WO1999007686A1 - Triazolinthion-derivat und dessen verwendung als mikrobizid - Google Patents

Triazolinthion-derivat und dessen verwendung als mikrobizid Download PDF

Info

Publication number
WO1999007686A1
WO1999007686A1 PCT/EP1998/004674 EP9804674W WO9907686A1 WO 1999007686 A1 WO1999007686 A1 WO 1999007686A1 EP 9804674 W EP9804674 W EP 9804674W WO 9907686 A1 WO9907686 A1 WO 9907686A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
formula
species
derivative
active ingredient
Prior art date
Application number
PCT/EP1998/004674
Other languages
English (en)
French (fr)
Inventor
Manfred Jautelat
Ralf Tiemann
Stefan Dutzmann
Klaus Stenzel
Gerd Hänssler
Astrid Mauler-Machnik
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to AU90695/98A priority Critical patent/AU9069598A/en
Priority to EP98942628A priority patent/EP1001949A1/de
Priority to JP2000506190A priority patent/JP2001512719A/ja
Publication of WO1999007686A1 publication Critical patent/WO1999007686A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/12Oxygen or sulfur atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles

Definitions

  • the present invention relates to a new triazolinethione derivative, a process for its preparation and its use as a microbicide.
  • the new triazolinethione derivative of the formula (I) has very good microbicidal properties and can be used both in crop protection and in material protection to combat unwanted microorganisms, such as fungi.
  • the triazolinethione derivative according to the invention shows a better fungicidal activity than the 1,2-dichloro-4,4-dimethyl-5-fluoro-3-hydroxy-3 - [(4,5-dihydro-5-thiono-1,2 , 4-triazol -l-yl) -methyl] -pent-l-en, which is a constitutionally similar, previously known active ingredient with the same direction of action.
  • the active ingredient according to the invention can be wholly or partly in the "thiono" form of the formula
  • the active ingredient according to the invention contains an asymmetrically substituted carbon atom and can therefore be obtained in optical isomer forms.
  • the present invention relates both to the individual isomers and to their mixtures.
  • Sulfur is preferably used in the form of powder. Hydrolysis is carried out using variant () when carrying out the process according to the invention.
  • reaction temperatures can be varied within a certain range. In general, temperatures between -70 ° C and + 20 ° C, preferably between -70 ° C and 0 ° C
  • the process according to the invention is generally carried out under atmospheric pressure. However, it is also possible to work under increased or reduced pressure.
  • Sulfur is also generally used in the form of powder when carrying out the process according to the variant ( ⁇ ). After the reaction, treatment with water and, if appropriate, with acid can optionally be carried out. This is carried out in the same way as the hydrolysis when carrying out the process according to the invention according to variant ( ⁇ ).
  • the reaction temperatures can be varied within a substantial range when carrying out the process according to variant ( ⁇ ). In general, temperatures between 150 ° C and 300 ° C, preferably between 180 ° C and 250 ° C.
  • 1 mol of 4- (l-chlorocyclopropyl) -1, 1,2-trichloro-4-hydroxy-5- (1,2,4-triazole- 1-yl) -pent-1-ene of the formula (II) generally 1 to 5 mol, preferably 1.5 to 3 mol, of sulfur.
  • the processing takes place according to usual methods.
  • the procedure is that the reaction mixture is extracted with an organic solvent which is only sparingly soluble in water, the combined organic phases are dried and concentrated, and the remaining residue is freed of any impurities which may be present using customary methods, such as recrystallization or chromatography .
  • the active ingredient according to the invention has a strong microbicidal action and can be used to combat unwanted microorganisms, such as fungi and bacteria, in crop protection and in material protection.
  • Fungicides can be used in crop protection to combat Plasmodiophoromyces, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes.
  • Bactericides can be used in plant protection to combat Pseudomonadaceae,
  • Xanthomonas species such as, for example, Xanthomonas campestris pv. Oryzae
  • Pseudomonas species such as, for example, Pseudomonas syringae pv. Lachrymans
  • Erwinia species such as, for example, Erwinia amylovora
  • Pythium species such as, for example, Pythium ultimum
  • Phytophthora species such as, for example, Phytophthora infestans
  • Pseudoperonospora species such as, for example, Pseudoperonospora humuli or Pseudoperonospora cubensis
  • Pseudoperonospora species such as, for example, Pseudoperonospora humuli or Pseudoperonospora cubensis
  • Plasmopara species such as, for example, Plasmopara viticola
  • Bremia species such as, for example, Bremia lactucae
  • Peronospora species such as, for example, Peronospora pisi or P. brassicae
  • Erysiphe species such as, for example, Erysiphe graminis
  • Sphaerotheca species such as, for example, Sphaerotheca Sportsiginea;
  • Podosphaera species such as, for example, Podosphaera leucotricha
  • Venturia species such as, for example, Venturia inaequalis
  • Pyrenophora species such as, for example, Pyrenophora teres or P. graminea (conidial form: Drechslera, Syn: Helminthosporium);
  • Cochliobolus species such as, for example, Cochliobolus sativus
  • Drechslera (Conidial form: Drechslera, Syn: Helminthosporium);
  • Uromyces species such as, for example, Uromyces appendiculatus
  • Puccinia species such as, for example, Puccinia recondita
  • Sclerotinia species such as, for example, Sclerotinia sclerotiorum
  • Tilletia species such as, for example, Tilletia caries
  • Ustilago species such as, for example, Ustilago nuda or Ustilago avenae;
  • Pellicularia species such as, for example, Pellicularia sasakii;
  • Pyricularia species such as, for example, Pyricularia oryzae
  • Fusarium species such as, for example, Fusarium culmorum
  • Botrytis species such as, for example, Botrytis cinerea
  • Septoria species such as, for example, Septoria nodorum
  • Leptosphaeria species such as, for example, Leptosphaeria nodorum;
  • Cercospora species such as, for example, Cercospora canescens
  • Alt ernaria species such as, for example, Alternaria brassicae
  • Pseudocercosporella species such as, for example, Pseudocercosporella herpotrichoides.
  • the active compound according to the invention is well tolerated by plants in the concentrations required for combating plant diseases permits treatment of above-ground parts of plants, of propagation stock and seeds, and of the soil.
  • the active ingredient according to the invention can be used with particularly good results in combating diseases in wine, fruit and vegetable growing, for example against real powdery mildew, such as Sphaerotheca, Uncinula, against Erysiphe species and leaf spots, such as Venturia and Alternaria species.
  • Cereal diseases such as Erysiphe, Leptosphaeria or Pyrenophora species
  • rice diseases such as Pyricularia species
  • the active ingredient according to the invention is also suitable for increasing the crop yield. It is also less toxic and has good plant tolerance.
  • the substance according to the invention can be used to protect technical ones
  • technical materials are to be understood as non-living materials that have been prepared for use in technology.
  • technical materials which are to be protected from microbial change or destruction by active substances according to the invention can be adhesives, glues, paper and cardboard, textiles, leather, wood, paints and plastic articles, cooling lubricants and other materials which are attacked or decomposed by microorganisms can be.
  • adhesives glues, paper and cardboard, textiles, leather, wood, paints and plastic articles, cooling lubricants and other materials which are attacked or decomposed by microorganisms can be.
  • Materials are also parts of production systems, such as cooling water circuits, that can be affected by the proliferation of microorganisms.
  • technical materials are preferably adhesives, glues, papers and cartons, leather, wood, paints, cooling lubricants and heat transfer liquids, particularly preferably wood.
  • Bacteria, fungi, yeasts, algae and mucilaginous organisms may be mentioned as microorganisms which can break down or change the technical materials.
  • the active compounds according to the invention preferably act against fungi, in particular mold, wood-discoloring and wood-destroying fungi (Basidiomycetes) and against slime organisms and algae.
  • microorganisms of the following genera may be mentioned:
  • Alternaria such as Alternaria tenuis
  • Aspergillus such as Aspergillus niger
  • Chaetomium such as Chaetomium globosum
  • Coniophora such as Coniophora puetana
  • Lentinus such as Lentinus tigrinus
  • Penicillium such as Penicillium glaucum
  • Polyporus such as Polyporus versicolor
  • Aureobasidium such as Aureobasidium pullulans
  • Sclerophoma such as Sclerophoma pityophila
  • Trichoderma like Trichoderma viride
  • Escherichia such as Escherichia coli
  • Pseudomonas such as Pseudomonas aeruginosa
  • Staphylococcus such as Staphylococcus aureus.
  • the active ingredient can be converted into the customary formulations, such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols, very fine encapsulations in polymeric substances and in coating compositions for seeds, and ULV cold and warm mist formulations.
  • customary formulations such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols, very fine encapsulations in polymeric substances and in coating compositions for seeds, and ULV cold and warm mist formulations.
  • formulations are made in a known manner, e.g. by mixing the active ingredient with extenders, that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, if appropriate using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • extenders that is to say liquid solvents, pressurized liquefied gases and / or solid carriers
  • surface-active agents that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • water water
  • Extenders can, for example, also use organic solvents as auxiliary solvents.
  • organic solvents such as auxiliary solvents.
  • the following are essentially suitable as liquid solvents: aromatics, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chlorethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example petroleum fractions, alcohols, such as Butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • aromatics such as xylene, toluene or alkylnaphthalenes
  • saturated gaseous extenders or carriers are those liquids which are gaseous at normal temperature and under normal pressure, for example aerosol propellants, such as halogenated hydrocarbons and butane, propane, nitrogen and carbon dioxide.
  • aerosol propellants such as halogenated hydrocarbons and butane, propane, nitrogen and carbon dioxide.
  • solid carriers for example, natural rock powders such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock powders such as highly disperse silica, aluminum oxide and silicates.
  • Possible solid carriers for granules are: eg broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite as well as synthetic granules from inorganic and organic flours as well as granules from organic material such as sawdust, coconut shells, corn cobs and tobacco stalks.
  • Possible emulsifiers and / or foaming agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates and protein hydrolyzates.
  • Possible dispersing agents are, for example, lignin sulfite waste liquor and methyl cellulose.
  • Adhesives such as carboxymethyl cellulose, natural and synthetic powdery, granular or latex-shaped polymers, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids can be used in the formulations.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes, such as alizarin, azo and metal phthalocyanine dyes and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt,
  • inorganic pigments e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes, such as alizarin, azo and metal phthalocyanine dyes and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt,
  • Molybdenum and zinc can be used.
  • the formulations generally contain between 0.1 and 95 percent by weight of active compound, preferably between 0.5 and 90%.
  • the active ingredient according to the invention can also be used in a mixture with known fungicides, bactericides, acaricides, nematicides or insecticides, in order, for example, to broaden the spectrum of action or prevent development of resistance.
  • fungicides bactericides
  • acaricides nematicides or insecticides
  • synergistic effects are obtained, ie the effectiveness of the mixture is greater than the effectiveness of the individual components.
  • Debacarb dichlorophene, diclobutrazole, diclofluanid, diclomezin, dicloran, diethofencarb, difenoconazole, dimethirimol, dimethomorph, diniconazole, diniconazol-M, dinocap, diphenylamine, dipyrithione, ditalimfos, dorphianolodin, dithianonodonone,
  • Imazalil Imibenconazol, Iminoctadin, Iminoctadinealbesilat, Iminoctadinetriacetat, Iodocarb, Ipconazol, Iprobefos (IBP), Iprodione, Irumamycin, Isoprothiolan, Isovaledione,
  • Mancopper Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Meth tartroxam, Metiram, Metomeclam, Metsulfovax, Mildiomycin, Myclobutanil, Myclozolin,
  • Oxadixyl Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin,
  • Tebuconazole Tebuconazole, tecloftalam, tecnazen, tetcyclacis, tetraconazole, thiabendazole,
  • Thicyofen Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Triflumizol, Triforin, Triticonazole, Uniconazole,
  • OK-8705, OK-8801 ⁇ - (1, 1-dimethylethyl) -ß- (2-phenoxyethyl) - 1 H-1, 2,4-triazole-1-ethanol, ⁇ - (2,4-dichlorophenyl) -ß-fluoro-b-propyl- 1 H- 1, 2,4-triazole-1-ethanol, - (2,4-dichlorophenyl) -ß-methoxy-a-methyl- 1 H- 1, 2,4- triazol-1-ethanol, ⁇ - (5-methyl-l, 3-dioxan-5-yl) -ß - [[4- (trifluoromethyl) -phenyl] -methylene] -lH-l, 2,4-triazole- 1-ethanol,
  • Bacillus thuringiensis 4-bromo-2- (4-chlorophenyl) -1 - (ethoxymethyl) -5- (trifluoromethyl) -1H-pyrrole-3-carbonitrile, bendiocarb, benufracarb, bensultap, betacyfluthrin, bifenthrin, BPMC , Brofenprox, Bromophos A, Bufencarb, Buprofezin, Butocarboxim, Butylpyridaben,
  • Fenamiphos fenazaquin, fenbutatin oxide, fenitrothion, fenobucarb, fenothiocarb,
  • Fenoxycarb Fenpropathrin, Fenpyrad, Fenpyroximat, Fenthion, Fenvalerate, Fipronii, Fluazinam, Fluazuron, Flucycloxuron, Flucythrinat, Flufenoxuron, Flufenprox, Fluvalinate, Fonophos, Formothion, Fosthiazat, Fubfenarbx, Furathi
  • Mecarbam Mevinphos, Mesulfenphos, Metaldehyde, Methacrifos, Methamidophos, Methidathion, Methiocarb, Methomyl, Metolcarb, Milbemectin, Monocrotophos, Moxidectin,
  • Parathion A Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos M, Pirimiphos A, Profenophos, Prome- carb, Propaphos, Propoxur, Prothiophos, Prothoat, Pymetophosin, Pyridlentin Pyresmethrin, Pyrethrum, Pyridaben, Pyrimidifen, Pyriproxifen, Quinalphos,
  • Tebufenozide Tebufenpyrad
  • Tebupirimiphos Teflubenzuron
  • Tefluthrin Teflumephos
  • the active ingredient can be used as such, in the form of its formulations or the use forms prepared therefrom, such as ready-to-use solutions, suspensions, wettable powders, pastes, soluble powders, dusts and granules. They are used in the usual way, e.g. by pouring, spraying, atomizing, scattering, dusting, foaming, brushing, etc. It is also possible to apply the active ingredient by the ultra-low-volume method or to inject the active ingredient preparation or the active ingredient into the soil itself. The seeds of the plants can also be treated.
  • the application rates can be varied within a substantial range, depending on the type of application.
  • the active compound application rates are generally between 0.1 and 10,000 g / ha, preferably between 10 and 1,000 g / ha. In the case of seed treatment, the active compound application rates are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 10 g per kilogram of seed. When treating the soil, they are
  • Application rates of active ingredient generally between 0.1 and 10,000 g / ha, preferably between 1 and 5,000 g / ha.
  • the agents used to protect industrial materials generally contain the active ingredient in an amount of 1 to 95% by weight, preferably 10 to 75% by weight.
  • the application concentrations of the active ingredient according to the invention depend on the type and the occurrence of the microorganisms to be controlled and on the composition of the material to be protected.
  • the optimal amount can be determined by test series.
  • the application concentrations are in the range from 0.001 to 5% by weight, preferably from 0.05 to 1.0% by weight, based on the material to be protected.
  • the effectiveness and the spectrum of activity of the active ingredient to be used according to the invention in the protection of materials, or of the agents, concentrates or very generally formulations which can be prepared therefrom, can be increased if further antimicrobial compounds, fungicides, bactericides, herbicides, insecticides or other active ingredients are used to increase the spectrum of activity or Achieving special effects such as added protection against insects. These mixtures can have a broader spectrum of activity than the active ingredient according to the invention.
  • reaction mixture is then diluted with ethyl acetate and shaken out several times with saturated, aqueous ammonium chloride solution.
  • Emulsifier 3 parts by weight of alkylaryl polyglycol ether
  • Active ingredient with the specified amounts of solvent and emulsifier and dilute the concentrate with water to the desired concentration.
  • Evaluation is carried out 10 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • Emulsifier 3 parts by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • the plants are then placed in the greenhouse at approx. 21 ° C. and a relative humidity of approx. 90%.
  • Evaluation is carried out 10 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • Solvent 10 parts by weight of N-methyl-pyrrolidone emulsifier: 0.6 part by weight of alkylaryl polyglycol ether
  • the plants are placed in a greenhouse at a temperature of approx. 20 ° C and a relative humidity of approx. 80%.
  • Evaluation is carried out 7 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • Solvent 10 parts by weight of N-methyl-pyrrolidone emulsifier: 0.6 part by weight of alkylaryl polyglycol ether
  • the plants are placed in a greenhouse at a temperature of approx. 20 ° C and a relative humidity of approx. 80% in order to promote the development of mildew pustules.
  • Evaluation is carried out 7 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Ein neues Triazolinthion-Derivat der Formel (I), ein Verfahren zu dessen Herstellung und dessen Verwendung als Mikrobizid im Pflanzenschutz und im Materialschutz.

Description

TRIAZOLINTHION-DERIVAT UND DESSEN VERWENDUNG ALS MIKROBIZID
Die vorliegende Erfindung betrifft ein neues Triazolinthion-Derivat, ein Verfahren zu dessen Herstellung und dessen Verwendung als Mikrobizid.
Es ist bereits bekannt geworden, daß zahlreiche Mercapto-triazole bzw. Tri- azolinthion-Derivate fungizide Eigenschaften besitzen (vgl. WO 96-16048). So läßt sich zum Beispiel l,2-Dichlor-4,4-dimethyl-5-fluor-3-hydroxy-3-[(4,5-dihydro-5- thiono-l,2,4-triazol-l-yl)-methyl]-pent-l-en zur Bekämpfung von Pilzen einsetzen. Die Wirkung dieses Stoffes ist gut, läßt aber bei niedrigen Aufwandmengen in manchen Fällen zu wünschen übrig.
Es wurde nun das neue Triazolinthion-Derivat der Formel
Figure imgf000003_0001
gefunden.
Weiterhin wurde gefunden, daß man das Triazolinthion-Derivat der Formel (I) erhält, wenn man 4-(l-Chlor-cyclopropyl)-l,l,2-trichlor-4-hydroxy-5-(l,2,4-triazol-l-yl)- pent-1-en der Formel
Figure imgf000003_0002
entweder
α) nacheinander mit Lithium-diisopropyl-amid und Schwefel in Gegenwart eines Verdünnungsmittels umsetzt und dann mit Wasser, gegebenenfalls in Gegen- wart einer Säure hydrolysiert,
oder
ß) mit Schwefel in Gegenwart eines hoch siedenden Verdünnungsmittels umsetzt und dann gegebenenfalls mit Wasser sowie gegebenenfalls mit Säure behandelt.
Schließlich wurde gefunden, daß das neue Triazolinthion-Derivat der Formel (I) sehr gute mikrobizide Eigenschaften aufweist und sich sowohl im Pflanzenschutz als auch im Materialschutz zur Bekämpfung unerwünschter Mikroorganismen, wie Fungi, verwenden läßt.
Überraschenderweise zeigt das erfindungsgemäße Triazolinthion-Derivat eine bessere fungizide Wirksamkeit als das l,2-Dichlor-4,4-dimethyl-5-fluor-3-hydroxy-3-[(4,5- dihydro-5-thiono-l,2,4-triazol -l-yl)-methyl]-pent-l-en, welches ein konstitutionell ähnlicher, vorbekannter Wirkstoff gleicher Wirkungsrichtung ist.
Der erfindungsgemäße Wirkstoff kann ganz oder teilweise in der „Thiono"-Form der Formel
Figure imgf000004_0001
oder in der tautomeren „Mercapto"-Form der Formel
Figure imgf000005_0001
vorliegen. Der Einfachheit halber wird jeweils nur die „Thiono"-Form aufgeführt.
Der erfindungsgemäße Wirkstoff enthält ein asymmetrisch substituiertes Kohlenstoffatom und kann daher in optischen Isomerenformen anfallen. Die vorliegende Erfindung betrifft sowohl die einzelnen Isomeren als auch deren Gemische.
Setzt man 4-(l-Chlor-cyclopropyl)-l,l,2-trichlor-4-hydroxy-5-(l,2,4-triazol-l-yl)- pent-1-en nacheinander mit Lithium-diisopropylamid und Schwefelpulver um, so kann der Verlauf des erfindungsgemäßen Verfahrens nach Variante (α) durch das folgende Formelschema veranschaulicht werden:
Figure imgf000005_0002
Setzt man 4-(l-Chlor-cyclopropyl)-l, l,2-trichlor-4-hydroxy-5-(l,2,4-triazol-l-yl)- pent-1-en mit Schwefelpulver in Gegenwart von N-Methyl-pyrrolidon als Verdünnungsmittel um, so kann der Verlauf des erfindungsgemäßen Verfahrens nach Variante (ß) durch das folgende Formelschema veranschaulicht werden:
Figure imgf000006_0001
Das bei der Durchführung des erfindungsgemaßen Verfahrens als Ausgangsstoff benotigte 4-( 1 -Chlor-cyclopropyl)- 1 , 1 ,2-trichlor-4-hydroxy-5-( 1 ,2,4-triazol- 1 -yl)- pent-1-en der Formel (II) ist bekannt (vgl EP-A 0 440 949)
Bei der Durchführung des erfindungsgemaßen Verfahrens nach Variante (α) kommen alle für derartige Umsetzungen üblichen inerten organischen Solventien als Verdun- nungsmittel in Betracht Vorzugsweise verwendbar sind Ether, wie Tetrahydrofüran,
Dioxan, Diethylether und 1,2-Dimethoxyethan, ferner flussiger Ammoniak oder auch stark polare Solventien, wie Dimethylsulfoxid
Schwefel wird vorzugsweise in Form von Pulver eingesetzt Zur Hydrolyse verwendet man bei der Durchführung des erfindungsgemaßen Verfahrens nach Variante ( )
Wasser, gegebenenfalls in Gegenwart einer Saure In Frage kommen hierbei alle für derartige Umsetzungen üblichen anorganischen oder organischen Sauren Vorzugsweise verwendbar sind Essigsaure, verdünnte Schwefelsaure und verdünnte Salzsaure Es ist jedoch auch möglich, die Hydrolyse mit wäßriger Ammoniumchlorid-Losung durchzuführen.
Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemaßen Verfahrens nach Variante (α) innerhalb eines bestimmten Bereiches variiert werden Im allgemeinen arbeitet man bei Temperaturen zwischen -70°C und +20°C, vorzugsweise zwischen -70°C und 0°C Bei der Durchführung des erfindungsgemäßen Verfahrens arbeitet man im allgemeinen unter Atmosphärendruck. Es ist aber auch möglich, unter erhöhtem oder vermindertem Druck zu arbeiten.
Bei der Durchführung des erfindungsgemäßen Verfahrens nach Variante ( ) setzt man auf 1 Mol an 4-(l-Chlor-cyclopropyl)-l,l,2-trichlor-4-hydroxy-5-(l,2,4-triazol-l-yl)- pent-1-en der Formel (II) im allgemeinen 2 bis 3 Äquivalente, vorzugsweise 2,0 bis 2,5 Äquivalente an Lithium-diisopropylamid und anschließend eine äquivalente Menge oder auch einen Überschuß an Schwefel ein. Die Umsetzung kann unter Schutzgas- atmosphäre, z.B. unter Stickstoff oder Argon, vorgenommen werden. Die Aufarbeitung erfolgt nach üblichen Methoden. Im allgemeinen geht man so vor, daß man das Reaktionsgemisch mit einem in Wasser wenig löslichen organischen Solvens extrahiert, die vereinigten organischen Phasen trocknet und einengt und den verbleibenden Rückstand gegebenenfalls durch Umkristallisation und/oder Chromato- graphie reinigt.
Bei der Durchführung des erfindungsgemäßen Verfahrens nach Variante (ß) kommen als Verdünnungsmittel alle für derartige Umsetzungen üblichen, hoch siedenden organischen Solventien in Betracht. Vorzugsweise verwendbar sind Amide, wie Dimethylformamid und Dimethylacetamid, außerdem heterocyclische Verbindungen, wie N-Methyl-pyrrolidon, und auch Ether, wie Diphenylether.
Schwefel wird auch bei der Durchführung des erfindungsgemäßen Verfahrens nach der Variante (ß) im allgemeinen in Form von Pulver eingesetzt. Nach der Umsetzung kann gegebenenfalls eine Behandlung mit Wasser sowie gegebenenfalls mit Säure vorgenommen werden. Diese wird so durchgeführt wie die Hydrolyse bei der Durchführung des erfindungsgemäßen Verfahrens nach der Variante (α).
Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens nach Variante (ß) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 150°C und 300°C, vorzugsweise zwischen 180°C und 250°C. Bei der Durchführung des erfindungsgemäßen Verfahrens nach Variante (ß) setzt man auf 1 Mol an 4-(l-Chlor-cyclopropyl)-l,l,2-trichlor-4-hydroxy-5-(l,2,4-triazol-l-yl)- pent-1-en der Formel (II) im allgemeinen 1 bis 5 Mol, vorzugsweise 1,5 bis 3 Mol an Schwefel ein. Die Aufarbeitung erfolgt nach üblichen Methoden. Im allgemeinen geht man so vor, daß man das Reaktionsgemisch mit einem in Wasser nur wenig löslichen organischen Solvens extrahiert, die vereinigten organischen Phasen trocknet und einengt und den verbleibenenden Rückstand gegebenenfalls nach üblichen Methoden, wie Umkristallisation oder Chromatographie, von eventuell vorhandenen Verunreini- gungen befreit.
Der erfindungsgemäße Wirkstoff weist eine starke mikrobizide Wirkung auf und kann zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.
Fungizide lassen sich im Pflanzenschutz zur Bekämpfung von Plasmodiophoro- mycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.
Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae,
RJhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.
Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:
Xanthomonas- Arten, wie beispielsweise Xanthomonas campestris pv. oryzae; Pseudomonas-Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans; Erwinia- Arten, wie beispielsweise Erwinia amylovora; Pythium- Arten, wie beispielsweise Pythium ultimum;
Phytophthora- Arten, wie beispielsweise Phytophthora infestans; Pseudoperonospora- Arten, wie beispielsweise Pseudoperonospora humuli oder Pseudoperonospora cubensis;
Plasmopara-Arten, wie beispielsweise Plasmopara viticola;
Bremia-Arten, wie beispielsweise Bremia lactucae;
Peronospora-Arten, wie beispielsweise Peronospora pisi oder P. brassicae; Erysiphe- Arten, wie beispielsweise Erysiphe graminis;
Sphaerotheca-Arten, wie beispielsweise Sphaerotheca füliginea;
Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha;
Venturia- Arten, wie beispielsweise Venturia inaequalis;
Pyrenophora-Arten, wie beispielsweise Pyrenophora teres oder P. graminea (Konidienform: Drechslera, Syn: Helminthosporium);
Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus
(Konidienform: Drechslera, Syn: Helminthosporium);
Uromyces-Arten, wie beispielsweise Uromyces appendiculatus;
Puccinia-Arten, wie beispielsweise Puccinia recondita; Sclerotinia- Arten, wie beispielsweise Sclerotinia sclerotiorum;
Tilletia-Arten, wie beispielsweise Tilletia caries;
Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;
Pellicularia-Arten, wie beispielsweise Pellicularia sasakii;
Pyricularia-Arten, wie beispielsweise Pyricularia oryzae; Fusarium- Arten, wie beispielsweise Fusarium culmorum;
Botrytis- Arten, wie beispielsweise Botrytis cinerea;
Septoria- Arten, wie beispielsweise Septoria nodorum;
Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum;
Cercospora-Arten, wie beispielsweise Cercospora canescens; Alt ernaria- Arten, wie beispielsweise Alternaria brassicae;
Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella herpotrichoides.
Die gute Pflanzenverträglichkeit des erfindungsgemäßen Wirkstoffes in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Be- handlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.
Dabei läßt sich der erfindungsgemäße Wirkstoff mit besonders gutem Erfolg zur Bekämpfung von Krankheiten im Wein-, Obst- und Gemüseanbau, wie beispielsweise gegen echte Mehltaupilze, wie z.B. Sphaerotheca, Uncinula, gegen Erysiphe- Arten sowie Blattflecken, wie Venturia und Alternaria-Arten, einsetzen. Mit gutem Erfolg werden auch Getreidekrankheiten, wie beispielsweise Erysiphe-, Leptosphaeria- oder Pyrenophora-Arten, sowie Reiskrankheiten, wie beispielsweise Pyricularia-Arten, bekämpft.
Der erfindungsgemäße Wirkstoff eignet sich auch zur Steigerung des Ernteertrages. Er ist außerdem mindertoxisch und weist eine gute Pflanzenverträglichkeit auf.
Im Materialschutz läßt sich der erfindungsgemäße Stoff zum Schutz von technischen
Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.
Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikro- Organismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden
Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.
Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen. Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:
Alternaria, wie Alternaria tenuis,
Aspergillus, wie Aspergillus niger,
Chaetomium, wie Chaetomium globosum, Coniophora, wie Coniophora puetana,
Lentinus, wie Lentinus tigrinus,
Penicillium, wie Penicillium glaucum,
Polyporus, wie Polyporus versicolor,
Aureobasidium, wie Aureobasidium pullulans, Sclerophoma, wie Sclerophoma pityophila,
Trichoderma, wie Trichoderma viride,
Escherichia, wie Escherichia coli,
Pseudomonas, wie Pseudomonas aeruginosa,
Staphylococcus, wie Staphylococcus aureus.
Der Wirkstoff kann in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstver- kapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.
Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen des Wirkstoffes mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergier- mittein und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als
Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aro- maten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlo- rid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüs- sigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen in Frage: z.B. natürliche Ge- steinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillo- nit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und orga- nischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengel. Als Emulgier und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Poly- oxyethylen-Fettsäureester, Polyoxyethylen-Fettalkoholether, z.B. Alkylarylpolyglycol- ether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dis- pergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholi- pide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferro- cyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarb- Stoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt,
Molybdän und Zink verwendet werden.
Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.
Der erfindungsgemäße Wirkstoff kann als solcher oder in seinen Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.
Als Mischpartner kommen zum Beispiel folgende Verbindungen in Frage:
Fungizide:
Aldimorph, Ampropylfos, Ampropylfos-Kalium, Andoprim, Anilazin, Azaconazol, Azoxystrobin,
Benalaxyl, Benodanil, Benomyl, Benzamacril, Benzamacryl-isobutyl, Bialaphos, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazol, Bupirimat, Buthiobat,
Calciumpolysulfid, Capsimycin, Captafol, Captan, Carbendazim, Carboxin, Carvon,
Chinomethionat (Quinomethionat), Chlobenthiazon, Chlorfenazol, Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Clozylacon, Cufraneb, Cymoxanil, Cypro- conazol, Cyprodinil, Cyprofuram,
Debacarb, Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Dietho- fencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Diniconazol-M, Dinocap, Diphenylamin, Dipyrithione, Ditalimfos, Dithianon, Dodemorph, Dodine, Drazoxolon,
Ediphenphos, Epoxiconazol, Etaconazol, Ethirimol, Etridiazol,
Famoxadon, Fenapanil, Fenarimol, Fenbuconazol, Fenfüram, Fenitropan, Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzon, Fluazinam, Flumetover, Fluoromid, Fluquinconazol, Flurprimidol, Flusilazol, Flusulf- amid, Flutolanil, Flutriafol, Folpet, Fosetyl-Alminium, Fosetyl-Natrium, Fthalid,
Fuberidazol, Furalaxyl, Furametpyr, Furcarbonil, Furconazol, Furconazol-cis, Furmecyclox, Guazatin,
Hexachlorobenzol, Hexaconazol, Hymexazol,
Imazalil, Imibenconazol, Iminoctadin, Iminoctadinealbesilat, Iminoctadinetriacetat, lodocarb, Ipconazol, Iprobenfos (IBP), Iprodione, Irumamycin, Isoprothiolan, Isovaledione,
Kasugamycin, Kresoxim-methyl, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfernaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und
B ordeaux-Mischung,
Mancopper, Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfüroxam, Metiram, Metomeclam, Metsulfovax, Mildiomycin, Myclobutanil, Myclozolin,
Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol,
Ofurace, Oxadixyl, Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin,
Paclobutrazol, Pefürazoat, Penconazol, Pencycuron, Phosdiphen, Pimaricin, Piperalin, Polyoxin, Polyoxorim, Probenazole, Prochloraz, Procymidon, Propamocarb, Pro- panosine-Natrium, Propiconazol, Propineb, Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon, Pyroxyfür,
Quinconazol, Quintozen (PCNB),
Schwefel und Schwefel-Zubereitungen,
Tebuconazol, Tecloftalam, Tecnazen, Tetcyclacis, Tetraconazol, Thiabendazol,
Thicyofen, Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Triflumizol, Triforin, Triticonazol, Uniconazol,
Validamycin A, Vinclozolin, Viniconazol, Zarilamid, Zineb, Ziram sowie Dagger G,
OK-8705, OK-8801, α-( 1 , 1 -Dimethylethyl)-ß-(2-phenoxyethyl)- 1 H- 1 ,2,4-triazol- 1 -ethanol, α-(2,4-Dichlorphenyl)-ß-fluor-b-propyl- 1 H- 1 ,2,4-triazol- 1 -ethanol, -(2,4-Dichlorphenyl)-ß-methoxy-a-methyl- 1 H- 1 ,2,4-triazol- 1 -ethanol, α-(5-Methyl-l,3-dioxan-5-yl)-ß-[[4-(trifluormethyl)-phenyl]-methylen]-lH-l,2,4- triazol-1 -ethanol,
(5RS,6RS)-6-Hydroxy-2,2,7,7-tetramethyl-5-(lH-l,2,4-triazol-l-yl)-3-octanon, (E)-a-(Methoxyimino)-N-methyl-2-phenoxy-phenylacetamid, {2-Methyl-l-[[[l-(4-methylphenyl)-ethyl]-amino]-carbonyl]-propyl}-carbaminsäure-
1-isopropylester l-(2,4-Dichlorphenyl)-2-(lH-l,2,4-triazol-l-yl)-ethanon-O-(phenylmethyl)-oxim,
1 -(2-Methyl- 1 -naphthalenyl)- 1 H-pyrrol-2, 5-dion,
1 -(3 , 5 -Dichlorphenyl)-3 -(2-propenyl)-2, 5 -pyrrolidindion, 1 -[(Diiodmethyl)-sulfonyl]-4-methyl-benzol, l-[[2-(2,4-Dichlorphenyl)-l,3-dioxolan-2-yl]-methyl]-lH-imidazol, l-[[2-(4-Chlorphenyl)-3-phenyloxiranyl]-methyl]-lH-l,2,4-triazol, l-[l-[2-[(2,4-Dichlorphenyl)-methoxy]-phenyl]-ethenyl]-lH-imidazol, l-Methyl-5-nonyl-2-(phenylmethyl)-3-pyrrolidinol, 2',6,-Dibrom-2-methyl-4'-trifluormethoxy-4'-trifluor-methyl-l,3-thiazol-5-carbox- anilid,
2,2-Dichlor-N-[l-(4-chlorphenyl)-ethyl]-l-ethyl-3-methyl-cyclopropancarboxamid,
2,6-Dichlor-5-(methylthio)-4-pyrimidinyl-thiocyanat,
2,6-Dichlor-N-(4-trifluormethylbenzyl)-benzamid, 2,6-Dichlor-N-[[4-(trifluormethyl)-phenyl]-methyl]-benzamid,
2-(2,3,3-Triiod-2-propenyl)-2H-tetrazol,
2-[(l-Methylethyl)-sulfonyl]-5-(trichlormethyl)-l,3,4-thiadiazol, 2-[[6-Deoxy-4-O-(4-O-methyl-ß-D-glycopyranosyl)-a-D-glucopyranosyl]-amino]-4- methoxy-lH-pyrrolo[2,3-d]pyrimidin-5-carbonitril,
2-Aminobutan,
2-Brom-2-(brommethyl)-pentandinitril, 2-Chlor-N-(2, 3 -dihydro- 1, 1,3 -trimethyl- 1 H-inden-4-yl)-3 -pyridincarboxamid,
2-Chlor-N-(2,6-dimethylphenyl)-N-(isothiocyanatomethyl)-acetamid,
2-Phenylphenol(OPP),
3,4-Dichlor-l-[4-(difluormethoxy)-phenyl]-lH-pyrrol-2,5-dion,
3,5-Dichlor-N-[cyan[(l-methyl-2-propynyl)-oxy]-methyl]-benzamid, 3 -( 1 , 1 -Dimethylpropyl- 1 -oxo- 1 H-inden-2-carbonitril,
3-[2-(4-Chlorphenyl)-5-ethoxy-3-isoxazolidinyl]-pyridin,
4-Chlor-2-cyan-N,N-dimethyl-5-(4-methylphenyl)-lH-imidazol-l-sulfonamid,
4-Methyl-tetrazolo [ 1 , 5 -a] quinazolin-5 (4H)-on,
8-(l, l-Dimethylethyl)-N-ethyl-N-propyl-l,4-dioxaspiro[4.5]decan-2-methanamin, 8-Hydroxychinolinsulfat,
9H-Xanthen-9-carbonsäure-2-[(phenylamino)-carbonyl]-hydrazid, bis-(l-Methylethyl)-3-methyl-4-[(3-methylbenzoyl)-oxy]-2,5-thiophendicarboxylat, eis- 1 -(4-Chlorphenyl)-2-( 1 H- 1 ,2,4-triazol- 1 -yl)-cycloheptanol, cis-4-[3-[4-(l, l-Dimethylpropyl)-phenyl-2-methylpropyl]-2,6-dimethyl-morpholin- hydrochlorid,
Ethyl-[(4-chlorphenyl)-azo]-cyanoacetat,
Kaliumhydrogencarbonat,
Methantetrathiol-Natriumsalz,
Methyl- 1 -(2,3 -dihydro-2,2-dimethyl- 1 H-inden- 1 -yl)- lH-imidazol-5-carboxylat, Methyl-N-(2,6-dimethylphenyl)-N-(5-isoxazolylcarbonyl)-DL-alaninat,
Methyl-N-(chloracetyl)-N-(2,6-dimethylphenyl)-DL-alaninat,
N-(2,3-Dichlor-4-hydroxyphenyl)-l-methyl-cyclohexancarboxamid.
N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-füranyl)-acetamid,
N-(2,6-Dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-thienyl)-acetamid, N-(2-Chlor-4-nitrophenyl)-4-methyl-3-nitro-benzolsulfonamid,
N-(4-Cyclohexylphenyl)-l,4,5,6-tetrahydro-2-pyrimidinamin, N-(4-Hexylphenyl)- 1,4,5 , 6-tetrahydro-2-pyrimidinamin, N-(5-Chlor-2-methylphenyl)-2-methoxy-N-(2-oxo-3-oxazolidinyl)-acetamid, N-(6-Methoxy)-3-pyridinyl)-cyclopropancarboxamid,
N- [2, 2, 2-Trichlor- 1 -[(chloracetyl)-amino] -ethylj-benzamid,
N-[3-Chlor-4,5-bis-(2-propinyloxy)-phenyl]-N'-methoxy-methanimidamid,
N-Formyl-N-hydroxy-DL-alanin -Natriumsalz,
O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat,
O-Methyl-S-phenyl-phenylpropylphosphoramidothioate,
S-Methyl-l,2,3-benzothiadiazol-7-carbothioat, spiro[2H]-l-Benzopyran-2,r(3Η)-isobenzofüran]-3'-on,
Bakterizide:
Bromopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Teclofta- lam, Kupfersulfat und andere Kupfer-Zubereitungen.
Insektizide / Akarizide / Nematizide:
Abamectin, Acephat, Acrinathrin, Alanycarb, Aldicarb, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azinphos A, Azinphos M, Azocyclotin,
Bacillus thuringiensis, 4-Bromo-2-(4-chlorphenyl)-l -(ethoxymethyl)-5-(trifluoro- methyl)-lH-pyrrole-3-carbonitrile, Bendiocarb, Benfüracarb, Bensultap, Betacyflu- thrin, Bifenthrin, BPMC, Brofenprox, Bromophos A, Bufencarb, Buprofezin, Buto- carboxim, Butylpyridaben,
Cadusafos, Carbaryl, Carbofüran, Carbophenothion, Carbosulfan, Cartap, Chloetho- carb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron, Chlormephos, N-[(6-Chloro-3-pyridinyl)-methyl]-N'-cyano-N-methyl-ethanimidamide, Chlorpyrifos, Chlorpyrifos M, Cis-Resmethrin, Clocythrin, Clofentezin, Cyanophos, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazin, Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlofenthion, Dichlorvos, Dicliphos, Dicrotophos, Diethion, Diflubenzuron, Dime- thoat,
Dimethylvinphos, Dioxathion, Disulfoton,
Edifenphos, Emamectin, Esfenvalerat, Ethiofencarb, Ethion, Ethofenprox, Ethopro- phos, Etrimphos,
Fenamiphos, Fenazaquin, Fenbutatinoxid, Fenitrothion, Fenobucarb, Fenothiocarb,
Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyroximat, Fenthion, Fenvalerate, Fipronii, Fluazinam, Fluazuron, Flucycloxuron, Flucythrinat, Flufenoxuron, Flufenprox, Fluva- linate, Fonophos, Formothion, Fosthiazat, Fubfenprox, Furathiocarb,
HCH, Heptenophos, Hexaflumuron, Hexythiazox,
Imidacloprid, Iprobenfos, Isazophos, Isofenphos, Isoprocarb, Isoxathion, Ivermectin,
Lambda-cyhalothrin, Lufenuron,
Malathion, Mecarbam, Mevinphos, Mesulfenphos, Metaldehyd, Methacrifos, Metha- midophos, Methidathion, Methiocarb, Methomyl, Metolcarb, Milbemectin, Mono- crotophos, Moxidectin,
Naled, NC 184, Nitenpyram
Omethoat, Oxamyl, Oxydemethon M, Oxydeprofos,
Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet, Phos- phamidon, Phoxim, Pirimicarb, Pirimiphos M, Pirimiphos A, Profenophos, Prome- carb, Propaphos, Propoxur, Prothiophos, Prothoat, Pymetrozin, Pyrachlophos, Pyridaphenthion, Pyresmethrin, Pyrethrum, Pyridaben, Pyrimidifen, Pyriproxifen, Quinalphos,
Salithion, Sebufos, Srlafluofen, Sulfotep, Sulprofos,
Tebufenozide, Tebufenpyrad, Tebupirimiphos, Teflubenzuron, Tefluthrin, Temephos,
Terbam, Terbufos, Tetrachlorvinphos, Thiafenox, Thiodicarb, Thiofanox, Thiome- thon, Thionazin, Thuringiensin, Tralomethrin, Triarathen, Triazophos, Triazuron, Tri- chlorfon, Triflumuron, Trimethacarb,
Vamidothion, XMC, Xylylcarb, Zetamethrin.
Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.
Der Wirkstoff kann als solcher, in Form seiner Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, den Wirkstoff nach dem Ultra-Low- Volume- Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.
Beim Einsatz des erfindungsgemäßen Wirkstoffes als Fungizid können die Aufwand - mengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden.
Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0, 1 und 10.000 g/ha, vorzugsweise zwischen 10 und 1.000 g/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die
Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha. Die zum Schutz technischer Materialien verwendeten Mittel enthalten den Wirkstoff im allgemeinen in einer Menge von 1 bis 95 Gewichts-%, bevorzugt von 10 bis 75 Gewichts-%.
Die Anwendungskonzentrationen des erfindungsgemäßen Wirkstoffes richten sich nach der Art und dem Vorkommen der zu bekämpfenden Mikroorganismen sowie nach der Zusammensetzung des zu schützenden Materials. Die optimale Einsatzmenge kann durch Testreihen ermittelt werden. Im allgemeinen liegen die Anwendungskonzentrationen im Bereich von 0,001 bis 5 Gewichts-%, vorzugsweise von 0,05 bis 1,0 Gewichts-% bezogen auf das zu schützende Material.
Die Wirksamkeit und das Wirkungsspektrum des erfindungsgemäß im Materialschutz zu verwendenden Wirkstoffes bzw. der daraus herstellbaren Mittel, Konzentrate oder ganz allgemein Formulierungen kann erhöht werden, wenn gegebenenfalls weitere antimikrobiell wirksame Verbindungen, Fungizide, Bakterizide, Herbizide, Insektizide oder andere Wirkstoffe zur Vergrößerung des Wirkungsspektrums oder Erzielung besonderer Effekte wie z.B. dem zusätzlichen Schutz vor Insekten zugesetzt werden. Diese Mischungen können ein breiteres Wirkungsspektrum besitzen als der erfindungsgemäße Wirkstoff.
Die Herstellung und die Verwendung des erfindungsgemäßen Wirkstoffes wird durch die folgenden Beispiele veranschaulicht.
Herstellungsbeispiel
Figure imgf000021_0001
In ein Gemisch aus 6,58 g (20 mmol) 4-(l-Chlor-cyclopropyl)-l,l,2-trichlor-4- hydroxy-5-(l,2,4-triazol-l-yi)-pent-l-en in 50 ml absolutem Tetrahydrofüran werden bei -70°C unter Rühren 20 ml (40 mmol) einer 2-molaren Lösung von Lithium-diiso- propyl-amid in Tetrahydrofüran eingetropft. Nach beendeter Zugabe wird noch eine Stunde bei -70°C nachgerührt und dann mit 1,28 g (40 mmol) Schwefel -Pulver ver- setzt. Das Reaktionsgemisch wird noch eine Stunde bei -70°C und anschließend
2 Stunden bei 0°C gerührt. Danach wird das Reaktionsgemisch mit Essigsäure-ethyl- ester verdünnt und mehrfach mit gesättigter, wäßriger Ammoniumchlorid-Lösung ausgeschüttelt.
Die organische Phase wird über Natriumsulfat getrocknet und dann unter vermindertem Druck eingeengt. Das anfallende Rohprodukt wird zweimal aus je 5 ml Toluol umkristallisiert. Man erhält auf diese Weise 4-(l-Chlor-cyclopropyl)-l,l,2-trichlor-4- hydroxy-5-(4,5-dihydro-5-thiono-l,2,4-triazol-l-yl)-pent-l-en in Form einer Festsubstanz vom Schmelzpunkt 129-130°C.
iH-NMR-Spektrum (400 MHz, CDC13, TMS): δ = 0,8-1,3 (m, 4H); 3,2 (d, 1H); 3,3 (d, 1H); 4,55 (OH); 4,75 (AB, 2H); 7,9 (s, 1H); 12,3 (NH) Verwendungsbeispiele
Beispiel A
Sphaerotheca-Test (Gurke) / protektiv
Lösungsmittel: 47 Gewichtsteile Aceton
Emulgator: 3 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil
Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzu- bereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wäßrigen Sporensuspension von Sphaerotheca füliginea inokuliert. Die Pflanzen werden dann bei ca. 23°C und einer relativen Luftfeuchtigkeit von ca. 70 % im Gewächshaus aufgestellt.
10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, daß kein Befall beobachtet wird.
Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle A
Sphaerotheca-Test (Gurke) / protektiv
Wirkstoff Aufwandmenge Wirkungsgrad an Wirkstoff in % in g/ha
Bekannt aus WO 96-16048:
Figure imgf000023_0001
(A) 10 43
Erfindungsgemäß
Figure imgf000023_0002
(I) 10 93
Beispiel B
Venturia-Test (Apfel) / protektiv
Lösungsmittel: 47 Gewichtsteile Aceton
Emulgator: 3 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wäßrigen Konidiensuspension des Apfelschorf- erregers Venturia inaequalis inokuliert und verbleiben dann 1 Tag bei ca. 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine.
Die Pflanzen werden dann im Gewächshaus bei ca. 21°C und einer relativen Luftfeuchtigkeit von ca. 90 % aufgestellt.
10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, daß kein Befall beobachtet wird.
Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor. Tabelle B
Venturia-Test (Apfel) / protektiv
Figure imgf000025_0001
Beispiel C
Pyrenophora teres-Test (Gerste) /kurativ
Lösungsmittel: 10 Gewichtsteile N-Methyl-pyrrolidon Emulgator: 0,6 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das
Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf kurative Wirksamkeit werden junge Pflanzen mit einer Konidien- suspension von Pyrenophora teres besprüht. Die Pflanzen verbleiben 48 Stunden bei 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine. Anschließend werden die
Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht.
Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 20°C und relativen Luftfeuchtigkeit von ca. 80 % aufgestellt.
7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, daß kein Befall beobachtet wird.
Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor. Tabelle C
Pyrenophora teres-Test (Gerste) /kurativ
Figure imgf000027_0001
Beispiel D
Erysiphe-Test (Weizen) / protektiv
Lösungsmittel: 10 GewichtsteileN-Methyl-pyrrolidon Emulgator: 0,6 Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstof mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das
Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit besprüht man junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge.
Nach Antrocknen des Spritzbelages werden die Pflanzen mit Sporen von Erysiphe graminis fisp. tritici bestäubt.
Die Pflanzen werden in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt, um die Entwicklung von Mehltaupusteln zu begünstigen.
7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, daß kein Befall beobachtet wird.
Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor. Tabelle C
Erysiphe-Test (Weizen) / protektiv
Wirkstoff Aufwandmenge Wirkungsgrad an Wirkstoff in % in g/ha
Bekannt aus WO 96-16048:
Figure imgf000029_0001
(A) 250 88
Erfindungsgemäß
Figure imgf000029_0002
(I) 250 100

Claims

Patentansprüche
1. Triazolinthion-Derivat der Formel
Figure imgf000030_0001
2. Verfahren zur Herstellung des Triazolinthion-Derivates der Formel (I) gemäß
Anspruch 1, dadurch gekennzeichnet, daß man 4-(l-Chlor-cyclopropyl)- 1, 1,2- trichlor-4-hydroxy-5-(l,2,4-triazol-l-yl)-pent-l-en der Formel
Figure imgf000030_0002
entweder
α) nacheinander mit Lithium-diisopropyl-amid und Schwefel in Gegenwart eines Verdünnungsmittels umsetzt und dann mit Wasser, gegebenenfalls in Gegenwart einer Säure hydrolysiert,
oder
ß) mit Schwefel in Gegenwart eines hoch siedenden Verdünnungsmittels umsetzt und dann gegebenenfalls mit Wasser sowie gegebenenfalls mit Säure behandelt.
3. Mikrobizide Mittel, gekennzeichnet durch einen Gehalt an Triazolinthion- Derivat der Formel (I) gemäß Anspruch 1 neben Streckmitteln und/oder oberflächenaktiven Stoffen.
4. Verwendung von Triazolinthion-Derivat der Formel (I) gemäß Anspruch 1 als Mikrobizid.
5. Verfahren zur Bekämpfung von unerwünschten Mikroorganismen, dadurch gekennzeichnet, daß man Triazolinthion-Derivat der Formel (I) gemäß Anspruch 1 auf die Mikroorganismen und/oder deren Lebensraum ausbringt.
6. Verfahren zur Herstellung von mikrobiziden Mitteln, dadurch gekennzeichnet, daß man Triazolinthion-Derivat der Formel (I) gemäß Anspruch 1 mit Streck- mittein und/oder oberflächenaktiven Stoffen vermischt.
PCT/EP1998/004674 1997-08-07 1998-07-25 Triazolinthion-derivat und dessen verwendung als mikrobizid WO1999007686A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU90695/98A AU9069598A (en) 1997-08-07 1998-07-25 Triazoline-thione derivative and its use as a microbicide
EP98942628A EP1001949A1 (de) 1997-08-07 1998-07-25 Triazolinthion-derivat und dessen verwendung als mikrobizid
JP2000506190A JP2001512719A (ja) 1997-08-07 1998-07-25 トリアゾリン−チオン誘導体及び殺微生物剤としてのその使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19734185.3 1997-08-07
DE1997134185 DE19734185A1 (de) 1997-08-07 1997-08-07 Triazolinthion-Derivat

Publications (1)

Publication Number Publication Date
WO1999007686A1 true WO1999007686A1 (de) 1999-02-18

Family

ID=7838254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/004674 WO1999007686A1 (de) 1997-08-07 1998-07-25 Triazolinthion-derivat und dessen verwendung als mikrobizid

Country Status (5)

Country Link
EP (1) EP1001949A1 (de)
JP (1) JP2001512719A (de)
AU (1) AU9069598A (de)
DE (1) DE19734185A1 (de)
WO (1) WO1999007686A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016048A1 (de) * 1994-11-21 1996-05-30 Bayer Aktiengesellschaft Mikrobizide triazolyl-derivate
WO1997041107A1 (de) * 1996-04-30 1997-11-06 Bayer Aktiengesellschaft Triazolyl-mercaptide und ihre verwendung als mikrobizide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016048A1 (de) * 1994-11-21 1996-05-30 Bayer Aktiengesellschaft Mikrobizide triazolyl-derivate
WO1997041107A1 (de) * 1996-04-30 1997-11-06 Bayer Aktiengesellschaft Triazolyl-mercaptide und ihre verwendung als mikrobizide

Also Published As

Publication number Publication date
AU9069598A (en) 1999-03-01
DE19734185A1 (de) 1999-02-11
JP2001512719A (ja) 2001-08-28
EP1001949A1 (de) 2000-05-24

Similar Documents

Publication Publication Date Title
EP0998479B1 (de) Triazolinthion-phosphorsäure-derivate
EP0915863B1 (de) Dihydrofuran-carboxamide
EP1060176B1 (de) Oxiranyl-triazolinthione und ihre verwendung als mikrobizide
WO1998003486A1 (de) 1,3-dimethyl-5-fluor-pyrazol-4-carboxamide derivative, deren herstellung und deren verwendung als mikrobizide
EP0975220A1 (de) Verwendung von sulfonyloxadiazolonen als mikrobizide
WO1998023605A1 (de) Mikrobizide mittel auf basis von thiophen-2-carbonsäure-derivaten
DE19838708A1 (de) Verwendung von 5-Amino-pyrazol-Derivaten zur Bekämpfung von Mikroorganismen
EP0975630B1 (de) Sulfonyloxadiazolone und ihre verwendung als mikrobizide
DE19818313A1 (de) Azine
DE19716260A1 (de) Sulfonyloxadiazolone
WO1999007686A1 (de) Triazolinthion-derivat und dessen verwendung als mikrobizid
EP1115723A2 (de) Pestizide methoximinomethyloxathiazine
WO1999046263A2 (de) Fungizide benzoheterocyclyloxime
DE19745376A1 (de) Thiomide
DE19823861A1 (de) Oxiranyl-triazolinthione
DE19830695A1 (de) Imide
WO1999005122A1 (de) Pyrimidyloxyphenylessigsäurederivate
DE19917784A1 (de) Verwendung von 2,4-Diamino-pyrimidin-Derivaten zur Bekämpfung von Mikroorganismen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998942628

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09463926

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: KR

WWP Wipo information: published in national office

Ref document number: 1998942628

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1998942628

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA