WO1999006741A1 - Mecanisme de transmission intermittent - Google Patents

Mecanisme de transmission intermittent Download PDF

Info

Publication number
WO1999006741A1
WO1999006741A1 PCT/JP1998/003418 JP9803418W WO9906741A1 WO 1999006741 A1 WO1999006741 A1 WO 1999006741A1 JP 9803418 W JP9803418 W JP 9803418W WO 9906741 A1 WO9906741 A1 WO 9906741A1
Authority
WO
WIPO (PCT)
Prior art keywords
driven
rotating body
rotator
driving
transmission mechanism
Prior art date
Application number
PCT/JP1998/003418
Other languages
English (en)
French (fr)
Inventor
Hiromitsu Yamada
Original Assignee
Hiromitsu Yamada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiromitsu Yamada filed Critical Hiromitsu Yamada
Priority to EP98935303A priority Critical patent/EP0930451A4/en
Priority to US09/402,945 priority patent/US6234047B1/en
Publication of WO1999006741A1 publication Critical patent/WO1999006741A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H27/00Step-by-step mechanisms without freewheel members, e.g. Geneva drives
    • F16H27/04Step-by-step mechanisms without freewheel members, e.g. Geneva drives for converting continuous rotation into a step-by-step rotary movement
    • F16H27/08Step-by-step mechanisms without freewheel members, e.g. Geneva drives for converting continuous rotation into a step-by-step rotary movement with driving toothed gears with interrupted toothing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/14Rotary member or shaft indexing, e.g., tool or work turret
    • Y10T74/1418Preselected indexed position
    • Y10T74/1424Sequential
    • Y10T74/1441Geneva or mutilated gear drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/1987Rotary bodies
    • Y10T74/19879Geneva

Definitions

  • the present invention relates to an intermittent transmission mechanism for converting a continuous rotational displacement into an intermittent rotational displacement for transmission.
  • the engaged portion of the driven rotating body 03 is configured as a plurality of slots 02 that open radially outward, and the plurality of slots 02 The plurality of concave portions 0 1 and are alternately formed at a predetermined pitch along the peripheral portion of the driven rotary member 03.
  • an engaging roller that engages the engaging portion of the driving rotating body 06 with the plurality of slots 02 of the driven rotating body 03 in order to intermittently drive-rotate the driven rotating body 03 at a predetermined angle. It is formed as 04.
  • the driven roller 0 3 When the driven roller 0 3 is disengaged from the slot 0 2 and the driven roller 03 is stopped, the driven roller 03 comes into contact with the arcuate surface 0 1 a of each concave portion 0 1 of the driven rotor 0 3.
  • a plurality of rotating rollers 05 are pivotally mounted.
  • the number of slots 02 formed by the driven rotating body 03 is determined by the number of intermittent driving rotations per rotation of the driven rotating body 03 (hereinafter referred to as indexing number).
  • the driven rotary member 03 is driven and rotated until the engagement roller 04 is disengaged.After that, the next slot 02 and the engagement roller 0 located on the rotation direction upper side of the slot 02 from which the engagement roller 04 is disengaged. Until the engagement with 4, the rotation of the driven rotor 03 is stopped.
  • the rotating roller 05 of the drive rotary member 06 is driven by the arcuate surface of the non-passive concave portion 01 of the driven rotary member 03. It rotates on its own while abutting on 0a, and moves integrally with the drive rotating body 06 along the arcuate surface 01a.
  • the intermittent transmission mechanism including the conventional Geneva gear mechanism
  • an excessive work load on the output system of the driven rotating body 03 causes a large rotation of the driven rotating body 03.
  • the torque may be transmitted reversely.
  • the reaction force of this large rotating torque is applied to the rotating shaft 05 of the rotating roller 05 of the driving rotating body 06 which is in contact with the arcuate surface 01 of the non-passive recess 01 of the driven rotating body 03.
  • the width W of the narrowest base portion of the driven rotating body 03 becomes smaller and smaller as the opening width in the rotation direction of the driven rotating body 32 becomes larger, in practice, the maximum radius R of the driven rotating body 03 and On the other hand, the distance r from the rotation axis of the drive rotating body 06 to the center axis of the engagement roller 04 must be increased together, which is a factor that causes the intermittent transmission mechanism to become large.
  • the number of slots 02 of the driven rotary body 03 that is, the number of indexes is increased, the rotation from the time of engagement of the engagement opening roller 04 to the time of the slot 02 to the time of disengagement is increased. Since the engagement depth in the direction of the angle and the radius of rotation is reduced, the maximum radius R of the driven rotating body 03 is increased accordingly, and the intermittent transmission mechanism is enlarged. Conversely, when the indexing number is reduced, the rotation angle and the engagement depth in the rotational radius direction from the time of engagement of the engagement roller 04 to the time of release of the engagement roller 04 with respect to the slot 02 are reduced. Since it becomes deeper, the width of the narrowest base portion of the driven rotor becomes smaller, which causes the same destruction as described above.
  • the present invention has been made in view of the above circumstances, and has as its object to improve endurance against a work load and improve intermittent driving by devising a transmission structure between a driving rotating body and a driven rotating body. It is an object of the present invention to provide an intermittent transmission mechanism that can set the indexing number arbitrarily while reducing the size of the mechanism, and that can improve the stopping accuracy of the driven rotating body when the rotation is stopped. Disclosure of the invention
  • an intermittent transmission mechanism of the present invention includes: a drive rotating body rotatably supported around an axis of an input shaft; and an axis of an output shaft parallel to the axis of the input shaft.
  • a driven rotator rotatably supported around a core, wherein the driven rotator is provided with a member forming an arcuate recess and an engaged portion, and the drive rotator is provided with the driven An engaging portion that engages with an engaged portion of the rotating body and intermittently drives and rotates the driven rotating body at a predetermined angle; and, when the driven rotating body is stopped, relatively moves along the arcuate surface of the concave portion.
  • An intermittent transmission mechanism provided with a cam portion having a rotation restricting surface, wherein the engaging portion of the driving rotary member is displaced in the direction of the axis of the input shaft with respect to the rotation restricting surface, and The engaged portion of the rotating body is arranged in the axial direction of the output shaft with respect to the member forming the concave portion.
  • the engaged portion of the driven rotating body is constituted by a gear having teeth formed at a predetermined pitch on the entire circumference, and further, the engaging portion of the driving rotating body is attached to the gear. It is characterized by being composed of a partial gear with a mating tooth.
  • the combination of the partial gear forming the engaging portion of the driving rotating body and the partial gear forming the engaged portion of the driven rotating body intermittently drives the driven rotating body at a predetermined angle. Therefore, even if the circumferential length (number of teeth) of the partial gears is changed in accordance with the indexing number, the engagement between the two gears in the radial direction of rotation is always constant. Because the strength only needs to consider the thickness in the direction of the rotation axis, As in the conventional Geneva gear mechanism, the strength increases or decreases due to the change in the slot formation length in the radial direction due to the change in the indexing number, or the driving rotator and the driven rotor rotate to secure the strength. No need to increase body diameter.
  • the rotation restricting surface of the driving rotator and the non-passive recess of the driven rotator are combined into a partial gear forming an engaging portion of the driving rotator and a gear forming an engaged portion of the driven rotator.
  • the maximum outer diameter of the non-passive recess of the driven rotor is larger than the outer diameter of the gear, the intermittent drive rotation due to the combination of the two gears is performed.
  • the driven rotating body is formed with gears that match partial gears of the driving rotating body and non-passive recesses alternately along the circumferential direction in the same plane.
  • the indexing number can be set arbitrarily while improving the durability against the work load and miniaturizing the intermittent drive mechanism, and the stopping accuracy of the driven rotating body at the time of rotation stop is improved. I was able to plan.
  • the input shaft of the driving rotator is provided at the time of starting the engagement between the engaging portion of the driving rotator and the engaged portion of the driven rotator and at the end of the engagement. In each case, it is possible to assemble an angular velocity changing mechanism that minimizes the angular velocity of the driven rotating body.
  • the driving rotary body rotates so that the angular velocity of the driven rotary body at the start of the engagement is minimized, the partial gear forming the engaging portion and the gear forming the engaged portion are rotated. Since the collision energy loss at the start of engagement of the driven rotor is small, the driven rotating body can be driven and rotated smoothly with little noise.
  • the driving rotator rotates so that the angular velocity of the driven rotator becomes the minimum again, so that the combination of the partial gear forming the engaging portion and the gear forming the engaged portion is performed.
  • the inertial force of the driven rotor at the end can be reduced, and the driven rotor can be stopped smoothly.
  • the cam of the driving rotator has an arc of a non-passive recess of the driven rotator. It is preferable to form an annular groove for holding a plurality of rotating bodies abutting on the surface so as to freely rotate and circulate.
  • the plurality of rotating bodies held in the annular groove of the cam portion of the driving rotating body come into contact with the arc-shaped surface of the non-passive concave portion of the driven rotating body. Then, while rotating, it circulates and rolls along the annular groove.
  • the cam section is rotatably pivoted on a support shaft.
  • this support shaft is The frictional force between the rotating body and the rotating roller can be eliminated, and the driving rotating body can be smoothly driven and rotated with little seizure and backlash.
  • a guide groove to be fitted to the rotating body is formed on an arc-shaped surface of the non-passive recess of the driven rotating body.
  • the rotary member in the peripheral surface of the cam portion, on the side of a relative rotation permitting surface that allows relative rotation with the driven rotating body during intermittent rotation of the driven rotating body in which the engaged portion is engaged with the engaging portion. It is preferable that the rotary member be configured so that the rotating body held in the annular groove is not exposed to the outside.
  • the range in which dust and the like can enter the annular groove can be reduced as compared with the case where the rotating body is exposed to the outside over the entire circumference of the annular groove.
  • the occurrence of poor rotation and poor rolling of the rotating body due to intrusion of dust and the like into the grooves can be suppressed.
  • FIG. 1 is a sectional view showing a preferred embodiment of the intermittent transmission mechanism of the present invention
  • FIG. 2 is a side view of a driven rotating body and a driving rotating body
  • Fig. 3 is an enlarged sectional view of the cam part.
  • Fig. 4 (a) is a front view of the intermittent transmission mechanism when the engaging portion engages with the engaged portion.
  • Fig. 4 (b) is a front view of the intermittent transmission mechanism in the intermittent drive rotation state of the driven rotating body.
  • Fig. 5 (a) is a front view of the intermittent transmission mechanism when the engaging part is disengaged from the engaged part.
  • FIG. 5 (b) is a front view of the intermittent transmission mechanism with the driven rotating body stopped
  • Fig. 6 (a) is a diagram showing the change in the angular velocity of the input shaft of the angular velocity change mechanism
  • Fig. 6 (b) is Fig. 6 (c) is a diagram showing a change in the angular speed of the output cylinder shaft of the angular speed changing mechanism
  • Fig. 6 (d) is a diagram showing a change in the angular speed of the output shaft of the angular speed changing mechanism.
  • FIG. 7 is a diagram showing a change in the angular velocity of the output shaft
  • FIG. 7 is a cross-sectional view showing another embodiment of the intermittent transmission mechanism of the present invention
  • FIG. 8 is a plan view of a conventional intermittent transmission mechanism. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 to 6 show a preferred embodiment of an intermittent transmission mechanism of the present invention, which comprises a driving rotator 6 and a driven rotator 3 rotatably supported around axes parallel to each other. 3, an arc-shaped concave portion 1 and an engaged portion 2 are provided, and the driven rotator 6 is engaged with the engaged portion 2 of the driven rotator 3 so that the driven rotator 3 is fixed at a predetermined angle.
  • a cam having an engaging portion 4 for intermittently driving rotation and a rotation regulating surface 5 a which relatively moves along the arcuate surface 1 a of the concave portion 1 when the driven rotary member 3 stops.
  • a part 5 As shown in FIG. 1, the driven rotor 3 is rotatably supported in the case 7 via an output shaft 8, and the drive rotor 6 is connected to the case via an input shaft 9. It is rotatably supported in 7.
  • a portion of the input shaft 9 protruding outside the case 7 is configured as an input portion 9a of the driving rotator 6, and the input portion 9a includes the engaging portion 4 of the driving rotator 6 and the driven rotation.
  • An angular velocity changing mechanism 10 that minimizes the angular velocity of the driven rotor 3 at the start and end of engagement of the body 3 with the engaged portion 2 is detachably assembled. That is, the output unit 11 of the angular velocity changing mechanism 10 is connected to the input unit 9 a of the input shaft 9 in a body rotating state.
  • an output unit (not shown) of a drive system D including a drive actuator such as an electric motor or a hydraulic motor is connected to the input unit 12 of the angular velocity change mechanism 10 in a body rotating state. Is possible.
  • the rotation output from the drive system D is transmitted to the drive rotator 6 via the angular velocity changing mechanism 10 and the input shaft 9, and the drive rotator 6 is driven and rotated.
  • the intermittent drive rotation of the driven rotary body 3 intermittently driven by the drive rotary body 6 is transmitted via an output shaft 8 to, for example, an input unit (e.g., a processing apparatus E for performing a peak indexing process). (Not shown).
  • the driven rotating body 3 is a member in which arcuate non-passive recesses 1 having the same shape are formed at four locations at a predetermined pitch along a rotation direction (circumferential direction). It comprises a rotating part 13 and a gear as the engaged part 2 having teeth 2a formed at a predetermined pitch all around.
  • the rotating part 13 and the gear 2 are integrally connected by bolts 14 in a state of being adjacent to each other in the direction of the rotation axis, and the output shaft 8 is inserted into a through hole 15 formed at the center thereof. Is inserted.
  • the gear 2 of the driven rotary member 3 is disposed so as to be displaced in the axial direction of the output shaft 8 with respect to the non-passive concave portion 1.
  • the driven rotator 3 and the output shaft 8 are connected via a key 16 so as to rotate integrally with each other, and also come out of a boss 2b formed integrally with the gear 2.
  • Each of the rotating part 13 and the gear 2 constituting the driven rotating body 3 is formed of a high-carbon chromium bearing steel (SUJ 2), and each of the non-passive recesses 1 of the rotating part 13 is formed.
  • the portions corresponding to the arcuate surfaces and the teeth 2a of the gear 2 are hardened.
  • the drive rotating body 6 is composed of the cam portion 5 and a partial gear as the engaging portion 4 having a tooth portion 4 a that engages with the gear 2. ing.
  • the cam portion 5 and the partial gear 4 are integrally connected by bolts 18 in a state of being adjacent to each other in the rotation axis direction, and the input shaft 9 is inserted into a through hole 19 formed in the center portion thereof. It has been inserted.
  • the partial gear 4 of the driving rotator 6 can be engaged with the gear 2 of the driven rotator 3, and the rotation regulating surface 5 a of the cam portion 5 of the driving rotator 6 is 13
  • the partial gear 4 of the driving rotator 6 is displaced along the axis of the input shaft 9 with respect to the rotation regulating surface 5a of the cam portion 5 so that it can move relatively along the concave portion 1 of 3. are doing.
  • the number of teeth 4a of the partial gear 4 of the driving rotary member 6 is such that the gear 2 of the driven rotary member 3 is intermittently driven by 90 degrees per rotation of the partial gear 4. That is, the intermittent drive angle per rotation of the driven rotor 3 is set to 90 degrees, and the number of intermittent drive rotations per rotation of the driven rotor 3, that is, the index number is set to 4. ing.
  • the gear diameter of the partial gear 4 is configured to be the same as the gear diameter of the gear 2 of the driven rotor 3, and the tip of each tooth 4 a located at both ends in the rotation direction of the partial gear 4 is
  • the gear 4 is cut off at the start of the connection between the partial gear 4 and the gear 2 and at the end of the connection so as to eliminate an unnecessary connection
  • the tooth portion 4 a of the partial gear 4 is In the peripheral edge of 4, it is formed in a range of 90 degrees corresponding to the intermittent drive angle of the driven rotary member 3 around the rotation axis of the drive rotary member 6.
  • the drive rotating body 6 and the input shaft 9 are connected via the key 20 in an integrally rotating state.
  • the screw 21 By tightening the screw 21 from the outside of the boss 4 b integrally formed with the partial gear 4 toward the input shaft 9, the removal of the input shaft 9 from the driving rotating body 6 is restricted. ing.
  • each of the cam portion 5 and the partial gear 4 constituting the drive rotary member 6 is formed of a high carbon chromium bearing steel (SUJ 2), and the tooth portion 4 a of the partial gear 4 is hardened. It has been subjected.
  • SAJ 2 high carbon chromium bearing steel
  • the driving rotator 6 includes a tooth 4a of the partial gear 4 of the driving rotator 6 and a tooth 2 of the gear 2 of the driven rotator 3. Due to the combination with a, the driven rotating body 3 is intermittently driven by 90 degrees per rotation of the driving rotating body 6, and the teeth of the partial gear 4 are rotated as shown in FIGS. 4 (c) and (d).
  • the portion 4a separates from the tooth portion 2a of the gear 2
  • the cam 5 of the driving rotator 6 enters the non-passive recess 1 of the driven rotator 3, and the rotation regulating surface 5a of the cam 5 becomes non-passive. While relatively moving along the arcuate surface 1 a of the passive concave portion 1, the intermittent drive rotation of the driven rotary member 3 is stopped until the playback partial gear 4 and the gear 2 engage.
  • the cam portion 5 has a rotating portion 13 of the driven rotary member 3.
  • a relative rotation permitting surface 5b that allows relative rotation between the driven rotary member 3 and the drive rotary member 6 while avoiding contact with the cam portion 5 is formed.
  • the rotation restricting surface 5 a of the cam portion 5 of the driving rotator 6 is formed from an arcuate surface centered on the rotation axis of the driving rotator 6.
  • the radius of 5 a is also formed to be slightly smaller than the radius of the arcuate surface 1 a of the non-passive recess 1 of the driven rotor 3.
  • the relative rotation allowing surface 5b of the cam portion 5 is continuous with both ends in the circumferential direction of the rotation regulating surface 5a, and is located on the opposite side of the rotation regulating surface 5a with respect to the rotation axis.
  • the cam portion 5 is formed in a crescent shape when viewed in the direction of the axis of rotation. As shown in FIG.
  • the cam portion 5 is fitted to the female cam member 22 and the female cam member 22 from the rotational axis direction, and integrally connects the cam portion 5 and the partial gear 4.
  • a male cam member 23 tightened and fixed by the bolt 18.
  • a plurality of high carbon chromium bearing steel (SUJ 2) balls 24 Arc-shaped grooves 25 a, 25 b that divide and form an annular groove 25 that holds the rotating and circulating rolling freely.
  • the annular groove 25 is formed with a rotation regulating surface 5 a. It is formed almost continuously in a crescent along the relative rotation allowable surface 5b.
  • the annular groove 25 is formed to open radially outward at a position corresponding to the rotation restricting surface 5a, and extends radially outward from the rotation restricting surface 5a of the cam portion 5 through the opening.
  • the surface of the ball 24 exposed in a protruding state toward the surface of the driven rotor 3 comes into contact with the arcuate surface 1 a of the non-passive recess 1 of the driven rotor 3 when the driven rotor 3 is stopped.
  • the width of the opening of the annular groove 25 along the axis of rotation is smaller than the diameter of the ball 24 so that the ball 24 is forced out of the annular groove 25 through the opening. Is formed.
  • the annular groove 25 is formed in a tunnel shape in the cam portion 5 on the relative rotation allowing surface 5b side so that the ball 24 is not exposed to the outside on the relative rotation allowing surface 5b side.
  • the shape of the annular groove 25 in a plan view is such that a rotating body such as the ball 24 can smoothly circulate in the circumferential direction.
  • the minimum radius of curvature of the annular groove 25 is larger than the radius of the rotating body represented by the ball 24.
  • the arcuate surface 1a of the non-passive concave portion 1 of the driven rotor 3 has an exposed portion surface of the ball 24 exposed to the outside from the rotation regulating surface 5a over the entire circumferential length thereof.
  • a guide groove 26 having a semicircular arc section is formed to fit these balls 24 in a state of line contact along a direction intersecting the rotation direction of the cam portion 5.
  • the angular velocity changing mechanism 10 includes a non-circular gear mechanism 29 composed of a pair of elliptical gears 27 and 28 having the same shape, and a reduction mechanism composed of a pair of large and small gears 30 and 31. 3 and 2 are provided in a gear case 33.
  • One of the elliptical gears 27 of the non-circular gear mechanism 29 is automatically rotated by a gear case 33.
  • the input shaft 34 which is supported at the moment, is rotatably fixed to the input shaft 34.
  • the other elliptical gear 28 of the non-circular gear mechanism 29 and the small-diameter gear 31 of the reduction mechanism 32 are a gear case.
  • An intermediate shaft 35 rotatably supported by 33 is rotatably fixed to the intermediate shaft 35, and the large-diameter gear 30 of the reduction mechanism 32 is rotatably supported by the gear case 33.
  • the cylinder shaft 36 is integrally rotatably fixed to the cylinder shaft 36.
  • the two elliptical gears 27 and 28 are combined with each other, and a pair of large and small gears 30 and 31 are combined.
  • the gear diameter of the large-diameter gear 30 of the reduction mechanism 32 is four times the gear diameter of the small-diameter gear 31, and the small-diameter gear 31 rotates four times while the large-diameter gear 30 rotates. It is configured as follows.
  • the angular velocity changing mechanism 10 passes the input section 9 a of the input shaft 9 of the driving rotating body 6 through the output cylinder shaft 36 of the reduction mechanism 32, and connects the gear case 33 to the case 7. It is assembled by fixing detachably with bolts 37. That is, the output cylinder shaft 36 constitutes the output unit 11 of the angular velocity changing mechanism 10.
  • the input portion 9a of the input shaft 9 of the driving rotary body 6 and the output cylinder shaft 36 of the angular velocity changing mechanism 10 are connected to each other via a key 38 so as to be integrally rotated.
  • a portion protruding outside the gear case 33 is configured as an input section 12 of the angular velocity changing mechanism 10.
  • the output part of the drive system D is connected to be rotatable integrally.
  • the angular velocity change curve of (a) in FIG. 6 when the input shaft 34 of the angular velocity changing mechanism 10 is driven and rotated by the driving system D at a constant angular velocity, as shown in (a) of FIG.
  • the angular velocity change curve of b the angular velocity of the intermediate shaft 35 changes substantially in a sine curve by the non-circular gear mechanism 29, and the small-diameter gear 31 of the reduction mechanism 32 has the substantially sine curve. It is configured to rotate according to the angular velocity. Further, the large-diameter gear 30 makes one rotation while the small-diameter gear 31 makes four rotations. That is, as shown in the angular velocity change curve of (c) in FIG.
  • the angular velocity of the large-diameter gear 30 is configured to change in four cycles during one rotation of the large-diameter gear 30.
  • the change in the angular velocity of the large-diameter gear 30 The power is transmitted to the input shaft 9 of the driving rotating body 6 via the output cylinder shaft 36 of the angular velocity changing mechanism 10 as it is.
  • the tooth portion 4 a of the partial gear 4 of the driving rotator 6 is connected to the gear 2 of the driven rotator 3.
  • the driven rotary member 3 is driven and rotated 90 degrees, and the tooth portion 4a of the partial gear 4 is separated from the tooth portion 2a of the gear 2 for the remaining three cycles,
  • the driven rotator 3 is configured to stop rotating.
  • the input portion 9a of the input shaft 9 of the drive rotating body 6 and the output cylinder shaft 36 of the angular velocity changing mechanism 10 are connected to the angular velocity
  • the teeth 4 a of the partial gear 4 of the driving rotary body 6 and the teeth 2 a of the gear 2 of the driven rotary body 3 start to engage.
  • the tooth portion of the partial gear 4 is driven as described above. 4a rotates intermittently by 90 degrees in accordance with the tooth portion 2a of the gear 2 of the driven rotary member 3.
  • the rotation restricting surface 5a of the cam portion 5 causes the non-passive It is configured so that it faces each other in a close proximity over a length of at least half of the circumferential surface of the arcuate surface 1a of the concave portion 1 for use. Is not received It is positioned close to half or more of the circumferential length of the arcuate surface 1a of the moving recess 1 and is held by the annular groove 25 of the cam portion 5 from the rotation regulating surface 5a.
  • the plurality of balls 24 exposed to the outside are fitted in a line contact state with the guide grooves 26 formed in the arcuate surface 1 a of the non-passive concave portion 1, and the driven rotor 3 rotates in the normal rotation direction. And idle rotation in the reverse direction is restricted.
  • the angular velocity changing mechanism 10 is detachably attached to the input portion 9a of the input shaft 9 of the driving rotating body 6, and the rotation is performed as shown in FIG.
  • the output unit (not shown) of the drive system D provided with a drive actuator such as an electric motor or a hydraulic motor may be connected to the input unit 9a of the input shaft 9 in an integrally rotating state.
  • the intermittent drive angle per rotation of the driven rotating body 3 is set to 90 degrees, and the index number of the driven rotating body 3 is set to 4.
  • the invention is not limited to this.
  • the intermittent drive angle per rotation of the body 3 is set to 120 degrees, the number of non-passive recesses 1 of the driven rotating body 3 is set to 3, and the indexing number of the driven rotating body 3 is set.
  • the intermittent drive angle per rotation of the driven rotor 3 is set to 60 degrees, and the number of non-passive recesses 1 of the driven rotor 3 is set to 6,
  • the index number of the driven rotating body 3 can be changed to six.
  • the speed reduction ratio of the speed reduction mechanism 32 of the angular speed change mechanism 10 is also changed to a speed increase ratio that matches the indexing number.
  • the gear diameter of the gear as the engaged portion 2 of the driven rotating body 3 and the gear diameter of the partial gear as the engaging portion 4 of the driving rotating body 6 are configured to have the same diameter.
  • the gear diameter of the gear as the engaged portion 2 of the driven rotating body 3 and the gear diameter of the partial gear as the engaging portion 4 of the driving rotating body 6 may have different diameters.
  • the engaged portion 2 and the rotating portion 13 constituting the driven rotating body 3 may be integrally formed.
  • the engaging part 4 and the female cam member 22 of the cam part 5 constituting the driving rotary body 6 may be integrally formed.
  • the engaging portion 4 of the driving rotary body 6 may be formed of a partial gear having tooth portions 4a formed at two or more positions in a peripheral direction at a predetermined pitch.
  • the material of the driven rotating body 3, the driving rotating body 6, and the balls 24 as the rotating body are not limited to high carbon chromium bearing steel (SUJ 2), but may be stainless steel or hard synthetic resin. And the like.
  • the size and shape of the elliptical gears 27 and 28 constituting the non-circular gear mechanism 29 of the angular velocity changing mechanism 10 are determined according to the contents of the indexing processing by the processing apparatus E.
  • the driven rotor 3 can be intermittently driven and rotated at an angular velocity suitable for the content of the indexing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Description

明 細 書 間欠伝動機構 技 術 分 野
本発明は、 連続的な回転変位を、 間欠的な回転変位に変換して伝達するた めの間欠伝動機構に関する。 背 景 技 術
この種の間欠伝動機構の例として、 例えば、 実開平 6— 4 0 5 0 7号公報 に開示されるゼネバ歯車機構が提案されている。 図 8に示すように、 この装 置では従動回転体 0 3の被係合部を半径方向外方に向かって開口する複数の スロッ ト 0 2として構成して、 この複数のスロッ ト 0 2と複数の凹部 0 1 と を従動回転体 0 3の周部に沿って所定ピッチで交互に形成してある。 更に、 駆動回転体 0 6の係合部を、 従動回転体 0 3の複数のスロッ ト 0 2に順番に 係合して、 この従動回転体 0 3を所定角度宛間欠駆動回転させる係合ローラ 0 4として形成してある。 従動回転体 0 3に、 係合ローラ 0 4がスロット 0 2から離脱した従動回転体 0 3の停止時に、 従動回転体 0 3の各凹部 0 1 の弧状面 0 1 aに接当する自転自在な複数の回転ローラ 0 5を枢着している。 このように構成されたゼネバ歯車機構では、 前記従動回転体 0 3のスロッ ト 0 2の形成数が、 該従動回転体 0 3の一回転当りでの間欠駆動回転数 (以 下、 割出数と称する。) となり、 前記駆動回転体 0 6の駆動回転によって、 係 合ローラ 0 4が従動回転体 0 3の一つのスロッ ト 0 2に係合すると、 前記係 合ローラ 0 4が該スロッ ト 0 2から離脱するまで従動回転体 0 3は駆動回転 され、 その後、 前記係合ローラ 0 4が離脱したスロッ ト 0 2の回転方向上手 側に位置する次のスロッ ト 0 2と係合ローラ 0 4とが係合するまで、 従動回 転体 0 3の回転は停止されることになる。
そして、 前記従動回転体 0 3の回転が停止される状態では、 前記駆動回転 体 0 6の回転ローラ 0 5が、 従動回転体 0 3の非受動用凹部 0 1の弧状面 0 1 aに接当しながら自転して、 該弧状面 0 1 aに沿って駆動回転体 0 6と 一体的に移動する。
ところで、 前記従来のゼネバ歯車機構からなる間欠伝動機構では、 従動回 転体 0 3の回転停止時に、 従動回転体 0 3の出力系での過度の作業負荷が該 従動回転体 0 3に大きな回転トルクとして逆伝動される場合がある。 この大 きな回転トルクの反力が従動回転体 0 3の非受動用凹部 0 1 の弧状面 0 1 a に接触している駆動回転体 0 6の回転ローラ 0 5の支軸 0 5 aに集中作用し たり、 或いは、 前記従動回転体 0 3のうち、 回転方向で隣接するスロッ ト 0 2間に位置する部位で、 かつ、 回転方向での幅 Wが最も狭くなる基部に集 中作用して、 支軸 0 5 aや従動回転体 0 3の最幅狭基部が破壊される虞れが ある。
また、 従動回転体 0 3の間欠駆動回転時においても、 従動回転体 0 3の出 力系での過度の作業負荷が該従動回転体 0 3に大きな反力として作用した場 合、 従動回転体 0 3のスロッ ト 0 2に係合する駆動回転体 0 6の係合ローラ 0 4を枢支する支軸 0 4 aに前記反力が集中的に作用するため、 該支軸 0 4 aが破壊される虞れがある。
それ故に、 前記従動回転体 0 3の出力系での作業負荷が大きい場合には、 前記係合ローラ 0 4の支軸 0 4 aの直径を大きく して該支軸 0 4 aの最大許 容応力を高めることが考えられるが、 この場合、 この支軸 0 4 aのみの直径 を単純に大きくすると、 それに連れて係合ローラ 0 4の直径も必然的に大き くなり、その結果、スロッ ト 0 2の回転方向での開口幅が大きくなる分だけ、 従動回転体 0 3の最幅狭基部の幅 Wが益々小さくなるため、 実際には、 前記 従動回転体 0 3の最大半径 R、 及び、 駆動回転体 0 6の回転軸芯から係合口 ーラ 0 4の中心軸までの距離 rを共に大きく しなければならず、 間欠伝動機 構の大型化を招来する要因になっていた。
更に、 前記従動回転体 0 3のスロッ ト 0 2の形成数、 つまり割出数を増加 した場合には、 前記スロッ ト 0 2に対する係合口一ラ 0 4の係入時から離脱 時までの回転角度及び回転半径方向での係合深さが小さくなるため、 それに 連れて、 従動回転体 0 3の最大半径 Rが大きくなって間欠伝動機構が大型化 し、 また、 逆に、 割出数を少なく した場合には、 前記スロッ ト 0 2に対する 係合ローラ 0 4の係入時から離脱時までの回転角度及び回転半径方向での係 合深さが深くなるため、 従動回転体の最幅狭基部の幅が小さくなり、 前述と 同様な破壊の原因となる。
本発明は、 上記実状に鑑みて為されたものであって、 その目的は、 駆動回 転体と従動回転体との伝動構造を工夫することにより、 作業負荷に対する耐 久強度の向上と間欠駆動機構の小型化とを図りながら、 割出数を任意に設定 することができ、 しかも、 回転停止時における従動回転体の停止精度の向上 を図ることのできる間欠伝動機構を提供する点にある。 発 明 の 開 示
上記目的を達成するために、 本発明の間欠伝動機構は、 入力軸の軸芯まわ りで回転可能に支持される駆動回転体と、 前記入力軸の軸芯とは平行である 出力軸の軸芯まわりで回転可能に支持される従動回転体とを備え、 前記従動 回転体には、 弧状の凹部を形成する部材と被係合部とを設けるとともに、 前 記駆動回転体には、 前記従動回転体の被係合部に係合して、 前記従動回転体 を所定角度で間欠駆動回転させる係合部と、 前記従動回転体の停止時に、 前 記凹部の弧状面に沿って相対移動する回転規制面を備えたカム部とを設けて ある間欠伝動機構であって、 前記駆動回転体の係合部を回転規制面に対して 前記入力軸の軸芯方向に変位して配置し、 従動回転体の被係合部を前記凹部 を形成する部材に対して前記出力軸の軸芯方向に変位して配置し、 前記従動 回転体の被係合部を、 全周に所定ピッチで歯部を形成してあるギアから構成 し、 更に、 前記駆動回転体の係合部を、 前記ギアに嚙合する歯部を備えた部 分ギアから構成してある事を特徴とする。
上記特徴構成によれば、 前記駆動回転体の係合部を構成する部分ギアと従 動回転体の被係合部を構成する部分ギアとの嚙合によって、 従動回転体を所 定角度で間欠駆動回転させるから、 部分ギアの周方向長さ (歯数) を割出数 に対応して変更しても、両ギアの回転半径方向での嚙合代は常に一定であり、 しかも、 各歯部の強度は回転軸芯方向での厚みを考慮するだけで良いから、 従来のゼネバ歯車機構のように、 割出数の変更に伴うスロ ッ トの半径方向で の形成長さの変動によって強度が増減したり、 或いは、 強度確保のために駆 動回転体及び従動回転体の直径を増大する必要がない。
しかも、 前記駆動回転体の回転規制面と従動回転体の非受動用凹部とを、 前記駆動回転体の係合部を構成する部分ギアと従動回転体の被係合部を構成 するギアとに対して回転軸芯方向に変位させて配置しているため、 前記従動 回転体の非受動用凹部の最大外径をギアの外径よりも大きく しても、 前記両 ギアの嚙合による間欠駆動回転に悪影響を及ぼすことがなく、 例えば、 前記 従動回転体に、 駆動回転体の部分ギアに嚙合するギアと非受動用凹部とを同 一平面内で周方向に沿って交互に形成してある場合に比して、 前記非受動用 凹部の弧状面とカム部回転規制面との相対移動方向での接触長さを長くする ことができるから、 回転体停止時における従動回転体の正転方向及び逆転方 向へのガタツキを抑制することができる。
従って、 作業負荷に対する耐久強度の向上と間欠駆動機構の小型化とを図 りながらも、 割出数を任意に設定することができ、 しかも、 回転停止時にお ける従動回転体の停止精度の向上を図ることができた。
また、 本発明の好適実施形態において、 前記駆動回転体の前記入力軸に、 この駆動回転体の係合部と前記従動回転体の被係合部との係合開始時及び係 合終了時の各々において、 前記従動回転体の角速度が最小となるような角速 度変更機構を組み付けることが可能である。
上記特徴構成によれば、 前記係合開始時に従動回転体の角速度が最小とな るように駆動回転体が回転するから、 係合部を構成する部分ギアと被係合部 を構成するギアとの係合開始時の衝突エネルギーロスが少ない分だけ、 騒音 の少ない状態で従動回転体を滑らかに駆動回転させることができる。
また、 前記係合終了時においては、 従動回転体の角速度が再び最小となる ように駆動回転体が回転するから、 係合部を構成する部分ギアと被係合部を 構成するギアとの嚙合終了時の従動回転体の慣性力を小さくすることができ、 従動回転体を滑らかに停止させることができる。
また、 前記駆動回転体のカム部には、 前記従動回転体の非受動用凹部の弧 状面に接当する複数の回転体を自転並びに循環転動自在に保持する環状溝を 形成することが好ましい。
上記特徴構成によれば、 前記従動回転体の間欠停止時に、 前記駆動回転体 のカム部の環状溝に保持された複数の回転体が、 従動回転体の非受動用凹部 の弧状面に接当して、 自転しながら環状溝に沿って循環転動するから、 例え ば、 駆動回転体を焼付きゃガタツキの少ない状態で円滑に駆動回転させるた めに、 カム部を支軸に回転自在に枢支された回転ローラから構成して、 非受 動用凹部の弧状面とカム部の回転規制面との間に発生する摩擦力を軽減して ある従来の間欠伝動機構に比して、 この支軸と回転ローラとの摩擦力も排除 することができ、 更に、 駆動回転体を焼付きゃガタツキの少ない状態で円滑 に駆動回転させることができる。
それ故に、 間欠伝動機構の寿命延長化及び省エネルギー化を促進すること ができる。
更に、 本発明の好適実施形態において、 前記従動回転体の非受動用凹部の 弧状面には、 前記回転体に嵌合するガイ ド溝が形成される事が望ましい。 上記特徴構成によれば、 前記回転体をガイ ド溝に嵌合するだけで、 駆動回 転体と従動回転体との位置合わせを行うことができ、 組付け作業の容易化、 能率化を図ることができる。
更に、 前記カム部の周面のうち、 前記被係合部が係合部に係合した従動回 転体の間欠回転時に、 前記従動回転体との相対回転を許容する相対回転許容 面側においては、 前記環状溝に保持された回転体が外部に露出しないように 構成する事が望ましい。
上記特徴構成によれば、 前記環状溝全周に亘つて回転体が外部に露出する のもに比して、 環状溝内に塵埃等が侵入する可能性のある範囲を縮小でき、 もって、 環状溝内への塵埃等の侵入による回転体の自転不良並びに転動不良 の発生を抑制することができる。
また、 前記回転体がボールであると、 回転体が、 両端を半球状に丸めた円 柱部材で構成されているものに比して、 隣接する回転体同士の接触範囲を小 さくすることができるので、 回転体の自転並びに転動を更に滑らかに行わせ ることができる。 ' 本発明のその他の特徴や優れた作用効果は、 以下の発明の実施形態に関す る説明と図面より明らかになるであろう。 図面の簡単な説明
図 1は本発明の本発明の間欠伝動機構の好適実施形態を示す断面図であり、 図 2は従動回転体と駆動回転体との側面図であり、
図 3はカム部の拡大断面図であり、
図 4 ( a ) は被係合部に係合部が係合する時の間欠伝動機構の正面図であ り、
図 4 ( b ) は従動回転体の間欠駆動回転状態の間欠伝動機構の正面図であ 、
図 5 ( a ) は被係合部から係合部が離脱する時の間欠伝動機構の正面図で あり、
図 5 ( b ) は従動回転体の停止状態の間欠伝動機構の正面図であり、 図 6 ( a ) は角速度変更機構の入力軸の角速度の変化を示す図であり、 図 6 ( b ) は角速度変更機構の中間軸の角速度の変化を示す図であり、 図 6 ( c ) は角速度変更機構の出力筒軸の角速度の変化を示す図であり、 図 6 ( d ) は間欠伝動更機構の出力軸の角速度の変化を示す図であり、 図 7は本発明の間欠伝動機構の別実施形態を示す断面図であり、
図 8は従来の間欠伝動機構の平面図である。 発明を実施するための最良の形態
図 1〜図 6は、 本発明の間欠伝動機構の好適実施形態を示し、 互いに平行 な軸芯周りで回転自在に支持される駆動回転体 6と従動回転体 3とを備え、 前記従動回転体 3に、 弧状の凹部 1 と被係合部 2とを設けるとともに、 前記 駆動回転体 6に、 従動回転体 3の被係合部 2に係合して、 該従動回転体 3を 所定角度で間欠駆動回転させる係合部 4と、 前記従動回転体 3の停止時に、 前記凹部 1の弧状面 1 aに沿って相対移動する回転規制面 5 aを備えたカム 部 5とを設けて構成されている。 ' 図 1に示すように、 前記従動回転体 3は、 出力軸 8を介して前記ケース 7 内に回転自在に支持され、 また、 前記駆動回転体 6は、 入力軸 9を介して前 記ケース 7内に回転自在に支持されている。
前記入力軸 9のうち、 ケース 7外に突出する部位は駆動回転体 6の入力部 9 aに構成してあり、 この入力部 9 aには、 駆動回転体 6の係合部 4 と従動 回転体 3の被係合部 2との係合開始時及び係合終了時の各々において、 従動 回転体 3の角速度が最小となるような角速度変更機構 1 0を脱着自在に組み 付けてある。 つまり、 前記入力軸 9の入力部 9 aには、 前記角速度変更機構 1 0の出力部 1 1がー体回転状態で連結されている。
更に、 前記角速度変更機構 1 0の入力部 1 2には、 電動モータや油圧モー タ等の駆動ァクチユエータを備えた駆動系 Dの出力部 (図示せず) がー体回 転状態で連結することが可能である。この駆動系 Dからの回転出力が角速度変 更機構 1 0並びに入力軸 9を介して前記駆動回転体 6に動力伝達されて、 該 駆動回転体 6が駆動回転される。 更に、 該駆動回転体 6により間欠駆動回転 された前記従動回転体 3の間欠駆動回転は、 出力軸 8を介して、 例えば、 ヮ ークの割り出し加工を行う加工装置 E等の入力部 (図示せず) に動力伝達さ れる。
図 1〜図 5に示すように、 前記従動回転体 3は、 同一形状の弧状の非受動 用凹部 1を回転方向 (円周方向) に沿って所定ピッチで 4箇所形成してある 部材である回転部 1 3と、 全周に所定ピッチで歯部 2 aを形成してある前記 被係合部 2としてのギアとから構成されている。 これら回転部 1 3とギア 2 とを、 回転軸芯方向で隣接させた状態でボルト 1 4にて一体連結してあると ともに、 その中心部に形成された貫通孔 1 5に前記出力軸 8が挿通されてい る。
つまり、 前記従動回転体 3のギア 2を非受動用凹部 1に対して出力軸 8の 軸芯方向に変位して配置してある。
前記従動回転体 3と出力軸 8とは、 キー 1 6を介して一体回転状態で連結 されているとともに、 前記ギア 2に一体形成されたボス部 2 bの外方から出 力軸 8に向かってビス 1 7を締付けることにより、 従動回転体 3から (^出力 軸 8の抜け出しが規制されている。
尚、 前記従動回転体 3を構成する回転部 1 3とギア 2との各々は高炭素ク ロム軸受鋼鋼材 (S U J 2 ) から形成されていて、 回転部 1 3の各非受動用 凹部 1の弧状面相当箇所、 及び、 ギア 2の歯部 2 aには焼き入れが施されて いる。
図 1〜図 6に示すように、 前記駆動回転体 6は、 前記カム部 5と、 前記ギ ァ 2に嚙合する歯部 4 aを備えた前記係合部 4としての部分ギアとから構成 されている。 これらカム部 5と部分ギア 4 とを、 回転軸芯方向で隣接させた 状態でボルト 1 8にて一体連結してあるとともに、 その中心部に形成された 貫通孔 1 9に前記入力軸 9が挿通されている。
つまり、 前記駆動回転体 6の部分ギア 4が従動回転体 3のギア 2に対して 嚙合可能で、 かつ、 駆動回転体 6のカム部 5の回転規制面 5 aが従動回転体 3の回転部 1 3の凹部 1に沿って相対移動可能となるように、 駆動回転体 6 の部分ギア 4をカム部 5の回転規制面 5 aに対して入力軸 9の軸芯に沿って 変位して配置している。
前記駆動回転体 6の部分ギア 4の歯部 4 aの数は、 部分ギア 4の一回転当 りで前記従動回転体 3のギア 2を 9 0度間欠駆動回転する数だけ形成されて いる。 つまり、 前記従動回転体 3の一回当りの間欠駆動角度は 9 0度に設定 されていて、 前記従動回転体 3の一回転当りの間欠駆動回転数、 つまり、 割 出数が 4に構成されている。
詳しくは、 前記部分ギア 4のギア径は、 従動回転体 3のギア 2のギア径と 同一径に構成されていて、 部分ギア 4の回転方向両端側に位置する各歯部 4 aの先端は、 部分ギア 4とギア 2との嚙合開始時、 及び、 嚙合終了時にお ける必要以上の嚙合を解消するために削り落とされているとともに、 部分ギ ァ 4の歯部 4 aは、 該部分ギア 4の周縁のうち、 駆動回転体 6の回転軸芯を 中心として、 従動回転体 3の間欠駆動角度に相当する 9 0度の範囲に形成さ れている。
前記駆動回転体 6と入力軸 9とは、 キー 2 0を介して一体回転状態で連結 されているとともに、 前記部分ギア 4に一体形成されたボス 4 bの外方から 入力軸 9に向かってビス 2 1を締付けることにより、 駆動回転体 6からの入 力軸 9の抜け出しが規制されている。
尚、 前記駆動回転体 6を構成するカム部 5と部分ギア 4との各々は高炭素 クロム軸受鋼鋼材 (S U J 2 ) から形成されていて、 部分ギア 4の歯部 4 a には焼き入れが施されている。
そして、 図 4の (a ), ( b ) に示すように、 前記駆動回転体 6は、 駆動回 転体 6の部分ギア 4の歯部 4 aと従動回転体 3のギア 2の歯部 2 aとの嚙合 により、 駆動回転体 6の一回転当りで従動回転体 3を 9 0度宛間欠駆動回転 するとともに、 図 4の (c ) , ( d ) に示すように、 部分ギア 4の歯部 4 aが ギア 2の歯部 2 aから離脱したとき、 従動回転体 3の非受動用凹部 1に駆動 回転体 6のカム部 5が入り込み、 該カム部 5の回転規制面 5 aが非受動用凹 部 1の弧状面 1 aに沿って相対移動しながら、 従動回転体 3の間欠駆動回転 を、 再ぴ部分ギア 4がギア 2と嚙合するまで停止する。
前記カム部 5には、 前記駆動回転体 6の部分ギア 4と従動回転体 3のギア 2とが嚙合する従動回転体 3の間欠駆動回転時に、 これら従動回転体 3の回 転部 1 3と該カム部 5との接当を回避して、 該従動回転体 3と駆動回転体 6 との相対回転を許容する相対回転許容面 5 bが形成されている。
図 2〜図 5に示すように、 前記駆動回転体 6のカム部 5の回転規制面 5 a は、 該駆動回転体 6の回転軸芯を中心とする弧状面から形成され、 この回転 規制面 5 aの半径が、 前記従動回転体 3の非受動用凹部 1の弧状面 1 aの半 径ょりも極僅かに小に形成されている。 前記カム部 5の相対回転許容面 5 b は、 前記回転規制面 5 aの円周方向両端側に連続し、 かつ、 該回転規制面 5 aとは回転軸芯を挟んで反対側に位置して、 弯曲状に窪む凹面から構成さ れていて、前記カム部 5は回転軸芯方向視でほぼ三日月状に形成されている。 図 3に示すように、 前記カム部 5は、 雌型カム部材 2 2と、 該雌型カム部 材 2 2に回転軸芯方向から嵌合され、 カム部 5と部分ギア 4とを一体連結す る前記ボルト 1 8にて締付け固定される雄型カム部材 2 3とから分割構成さ れている。 前記回転軸芯方向で相対向する雌雄一対のカム部材 2 2 , 2 3の対向面間 には、 複数個の回転体としての高炭素クロム軸受鋼鋼材 (S U J 2 ) 製のボ ール 2 4を自転並びに循環転動自在に保持する環状溝 2 5を分割形成する断 面弧状の溝部 2 5 a , 2 5 bが形成されているとともに、 該環状溝 2 5は、 回転規制面 5 a と相対回転許容面 5 bとに沿うほぼ三日月状に連続形成され ている。
そして、 前記環状溝 2 5は、 前記回転規制面 5 a相当位置において半径方 向外方に向かって開口形成されていて、 該開口部分を通してカム部 5の回転 規制面 5 aから半径方向外方に向かって突出状態で露出する前記ボール 2 4 の表面が、 従動回転体 3の停止時に、 従動回転体 3の非受動用凹部 1の弧状 面 1 aと接当するように構成されている。
尚、 前記環状溝 2 5の開口部分の回転軸芯方向に沿う開口幅は、 ボール 2 4がこの開口部分を通して環状溝 2 5から抜け出すこと力 にように、 ボー ル 2 4の直径よりも小に形成されている。
また、 前記環状溝 2 5は、 相対回転許容面 5 b側でボール 2 4が外部に露 出しないように、 相対回転許容面 5 b側においてカム部 5内にトンネル状に 形成されている。
更に、 例えば図 4 ( a ) から明らかな通り、環状溝 2 5の平面視における形 状は、 ボール 2 4等の回転体がスムースに周方向に循環できるようになって いる。 具体的には、 環状溝 2 5の最小曲率半径は、 ボール 2 4で代表される 回転体の半径よりも大きくなっている。
前記従動回転体 3の非受動用凹部 1の弧状面 1 aには、 その円周方向全長 に亘つて、 前記回転規制面 5 aから外部に露出するボール 2 4の露出部分表 面と、 前記カム部 5の回転方向と交差する方向に沿って線接触する状態で、 これらボール 2 4を嵌合する断面半円弧状のガイ ド溝 2 6が形成されている。 図 1に示すように、 前記角速度変更機構 1 0は、 同一形状の一対の楕円ギア 2 7, 2 8からなる非円形歯車機構 2 9と、 大小一対のギア 3 0, 3 1から なる減速機構 3 2とをギアケース 3 3内に設けて構成されている。
前記非円形歯車機構 2 9の一方の楕円ギア 2 7は、 ギアケース 3 3に回転自 在に支持された入力軸 3 4に一体回転自在に止着されているとともに: 非円 形歯車機構 2 9の他方の楕円ギア 2 8と減速機構 3 2の小径ギア 3 1 とは、 ギアケース 3 3に回転自在に支持された中間軸 3 5に一体回転自在に止着さ れて、 更に、 減速機構 3 2の大径ギア 3 0はギアケース 3 3に回転自在に支 持された出力筒軸 3 6に一体回転自在に止着されている。 そして、 両楕円ギ ァ 2 7, 2 8同士を嚙合させてあるとともに、 大小一対のギア 3 0 , 3 1同 士を嚙合させてある。
前記減速機構 3 2の大径ギア 3 0のギア径は小径ギア 3 1のギア径の 4倍 に形成してあり、 大径ギア 3 0がー回転する間に小径ギア 3 1が 4回転する ように構成してある。
前記角速度変更機構 1 0は、 駆動回転体 6の入力軸 9の入力部 9 aを、 前 記減速機構 3 2の出力筒軸 3 6に揷通し、 前記ケース 7に対してギアケース 3 3をボルト 3 7にて脱着自在に固定することにより組み付けられている。 つまり、 前記出力筒軸 3 6をもって該角速度変更機構 1 0の出力部 1 1が構 成されている。
更に、 前記駆動回転体 6の入力軸 9の入力部 9 aと角速度変更機構 1 0の出 力筒軸 3 6とは、 キ一3 8を介して一体回転状態で連結されている。
また、 前記角速度変更機構 1 0の入力軸 3 4のうち、 ギアケース 3 3外に 突出する部位は、 該角速度変更機構 1 0の入力部 1 2に構成してあり、 この 入力部 1 2に前記駆動系 Dの出力部が一体回転自在に連結されている。
図 6の ( a ) の角速度変化曲線に示すように、 前記角速度変更機構 1 0は、 それの入力軸 3 4が一定の角速度で前記駆動系 Dにより駆動回転されている とき、 図 6の (b ) の角速度変化曲線に示すように、 中間軸 3 5の角速度は 非円形歯車機構 2 9によりほぼサイン曲線状に変化し、 前記減速機構 3 2の 小径ギア 3 1がこのほぼサイン曲線状の角速度に従って回転するように構成 されている。 また、 小径ギア 3 1が 4回転する間に大径ギア 3 0が 1回転す るように構成されている。 つまり、 図 6の (c ) の角速度変化曲線に示すよ うに、 大径ギア 3 0の角速度は、 該大径ギア 3 0が 1回転する間に 4周期で 変化するように構成されていて、 この大径ギア 3 0の角速度の変化が、 その まま角速度変更機構 1 0の出力筒軸 3 6を介して駆動回転体 6の入力軸 9に 伝達される。
従って、 前記大径ギア 3 0が 1回転する間における角速度の変化の 4周期 のうちの 1周期の間、 駆動回転体 6の部分ギア 4の歯部 4 aが従動回転体 3 のギア 2の歯部 2 aに嚙合して、 該従動回転体 3が 9 0度駆動回転し、 残り の 3周期の間、 部分ギア 4の歯部 4 aがギア 2の歯部 2 aから離脱して、 従 動回転体 3の回転が停止するように構成してある。
しかも、 図 6の (d ) の角速度変化曲線に示すように、 前記駆動回転体 6 の入力軸 9の入力部 9 aと、 前記角速度変更機構 1 0の出力筒軸 3 6とは、 該角速度変更機構 1 0の出力筒軸 3 6の角速度が最小となるとき、 駆動回転 体 6の部分ギア 4の歯部 4 aと従動回転体 3のギア 2の歯部 2 aとが嚙合開 始され、 次に前記出力筒軸 3 6の角速度が最小となるとき、 これら部分ギア 4の歯部 4 aとギア 2の歯部 2 aとの嚙合が終了するように組み付けられて いて、 部分ギア 4の歯部 4 a とギア 2の歯部 2 aとの嚙合開始時と嚙合終了 時に、 従動回転体 3の角速度が最小となるように構成してある。
上記の如く構成された間欠伝動機構によれば、 前記駆動系 Dからの出力に より角速度変更機構 1 0を介して駆動回転体 6が駆動回転すると、 上述した ように前記部分ギア 4の歯部 4 aが従動回転体 3のギア 2の歯部 2 aに嚙合 して 9 0度宛間欠駆動回転する。
前記従動回転体 3の間欠駆動回転時には、 図 4の (b ) に示すように、 前 記カム部 5の相対回転許容面 5 b側が回転部 1 3側に面して、 カム部 5と回 転部 1 3との相対回転が許容される。
その後、 部分ギア 4の歯部 4 aがギア 2の歯部 2 aから離脱し、 部分ギア 4がー回転して、 再び部分ギア 4の歯部 4 aとギア 2の歯部 2 a とが嚙合す るまでの間は、 従動回転体 3の回転が停止される。
前記従動回転体 3の停止時には、 図 4の (a ) と図 5の ( c ), ( d ) とに 示すように、 カム部 5の回転規制面 5 aが、 駆動回転体 6の非受動用凹部 1 の弧状面 1 aの円周方向長さの半分以上の長さに亘つて近接状態で相対向す るように構成されているので、 この間は、 カム部 5の回転規制面 5 aが非受 動用凹部 1の弧状面 1 aの円周方向長さの半分又はそれ以上の長さに亙って 近接位置されるとともに、 カム部 5の環状溝 2 5に保持され、 回転規制面 5 aから外部に露出する複数のボール 2 4が、 非受動用凹部 1の弧状面 1 a に形成されたガイ ド溝 2 6に線接触状態で嵌合されることとなり、 従動回転 体 3の正転方向及び逆転方向への遊転が規制される。
尚、 前記従動回転体 3の停止時において、 非受動用凹部 1の弧状面 1 aに 形成されているガイ ド溝 2 6に線接触状態で嵌合するボール 2 4は、 この接 当圧により自転並びに環状溝 2 5に沿って転動しながら、 該環状溝 2 5内を 循環移動するので、 非受動用凹部 1の弧状面 1 aとカム部 5の回転規制面 5 aとの重合面間には摩擦力が殆ど作用することがない。
次に図 7を利用して本発明の別実施形態について説明する。
上記の実施形態では、 前記駆動回転体 6の入力軸 9の入力部 9 aに、 前記 角速度変更機構 1 0を脱着自在に組み付けて実施したが、図 7に示すように、 前記駆動回転体 6の入力軸 9の入力部 9 aに、 電動モータや油圧モータ等の 駆動ァクチユエータを備えた駆動系 Dの出力部 (図示せず) を一体回転状態 で連結して実施してもよい。
その他の構成は上記の実施形態と同様に構成されている。
更に、 上記に説明された 2つの実施形態の変化として次のようなものを加 えても良い。
前記各実施形態では、 前記従動回転体 3の一回当りの間欠駆動角度は 9 0 度に設定して、 従動回転体 3の割出数を 4に構成したが、 これに限定される ものではなく、 駆動回転体 6の係合部 4としての部分ギアの歯部 4 aの数、 並びに、従動回転体 3の非受動用凹部 1の形成数を共に 更することにより、 例えば、 前記従動回転体 3の一回当りの間欠駆動角度を 1 2 0度に設定する とともに、 従動回転体 3の非受動用凹部 1の形成数を 3に設定して、 従動回 転体 3の割出数を 3に変更したり、 或いは、 前記従動回転体 3の一回当りの 間欠駆動角度を 6 0度に設定するとともに、 従動回転体 3の非受動用凹部 1 の形成数を 6に設定して、 従動回転体 3の割出数を 6に変更したりすること ができる。 尚、 前記好適実施形態では、 前記角速度変更機構 1 0の減速機構 3 2の增 速比も割出数に見合った増速比に変更する。
前記各実施形態では、 前記従動回転体 3の被係合部 2としてのギアのギア 径と、 前記駆動回転体 6の係合部 4としての部分ギアのギア径とを同一径に 構成したが、 前記従動回転体 3の被係合部 2としてのギアのギア径と、 前記 駆動回転体 6の係合部 4としての部分ギアのギア径とを異径に構成してもよ レ、。
前記従動回転体 3を構成する被係合部 2と回転部 1 3とを一体形成しても よい。
前記駆動回転体 6を構成する係合部 4とカム部 5の雌型カム部材 2 2とを 一体形成してもよい。
前記駆動回転体 6の係合部 4を、 周縁方向の 2箇所以上に所定ピッチで歯 部 4 aを形成してある部分ギアから構成してもよい。
前記従動回転体 3、 駆動回転体 6及び回転体としてのボール 2 4の材質と しては、 高炭素クロム軸受鋼鋼材 (S U J 2 ) に限定されるものではなく、 ステンレス鋼或いは硬質の合成樹脂等から形成してもよい。
前記好適実施形態において、 前記加工装置 Eでの割り出し加工の内容に応 じて、 前記角速度変更機構 1 0の非円形歯車機構 2 9を構成する楕円ギア 2 7, 2 8の大きさ及び形状を適宜変更することにより、 前記割り出し加工 の内容に適した角速度で従動回転体 3を間欠駆動回転することができる。

Claims

請 求 の 範 囲 '
1 . 入力軸の軸芯まわりで回転可能に支持される駆動回転体と、 前記入力軸 の軸芯とは平行である出力軸の軸芯まわりで回転可能に支持される従動回転 体とを備え、 前記従動回転体には、 弧状の凹部を形成する部材と被係合部と を設けるとともに、 前記駆動回転体には、 前記従動回転体の被係合部に係合 して、 前記従動回転体を所定角度で間欠駆動回転させる係合部と、 前記従動 回転体の停止時に、 前記凹部の弧状面に沿って相対移動する回転規制面を備 えたカム部とを設けてある間欠伝動機構であって、
前記駆動回転体の係合部を回転規制面に対して前記入力軸の軸芯方向に変 位して配置し、 従動回転体の被係合部を前記凹部を形成する部材に対して前 記出力軸の軸芯方向に変位して配置し、 前記従動回転体の被係合部を、 全周 に所定ピッチで歯部を形成してあるギアから構成し、 更に、 前記駆動回転体 の係合部を、 前記ギアに嚙合する歯部を備えた部分ギアから構成してある間 欠伝動機構。
2 . 前記駆動回転体の前記入力軸に、 この駆動回転体の係合部と前記従動回 転体の被係合部との係合開始時及び係合終了時の各々において、 前記従動回 転体の角速度が最小となるような角速度変更機構を組み付けてある請求項 1 に記載の間欠伝動機構。
3 . 前記駆動回転体の前記カム部には、 前記従動回転体の凹部の弧状面に接 当する複数の回転体を自転並びに循環転動自在に保持する環状溝を形成して ある請求項 1又は 2に記載の間欠伝動機構。
4 . 前記従動回転体の非受動用凹部の弧状面には、 前記回転体を受けるガイ ド溝が形成されている請求項 1に記載の間欠伝動機構。
5 . 前記カム部の周面のうち、 前記被係合部が係合部に係合した従動回転体 の間欠回転時に、 前記従動回転体との相対回転を許容する相対回転許容面側 においては、 前記環状溝に保持された回転体が外部に露出しないように前記 環状溝が構成されている請求項 3又は 4に記載の間欠伝動機構。
6 . 前記回転体がボールである請求項 3、 4又は 5に記載の間欠伝動機構。
7 . 前記係合部の部分ギヤの歯部は複数の歯を有する請求項 1に記載の間欠 伝動機構。
8 . 前記従動回転体の凹部を形成する部材は周方向に複数の凹部を形成して おり、前記被係合部と、 前記出力軸の軸芯方向に隣接して配置されている請求 項 1に記載の間欠伝動機構。
9 . 前記凹部を形成する部材は前記被係合部に対してボルトにより一体回転 するように固定されている請求項 1に記載の間欠伝動機構。
補正書の請求の範囲
[ 1 9 9 8年 1 2月 2 8日 (2 8 . 1 2 . 9 8 ) 国際事務局受理:出願当初の請求の範囲 1は補正された;出願当初の請求の範囲 2は取り下げられた;新しい請求の範囲 1 0が加 えられた;他の請求の範囲は変更なし。 ( 2頁) ]
1 . (補正後) 入力軸の軸芯まわりで回転可能に支持される駆動回転体と、 前 記入力軸の軸芯とは平行である出力軸の軸芯まわりで回転可能に支持される 従動回転体とを備え、 前記従動回転体には、 弧状の凹部を形成する部材と被 係合部とを設けるとともに、 前記駆動回転体には、 前記従動回転体の被係合 部に係合して、 前記従動回転体を所定角度で間欠駆動回転させる係合部と、 前記従動回転体の停止時に、 前記凹部の弧状面に沿って相対移動する回転規 制面を備えたカム部とを設けてある間欠伝動機構であって、
前記駆動回転体の係合部を回転規制面に対して前記入力軸の軸芯方向に変 位して配置し、 従動回転体の被係合部を前記凹部を形成する部材に対して前 記出力軸の軸芯方向に変位して配置し、 前記従動回転体の被係合部を、 全周 に所定ピッチで歯部を形成してあるギアから構成し、 更に、 前記駆動回転体 の係合部を、 前記ギアに嚙合する歯部を備えた部分ギアから構成してあり、 前記駆動回転体の前記入力軸に、 前記駆動回転体の係合部と前記従動回転 体の被係合部との係合開始時及び係合終了時の各々において、 前記駆動回転 体の角速度が最小となるような角速度変更機構を組み付けてある間欠伝動機 構。
2 . (削除)
3 . 前記駆動回転体の前記カム部には、 前記従動回転体の凹部の弧状面に 接当する複数の回転体を自転並びに循環転動自在に保持する環状溝を形成し てある請求項 1又は 2に記載の間欠伝動機構。
4 . 前記従動回転体の非受動用凹部の弧状面には、 前記回転体を受けるガ ィ ド溝が形成されている請求項 1 に記載の間欠伝動機構。
5 . 前記カム部の周面のうち、 前記被係合部が係合部に係合した従動回転 体の間欠回転時に、 前記従動回転体との相対回転を許容する相対回転許容面 側においては、 前記環状溝に保持された回転体が外部に露出しないように前 記環状溝が構成されている請求項 3又は 4に記載の間欠伝動機構。
6 . 前記回転体がボールである請求項 3 、 4又は 5に記載の間欠伝動機構。
捕正された用紙 (条約第 19条)
7 . 前記係合部の部分ギヤの歯部は複数の歯を有する請求項〗 に記載 間 欠伝動機構。
8 . 前記従動回転体の凹部を形成する部材は周方向に複数の凹部を形成し ており、前記被係合部と、 前記出力軸の軸芯方向に隣接して配置されている請 求項 1 に記載の間欠伝動機構。
9 . 前記凹部を形成する部材は前記被係合部に対してボル 卜により一体回 転するよ 0に固定されている請求項〗 に記載の間欠伝動機構
1 0 . (追加) 入力軸の軸芯まわりで回転可能に支持される駆動回転体と、 前 記入力軸の軸芯とは平行である出力軸の軸芯まわりで回転可能に支持される 従動回転体とを備え、 前記従動回転体には、 弧状の凹部を形成する部材と被 係合部とを設けると と もに、 前記駆動回転体には、 前記従動回転体の被係合 部に係合して、 前記従動回転体を所定角度で間欠駆動回転させる係合部と、 前記従動回転体の停止時に、 前記凹部の弧状面に沿って相対移動する回転規 制面を備えたカム部とを設けてある間欠伝動機構であって、
前記駆動回転体の係合部を回転規制面に対して前記入力軸の軸芯方向に変 位して配置し、 従動回転体の被係合部を前記凹部を形成する部材に対して前 記出力軸の軸芯方向に変位して配置し、 前記従動回転体の被係合部を、 全周 に所定ピッチで歯部を形成してあるギアから構成し、 更に、 前記駆動回転体 の係合部を、 前記ギアに嚙合する歯部を備えた部分ギアから構成してあり、 少なく とも前記駆動回転体の係合部と前記従動回転体の被係合部との係合 開始時における前記駆動回転体の角速度が、 係合開始時及び係合終了時の間 の一時点における前記駆動回転体の角速度より小となるよ うな角速度変更機 構を、 前記駆動回転体の前記入力軸に組み付けてある間欠伝動機構。
補正された用紙 (条約第 19条) 条約 1 9条に基づく説明書 ,
請求の範囲第 1項では、 『前記駆動回転体の前記入力軸に、 前記駆動回転体の係合部 と前記従動回転体の被係合部との係合開始時及び係合終了時の各々において、 前記駆動 回転体の角速度が最小となるような角速度変更機構を組み付けてある』 ことを限定いた しました。
引用例として挙げられた特開平 4一 3 0 0 4 4 5号 (以下、 引用例) では、 その図 5 に示される実施形態において、 『駆動回転体 (1 ) の駆動用歯面 (1 1 ) 力 時計方向 に基準ピッチ曲率が小さくなる非円形に形成され…図 6の Y区間に示すごとく、 被駆動 回転体 (2 ) の回転速度を不等速にできる』 構成が開示されております.:. すなわち、 引 用例では、 駆動回転体の角速度は一定であり、 駆動回転体の歯が、 被駆動回転体の角速 度を変えるためにピッチが変化する歯として構成されている装置が開示されております。 しかし、 この引用例のような構造であると、 駆動回転体と被駆動回転体の係合開始時 において、 衝突速度が大きく、 騒音などの問題が発生します。
一方、 本願の請求の範囲第 1項及び追加請求項] 0の構成では、 駆動回転体の速度が 特に係合開始時において小さくなるよう構成されているため、 『衝突エネルギーロスが 少ない分だけ、 騒音の少な L、状態で従動回転体を滑らかに駆動回転させることができ る』 という優れた特徴を備えるものであります。
尚、 『前記駆動回転体の角速度が最小となるような角速度変更機構』 は、 出願当初の 明細書の 1 2項 8行目〜 1 5行目で裏付けされております。
PCT/JP1998/003418 1997-08-01 1998-07-30 Mecanisme de transmission intermittent WO1999006741A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP98935303A EP0930451A4 (en) 1997-08-01 1998-07-30 INTERMITTENT TRANSMISSION MECHANISM
US09/402,945 US6234047B1 (en) 1997-08-01 1998-07-30 Intermittent transmission mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/207632 1997-08-01
JP20763297A JP3278382B2 (ja) 1997-08-01 1997-08-01 間欠伝動機構

Publications (1)

Publication Number Publication Date
WO1999006741A1 true WO1999006741A1 (fr) 1999-02-11

Family

ID=16543019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003418 WO1999006741A1 (fr) 1997-08-01 1998-07-30 Mecanisme de transmission intermittent

Country Status (4)

Country Link
US (1) US6234047B1 (ja)
EP (1) EP0930451A4 (ja)
JP (1) JP3278382B2 (ja)
WO (1) WO1999006741A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103807395A (zh) * 2014-01-10 2014-05-21 平湖英厚机械有限公司 一种无间隔交替运动的齿轮机构
TWI662266B (zh) * 2018-05-02 2019-06-11 國立中山大學 Automatic push sampling system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3728206B2 (ja) * 1999-03-23 2005-12-21 株式会社日進製作所 間欠伝動装置
JP2000337471A (ja) * 1999-05-20 2000-12-05 Sokan Shu ゼネバ歯車等の駆動側カム
GB2365944B (en) * 2000-08-14 2004-10-13 Llanelli Radiators Ltd Air distribution apparatus in vehicle air conditioning systems
DE102006040741A1 (de) * 2006-08-31 2008-03-06 Robert Bosch Gmbh Abtriebsschnittstelle
JP5372666B2 (ja) * 2009-08-31 2013-12-18 日立アプライアンス株式会社 ダンパ装置及びダンパ装置を備えた冷蔵庫
DE102014209939A1 (de) * 2014-05-26 2015-11-26 Schaeffler Technologies AG & Co. KG Getriebeanordnung mit Sperrfunktion
RU2017135222A (ru) * 2015-05-07 2019-04-08 Конинклейке Филипс Н.В. Пружинный насос для выдачи отдельных выбросов жидкости
CN108500386A (zh) * 2018-04-18 2018-09-07 芜湖天梦信息科技有限公司 一种间歇切料机
KR20230126326A (ko) * 2022-02-23 2023-08-30 정선모 인덱스 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529756U (ja) * 1978-08-18 1980-02-26
JPH0333255U (ja) * 1989-08-09 1991-04-02
JPH04300445A (ja) * 1991-03-27 1992-10-23 Sanyo Electric Co Ltd ゼネバ機構及び該ゼネバ機構を用いた磁気記録再生装置のテープ引出し装置
JPH0640507U (ja) 1992-11-04 1994-05-31 シ−クアン・チエン ゼネバ式ストップ装置の改良構造体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US660351A (en) * 1900-06-30 1900-10-23 Walter I Whitehurst Stop mechanism for spur-gearing.
DE2210701A1 (de) * 1972-03-06 1973-09-13 Kieninger & Obergfell Zahnschaltwerk mit zylinderverriegelung
DE69701756T2 (de) * 1996-02-19 2000-09-07 Hiromitsu Yamada Malteserkreuzgetriebe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529756U (ja) * 1978-08-18 1980-02-26
JPH0333255U (ja) * 1989-08-09 1991-04-02
JPH04300445A (ja) * 1991-03-27 1992-10-23 Sanyo Electric Co Ltd ゼネバ機構及び該ゼネバ機構を用いた磁気記録再生装置のテープ引出し装置
JPH0640507U (ja) 1992-11-04 1994-05-31 シ−クアン・チエン ゼネバ式ストップ装置の改良構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0930451A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103807395A (zh) * 2014-01-10 2014-05-21 平湖英厚机械有限公司 一种无间隔交替运动的齿轮机构
TWI662266B (zh) * 2018-05-02 2019-06-11 國立中山大學 Automatic push sampling system
US10605023B2 (en) 2018-05-02 2020-03-31 National Sun Yat-Sen University Automatic push corer system

Also Published As

Publication number Publication date
EP0930451A1 (en) 1999-07-21
JPH1151146A (ja) 1999-02-23
EP0930451A4 (en) 2000-03-01
US6234047B1 (en) 2001-05-22
JP3278382B2 (ja) 2002-04-30

Similar Documents

Publication Publication Date Title
EP0168942B1 (en) Lead screw and nut assembly
EP0790438B1 (en) Geneva drive mechanism
US20050160856A1 (en) Planetary differential screw type rotary/linear motion converter
WO1999006741A1 (fr) Mecanisme de transmission intermittent
US20150049975A1 (en) Speed-reduction transmission bearing
JP2010101454A (ja) 減速装置
JPS58152958A (ja) 動力伝動装置
EP1647728A1 (en) Tripod-type constant velocity joint
US20220316562A1 (en) Reducer
JP2008075840A (ja) 減速機
JPH0627532B2 (ja) 遊星歯車増減速機
US7195576B2 (en) Continuously variable transmission apparatus
JP2000152557A5 (ja)
JP3920398B2 (ja) 内接噛合遊星歯車構造
JPS60241551A (ja) 変換装置
EP2837849A1 (en) Wave gear mechanism
JP2000257675A (ja) 遊星歯車減速機およびその製造装置
US6270442B1 (en) Multi-function speed converter
US6652406B2 (en) Transmission
JP2788218B2 (ja) ゼネバ歯車機構
WO2020086278A1 (en) Rolling mill drive and associated gear spindle coupling
EP4249770A1 (en) Strain wave generator for harmonic reducer
JP4182593B2 (ja) トロイダル型無段変速機用入力側ディスクユニット
US11754163B1 (en) Strain wave generator for harmonic reducer
JP2002317865A (ja) ローラギヤカム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998935303

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998935303

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09402945

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 1998935303

Country of ref document: EP