WO1999002277A1 - Sealing structure for organic light emitting devices - Google Patents
Sealing structure for organic light emitting devices Download PDFInfo
- Publication number
- WO1999002277A1 WO1999002277A1 PCT/US1998/014099 US9814099W WO9902277A1 WO 1999002277 A1 WO1999002277 A1 WO 1999002277A1 US 9814099 W US9814099 W US 9814099W WO 9902277 A1 WO9902277 A1 WO 9902277A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sealing structure
- light emitting
- organic light
- metal film
- dielectric film
- Prior art date
Links
- 238000007789 sealing Methods 0.000 title claims abstract description 66
- 229910052751 metal Inorganic materials 0.000 claims abstract description 57
- 239000002184 metal Substances 0.000 claims abstract description 54
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 19
- 239000001301 oxygen Substances 0.000 claims abstract description 19
- 230000035699 permeability Effects 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 35
- 239000000463 material Substances 0.000 claims description 27
- 239000011159 matrix material Substances 0.000 claims description 11
- 239000004020 conductor Substances 0.000 claims description 8
- 239000003989 dielectric material Substances 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 4
- 229920002120 photoresistant polymer Polymers 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 claims description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims 2
- 238000010276 construction Methods 0.000 claims 2
- 230000004048 modification Effects 0.000 claims 2
- 238000012986 modification Methods 0.000 claims 2
- 238000001020 plasma etching Methods 0.000 claims 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 238000006731 degradation reaction Methods 0.000 claims 1
- 230000035899 viability Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 60
- 239000010408 film Substances 0.000 description 58
- 239000011368 organic material Substances 0.000 description 9
- 238000000151 deposition Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000000576 coating method Methods 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910019015 Mg-Ag Inorganic materials 0.000 description 1
- 229910004286 SiNxOy Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- -1 e.g. Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000013212 metal-organic material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- DOTMOQHOJINYBL-UHFFFAOYSA-N molecular nitrogen;molecular oxygen Chemical compound N#N.O=O DOTMOQHOJINYBL-UHFFFAOYSA-N 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium(III) oxide Inorganic materials O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
- H05B33/04—Sealing arrangements, e.g. against humidity
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
- H10K59/8731—Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/38—Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
Definitions
- the present invention relates to displays comprising organic light emitting devices ("OLEDs").
- OLEDs organic light emitting devices
- the invention relates to methods and structures for sealing OLEDs.
- Electroluminescent devices which may be further classified as either organic or inorganic, are well known in graphic display and imaging art.
- the benefits of organic electroluminescent devices, such as organic light emitting devices, include: high visibility due to self-emission; superior impact resistance; and ease of handling of the solid state devices.
- OLEDs such as organic light emitting diodes
- An OLED is typically a thin film structure formed on a substrate such as soda-lime glass.
- a light emitting layer of a luminescent organic solid, as well as adjacent semiconductor layers, are sandwiched between a cathode and an anode.
- the semiconductor layers may be either hole-injecting or electron-injecting layers.
- the light emitting layer may be selected from any of a multitude of fluorescent organic solids.
- the light emitting layer may consist of multiple sublayers.
- the positive and negative charges meet in the organic material layer(s), they recombine and produce photons.
- the wave length ⁇ and consequently the color ⁇ of the photons depends on the electronic properties of the organic material in which the photons are generated.
- OLEDs are formed on a single substrate and arranged in groups in a grid pattern.
- OLED groups forming a column of the grid may share a common cathode, or cathode line.
- OLED groups forming a row of the grid may share a common anode, or anode line.
- the individual OLEDs in a given group emit light when their cathode line and anode line are activated at the same time.
- OLEDs have a number of beneficial characteristics. These characteristics include a low activation voltage (about 2 volts), fast response when formed with a thin light emitting layer, and high brightness in proportion to the injected electric current. Depending on the composition of the organic material making up the light emitting layer, many different colors of light may be produced, ranging from visible blue, to green, yellow and red.
- OLEDs are susceptible to damage resulting from exposure to the atmosphere.
- the fluorescent organic material in the light emitting layer can be reactive. Exposure to moisture and oxygen may cause a reduction in the useful life of the light emitting device.
- the organic material is susceptible to reacting with constituents of the atmosphere such as water and oxygen. Additionally, the materials that typically comprise the cathode and anode may react with oxygen and may be negatively affected by oxidation.
- One disadvantage of oxygen and moisture penetration into the interior of the OLED is the potential to form metal oxide impurities at the metal-organic material interface. In a matrix addressed OLED, these metal oxide impurities may cause separation of the cathode or anode from the organic material. Oxidation sensitive cathode materials such as Mg-Ag or Al-Li are especially susceptible. The result may be dark, non-emitting spots at the areas of separation due to a lack of current flow.
- Edge shorting between the cathode and anode layers is a further problem currently affecting most conventional OLED displays. Edge shorting reduces the illumination potential of the display devices. For the reasons set forth above, exposing a conventional OLED to the atmosphere, shortens its life. To obtain a practical, useable OLED, it is necessary to protect or seal the device, so that water, oxygen, etc., do not infiltrate the light emitting layer or oxidize the electrodes. Methods commonly employed for protecting or sealing inorganic electroluminescent devices are typically not effective for sealing OLEDs.
- the silicon oil infiltrates the light emitting layer, the electrodes, and any hole-injecting or electron-injecting layers.
- the oil alters the properties of the organic light emitting layer, reducing or eliminating its light emission capabilities.
- resin coatings that have been used to protect inorganic electroluminescent devices are not suited for OLEDs.
- the solvent used in the resin coating solution tends to infiltrate the light emitting layer, degrading the light emission properties of the device.
- U.S. Patent No. 5,505,985 issued to Nakamura, et al., (“Nakamura”) teaches a process for depositing a film comprising an electrically insulating polymer as a protective layer on an outer surface of an organic electroluminescent device.
- Nakamura asserts that the polymers disclosed protect the device and have excellent electrical resistivity, breakdown strength and moisture resistance, while at the same time are transparent to emitted light.
- Nakamura also teaches that, when deposited by a physical vapor deposition (PVD) method, the protective layer formed by the polymer compound is pin-hole free.
- PVD physical vapor deposition
- the sealing method taught by Nakamura yields a moisture diffusivity too high to be useful for reliable OLEDs. Moisture levels as low as 1 ppm may damage an OLED.
- an innovative and economical display device comprising: an organic light emitting device; and a sealing structure overlying the organic light emitting device, wherein the sealing structure comprises a dielectric film and a metal film.
- the metal film may overlie the dielectric film.
- the sealing structure may comprise a multi-layer stack of dielectric and metal film.
- the multilayer stack may comprise a first dielectric film overlying the organic light emitting device, followed by alternating layers of metal film and dielectric film.
- the sealing structure may comprise a material with low oxygen permeability and/or low moisture permeability.
- the sealing structure may further comprise a material which reacts with moisture and/or oxygen to seal pin holes.
- the sealing structure may also have reduced internal stresses.
- the sealing structure may further comprise an opening for connecting the organic light emitting device to electrical circuitry.
- the present invention also includes a display device comprising: a matrix comprising a plurality of organic light emitting devices; a sealing structure overlying the organic light emitting devices; a plurality of conductors underlying the sealing structure, wherein each conductor functions as either an anode or cathode for more than one of said organic light emitting devices; wherein the sealing structure includes openings for permitting direct contact between circuitry external to the matrix and the conductors underlying the sealing structure.
- the present invention further includes a method for sealing an organic light emitting device comprising the steps of: forming a dielectric film layer overlying said organic light emitting device; and forming a metal film layer over said dielectric film.
- the method may comprise the further step of covering the organic light emitting device and film layers with a layer of photoresist material.
- the method may include the step of presealing pin holes in the metal film layer.
- the presealing step may comprise baking the display device in purified air or in an N-O 2 atmosphere.
- Fig. 1 is a cross-sectional side view in elevation along line A-A of Fig. 2 of an embodiment of an OLED display of the present invention.
- Fig. 2 is a cross-sectional side view of an OLED showing the movement of holes and electrons.
- Fig. 3 is a cross-sectional side view of a portion of an OLED display of the present invention showing openings in the sealing structure for connection to outside circuitry.
- FIG. 1 An embodiment of the present invention is shown in Fig. 1 as device 100, a sealed OLED display.
- Device 100 is a layered structure of conductive, insulating, and semiconductive materials constructed in a series of process steps.
- a preferred method for making the sealed display device 100 is fabricating an organic light emitting diode (OLED) display 180 comprising at least one OLED 10 of the type depicted in Fig. 2.
- OLED 10 may be arranged in any of a number of known matrix-addressed configurations.
- Fig. 2 depicts a typical OLED of the type known in the prior art.
- a typical OLED 10 has a laminate structure 3 formed on a substrate 200.
- Semiconductor layer 6 may be, for example, a hole-injecting layer.
- electron-injecting layer 7 may be provided in addition to, or in lieu of, hole-injecting semiconductor layer 6, depending on the specific materials employed.
- Light emitting layer 8 may be selected from any of a multitude of luminescent organic solids, and may consist of multiple sub-layers.
- Substrate 200 is often soda-lime glass.
- the laminate structure is formed on a substrate 200 using known fabrication techniques, such as evaporative deposition, chemical vapor deposition (CVD), etching, etc.
- CVD chemical vapor deposition
- the size, form, material, etc., of the substrate 200 and of each layer of the laminated structure may be selected depending on the intended use of the device, such as a surface light source, a matrix photographic display, a matrix for a television image display device, etc.
- the material for these layers may be selected from a number of acceptable organic or inorganic materials.
- the organic light emissive layer 8 may be selected from any of a number of different materials depending on the light emission characteristics desired.
- a film 150 of low pin hole density dielectric material is deposited on the outer surface of the OLED display 180 structure.
- the dielectric film 150 may be formed to overlie the cathode 900.
- Dielectric film 150 preferably is formed on the entire exposed outer surface of OLED display 180 opposite substrate 200.
- dielectric film 150 is formed by the plasma enhanced chemical vapor deposition (PECVD) method.
- PECVD plasma enhanced chemical vapor deposition
- dielectric film 150 may be formed by CVD, evaporation, or sputtering. Shadow masking may be employed to prevent deposition of material in areas where external electrical connections to the OLED may be required.
- Dielectric film 150 preferably comprises SiC deposited by PECVD from trimethylsilane to a thickness of 500 nm.
- dielectric film 150 may comprise diamond-like carbon (DLC), SiO, SiO 2 . Si 3 N 4 , and SiN x O y (silicon oxynitride).
- DLC diamond-like carbon
- SiO SiO 2 . Si 3 N 4
- SiN x O y silicon oxynitride
- the preferred deposition method, as well as the desired film thickness depends on the dielectric material utilized. For example, for SiC, the PECVD deposition described above produces a dielectric film 150 with a suitable combination of dielectric strength, film adhesion, pin hole density and impermeability.
- dielectric film 150 may comprise multiple layers of various dielectric materials, e.g., SiO 2 and SiC; DLC and SiC; or Si 3 Nu and SO 2 , which may be combined to form a single film with a desired net dielectric constant and other characteristics.
- dielectric materials e.g., SiO 2 and SiC; DLC and SiC; or Si 3 Nu and SO 2 , which may be combined to form a single film with a desired net dielectric constant and other characteristics.
- the aforementioned materials are not exclusive; it is contemplated that other dielectric materials may be used without departing from the scope of the invention.
- Metal film 175 overlies the dielectric film 150.
- metal film 175 is formed through sputter deposition.
- the deposition process employed depends upon the metal deposited, as well as the desired film thickness and characteristics.
- a combination of PECVD and electron beam or sputter gun deposition exhibits the lowest pin hole density.
- Metal film 175 may also be formed by evaporation, CVD or other appropriate process.
- shadow masks or lift off patterning may be used to prevent deposition of material in areas where external electrical connections will be made or to keep conductor pad areas open.
- Metal film 175 may comprise anyone of the following materials: pure Al, 5-10 weight-
- metal film 175 may comprise one or more layers of various metals, depending on the specific characteristics desired.
- Metal film 175 is preferably formed of a material, or materials, which will self-seal pin holes or other defects in the film by volume expansion as metal oxide forms in the presence of moisture and/or oxygen.
- Metal film 175 is constructed to reduce the film's susceptibility to cracking under stress.
- 10 weight-% Ti-doped Al may be deposited via sputtering to a film thickness of 500 nm. This material and film thickness generally provides an acceptable combination of stress and moisture resistance while maintaining a relatively thin film.
- RF or DC bias sputtering may also be employed in order to minimize pinholes.
- any pin holes in metal film 175 may be presealed in a controlled environment, rather than waiting for the self-sealing characteristics of the metal film to work during operational use of the OLED display.
- the device is preferably baked in purified air, or alternatively, a dry nitrogen-oxygen atmosphere, since moisture is the greatest hazard.
- 8 purified air may be obtained through the use of filters commonly known to those of ordinary skill in the art.
- the choice of materials and numbers of layers for films 150 and 175 depends on certain characteristics which may be desired for sealing structure 190.
- at least one of the dielectric layers comprising dielectric film 150 and/or one of the metal layers comprising metal film 175 preferably has low moisture and oxygen permeability.
- at least one of the metal layers comprising metal film 175 preferably reacts with moisture or oxygen to absorb the gases, or, alternatively, to seal off pin holes in the layer.
- the materials used for the dielectric film 150 and metal film 175 may be constructed under varying amounts of tensile and compressive stress in order to achieve a low net internal stress throughout sealing structure 190.
- the dielectric film layer 150 may be constructed by depositing silicon nitride, silicon dioxide, or silicon oxynidries by PEVCD methods adjusted to minimize internal stresses. Layers formed of Al typically possess internal compressive stresses which inhibit crack formation and growth.
- Sealing structure 190 may also comprise alternating layers of metal and dielectric materials.
- the first dielectric layer generally covers the OLED display 180 followed by the first metal layer.
- a sealing structure 190 comprising alternating layers of SiO and Al provides the advantages described above. However, other combinations of metal and dielectric materials are within the scope of the invention.
- One or more openings may be formed in the sealing structure 190 to provide access from the OLED display matrix to outside circuitry.
- the outside circuitry typically connects to the matrix conductors at perimeter pad areas 155, shown in Fig. 3. If shadow masking or lift off patterning has not been employed, the perimeter pad areas 155, for connecting the OLED display to external circuitry, may be patterned using conventional photolithography techniques.
- an opening 160 may be formed in the metal film 175.
- An etch solution comprising 60 weight-% phosphoric acid, 5 weight-% nitric
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98933245A EP1021255A1 (de) | 1997-07-11 | 1998-07-09 | Dichtungsstruktur für organisches licht emitierende vorrichtungen |
CA002295676A CA2295676A1 (en) | 1997-07-11 | 1998-07-09 | Sealing structure for organic light emitting devices |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US5235797P | 1997-07-11 | 1997-07-11 | |
US60/052,357 | 1997-07-11 | ||
US09/074,406 | 1998-05-08 | ||
US09/074,406 US6198220B1 (en) | 1997-07-11 | 1998-05-08 | Sealing structure for organic light emitting devices |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999002277A1 true WO1999002277A1 (en) | 1999-01-21 |
Family
ID=26730516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/014099 WO1999002277A1 (en) | 1997-07-11 | 1998-07-09 | Sealing structure for organic light emitting devices |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1021255A1 (de) |
CA (1) | CA2295676A1 (de) |
WO (1) | WO1999002277A1 (de) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000036661A1 (en) * | 1998-12-17 | 2000-06-22 | Cambridge Display Technology Ltd. | Organic light-emitting devices |
US6366017B1 (en) | 1999-07-14 | 2002-04-02 | Agilent Technologies, Inc/ | Organic light emitting diodes with distributed bragg reflector |
EP1283554A2 (de) * | 2001-08-06 | 2003-02-12 | Philips Corporate Intellectual Property GmbH | Organische elektrolumineszente Anzeigevorrichtung mit Schutzschicht |
US6537688B2 (en) | 2000-12-01 | 2003-03-25 | Universal Display Corporation | Adhesive sealed organic optoelectronic structures |
US6576351B2 (en) | 2001-02-16 | 2003-06-10 | Universal Display Corporation | Barrier region for optoelectronic devices |
US6614057B2 (en) | 2001-02-07 | 2003-09-02 | Universal Display Corporation | Sealed organic optoelectronic structures |
US6624568B2 (en) | 2001-03-28 | 2003-09-23 | Universal Display Corporation | Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices |
US6664137B2 (en) | 2001-03-29 | 2003-12-16 | Universal Display Corporation | Methods and structures for reducing lateral diffusion through cooperative barrier layers |
WO2004105149A1 (en) * | 2003-05-16 | 2004-12-02 | E.I. Dupont De Nemours And Company | Barrier films for plastic substrates fabricated by atomic layer deposition |
US6888307B2 (en) | 2001-08-21 | 2005-05-03 | Universal Display Corporation | Patterned oxygen and moisture absorber for organic optoelectronic device structures |
US6933538B2 (en) | 2000-09-11 | 2005-08-23 | Osram Opto Semiconductors Gmbh | Plasma encapsulation for electronic and microelectronic components such as organic light emitting diodes |
DE102004049955B4 (de) * | 2004-10-13 | 2008-12-04 | Schott Ag | Verfahren zur Herstellung eines optischen Bauelements, insbesondere einer OLED |
US8853696B1 (en) | 1999-06-04 | 2014-10-07 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device and electronic device |
WO2017206440A1 (en) | 2016-05-30 | 2017-12-07 | Boe Technology Group Co., Ltd. | Display panel, display apparatus having the same, and fabricating method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5686360A (en) * | 1995-11-30 | 1997-11-11 | Motorola | Passivation of organic devices |
US5693956A (en) * | 1996-07-29 | 1997-12-02 | Motorola | Inverted oleds on hard plastic substrate |
US5721160A (en) * | 1994-12-13 | 1998-02-24 | The Trustees Of Princeton University | Multicolor organic light emitting devices |
US5734225A (en) * | 1996-07-10 | 1998-03-31 | International Business Machines Corporation | Encapsulation of organic light emitting devices using siloxane or siloxane derivatives |
US5736754A (en) * | 1995-11-17 | 1998-04-07 | Motorola, Inc. | Full color organic light emitting diode array |
US5771562A (en) * | 1995-05-02 | 1998-06-30 | Motorola, Inc. | Passivation of organic devices |
-
1998
- 1998-07-09 CA CA002295676A patent/CA2295676A1/en not_active Abandoned
- 1998-07-09 WO PCT/US1998/014099 patent/WO1999002277A1/en not_active Application Discontinuation
- 1998-07-09 EP EP98933245A patent/EP1021255A1/de not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5721160A (en) * | 1994-12-13 | 1998-02-24 | The Trustees Of Princeton University | Multicolor organic light emitting devices |
US5771562A (en) * | 1995-05-02 | 1998-06-30 | Motorola, Inc. | Passivation of organic devices |
US5736754A (en) * | 1995-11-17 | 1998-04-07 | Motorola, Inc. | Full color organic light emitting diode array |
US5686360A (en) * | 1995-11-30 | 1997-11-11 | Motorola | Passivation of organic devices |
US5734225A (en) * | 1996-07-10 | 1998-03-31 | International Business Machines Corporation | Encapsulation of organic light emitting devices using siloxane or siloxane derivatives |
US5693956A (en) * | 1996-07-29 | 1997-12-02 | Motorola | Inverted oleds on hard plastic substrate |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6960877B1 (en) | 1998-12-17 | 2005-11-01 | Cambrdige Display Technology Limited | Organic light-emitting devices including specific barrier layers |
WO2000036661A1 (en) * | 1998-12-17 | 2000-06-22 | Cambridge Display Technology Ltd. | Organic light-emitting devices |
US8853696B1 (en) | 1999-06-04 | 2014-10-07 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device and electronic device |
US9368680B2 (en) | 1999-06-04 | 2016-06-14 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device and electronic device |
EP1562231B1 (de) * | 1999-06-04 | 2016-05-11 | Semiconductor Energy Laboratory Co., Ltd. | Elektrooptische Vorrichtung und elektronisches Gerät |
US9123854B2 (en) | 1999-06-04 | 2015-09-01 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device and electronic device |
US6366017B1 (en) | 1999-07-14 | 2002-04-02 | Agilent Technologies, Inc/ | Organic light emitting diodes with distributed bragg reflector |
DE10044841B4 (de) * | 2000-09-11 | 2006-11-30 | Osram Opto Semiconductors Gmbh | Plasmaverkapselung für elektronische und mikroelektronische Bauelemente wie OLEDs sowie Verfahren zu dessen Herstellung |
US6933538B2 (en) | 2000-09-11 | 2005-08-23 | Osram Opto Semiconductors Gmbh | Plasma encapsulation for electronic and microelectronic components such as organic light emitting diodes |
US6537688B2 (en) | 2000-12-01 | 2003-03-25 | Universal Display Corporation | Adhesive sealed organic optoelectronic structures |
US6614057B2 (en) | 2001-02-07 | 2003-09-02 | Universal Display Corporation | Sealed organic optoelectronic structures |
US6576351B2 (en) | 2001-02-16 | 2003-06-10 | Universal Display Corporation | Barrier region for optoelectronic devices |
US6624568B2 (en) | 2001-03-28 | 2003-09-23 | Universal Display Corporation | Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices |
US7187119B2 (en) | 2001-03-29 | 2007-03-06 | Universal Display Corporation | Methods and structures for reducing lateral diffusion through cooperative barrier layers |
US7683534B2 (en) | 2001-03-29 | 2010-03-23 | Universal Display Corporation | Methods and structures for reducing lateral diffusion through cooperative barrier layers |
US6664137B2 (en) | 2001-03-29 | 2003-12-16 | Universal Display Corporation | Methods and structures for reducing lateral diffusion through cooperative barrier layers |
EP1283554A3 (de) * | 2001-08-06 | 2005-08-24 | Philips Intellectual Property & Standards GmbH | Organische elektrolumineszente Anzeigevorrichtung mit Schutzschicht |
EP1283554A2 (de) * | 2001-08-06 | 2003-02-12 | Philips Corporate Intellectual Property GmbH | Organische elektrolumineszente Anzeigevorrichtung mit Schutzschicht |
US6888307B2 (en) | 2001-08-21 | 2005-05-03 | Universal Display Corporation | Patterned oxygen and moisture absorber for organic optoelectronic device structures |
US8445937B2 (en) | 2003-05-16 | 2013-05-21 | E I Du Pont De Nemours And Company | Barrier films for plastic substrates fabricated by atomic layer deposition |
WO2004105149A1 (en) * | 2003-05-16 | 2004-12-02 | E.I. Dupont De Nemours And Company | Barrier films for plastic substrates fabricated by atomic layer deposition |
DE102004049955B4 (de) * | 2004-10-13 | 2008-12-04 | Schott Ag | Verfahren zur Herstellung eines optischen Bauelements, insbesondere einer OLED |
EP3465792A4 (de) * | 2016-05-30 | 2020-01-22 | BOE Technology Group Co., Ltd. | Anzeigetafel, anzeigevorrichtung damit und herstellungsverfahren dafür |
WO2017206440A1 (en) | 2016-05-30 | 2017-12-07 | Boe Technology Group Co., Ltd. | Display panel, display apparatus having the same, and fabricating method thereof |
Also Published As
Publication number | Publication date |
---|---|
EP1021255A1 (de) | 2000-07-26 |
CA2295676A1 (en) | 1999-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6198220B1 (en) | Sealing structure for organic light emitting devices | |
US6566156B1 (en) | Patterning of thin films for the fabrication of organic multi-color displays | |
US6069443A (en) | Passive matrix OLED display | |
US6872114B2 (en) | Method of sealing organo electro-luminescent display | |
US7224115B2 (en) | Display apparatus and method of manufacturing the same | |
US6016033A (en) | Electrode structure for high resolution organic light-emitting diode displays and method for making the same | |
US6099746A (en) | Organic electroluminescent device and method for fabricating the same | |
CN100565970C (zh) | 有机电致发光装置制造方法及有机电致发光装置 | |
KR101161443B1 (ko) | 표시 장치 및 그의 제조 방법 | |
WO1997048139A9 (en) | Patterning of thin films for the fabrication of organic multi-color displays | |
US6948993B2 (en) | Method of fabricating organic electroluminescent displays having a stacked insulating layer with halftone pattern | |
EP0884930A1 (de) | Organisches elektrolumineszentes element und verfahren zur herstellung desselben | |
US6414432B1 (en) | Organic EL device and method for manufacturing same | |
WO1999002277A1 (en) | Sealing structure for organic light emitting devices | |
JP4776993B2 (ja) | 有機電界発光素子 | |
JPH10247587A (ja) | 有機エレクトロルミネッセンス表示装置およびその製造方法 | |
US7414363B2 (en) | Organic EL display device and method for fabricating the same | |
CN1627869A (zh) | 有机电致发光器件及形成该器件的方法 | |
US20120194061A1 (en) | Organic el device | |
JP2000077190A (ja) | 有機エレクトロルミネッセンス素子及びその製造方法 | |
KR100611650B1 (ko) | 유기 전계 발광 소자 및 그 제조 방법 | |
US6717356B1 (en) | Organic electroluminescent device with trapezoidal walls | |
KR100417921B1 (ko) | 캔리스 유기 전계 발광 디스플레이 | |
WO1999003122A1 (en) | Anhydrous method of packaging organic light emitting displays | |
JP2002260846A (ja) | 有機el素子ディスプレイパネルとその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA CN IL JP KR NO RU SG |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2295676 Country of ref document: CA Ref country code: CA Ref document number: 2295676 Kind code of ref document: A Format of ref document f/p: F |
|
NENP | Non-entry into the national phase |
Ref country code: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1998933245 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1998933245 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1998933245 Country of ref document: EP |