Verfahren und Anlage zur Herstellung von "Leichtstahl" in Form von Strangguß unter Gaseinschluß
Die Erfindung bezieht sich auf ein Stranggußverfahren zum Herstellen von Material-Profilen, die Hohlräume aufweisen, und eine Strangguß-Vorrichtung zur Durchführung eines solchen Verfahrens .
Gemäß dem Stand der Technik sind verschiedene Verfahren zur Herstellung poriger Metallschaumkörper, Wabenstrukturen aus Stahlteilen und Verfahren zum kontinuierlichen Gießen von Metallsträngen nach dem Prinzip der kommunizierenden Röhren, auch mit Gaszufuhr, aus folgenden Patent- bzw. Offenlegungs- schriften bekannt:
Die deutsche Offenlegungsschrift 38 14 030 AI betrifft einen Schaumstahl als Struktur-Verbandwerkstoff. Dieser wird durch Aufeinanderkleben von metallkugelförmigen, oder mit Mulden versehenen Feinblechen, die dann eine Wabenstruktur bilden, hergestellt.
Aus der deutschen Offenlegungsschrift 44 16 371 AI ist ein Verfahren zur Herstellung langer, poriger Metallschaumkörper auf Aluminiumbasis bekannt. Diese Metallschaumkörper erhöhen, eingefügt in Aluminium-Hohlprofile, deren Widerstands- moment gegen Biegung und Verdrehung. Die Metallschaumkorper werden aus Metallpulver und Treibmittel unter Erwärmung dieser Mischung auf mindestens die Schmelztemperatur des Metalles zu einem porösen Metallkörper aufgeschäumt.
Der Nachteil des Standes der Technik aus der DE 38 14 030 AI und der DE 44 16 371 AI besteht darin, daß die dort beschriebenen Verfahren zwar die Herstellung von Bauteilen aus mehreren vorbereiteten Teilen mit als Poren ausgebildeten Hohlräumen erlaubt. Eine Herstellung von Material-Profilen mit Hohlräumen aus einem Guß ist jedoch nicht möglich.
In der WO 86/06 431 und der WO 88/04 586 werden Verfahren beschrieben, die zwar eine gute Formgebung für Hohlräume in Material-Profilen gestatten, jedoch für einen Leichtbau von tragenden Bauteilen nicht besonders geeignet sind. In der WO 88/04 586 werden ein Verfahren und eine Vorrichtung zum kontinuierlichen Gießen von Metallsträngen aus hochschmelzenden Metallen mit endabmessungsnahen Querschnitten nach dem Prinzip der kommunizierenden Röhren beschrieben.
Aus der deutschen Offenlegungsschrift 35 16 737 AI sind ein Verfahren und eine Vorrichtung zum Herstellen von mit Gasblasen als Hohlräume durchsetzten metallischen Werkstoffen in Form von Profilen bekannt, welche im Verhältnis zu ihrem Eigengewicht ein höheres Widerstandsmoment bei Biege-, Knick- und Verdrehbeanspruchungen aufweisen.
Das dort beschriebene Verfahren hat den Nachteil, daß die eingebrachten Gasblasen nicht positioniert werden können, da sie in einen nach oben geführten Materialstrang im noch flüssigen Zustand eingebracht werden und sich somit aufgrund ihrer Auftriebskraft zunächst in der Schmelze bewegen, bis diese erstarrt. Außerdem ist bei diesem Verfahren nur eine relativ geringe Verminderung des spezifischen Gewichtes des Ausgangsmaterials möglich.
Der Erfindung liegt die Aufgabe zugrunde, ein Stranggußverfahren zum Herstellen von Material-Profilen, insbesondere Stahl -Profilen, die Hohlräume aufweisen, und eine Strangguß- Vorrichtung zur Durchführung eines solchen Verfahrens zu schaffen, wobei das Materialgewicht der Profile durch Einbringung von Gasblasen, die bevorzugt in ihrer Lage und Ausdehnung flexibel gestaltet werden können und Hohlräume bilden, vermindert wird.
Diese Aufgabe wird gelöst durch ein Stranggußverfahren zum
Herstellen von Material-Profilen, die Hohlräume aufweisen, mit den Schritten:
a) Schmelzen des Materials und Bilden eines Strangs aus dem Material; b) Abkühlen oder Abkühlenlassen des Materialstrangs, so daß wenigstens ein Teil des Materialstrangs eine Temperatur aufweist, bei der eine teigige Struktur vorliegt; c) Einleiten von Gas in den Materialstrangteil teigiger Struktur zur Ausbildung der Hohlräume, wobei der Materialstrang von oben nach unten geführt wird; und d) Erstarrenlassen des Materials.
Mit diesem Verfahren lassen sich Hohlräume in Material-Profilen wie gewünscht positionieren, denn die Gasblasen werden in solche Materialstrangbereiche eingeleitet, bei denen eine teigige Struktur des Materials vorliegt. Unter einer teigigen Struktur wird ein zwischen flüssiger Schmelze und Er- starren liegender Zustand des Materials verstanden, bei dem sich noch Gasblasen - gegebenenfalls unter hohem Druck - mittels Düsen oder dgl . in das Material einbringen lassen. Daher ist eine Eigenbewegung der Gasblasen im Materialstrang - wenn überhaupt - nur äußerst eingeschränkt möglich und sollte ganz unterbleiben, wenn eine bestimmte Position und Struktur der Hohlräume angestrebt wird.
Zudem wird durch die Führung des Materialstrangs von oben nach unten, entgegen der Auftriebsrichtung der Gasblasen im Materialstrang, erreicht, daß die Gasblasen den teigigen Materialstrangbereich weitestgehend nicht in Richtung auf den flüssigen Bereich verlassen können, sondern bestimmungsgemäß einen Hohlraum ausbilden, der mit dem Gas gefüllt ist.
Bevorzugt werden als Material metallische Werkstoffe verwen-
det .
Vorzugsweise wird in Schritt c) das Gas an mehreren Stellen innerhalb des Materialstrangs eingeleitet, die auf einer Isothermenfläche liegen. Auf diese Weise können gleichzeitig mehrere Hohlräume durch Einschluß von Gasblasen erzeugt werden .
Bevorzugt wird in Schritt c) als Gas ein Edelgas, beispiels- weise Argon, verwendet, um zu vermeiden, daß unerwünschte chemische Reaktionen zwischen dem Material und dem Gas, die eine Änderung der MaterialStruktur im erstarrten Zustand nach sich ziehen können, stattfinden.
In Schritt c) kann das Gas kontinuierlich oder impulsförmig zugeführt werden. Somit lassen sich bei kontinuierlicher Bewegung des Materialstrangs entlang der Kokille sowohl langgestreckte, durchgehende Hohlräume als auch in Längsrichtung des Materialstrangs hintereinander angeordnete Hohlräume ausbilden.
Die Struktur der erzeugten Hohlräume kann durch mindestens ein Ultraschallmeßgerät überwacht werden, das im Bereich des ablaufenden Materialstrangs angeordnet ist.
Bevorzugt wird die Außenhaut des Materialstranges durch Fasern verstärkt.
Vorzugsweise ist in Schritt c) die Geschwindigkeit des Mate- rialstrangs größer als die Auftriebsgeschwindigkeit von aus dem Gas gebildeten Blasen. In diesem Fall können die eingeleiteten Gasblasen nicht nach oben, in Richtung auf den flüssigen Materialbereich entweichen. Aufgrund der teigigen Struktur des Materialteils, in den die Gasblasen eingebracht werden, ist jedoch die Auftriebsgeschwindigkeit im Normal-
fall vernachlässigbar klein. Aufgrund ihrer Abhängigkeit von der Größe der Hohlräume kann sie in Einzelfällen jedoch bei sehr großen Hohlräumen von gewisser Bedeutung sein.
Gegenstand der Erfindung ist auch eine Strangguß-Vorrichtung zum Herstellen von Material-Profilen, die Hohlräume aufweisen, mit
einem Vorratsbehälter für flüssiges Material, der eine verschließbare, bodenseitige Auslaßöffnung aufweist; und einer gekühlten Kokille zum Abkühlen von aus der Auslaßöffnung als Strang austretendem, flüssigem Material, wobei die Kokille unterhalb der Auslaßöffnung und im wesentlichen senkrecht angeordnet ist; mindestens ein Gasrohr zum Einleiten von Gas vorgesehen ist, und - das Gasrohr eine Austrittsöffnung hat, die, abhängig von dem verwendeten Material, im Inneren der Kokille in einem Bereich angeordnet ist, in dem der Materialstrang aufgrund der Abkühlung durch die Kokille eine teigige Struktur hat.
Diese Vorrichtung gewährleistet sowohl eine Führung des Materialstranges von oben nach unten als auch eine Einleitung der Gasblasen in dem Bereich im Inneren der Kokille, in dem Material mit der geeigneten, teigigen Struktur vorliegt.
Bevorzugt ist eine Steuervorrichtung, beispielsweise ein steuerbarer Ventilblock, vorgesehen, mit der die Gaseinleitung in den Materialstrang in ihrem Betrag, der von dem verwendeten Gasdruck abhängt, und/oder ihrer Form, kontinu- ierlich oder impulsförmig, gesteuert werden kann.
Die Zuführung von Gas kann über am Austrittsende der Gasrohre angeordnete Düsen erfolgen, deren Öffnungen, abhängig von der gewünschten Querschnittsform für die Hohlräume, beispielsweise einen runden, schlitzförmigen oder recht- eckigen Querschnitt haben können. Insbesondere bei rechteckigem Querschnitt können in den Düsenöffnungen Brücken vorgesehen sein, um den Kern des Materialstrangs festzuhalten.
Bevorzugt ist mindestens ein Ultraschallmeßgerät zur Überwachung der Struktur der Hohlräume des ablaufenden Material- Strangs vorgesehen.
Elektrische Signale der Ultraschallmeßgerätes, die die Struktur der Hohlräume wiedergeben, können der Steuervorrichtung zugeleitet werden, so daß, abhängig von den Meßergebnissen des Ultraschallmeßgerätes, die gewünschte Struktur der Hohlräume erzeugt werden kann. Beispielsweise können durch Erhöhung des Gasdrucks im Querschnitt des Material- Strangs größere Hohlräume oder durch Verlängerung der Gas- impulsbreite in Strangrichtung weiter ausgedehnte Hohlräume gebildet werden.
Das Verfahren und eine an das zu verarbeitende Material angepaßte Vorrichtung kann zur Herstellung von Profilen aus Leichtmetall, Buntmetall oder Kunststoff eingesetzt werden, wobei Verfahren und Vorrichtung gemäß den Erfordernissen der zu verarbeitenden Materialien gestaltet sind.
Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsformen unter Bezugnahme auf die Zeichnungen noch näher erläutert. Es zeigen:
Fig. 1 eine Ansicht einer Ausführungsform einer Strangguß- Vorrichtung, teilweise im Schnitt;
Fig. 2A und 2B eine Querschnitt- und eine Längsschnit -Ansicht eines plattenförmigen Material -Profils ; Fig. 3A und 3B eine Querschnitt- und eine Längsschnitt -Ansicht eines U-förmigen Material-Profils; und Fig. 4A und 4B eine Querschnitt- und eine Längsschnit -Ansicht eines T-förmigen Material-Profils.
Die Figur 1 zeigt eine Ausführungsform einer Strangguß-Vorrichtung, welche zum Teil im Schnitt dargestellt ist. Die Position einer Zuleitung 1 aus einem Transportbehälter ist mit einem Pfeil bezeichnet. Ein Vorratsbehälter 2 ist bei- spielsweise mit flüssigem Stahl gefüllt, welcher durch eine Heizvorrichtung auf Temperatur gehalten wird. Am Boden des Vorratsbehälters 2 befindet sich eine verschließbare, als Trichter ausgebildete Auslaßöffnung, die durch ein geregeltes Ventil 3 geöffnet und verschlossen werden kann, wobei eine Niveauregelung mittels eines Ultraschallsensors 17 vorgesehen ist.
Der Vorratsbehälter 2 ist von einem elektromagnetischen Rührwerk 4 umgeben, so daß der flüssige Stahl entgast und homogenisiert werden kann. Die Schmelze wird in eine unter der Auslaßöffnung des Vorratsbehälters 2 senkrecht angeordnete Kokille 6 abgelassen, welche flüssigkeitsgekühlt ist. Die Kokille 6 ist in senkrecht angeordneten Schlittenelementen an der Bühne 5 befestigt.
Wenn Stahl als Material verwendet wird, kann dessen Schmelze beispielsweise bei etwa 1400 °C in den Kokillenbereich eintreten und nach Abkühlung durch die Kokille 6 eine Temperatur von etwa 800 °C erreichen, bei der die Schmelze teigig wird. Unabhängig von den genannten Temperaturen kommt es,
wie später erläutert wird, jedoch hauptsächlich auf den Bereich der Schmelze an, bei dem diese eine teigige Struktur zeigt .
In die Schmelze werden Rohre 7 aus einem hochtemperatur- festen Material, beispielsweise Keramik, eingetaucht, die an einen Ventilblock 14 angeschlossen sind. Neben der Gaszufuhr 13 ist erforderlichenfalls eine Kühleinrichtung vorgesehen. Bei dem Gas handelt sich um ein inertes Gas, beispielsweise Argon, welches mit dem Stahl keine Verbindung eingeht. Das Gas wird druckgeregelt und kann über den Ventilblock 14 so gesteuert werden, daß jedes einzelne Rohr 7 zeitlich geöffnet und geschlossen werden kann und erforderlichenfalls verschiedene Drücke eingestellt werden können.
Der Gasdruck muß ständig so gesteuert und geregelt werden, daß in die Gasleitungen kein Stahl zurückgedrückt werden kann. Die Gaszufuhr erfolgt über Öffnungen der Rohre 7 in einem Bereich, in dem die Schmelze sich in teigigem Zustand befindet, vorzugsweise längs oder nahe eines Bereichs gleicher Temperatur, wie in Figur 1 durch eine Isotherme I gekennzeichnet ist.
Die sich bildenden Gasblasen 8 sind dadurch genau positio- nierbar und in ihrer Ausdehnung steuerbar, so daß in dem Materialstrang vorherbestimmbar Hohlräume entstehen.
Die Kokille 6 ist so ausgebildet und mittels einer Senkrechtführung 12 so geführt, daß eine vertikale Oszillation mit einer Frequenz von ca. 1 Hz möglich ist, um das Anbacken der Schmelze an der Kokillenwand und an den Gasrohren 7 zu verhindern und die eingebrachten Gasblasen 8 besser voneinander trennen zu können.
Ein angebautes, weiteres Ultraschallmeßgerät 15 ermöglicht
eine Beurteilung der Blasenstruktur, wobei eine wassergekühlte Grafitmasse als Übertragungsmedium dienen kann. Vorteilhaft ist es, ca. 2 Meßgeräte im Winkel von 90° zueinander anzuordnen, um eine räumliche Beurteilung der erzeug- ten Blasenstruktur vornehmen zu können. Das elektrische Ausgangssignal des Ultraschallmeßgerätes 15 kann zur Steuerung des Ventilblocks 14, beispielsweise des dort eingestellten Gasdrucks und der dort verwendeten Gasimpulsbreite, verwendet werden, um die gewünschte Blasen- und Hohlraum- Struktur zu erzeugen.
Wahlweise kann zusätzlich ein Röntgengerät eingesetzt werden, um Information über die Blasenstruktur zu gewinnen.
Die Gasblasen 8 können nach Lage der Gasrohre 7 positioniert und in ihrer vertikalen und horizontalen Ausdehnung und Verteilung auf dem Querschnitt gesteuert werden. Letzeres kann beispielsweise über die Form der Öffnungen der Gasrohre 7 in Verbindung mit einer entsprechenden Gasdrucksteuerung bewerkstelligt werden.
Der abfallende und weiterhin von außen gekühlte Strang wird unterhalb der Kokille 6 durch eine Transporteinrichtung 11 übernommen, welche in ihrer Geschwindigkeit so geregelt werden kann, daß eine optimale Prozeßführung möglich ist. Dies bedeutet u.a., daß z.B. die Geschwindigkeit des Stranges größer ist als die Geschwindigkeit des Auftriebs der eingebrachten Gasblasen 8, sofern überhaupt eine solche Eigenbewegung in der teigigen Struktur des Materials möglich ist.
Wenn der Strang die horizontale Ebene erreicht hat, kann er geteilt werden, und die abgetrennten Abschnitte können zur
Weiterverarbeitung geführt werden. Unterhalb der Anlage befindet sich die Auffangwanne 9 für evtl. austretendes
flüssiges Material .
Die möglichen Querschnittsformen der hergestellten Material- Profile reichen von plattenähnlicher Struktur, Rechteckform, U-Form bis zur Doppel-T-Trägerstruktur usw. Zusätzlich ist es möglich, vorzugsweise in der Außenhaut des Material-Profils eine Faserverstärkung einzubringen, um die Widerstandmomente gegen Biegung, Knickung, Verdrehung wesentlich zu erhöhen, wobei die Fasern von einer Faserverstärkungs-Vor- richtung 16 in Form von Rollen, welche entsprechend über den Umfang verteilt sind, abgespult werden. Eine Vorspannung der Fasern in gewissen Bereichen, welche durch die Verwendungsweise des Material-Profils zweckmäßig erscheint, ist ebenfalls möglich.
Die Figuren 2A, 2B, 3A, 3B, 4A und 4B zeigen die Querschnittsformen, wie sie oben beschrieben sind, mit den zugehörigen Längsschnitten, wobei jedoch die Form der Gas- blasen variabel ist.
Die gesamte Vorrichtung wird durch eine Prozeßsteuerung so geregelt, daß eine kontinuierliche Produktion möglich ist.