colonies, imprégnée de soude (lyse les bactéries, détruit l'ARN, et dénature l'ADN), et mise en présence de la sonde marquée dans un tampon adéquat. Après un temps d'exposition suffisant (plusieurs heures), la membrane est lavée, séchée au four (pour fixer irréversiblement l'ADN), et le marquage est révélé. Cette méthode nécessite d'avoir des colonies sur une boite, mais permet de sélectionner une colonie réagissant parmi des milliers. Un protocole semblable permet de filtrer 96 échantillons sur une membrane traitée de la même façon que les colonies.
EXEMPLE 4 : Hybridation en milieu liquide
Si un échantillon est traité de manière à lyser les bactéries et à extraire l'ADN, celui-ci peut être dénaturé et mis à hybrider avec une sonde radioactive (1251, par exemple). La radioactivité associée à l'ADN hybride peut être comptée (comptage γ) après séparation, par chromatographie sur hydroxyapatite, de la radioactivité associée à la sonde non hybridée.
EXEMPLE 5 : Hybridation reverse
Des sondes oligonucléotidiques peuvent être fixées sur un support (filtre, microplaque, microchip). Plusieurs sondes peuvent ainsi être disponibles sur un même support. Le gène-cible est amplifié et marqué, et l'amplicon est mis dans les conditions d'hybridation avec le panel de sondes. Après lavage et révélation du marquage, la fixation du marquage sur une des sondes permet l'identification. Cette approche permet aussi la détection simultanée de plusieurs organimes lorsque l'amplification est effectuée sur de l'ADN extrait d'un prélèvement plurimicrobien (Rijpens et al., 1995). Bien que le travail publié utilise comme cible l'espace intergénique entre les gènes codant les ARNr 16 et 23S, cette approche est applicable au gène codant l'ARNr 16S.
EXEMPLE 6 : Spécificité de la sonde Colinsitu
Il est maintenant bien établi que les espèce du genre Shigella (sauf S. boydii serotype 13) appartiennent à l'espèce génomique Escherichia coli (Brenner et al., 1973). Il n'est donc pas surprenant que la sonde Colinsitu réagisse avec les Shigella. Dans le genre Escherichia, E. fergusonii présente 59 à 63 % d'homologie avec E. coli (par hybridation des ADN) avec une instabilité thermique des molécules hybridées de 4,5°C (Farmer et al., 1985). Donc les souches de E. fergusonii remplissent partiellement les critères qui les feraient inclure dans l'espèce génomique Escherichia coli. Rappelons que ces critères sont une homologie supérieure ou égale à 70 % avec une instabilité thermique des molécules hybridées inférieure ou égale à 5°C (Wayne et al., 1987). Ces critères devant être interprétés avec souplesse (Wayne et al., 1987). La sonde Colinsitu est donc strictement spécifique de l'espèce génomique E. coli si l'on admet E. fergusonii dans cette espèce génomique.
La comparaison de la spécificité de la sonde Colinsitu avec celle d'autres sondes qui ont été ou pourraient être proposées, apparaîtra clairement avec des souches de référence suivantes données à titre d'exemple:
Souches devant être visualisées par Colinsitu dans les conditions décrites: Escherichia coli CIP 54.8 (= ATCC 1 1775) Shigella dysenteriae serotype 1 NCDC 1007-71 Shigella flexneri serotype la CIP 54-58
Shigella boydii serotype 15 NCDC 965-58
Shigella sonnei CIP 52-55
Escherichia fergusonii CIP 103357 (= ATCC 35469)
Souches ne devant pas être visualisées par Colinsitu dans les conditions décrites:
Shigella boydii serotype 13 CDC 1610-55
Escherichia vulneris CDC 875-72 (= ATCC 33821)
Escherichia hermanii CDC 980-72 (= ATCC 33650)
Citrobacter koseri {= C. diversus) CDC 3613-63 (= ATCC 27156) Citrobacter braakii 80-58 (= ATCC51113)
Cedecea davisae CIP 80.34 (= ATCC 33431)
Cedecea lapagei CIP 80.35 (= ATCC 33432)
Cedecea neteri CIP 103241 (= ATCC 33855)
Klebsiella pneumoniae subsp. pneumoniae K2 • Obesumbacterium proteus CIP 104862
Salmonella enterica serotype Typhimurium (= S. typhimurium) LT2 (=
CIP 60.62, ATCC 43971).
REFERENCES
Alves, A.M., Carr, F.J. 1988. Dot blot détection of point mutations with adjacently hybridising synthetic oligonucleotide probes. Nucleic Acid Research 16 : 8723.
Amann, R. L, Krumholz, L., & Stahl, D. A. 1990. Fluorescent- oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. Journal of Bacteriology 172: 762-770.
Berent, S. L., Mahmoudi, M., Torczynski, R. M., Bragg, P. W., & Bollon, A. P. 1985. Comparison of oligonucleotide and long DNA fragments as probes in DNA and RNA dot, Southern, Northern, colony and dot hybridizations. Biotechniques 3: 208-220.
Brenner, D. J., Fanning, G. R., Johnson, K. E., Citarella, R. V., & Falkow, S. 1969. Polynucleotide séquence relationships among members of the Enterobacteriaceae. J. Bacteriol. 98: 637-650.
Brenner, D. J., Fanning, G. R., Miklos, G. V., and Steigerwalt, A. G. 1973. Polynucleotide séquence relatedness among Shigella species. Int. J. Syst. Bacteriol. 23: 1-7.
Brosius, J., Palmer, L., Kennedy, J. P., & Noller, H. F. 1978. Complète séquence of a 16S ribosomal RNA gène from Escherichia coli. Proceedings of the National Acadademy of Science of the United States of America 75: 4801-4805. Cha, R. S., Zarbl, H., Keohavong, P., & Thilly, W. G. 1992. Mismatch amplification mutation assay (MAMA): application to the c-H-ras gène. PCR Methods Applic. 2: 14-20.
De Smedt, J. & De Ley, J. 1977. Intra- and intergeneric similarities of Agrobacterium ribosomal ribonucleic acid cistrons. International Journal of Systematic Bacteriology 27: 222-240.
DeLong, E. F., Wickham, G. S., & Pace, N. R. 1989. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243: 1360-1363.
De Zuane, J. 1997. Handbook of drinking water quality. 2nd éd. Van Nostrand Reinhold, New York.
Doi, R. H. & Iragashi, R. T. 1965. Conservation of ribosomal and messenger ribonucleic acid cistrons in Bacillus species. Journal of Bacteriology 90: 384-390.
Farmer, J. J., III, Fanning, G. R., Davis, B. R., O'Hara, C. M., Riddle, C, HickmanBrenner, F. W., Asbury, M. A., Lowery, V. A., M, and Brenner, D. J. 1985. Escherichia fergusonii and Enterobacter taylorae, two new species of Enterobacteriaceae isolated from clinical spécimens. J. Clin. Microbiol. 21: 77-81.
Fox et al., 1977. Comparative cataloguing of 16S ribosomal ribonucleic acid molecular approach to procaryotic systematics. International Journal of Systematic Bacteriology 27 : 44-57. Galpin et al. 1981. The use of ribosomal DNA (rDNA) hybridization for détection of Mycoplasma pulmonis in chronically infected mouse joints. Officiai Abstract vol. 47, No. 3.
Gillespie, D. & Spiegelman, S. 1965. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J. Mol. Biol. 12: 829- 842.
Giovannoni, S. L., DeLong, E. F., Olsen, G. J., & Pace, N. R. 1988. Phylogenetic groupspecific oligodeoxynucleotide probes for identification of single microbial cells. Journal of Bacteriology 170: 720- 726.
Gôbel, U. B., Geiser, A. & Stanbridge, E. J. 1987. Oligonucleotide probes complementary to variable régions of ribosomal RNA discriminate between Mycoplasma species. Journal of General Microbiology 133: 1969-1974.
Gôbel, U., Maas, R., Havn, G, Vinge-Martins, C, & Stanbridge, E. J. 1987. Synthetic oligonucleotide probes complementary to rRNA for group and species-specific détection of mycoplasmas. Israël Journal of Médical Science 23: 742-746.
Gôbel, U. B. & Stanbridge, E. J. 1984. Cloned mycoplasma ribosomal RNA gènes for the détection of mycoplasma contamination in tissue cultures. Science 226: 1211-1213.
Grimont, P.A.D. 1988. Use of DNA reassociation in bacterial classification. Canadian Journal of Microbiology 34, 541-546. Johnson, J. L., R. S. Anderson, & Ordal, E. J. 1970. Nucleic acid homologies among oxidase-negative Moraxella species. Journal of Bacteriology 101: 568-573.
Kohne, D. E. 1968. Isolation and characterization of bacterial ribosomal RNA cistrons. Biophysical Journal 8: 1104-1118.
Kwok, S., Kellog, D. E., McKinney, N., et al. 1990. Effects of primer- template mismatches on the polymérase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acid Research 18: 999-1005.
Lampel, K. A., Keasler, S. P., & Hanes, D. E. 1996. Spécifie détection of Salmonella enterica serotype Enteritidis using the polymérase chain reaction. Epidemiology and Infection 116: 137-145.
Moore, R. L. & McCarthy, B. J. 1967. Comparative study of ribosomal ribonucleic acid cistrons in enterobacteria and myxobacteria. J. Bacteriol. 94: 1066-1074.
Pace, B. & Campbell, L. L. 1971. Homology of ribosomal ribonucleic acid of diverse bacterial species with Escherichia coli and Bacillus stearothermophilus. Journal of Bacteriology 107: 543-547.
Palleroni, N. J., Kunisawa, R., Contopoulou, R., & Doudoroff, M. 1973. Nucleic acid homologies in the genus Pseudomonas. International Journal of Systematic Bacteriology 23: 333-339. Rijpens, N. P., Jannes, G, Van Asbroeck, M., Herman, L. M. F., Rossau, R. 1995. Simultaneous détection of Listeria spp. and Listeria monocytogenes by reverse hybridization with 16S-23S rRNA spacer probes. Mol. Cell. Probes 9, 423-432.
Sogin, S. J., Sogin, M. L., & Woese, C. R. 1972. Phylogenetic measurement in procaryotes by primary structural characterization. J. Mol. Evol. 1: 173-184.
Takahashi, M., Saito, M., & Ikeda, Y. 1967. Species specificity of the ribosomal RNA cistrons in bacteria. Biochim. Biophys. Acta 134: 124- 133.
Trebesius, K., Amann, R., Ludwig, W., MΫhlegger, K., and Schleifer, K.-H. 1994. Identification of whole fixed bacterial cells with nonradioactive 23 S rRNA-targeted polynucleotide probes. Applied Environ. Microbiol. 60: 3228-3235.
Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., Starr, M.P., TrΫper, H. G. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. International Journal of Systematic Bacteriology 37, 463-464.
Woese, C. R., Fox, G. E., Zablen, L., Uchida, T., Bonen, L., Pechman, K., Lewis, B. J., & Stahl, D. 1975. Conservation of primary structure in 16S ribosomal RNA. Nature 254: 83-86.

Claims

REVENDICATIONS
1. Oligonucleotide capable de s'hybrider spécifiquement à l'ARN ribosomal (ARNr) ou au gène correspondant (ADNr) de l'espèce génomique Escherichia coli (incluant toutes les Shigella à l'exception de S. boydii serotype 13) / Escherichia fergusonii.
2. Oligonucleotide selon la revendication 1 capable de s'hybrider spécifiquement à la région 637-660 de l'ARNr 16S de E. Coli.
3. Oligonucleotide selon la revendication 2 capable de s'hybrider spécifiquement avec au moins 10 nucléotides de la région 637-660 de l'ARNr 16S de E. coli
4. Oligonucleotide selon l'une des revendications 1 à 3, caractérisé en ce qu'il correspond à SEQ ID N° 1.
5. Oligonucleotide selon l'une des revendications 1 à 3, caractérisé en ce qu'il diffère d'un nucléotide de SEQ ID N° 1.
6. Oligonucleotide selon la revendication 3, caractérisé en ce qu'il correspond à SEQ ID N° 2.
7. Oligonucleotide complémentaire de l'oligonucleotide selon l'une des revendications 1 à 6.
8. Oligonucleotide selon l'une des revendications 1 à 7, caractérisé en ce qu'il est marqué à son extrémité 3' ou 5' ou aux extrémités 3' et 5'.
9. Procédé de détection et de visualisation de bactéries de l'espèce génomique Escherichia coli (incluant toutes les Shigella à l'exception de S. boydii serotype 13) / Escherichia fergusonii dans un échantillon comprenant une étape d'hybridation de l'ARN ribosomal des bactéries de ladite espèce génomique avec un oligonucleotide selon l'une des revendications 1 à 8.
10. Procédé selon la revendication 9, caractérisé en ce que l'oligonucleotide est choisi parmi SEQ ID N° 1 et SEQ ID N° 2.
11. Procédé selon l'une des revendications 9 ou 10, caractérisé en ce que l'hybridation est une hybridation in situ, une hybridation sur filtre, une hybridation en milieu liquide ou une hybridation reverse.
12. Utilisation d'un oligonucleotide selon l'une des revendications 4 à 7 en tant qu'amorce pour la mise en oeuvre d'un procédé d'amplification génique.
13. Procédé de détection et de visualisation de microorganismes par hybridation caractérisé en ce qu'il met en œuvre un oligonucleotide complémentaire à la séquence cible desdits microorganismes, à l'exception d'un nucléotide localisé dans la partie centrale dudit oligonucleotide.
14. Procédé de détection et de visualisation selon la revendication 13, caractérisé en ce que le nucléotide non complémentaire est localisé à une position invariante chez lesdits microorganismes.
15. Procédé de détection et de visualisation selon la revendication 13 ou 14, caractérisé en ce que les microorganismes sont des bactéries de l'espèce génomique Escherichia coli (incluant les Shigella à l'exception de S. boydii serotype 13) / Escherichia fergusonii.
16. Procédé de détection et de visualisation selon la revendication 15, caractérisé en ce que l'oligonucleotide complémentaire mis en œuvre est tel que défini dans la revendication 5 ou 6.
PCT/FR1998/001737 1997-08-04 1998-08-04 Oligonucleotide specifique de l'espece escherichia coli et procede de detection et de visualisation des bacteries de cette espece WO1999007722A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP98941537A EP1003765A1 (fr) 1997-08-04 1998-08-04 OLIGONUCLEOTIDE SPECIFIQUE DE L'ESPECE $i(ESCHERICHIA COLI) ET PROCEDE DE DETECTION ET DE VISUALISATION DES BACTERIES DE CETTE ESPECE
JP2000506224A JP2001512665A (ja) 1997-08-04 1998-08-04 大腸菌種に特異的なオリゴヌクレオチド並びにその種の細菌の検出および視覚化法
AU89879/98A AU8987998A (en) 1997-08-04 1998-08-04 Oligonucleotide specific of the (escherichia coli) species and method for detecting and displaying bacteria of this species
CA002299599A CA2299599A1 (fr) 1997-08-04 1998-08-04 Oligonucleotide specifique de l'espece escherichia coli et procede de detection et de visualisation des bacteries de cette espece
US09/463,419 US6551776B1 (en) 1997-08-04 1998-08-04 Oligonucleotide specific of the Escherichia coli species and method for detecting and displaying bacteria of this species

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97/09961 1997-08-04
FR9709961A FR2766825B1 (fr) 1997-08-04 1997-08-04 Oligonucleotide specifique de l'espece escherichia coli et procede de detection et de visualisation des bacteries de cette espece

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/463,419 A-371-Of-International US6551776B1 (en) 1997-08-04 1998-08-04 Oligonucleotide specific of the Escherichia coli species and method for detecting and displaying bacteria of this species
US10/360,808 Continuation US20040219524A1 (en) 1997-08-04 2003-02-10 Oligonucleotide specific to the species Escherichia coli and procedure for detecting and visualizing bacteria of this species

Publications (1)

Publication Number Publication Date
WO1999007722A1 true WO1999007722A1 (fr) 1999-02-18

Family

ID=9510002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/001737 WO1999007722A1 (fr) 1997-08-04 1998-08-04 Oligonucleotide specifique de l'espece escherichia coli et procede de detection et de visualisation des bacteries de cette espece

Country Status (7)

Country Link
US (2) US6551776B1 (fr)
EP (1) EP1003765A1 (fr)
JP (1) JP2001512665A (fr)
AU (1) AU8987998A (fr)
CA (1) CA2299599A1 (fr)
FR (1) FR2766825B1 (fr)
WO (1) WO1999007722A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052034A1 (fr) * 2000-12-26 2002-07-04 Joji Oshima Methodes de bioscopie et d'amplification d'acides nucleiques
EP1464710A3 (fr) * 2003-04-02 2004-12-22 Canon Kabushiki Kaisha Sonde et une série de sondes utilisé pour la détection des agents infectueux, un support, et une méthode de criblage genétique

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ552462A (en) * 2000-07-06 2008-09-26 Bio Merieux Method for controlling the microbiological quality of an aqueous medium and kit therefor
JP2005515756A (ja) * 2001-06-19 2005-06-02 バーミコン アクチェンゲゼルシャフト 飲料水中の関連細菌を特異的かつ迅速に検出するための方法
US8088572B2 (en) * 2004-05-20 2012-01-03 Aes Chemunex S.A. Polynucleotides for the detection of Escherichia coli O157:H7 and Escherichia coli O157:NM verotoxin producers
ATE531818T1 (de) * 2006-05-02 2011-11-15 Univ Paris Curie Methode zur bestimmung und auszählung von mikroorganismen
FR2912424A1 (fr) * 2007-02-08 2008-08-15 Biomerieux Sa Milieu de detection et/ou d'identification de bacteries

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084565A (en) * 1988-08-18 1992-01-28 Gene-Trak Systems Probes for the specific detection of escherichia coli and shigella

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541308A (en) * 1986-11-24 1996-07-30 Gen-Probe Incorporated Nucleic acid probes for detection and/or quantitation of non-viral organisms
JPH05192147A (ja) * 1991-11-15 1993-08-03 Kirin Bibaretsuji Kk Dna塩基配列の特定方法
US5780233A (en) * 1996-06-06 1998-07-14 Wisconsin Alumni Research Foundation Artificial mismatch hybridization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084565A (en) * 1988-08-18 1992-01-28 Gene-Trak Systems Probes for the specific detection of escherichia coli and shigella

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GENE, vol. 128, 1993, pages 13 - 17, XP002061371 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052034A1 (fr) * 2000-12-26 2002-07-04 Joji Oshima Methodes de bioscopie et d'amplification d'acides nucleiques
EP1464710A3 (fr) * 2003-04-02 2004-12-22 Canon Kabushiki Kaisha Sonde et une série de sondes utilisé pour la détection des agents infectueux, un support, et une méthode de criblage genétique
US8080381B2 (en) 2003-04-02 2011-12-20 Canon Kabushiki Kaisha Infectious etiologic agent detection probe and probe set, carrier, and genetic screening method

Also Published As

Publication number Publication date
US20040219524A1 (en) 2004-11-04
AU8987998A (en) 1999-03-01
US6551776B1 (en) 2003-04-22
FR2766825B1 (fr) 2001-04-13
EP1003765A1 (fr) 2000-05-31
CA2299599A1 (fr) 1999-02-18
FR2766825A1 (fr) 1999-02-05
JP2001512665A (ja) 2001-08-28

Similar Documents

Publication Publication Date Title
Regnault et al. Oligonucleotide probe for the visualization of Escherichiacoli/Escherichia fergusonii cells by in situ hybridization: specificity and potential applications
US6727061B2 (en) Methods for identifying species or Shigella and E. coli using operon sequence analysis
JP3423597B2 (ja) 細菌の同定方法
FR2811321A1 (fr) Amplificateur d'une region ribonucleique cible d'un arn ribosomal 16s ou adn pour un tel arn d'une espece eubacterienne et detection de telles especes
JP2008154581A (ja) 細菌ゲノム増幅反応用プライマー
JP2003199572A (ja) サルモネラ属菌検出のためのプライマーおよびそれを用いた検出法
EP0636187B1 (fr) Sequences nucleotidiques hybridant specifiquement avec une sequence nucleique genomique de campylobacter jejuni
EP1651773A1 (fr) Diagnostic d'escherichia coli (dec) et de shigella spp diarrheogenes
WO1999007722A1 (fr) Oligonucleotide specifique de l'espece escherichia coli et procede de detection et de visualisation des bacteries de cette espece
Enan Genetic Linkage of the Antibiotic Resistance Ability in the
AU2018236838A1 (en) Compositions and methods for detecting gastrointestinal pathogen nucleic acid
EP1076720B1 (fr) Sequences nucleotidiques pour la detection des escherichia coli enterohemorragiques (ehec)
US5648481A (en) Nucleic acid probes for the detection of shigella
EP0711841B1 (fr) Séquences nucléotidiques hybridant spécifiquement avec une séquence nucléique génomique de Campylobacter coli
EP1466011B1 (fr) Nouvelles amorces pour la detection et l'identification de groupes d'indicateurs bacteriens
FR2844523A1 (fr) Procede et sequences nucleotidiques pour la detection et l'identification de microorganismes dans un melange complexe ou dans de l'eau
EP1254253A1 (fr) Oligonucleotides monocatenaires, sondes, amorces et procede de detection des spirochetes
JP2001136969A (ja) 腸内細菌検出用オリゴヌクレオチド及び腸内細菌の検出方法
FR2784117A1 (fr) Sequences nucleotidiques pour la detection des escherichia coli enterohemorragiques (ehec)
WO1996015260A2 (fr) Sequences nucleotidiques hybridant specifiquement avec une sequence nucleique genomique de campylobacter fetus
Ng et al. Isolation and Genetic Characterization of
Anglès d Auriac Development of microbiological molecular diagnostic techniques for the rapid screening and identification of selected human bacterial pathogens and indicators
WO1997016563A1 (fr) Sequences nucleotidiques pour la detection des erwinia carotovora subsp. atroseptica
WO1994026929A1 (fr) Sequences nucleotidiques caracteristiques des erwinia carotovora
FR2812005A1 (fr) Procede de detection de microorganismes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2299599

Country of ref document: CA

Ref country code: CA

Ref document number: 2299599

Kind code of ref document: A

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 09463419

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998941537

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998941537

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1998941537

Country of ref document: EP