WO1999004047A1 - Verfahren und anlage zur herstellung von 'leichtstahl' in form von strangguss unter gaseinschluss - Google Patents

Verfahren und anlage zur herstellung von 'leichtstahl' in form von strangguss unter gaseinschluss Download PDF

Info

Publication number
WO1999004047A1
WO1999004047A1 PCT/EP1998/004348 EP9804348W WO9904047A1 WO 1999004047 A1 WO1999004047 A1 WO 1999004047A1 EP 9804348 W EP9804348 W EP 9804348W WO 9904047 A1 WO9904047 A1 WO 9904047A1
Authority
WO
WIPO (PCT)
Prior art keywords
strand
gas
cavities
mold
continuous casting
Prior art date
Application number
PCT/EP1998/004348
Other languages
English (en)
French (fr)
Inventor
Emil Dengler
Original Assignee
Dipl.-Ing. Emil Dengler Unternehmensberatung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dipl.-Ing. Emil Dengler Unternehmensberatung filed Critical Dipl.-Ing. Emil Dengler Unternehmensberatung
Priority to AT98939634T priority Critical patent/ATE207131T1/de
Priority to EP98939634A priority patent/EP0998589B1/de
Priority to JP2000503252A priority patent/JP2001510096A/ja
Priority to DE59801803T priority patent/DE59801803D1/de
Priority to US09/462,741 priority patent/US6263953B1/en
Publication of WO1999004047A1 publication Critical patent/WO1999004047A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/003Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using inert gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores

Definitions

  • the invention relates to a continuous casting method for producing material profiles which have cavities, and a continuous casting device for carrying out such a method.
  • German patent application 38 14 030 AI relates to a foam steel as a structural dressing material. This is produced by gluing together metal spherical or troughed sheet metal, which then forms a honeycomb structure.
  • WO 86/06 431 and WO 88/04 586 describe methods which, although they allow good shaping for cavities in material profiles, are not particularly suitable for lightweight construction of load-bearing components.
  • WO 88/04 586 describes a method and a device for the continuous casting of metal strands from refractory metals with cross-sections close to the final dimensions according to the principle of communicating tubes.
  • the invention has for its object to provide a continuous casting process for the production of material profiles, in particular steel profiles, which have cavities, and a continuous casting device for performing such a method, the material weight of the profiles by introducing gas bubbles, which is preferred can be flexibly designed in terms of their position and extent and form cavities.
  • cavities can be positioned in material profiles as desired, because the gas bubbles are introduced into those material strand areas where the material has a doughy structure.
  • a doughy structure is understood to mean a state of the material lying between liquid melt and solidification, in which gas bubbles - possibly under high pressure - are still formed by means of nozzles or the like. let it be brought into the material. Therefore, the gas bubbles in the material strand can only move to a very limited extent, if at all, and should be avoided if a specific position and structure of the cavities is aimed for.
  • the gas bubbles can largely not leave the doughy material strand area in the direction of the liquid area, but rather, as intended, form a cavity which is filled with the gas is.
  • Metallic materials are preferably used as the material. det.
  • the gas is preferably introduced at several points within the material strand which lie on an isothermal surface. In this way, several cavities can be created simultaneously by the inclusion of gas bubbles.
  • a noble gas for example argon, is preferably used as the gas in order to avoid undesirable chemical reactions between the material and the gas which can result in a change in the material structure in the solidified state.
  • step c) the gas can be supplied continuously or in pulses.
  • both elongated, continuous cavities and cavities arranged one behind the other in the longitudinal direction of the material strand can be formed.
  • the structure of the cavities generated can be monitored by at least one ultrasound measuring device which is arranged in the region of the running material strand.
  • the outer skin of the strand of material is preferably reinforced by fibers.
  • the speed of the material strand is preferably greater than the speed of buoyancy of bubbles formed from the gas.
  • the introduced gas bubbles cannot escape upwards in the direction of the liquid material area.
  • the rate of buoyancy is in normal case negligible small.
  • the invention also relates to a continuous casting device for producing material profiles which have cavities
  • a storage container for liquid material which has a closable, bottom-side outlet opening; and a cooled mold for cooling liquid material emerging from the outlet opening as a strand, the mold being arranged below the outlet opening and substantially vertically; at least one gas pipe is provided for introducing gas, and - the gas pipe has an outlet opening which, depending on the material used, is arranged in the interior of the mold in an area in which the strand of material has a pasty structure due to the cooling by the mold .
  • This device ensures both a guiding of the material strand from top to bottom and an introduction of the gas bubbles in the area inside the mold in which material with the suitable, doughy structure is present.
  • a control device for example a controllable valve block, is preferably provided, with which the gas introduction into the material strand can be controlled in its amount, which depends on the gas pressure used, and / or in its shape, continuously or in pulse form.
  • Gas can be supplied via nozzles arranged at the outlet end of the gas pipes, the openings of which, depending on the desired cross-sectional shape for the cavities, can have, for example, a round, slit-shaped or rectangular cross-section.
  • bridges can be provided in the nozzle openings in order to hold the core of the material strand.
  • At least one ultrasound measuring device is preferably provided for monitoring the structure of the cavities of the running material strand.
  • Electrical signals of the ultrasound measuring device which reflect the structure of the cavities, can be fed to the control device, so that, depending on the measurement results of the ultrasound measuring device, the desired structure of the cavities can be generated.
  • larger voids can be formed by increasing the gas pressure in the cross section of the material strand or by expanding the gas pulse width in the strand direction, more extensive voids can be formed.
  • the method and a device adapted to the material to be processed can be used to produce profiles made of light metal, non-ferrous metal or plastic, the method and device being designed according to the requirements of the materials to be processed.
  • Figure 1 is a view of an embodiment of a continuous casting device, partially in section.
  • 2A and 2B are a cross-sectional and a longitudinal section view of a plate-shaped material profile
  • 3A and 3B are a cross-sectional and a longitudinal sectional view of a U-shaped material profile
  • FIGS. 4A and 4B are cross-sectional and longitudinal sectional views of a T-shaped material profile.
  • Figure 1 shows an embodiment of a continuous casting device, which is partially shown in section.
  • the position of a feed line 1 from a transport container is indicated by an arrow.
  • a storage container 2 is filled with liquid steel, for example, which is kept at a temperature by a heating device.
  • At the bottom of the storage container 2 there is a closable outlet opening designed as a funnel, which can be opened and closed by a regulated valve 3, level control by means of an ultrasonic sensor 17 being provided.
  • the reservoir 2 is surrounded by an electromagnetic agitator 4 so that the molten steel can be degassed and homogenized.
  • the melt is discharged into a mold 6 which is arranged vertically under the outlet opening of the storage container 2 and which is liquid-cooled.
  • the mold 6 is fastened to the stage 5 in vertically arranged slide elements.
  • melt can enter the mold area at about 1400 ° C, for example, and after cooling through the mold 6 can reach a temperature of about 800 ° C at which the melt becomes pasty. Regardless of the temperatures mentioned, however, as will be explained later, mainly on the area of the melt where it shows a pasty structure.
  • Tubes 7 made of a high temperature-resistant material, for example ceramic, are immersed in the melt and are connected to a valve block 14.
  • a cooling device is provided if necessary.
  • the gas is an inert gas, for example argon, which has no connection with the steel.
  • the gas is pressure-controlled and can be controlled via the valve block 14 so that each individual tube 7 can be opened and closed in time and, if necessary, different pressures can be set.
  • the gas pressure must be constantly controlled and regulated so that no steel can be pushed back into the gas lines.
  • the gas is supplied via openings in the tubes 7 in an area in which the melt is in the doughy state, preferably along or near an area of the same temperature, as is indicated by an isotherm I in FIG.
  • the gas bubbles 8 which are formed can thereby be positioned exactly and their expansion can be controlled, so that voids can be predetermined in the material strand.
  • the mold 6 is designed and guided by means of a vertical guide 12 so that vertical oscillation with a frequency of approximately 1 Hz is possible in order to prevent the melt from caking on the mold wall and on the gas pipes 7 and the gas bubbles 8 introduced better to be able to separate from each other.
  • a mounted, additional ultrasonic measuring device 15 enables an assessment of the bubble structure, whereby a water-cooled graphite mass can serve as a transmission medium. It is advantageous to arrange approx. 2 measuring devices at an angle of 90 ° to one another in order to be able to carry out a spatial assessment of the bubble structure generated.
  • the electrical output signal of the ultrasonic measuring device 15 can be used to control the valve block 14, for example the gas pressure set there and the gas pulse width used there, in order to generate the desired bubble and cavity structure.
  • an X-ray device can also be used to obtain information about the bubble structure.
  • the gas bubbles 8 can be positioned according to the position of the gas pipes 7 and their vertical and horizontal expansion and distribution over the cross section can be controlled. The latter can be accomplished, for example, via the shape of the openings of the gas pipes 7 in connection with a corresponding gas pressure control.
  • the falling and still externally cooled strand is taken over below the mold 6 by a transport device 11, the speed of which can be regulated so that an optimal process control is possible.
  • the strand When the strand has reached the horizontal plane, it can be divided and the separated sections can be used for
  • the sump 9 for any escaping is located below the system liquid material.
  • the possible cross-sectional shapes of the material profiles produced range from plate-like structure, rectangular shape, U-shape to double-T support structure, etc.
  • FIGS. 2A, 2B, 3A, 3B, 4A and 4B show the cross-sectional shapes as described above with the associated longitudinal sections, but the shape of the gas bubbles is variable.
  • the entire device is controlled by a process control so that continuous production is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Bei einem Stranggußverfahren besteht das Problem, Material-Profile, die Hohlräume aufweisen, in einem Guß herzustellen. Diese Aufgabe wird gelöst durch ein Stranggußverfahren mit den Schritten: a) Schmelzen des Materials und Bilden eines Strangs aus dem Material; b) Abkühlen oder Abkühlenlassen des Materialstrangs, so daß wenigstens ein Teil des Materialstrangs eine Temperatur aufweist, bei der eine teigige Struktur vorliegt; c) Einleiten von Gas in den Materialstrangteil teigiger Struktur zur Ausbildung der Hohlräume, wobei der Materialstrang von oben nach unten geführt wird; und d) Erstarren-Lassen des Materials. Außerdem wird eine Vorrichtung zur Durchführung des Verfahrens beschrieben.

Description

Verfahren und Anlage zur Herstellung von "Leichtstahl" in Form von Strangguß unter Gaseinschluß
Die Erfindung bezieht sich auf ein Stranggußverfahren zum Herstellen von Material-Profilen, die Hohlräume aufweisen, und eine Strangguß-Vorrichtung zur Durchführung eines solchen Verfahrens .
Gemäß dem Stand der Technik sind verschiedene Verfahren zur Herstellung poriger Metallschaumkörper, Wabenstrukturen aus Stahlteilen und Verfahren zum kontinuierlichen Gießen von Metallsträngen nach dem Prinzip der kommunizierenden Röhren, auch mit Gaszufuhr, aus folgenden Patent- bzw. Offenlegungs- schriften bekannt:
Die deutsche Offenlegungsschrift 38 14 030 AI betrifft einen Schaumstahl als Struktur-Verbandwerkstoff. Dieser wird durch Aufeinanderkleben von metallkugelförmigen, oder mit Mulden versehenen Feinblechen, die dann eine Wabenstruktur bilden, hergestellt.
Aus der deutschen Offenlegungsschrift 44 16 371 AI ist ein Verfahren zur Herstellung langer, poriger Metallschaumkörper auf Aluminiumbasis bekannt. Diese Metallschaumkörper erhöhen, eingefügt in Aluminium-Hohlprofile, deren Widerstands- moment gegen Biegung und Verdrehung. Die Metallschaumkorper werden aus Metallpulver und Treibmittel unter Erwärmung dieser Mischung auf mindestens die Schmelztemperatur des Metalles zu einem porösen Metallkörper aufgeschäumt.
Der Nachteil des Standes der Technik aus der DE 38 14 030 AI und der DE 44 16 371 AI besteht darin, daß die dort beschriebenen Verfahren zwar die Herstellung von Bauteilen aus mehreren vorbereiteten Teilen mit als Poren ausgebildeten Hohlräumen erlaubt. Eine Herstellung von Material-Profilen mit Hohlräumen aus einem Guß ist jedoch nicht möglich. In der WO 86/06 431 und der WO 88/04 586 werden Verfahren beschrieben, die zwar eine gute Formgebung für Hohlräume in Material-Profilen gestatten, jedoch für einen Leichtbau von tragenden Bauteilen nicht besonders geeignet sind. In der WO 88/04 586 werden ein Verfahren und eine Vorrichtung zum kontinuierlichen Gießen von Metallsträngen aus hochschmelzenden Metallen mit endabmessungsnahen Querschnitten nach dem Prinzip der kommunizierenden Röhren beschrieben.
Aus der deutschen Offenlegungsschrift 35 16 737 AI sind ein Verfahren und eine Vorrichtung zum Herstellen von mit Gasblasen als Hohlräume durchsetzten metallischen Werkstoffen in Form von Profilen bekannt, welche im Verhältnis zu ihrem Eigengewicht ein höheres Widerstandsmoment bei Biege-, Knick- und Verdrehbeanspruchungen aufweisen.
Das dort beschriebene Verfahren hat den Nachteil, daß die eingebrachten Gasblasen nicht positioniert werden können, da sie in einen nach oben geführten Materialstrang im noch flüssigen Zustand eingebracht werden und sich somit aufgrund ihrer Auftriebskraft zunächst in der Schmelze bewegen, bis diese erstarrt. Außerdem ist bei diesem Verfahren nur eine relativ geringe Verminderung des spezifischen Gewichtes des Ausgangsmaterials möglich.
Der Erfindung liegt die Aufgabe zugrunde, ein Stranggußverfahren zum Herstellen von Material-Profilen, insbesondere Stahl -Profilen, die Hohlräume aufweisen, und eine Strangguß- Vorrichtung zur Durchführung eines solchen Verfahrens zu schaffen, wobei das Materialgewicht der Profile durch Einbringung von Gasblasen, die bevorzugt in ihrer Lage und Ausdehnung flexibel gestaltet werden können und Hohlräume bilden, vermindert wird.
Diese Aufgabe wird gelöst durch ein Stranggußverfahren zum Herstellen von Material-Profilen, die Hohlräume aufweisen, mit den Schritten:
a) Schmelzen des Materials und Bilden eines Strangs aus dem Material; b) Abkühlen oder Abkühlenlassen des Materialstrangs, so daß wenigstens ein Teil des Materialstrangs eine Temperatur aufweist, bei der eine teigige Struktur vorliegt; c) Einleiten von Gas in den Materialstrangteil teigiger Struktur zur Ausbildung der Hohlräume, wobei der Materialstrang von oben nach unten geführt wird; und d) Erstarrenlassen des Materials.
Mit diesem Verfahren lassen sich Hohlräume in Material-Profilen wie gewünscht positionieren, denn die Gasblasen werden in solche Materialstrangbereiche eingeleitet, bei denen eine teigige Struktur des Materials vorliegt. Unter einer teigigen Struktur wird ein zwischen flüssiger Schmelze und Er- starren liegender Zustand des Materials verstanden, bei dem sich noch Gasblasen - gegebenenfalls unter hohem Druck - mittels Düsen oder dgl . in das Material einbringen lassen. Daher ist eine Eigenbewegung der Gasblasen im Materialstrang - wenn überhaupt - nur äußerst eingeschränkt möglich und sollte ganz unterbleiben, wenn eine bestimmte Position und Struktur der Hohlräume angestrebt wird.
Zudem wird durch die Führung des Materialstrangs von oben nach unten, entgegen der Auftriebsrichtung der Gasblasen im Materialstrang, erreicht, daß die Gasblasen den teigigen Materialstrangbereich weitestgehend nicht in Richtung auf den flüssigen Bereich verlassen können, sondern bestimmungsgemäß einen Hohlraum ausbilden, der mit dem Gas gefüllt ist.
Bevorzugt werden als Material metallische Werkstoffe verwen- det .
Vorzugsweise wird in Schritt c) das Gas an mehreren Stellen innerhalb des Materialstrangs eingeleitet, die auf einer Isothermenfläche liegen. Auf diese Weise können gleichzeitig mehrere Hohlräume durch Einschluß von Gasblasen erzeugt werden .
Bevorzugt wird in Schritt c) als Gas ein Edelgas, beispiels- weise Argon, verwendet, um zu vermeiden, daß unerwünschte chemische Reaktionen zwischen dem Material und dem Gas, die eine Änderung der MaterialStruktur im erstarrten Zustand nach sich ziehen können, stattfinden.
In Schritt c) kann das Gas kontinuierlich oder impulsförmig zugeführt werden. Somit lassen sich bei kontinuierlicher Bewegung des Materialstrangs entlang der Kokille sowohl langgestreckte, durchgehende Hohlräume als auch in Längsrichtung des Materialstrangs hintereinander angeordnete Hohlräume ausbilden.
Die Struktur der erzeugten Hohlräume kann durch mindestens ein Ultraschallmeßgerät überwacht werden, das im Bereich des ablaufenden Materialstrangs angeordnet ist.
Bevorzugt wird die Außenhaut des Materialstranges durch Fasern verstärkt.
Vorzugsweise ist in Schritt c) die Geschwindigkeit des Mate- rialstrangs größer als die Auftriebsgeschwindigkeit von aus dem Gas gebildeten Blasen. In diesem Fall können die eingeleiteten Gasblasen nicht nach oben, in Richtung auf den flüssigen Materialbereich entweichen. Aufgrund der teigigen Struktur des Materialteils, in den die Gasblasen eingebracht werden, ist jedoch die Auftriebsgeschwindigkeit im Normal- fall vernachlässigbar klein. Aufgrund ihrer Abhängigkeit von der Größe der Hohlräume kann sie in Einzelfällen jedoch bei sehr großen Hohlräumen von gewisser Bedeutung sein.
Gegenstand der Erfindung ist auch eine Strangguß-Vorrichtung zum Herstellen von Material-Profilen, die Hohlräume aufweisen, mit
einem Vorratsbehälter für flüssiges Material, der eine verschließbare, bodenseitige Auslaßöffnung aufweist; und einer gekühlten Kokille zum Abkühlen von aus der Auslaßöffnung als Strang austretendem, flüssigem Material, wobei die Kokille unterhalb der Auslaßöffnung und im wesentlichen senkrecht angeordnet ist; mindestens ein Gasrohr zum Einleiten von Gas vorgesehen ist, und - das Gasrohr eine Austrittsöffnung hat, die, abhängig von dem verwendeten Material, im Inneren der Kokille in einem Bereich angeordnet ist, in dem der Materialstrang aufgrund der Abkühlung durch die Kokille eine teigige Struktur hat.
Diese Vorrichtung gewährleistet sowohl eine Führung des Materialstranges von oben nach unten als auch eine Einleitung der Gasblasen in dem Bereich im Inneren der Kokille, in dem Material mit der geeigneten, teigigen Struktur vorliegt.
Bevorzugt ist eine Steuervorrichtung, beispielsweise ein steuerbarer Ventilblock, vorgesehen, mit der die Gaseinleitung in den Materialstrang in ihrem Betrag, der von dem verwendeten Gasdruck abhängt, und/oder ihrer Form, kontinu- ierlich oder impulsförmig, gesteuert werden kann. Die Zuführung von Gas kann über am Austrittsende der Gasrohre angeordnete Düsen erfolgen, deren Öffnungen, abhängig von der gewünschten Querschnittsform für die Hohlräume, beispielsweise einen runden, schlitzförmigen oder recht- eckigen Querschnitt haben können. Insbesondere bei rechteckigem Querschnitt können in den Düsenöffnungen Brücken vorgesehen sein, um den Kern des Materialstrangs festzuhalten.
Bevorzugt ist mindestens ein Ultraschallmeßgerät zur Überwachung der Struktur der Hohlräume des ablaufenden Material- Strangs vorgesehen.
Elektrische Signale der Ultraschallmeßgerätes, die die Struktur der Hohlräume wiedergeben, können der Steuervorrichtung zugeleitet werden, so daß, abhängig von den Meßergebnissen des Ultraschallmeßgerätes, die gewünschte Struktur der Hohlräume erzeugt werden kann. Beispielsweise können durch Erhöhung des Gasdrucks im Querschnitt des Material- Strangs größere Hohlräume oder durch Verlängerung der Gas- impulsbreite in Strangrichtung weiter ausgedehnte Hohlräume gebildet werden.
Das Verfahren und eine an das zu verarbeitende Material angepaßte Vorrichtung kann zur Herstellung von Profilen aus Leichtmetall, Buntmetall oder Kunststoff eingesetzt werden, wobei Verfahren und Vorrichtung gemäß den Erfordernissen der zu verarbeitenden Materialien gestaltet sind.
Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsformen unter Bezugnahme auf die Zeichnungen noch näher erläutert. Es zeigen:
Fig. 1 eine Ansicht einer Ausführungsform einer Strangguß- Vorrichtung, teilweise im Schnitt; Fig. 2A und 2B eine Querschnitt- und eine Längsschnit -Ansicht eines plattenförmigen Material -Profils ; Fig. 3A und 3B eine Querschnitt- und eine Längsschnitt -Ansicht eines U-förmigen Material-Profils; und Fig. 4A und 4B eine Querschnitt- und eine Längsschnit -Ansicht eines T-förmigen Material-Profils.
Die Figur 1 zeigt eine Ausführungsform einer Strangguß-Vorrichtung, welche zum Teil im Schnitt dargestellt ist. Die Position einer Zuleitung 1 aus einem Transportbehälter ist mit einem Pfeil bezeichnet. Ein Vorratsbehälter 2 ist bei- spielsweise mit flüssigem Stahl gefüllt, welcher durch eine Heizvorrichtung auf Temperatur gehalten wird. Am Boden des Vorratsbehälters 2 befindet sich eine verschließbare, als Trichter ausgebildete Auslaßöffnung, die durch ein geregeltes Ventil 3 geöffnet und verschlossen werden kann, wobei eine Niveauregelung mittels eines Ultraschallsensors 17 vorgesehen ist.
Der Vorratsbehälter 2 ist von einem elektromagnetischen Rührwerk 4 umgeben, so daß der flüssige Stahl entgast und homogenisiert werden kann. Die Schmelze wird in eine unter der Auslaßöffnung des Vorratsbehälters 2 senkrecht angeordnete Kokille 6 abgelassen, welche flüssigkeitsgekühlt ist. Die Kokille 6 ist in senkrecht angeordneten Schlittenelementen an der Bühne 5 befestigt.
Wenn Stahl als Material verwendet wird, kann dessen Schmelze beispielsweise bei etwa 1400 °C in den Kokillenbereich eintreten und nach Abkühlung durch die Kokille 6 eine Temperatur von etwa 800 °C erreichen, bei der die Schmelze teigig wird. Unabhängig von den genannten Temperaturen kommt es, wie später erläutert wird, jedoch hauptsächlich auf den Bereich der Schmelze an, bei dem diese eine teigige Struktur zeigt .
In die Schmelze werden Rohre 7 aus einem hochtemperatur- festen Material, beispielsweise Keramik, eingetaucht, die an einen Ventilblock 14 angeschlossen sind. Neben der Gaszufuhr 13 ist erforderlichenfalls eine Kühleinrichtung vorgesehen. Bei dem Gas handelt sich um ein inertes Gas, beispielsweise Argon, welches mit dem Stahl keine Verbindung eingeht. Das Gas wird druckgeregelt und kann über den Ventilblock 14 so gesteuert werden, daß jedes einzelne Rohr 7 zeitlich geöffnet und geschlossen werden kann und erforderlichenfalls verschiedene Drücke eingestellt werden können.
Der Gasdruck muß ständig so gesteuert und geregelt werden, daß in die Gasleitungen kein Stahl zurückgedrückt werden kann. Die Gaszufuhr erfolgt über Öffnungen der Rohre 7 in einem Bereich, in dem die Schmelze sich in teigigem Zustand befindet, vorzugsweise längs oder nahe eines Bereichs gleicher Temperatur, wie in Figur 1 durch eine Isotherme I gekennzeichnet ist.
Die sich bildenden Gasblasen 8 sind dadurch genau positio- nierbar und in ihrer Ausdehnung steuerbar, so daß in dem Materialstrang vorherbestimmbar Hohlräume entstehen.
Die Kokille 6 ist so ausgebildet und mittels einer Senkrechtführung 12 so geführt, daß eine vertikale Oszillation mit einer Frequenz von ca. 1 Hz möglich ist, um das Anbacken der Schmelze an der Kokillenwand und an den Gasrohren 7 zu verhindern und die eingebrachten Gasblasen 8 besser voneinander trennen zu können.
Ein angebautes, weiteres Ultraschallmeßgerät 15 ermöglicht eine Beurteilung der Blasenstruktur, wobei eine wassergekühlte Grafitmasse als Übertragungsmedium dienen kann. Vorteilhaft ist es, ca. 2 Meßgeräte im Winkel von 90° zueinander anzuordnen, um eine räumliche Beurteilung der erzeug- ten Blasenstruktur vornehmen zu können. Das elektrische Ausgangssignal des Ultraschallmeßgerätes 15 kann zur Steuerung des Ventilblocks 14, beispielsweise des dort eingestellten Gasdrucks und der dort verwendeten Gasimpulsbreite, verwendet werden, um die gewünschte Blasen- und Hohlraum- Struktur zu erzeugen.
Wahlweise kann zusätzlich ein Röntgengerät eingesetzt werden, um Information über die Blasenstruktur zu gewinnen.
Die Gasblasen 8 können nach Lage der Gasrohre 7 positioniert und in ihrer vertikalen und horizontalen Ausdehnung und Verteilung auf dem Querschnitt gesteuert werden. Letzeres kann beispielsweise über die Form der Öffnungen der Gasrohre 7 in Verbindung mit einer entsprechenden Gasdrucksteuerung bewerkstelligt werden.
Der abfallende und weiterhin von außen gekühlte Strang wird unterhalb der Kokille 6 durch eine Transporteinrichtung 11 übernommen, welche in ihrer Geschwindigkeit so geregelt werden kann, daß eine optimale Prozeßführung möglich ist. Dies bedeutet u.a., daß z.B. die Geschwindigkeit des Stranges größer ist als die Geschwindigkeit des Auftriebs der eingebrachten Gasblasen 8, sofern überhaupt eine solche Eigenbewegung in der teigigen Struktur des Materials möglich ist.
Wenn der Strang die horizontale Ebene erreicht hat, kann er geteilt werden, und die abgetrennten Abschnitte können zur
Weiterverarbeitung geführt werden. Unterhalb der Anlage befindet sich die Auffangwanne 9 für evtl. austretendes flüssiges Material .
Die möglichen Querschnittsformen der hergestellten Material- Profile reichen von plattenähnlicher Struktur, Rechteckform, U-Form bis zur Doppel-T-Trägerstruktur usw. Zusätzlich ist es möglich, vorzugsweise in der Außenhaut des Material-Profils eine Faserverstärkung einzubringen, um die Widerstandmomente gegen Biegung, Knickung, Verdrehung wesentlich zu erhöhen, wobei die Fasern von einer Faserverstärkungs-Vor- richtung 16 in Form von Rollen, welche entsprechend über den Umfang verteilt sind, abgespult werden. Eine Vorspannung der Fasern in gewissen Bereichen, welche durch die Verwendungsweise des Material-Profils zweckmäßig erscheint, ist ebenfalls möglich.
Die Figuren 2A, 2B, 3A, 3B, 4A und 4B zeigen die Querschnittsformen, wie sie oben beschrieben sind, mit den zugehörigen Längsschnitten, wobei jedoch die Form der Gas- blasen variabel ist.
Die gesamte Vorrichtung wird durch eine Prozeßsteuerung so geregelt, daß eine kontinuierliche Produktion möglich ist.

Claims

Ansprüche
1. Stranggußverfahren zum Herstellen von Material-Profi- len, die Hohlräume aufweisen, mit den Schritten:
a) Schmelzen des Materials und Bilden eines Strangs aus dem Material; b) Abkühlen oder Abkühlenlassen des Materialstrangs, so daß wenigstens ein Teil des Materialstrangs eine
Temperatur aufweist, bei der eine teigige Struktur vorliegt; c) Einleiten von Gas in den Materialstrangteil teigiger Struktur zur Ausbildung der Hohlräume, wobei der Materialstrang von oben nach unten geführt wird; und d) Erstarrenlassen des Materials.
2. Verfahren nach Anspruch 1, bei dem als Material metallische Werkstoffe verwendet werden.
3. Verfahren nach einem der Ansprüche 1 oder 2 , bei dem in Schritt c) das Gas an einer oder mehreren Stellen innerhalb des Materialstrangs eingeleitet wird.
4. Verfahren nach Anspruch 3, bei dem, wenn das Gas in Schritt c) an mehreren Stellen innerhalb des Material - Stranges eingeleitet wird, diese nahe oder auf einer Isothermenfläche liegen.
5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem in Schritt c) als Gas ein Edelgas, beispielsweise Argon, verwendet wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem in Schritt c) das Gas kontinuierlich oder impulsförmig zugeführt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem die Struktur der erzeugten Hohlräume durch mindestens ein Ultraschallmeßgerät (15) überwacht wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem die Außenhaut des Materialstranges durch Fasern (16) verstärkt wird.
9. Strangguß-Vorrichtung zum Herstellen von Material-Profilen, die Hohlräume aufweisen, mit
einem Vorratsbehälter (2) für flüssiges Material, der eine verschließbare, bodenseitige Auslaßöffnung aufweist; und einer gekühlten Kokille (6) zum Abkühlen von aus der Auslaßöffnung als Strang austretendem, flüssigem Material, dadurch gekennzeichnet, daß die Kokille (6) unterhalb der Auslaßöffnung und im wesentlichen senkrecht angeordnet ist; mindestens ein Gasrohr (7) zum Einleiten von Gas vorgesehen ist, und - das Gasrohr (7) eine Austrittsöffnung hat, die, abhängig von dem verwendeten Material, im Inneren der Kokille (6) in einem Bereich angeordnet ist, in dem der Materialstrang aufgrund der Abkühlung durch die Kokille (6) eine teigige Struktur hat.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß eine Steuervorrichtung (14) vorgesehen ist, mit der die Gaseinleitung in den Materialstrang in ihrem Betrag und/oder ihrer Form, kontinuierlich oder impulsförmig, gesteuert werden kann.
11. Vorrichtung nach /Anspruch 9 oder 10, dadurch gekennzeichnet, daß mindestens ein Ultraschallmeßgerät (15) zur Überwachung der Struktur der Hohlräume des ablaufenden Materialstrangs (10) vorgesehen ist.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß Signale der Ultraschallmeßgerätes (15) , die die Struktur der Hohlräume wiedergeben, der Steuervorrichtung (14) zugeleitet werden.
PCT/EP1998/004348 1997-07-14 1998-07-13 Verfahren und anlage zur herstellung von 'leichtstahl' in form von strangguss unter gaseinschluss WO1999004047A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT98939634T ATE207131T1 (de) 1997-07-14 1998-07-13 VERFAHREN UND ANLAGE ZUR HERSTELLUNG VON ßLEICHTSTAHLß IN FORM VON STRANGGUSS UNTER GASEINSCHLUSS
EP98939634A EP0998589B1 (de) 1997-07-14 1998-07-13 Verfahren und anlage zur herstellung von "leichtstahl" in form von strangguss unter gaseinschluss
JP2000503252A JP2001510096A (ja) 1997-07-14 1998-07-13 ガス混入を伴う連続的鋳造で「軽鋼」を生産する方法及び設備
DE59801803T DE59801803D1 (de) 1997-07-14 1998-07-13 Verfahren und anlage zur herstellung von "leichtstahl" in form von strangguss unter gaseinschluss
US09/462,741 US6263953B1 (en) 1997-07-14 1998-07-13 Method and installation for producing “light steel” by continuous casting with gas inclusion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19730084.7 1997-07-14
DE19730084 1997-07-14

Publications (1)

Publication Number Publication Date
WO1999004047A1 true WO1999004047A1 (de) 1999-01-28

Family

ID=7835633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/004348 WO1999004047A1 (de) 1997-07-14 1998-07-13 Verfahren und anlage zur herstellung von 'leichtstahl' in form von strangguss unter gaseinschluss

Country Status (6)

Country Link
US (1) US6263953B1 (de)
EP (1) EP0998589B1 (de)
JP (1) JP2001510096A (de)
AT (1) ATE207131T1 (de)
DE (1) DE59801803D1 (de)
WO (1) WO1999004047A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682174B2 (en) * 1998-03-25 2004-01-27 Silverbrook Research Pty Ltd Ink jet nozzle arrangement configuration
TW589386B (en) * 1999-07-09 2004-06-01 Hideo Nakajima Method for producing porous metal bodies
DE102006013557B4 (de) * 2005-03-30 2015-09-24 Alstom Technology Ltd. Rotor für eine Dampfturbine
US7594530B1 (en) 2007-11-19 2009-09-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Orbital foamed material extruder
US7807097B1 (en) 2008-05-19 2010-10-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Orbital fabrication of aluminum foam and apparatus therefore
CN106363150A (zh) * 2016-11-22 2017-02-01 中冶连铸技术工程有限责任公司 一种侧移式连铸坯在线定尺称重装置
CN114505457B (zh) * 2020-11-16 2023-08-18 鞍钢股份有限公司 一种泡沫钢的水平连铸系统及泡沫钢制备工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2194506A1 (de) * 1972-07-27 1974-03-01 Concast Ag
US3941182A (en) * 1971-10-29 1976-03-02 Johan Bjorksten Continuous process for preparing unidirectionally reinforced metal foam
DE3516737A1 (de) * 1985-05-09 1986-11-13 Hoesch Stahl AG, 4600 Dortmund Verfahren und anlage zum herstellen von mit gasblasen durchsetzten metallischen werkstoffen in form von profilen
WO1992021457A1 (en) * 1991-05-31 1992-12-10 Alcan International Limited Process and apparatus for producing shaped slabs of particle stabilized foamed metal
EP0544291A1 (de) * 1991-11-27 1993-06-02 PANTEC PANELTECHNIK GmbH Verfahren und Vorrichtung zur Herstellung eines Metallschaums

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699057A (en) * 1980-01-11 1981-08-10 Nisshin Steel Co Ltd Manufacture of continuously casting ingot superior in cleaning ability
US4898034A (en) * 1988-08-23 1990-02-06 The United States Of America As Represented By The Department Of Energy High temperature ultrasonic testing of materials for internal flaws

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941182A (en) * 1971-10-29 1976-03-02 Johan Bjorksten Continuous process for preparing unidirectionally reinforced metal foam
FR2194506A1 (de) * 1972-07-27 1974-03-01 Concast Ag
DE3516737A1 (de) * 1985-05-09 1986-11-13 Hoesch Stahl AG, 4600 Dortmund Verfahren und anlage zum herstellen von mit gasblasen durchsetzten metallischen werkstoffen in form von profilen
WO1992021457A1 (en) * 1991-05-31 1992-12-10 Alcan International Limited Process and apparatus for producing shaped slabs of particle stabilized foamed metal
EP0544291A1 (de) * 1991-11-27 1993-06-02 PANTEC PANELTECHNIK GmbH Verfahren und Vorrichtung zur Herstellung eines Metallschaums

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A.N. SMIRNOV: "Pulsative treatment for the liquid phase of ingots", METALLURGIST, vol. 41, no. 3, March 1977 (1977-03-01), pages 22 - 24, XP000723165 *

Also Published As

Publication number Publication date
EP0998589A1 (de) 2000-05-10
US6263953B1 (en) 2001-07-24
ATE207131T1 (de) 2001-11-15
DE59801803D1 (de) 2001-11-22
JP2001510096A (ja) 2001-07-31
EP0998589B1 (de) 2001-10-17

Similar Documents

Publication Publication Date Title
DE69212157T2 (de) Verfahren und vorrichtung zum herstellen profilierter platten aus teilchenstabilisiertem metallschaum
AT408076B (de) Verfahren zur herstellung von schaummetall- bzw. schaummetall/metall-verbund-formkörpern, anlage zu deren herstellung und deren verwendung
EP1046444B1 (de) Druckgiessverfahren
CH648500A5 (de) Verfahren und vorrichtung zum stranggiessen von metall in einem geschlossenen eingiesssystem.
EP0998589B1 (de) Verfahren und anlage zur herstellung von "leichtstahl" in form von strangguss unter gaseinschluss
DE3146417C2 (de)
DE69507375T2 (de) Metallbandgiesser
CH665788A5 (de) Vorrichtung zur kontinuierlichen herstellung eines laenglichen metallgegenstands.
AT398053B (de) Verfahren und rohrverbindungsstück zur kontinuierlichen herstellung umschäumter, thermisch isolierter leitungsrohre
WO1999001390B1 (de) Verfahren und vorrichtungen zur herstellung von glasfolien sowie daraus hergestellten verbundkörpern
DE4400693C2 (de) Verfahren zur Herstellung geschäumter Aluminiumprodukte
DE19542180C1 (de) Verfahren und Vorrichtung zum Führen von Strängen einer Stranggießanlage
DE1952753C3 (de) Verfahren zum Herstellen eines langgestreckten Schaumstofformlings mit einer ungeschäumten Außenschicht und einem geschäumten Kern
EP0968778A1 (de) Vorrichtung und Verfahren zum Stranggiessen von Werkstücken mit innerem Hohlraum
DE4006842A1 (de) Bandgiessanlage mit oszillierender durchlaufkokille
DE19710887C2 (de) Verwendung einer Kokille zum Herstellen von Barren aus Leichtmetall oder einer Leichtmetallegierung, insbesondere aus Magnesium oder einer Magnesiumlegierung
DE2321064A1 (de) Verfahren und vorrichtung zum giessen metallischer rohre
EP0295270A1 (de) Verfahren und vorrichtung zum giessen dünner bänder oder folien aus einer schmelze
DE2013345C3 (de) Von einem Extruder über ein Düsenrohr in Umlaufrichtung gespeiste Spritzgießeinrichtung
DE1704452B2 (de) Verfahren und Einrichtung zum Herstellen von Zellkunststoff-Pufferkörpern, insbesondere für Puffer von Kranen oder Eisenbahnwagen
DE3346391C2 (de) Stranggießverfahren und Vorrichtung zum Herstellen von Mehrschichtwerkstoffen
DE2903245B2 (de) Verfahren und Vorichtung zum Ändern der Breite eines Stranges beim Stranggießen
DE2024747C3 (de) Verfahren zum halbkontinuierllchen Stranggießen, insbesondere von Stahl, und Vorrichtung zur Durchführung des Verfahrens *
DE10205003B4 (de) Vorrichtung zum Spritzgießen von geschäumten Formteilen
DE3032789A1 (de) Verfahren zum kombinierten horizontalen giessen und walzen von baendern und profilen aus verschiedenen metallen zum verbundwerk

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998939634

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09462741

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998939634

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998939634

Country of ref document: EP