WO1999002261A1 - Katalysatoren zur selektiven epoxidierung von olefinen mit luftsauerstoff - Google Patents

Katalysatoren zur selektiven epoxidierung von olefinen mit luftsauerstoff Download PDF

Info

Publication number
WO1999002261A1
WO1999002261A1 PCT/EP1998/004240 EP9804240W WO9902261A1 WO 1999002261 A1 WO1999002261 A1 WO 1999002261A1 EP 9804240 W EP9804240 W EP 9804240W WO 9902261 A1 WO9902261 A1 WO 9902261A1
Authority
WO
WIPO (PCT)
Prior art keywords
dioxide
oxide
catalysts
alkyl
ligand
Prior art date
Application number
PCT/EP1998/004240
Other languages
English (en)
French (fr)
Inventor
Gerhard Lobmaier
Wolfgang Anton Herrmann
Rolf Schulz
Original Assignee
Aventis Research & Technologies Gmbh & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1997129837 external-priority patent/DE19729837A1/de
Priority claimed from DE1998128012 external-priority patent/DE19828012A1/de
Application filed by Aventis Research & Technologies Gmbh & Co Kg filed Critical Aventis Research & Technologies Gmbh & Co Kg
Priority to EP98940180A priority Critical patent/EP0994750A1/de
Priority to US09/462,451 priority patent/US6248913B1/en
Priority to CA002297195A priority patent/CA2297195A1/en
Publication of WO1999002261A1 publication Critical patent/WO1999002261A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/06Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/72Epoxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/64Molybdenum

Definitions

  • the present invention relates to compounds which selectively catalyze the epoxidation of olefins with atmospheric oxygen, a process for their preparation and their use.
  • Epoxies such as ethylene oxide, propylene oxide, 1, 2-butene oxide or similar epoxides, are common intermediates in the manufacture of a large number of products.
  • the oxirane function in such compounds is very reactive, with ring-opening reactions taking place with nucleophilic reactants.
  • epoxides can be hydrolyzed to glycols, which are used as deicing agents or as reactive monomers for the production of condensation polymers.
  • Polyether polyols produced by ring opening polymerization of epoxides, are commonly used as intermediates in the production of polyurethane foams, elastomers, coatings, sealants or similar articles.
  • glycol ethers e.g. B. find use as a polar solvent.
  • Huybrecht J. Mol. Catal. 71, 129 (1992); EP-A-31 1983 describes the epoxidation of olefins with hydrogen peroxide in the presence of titanium-silicalite compounds as a catalyst.
  • hydrogen peroxide since hydrogen peroxide on the one hand, it is a relatively expensive oxidizing agent and, on the other hand, it cannot be used completely because it partly breaks down into water and oxygen.
  • the epoxidation of propylene with atmospheric oxygen in the presence of catalysts containing tungsten or molybdenum is described in DE-C-22 35 229. The epoxidation reaction is carried out in a solvent that coexists with
  • Oxygen can be oxidized to form hydroperoxides.
  • the hydroperoxides formed in subsequent reactions lead to oxygen-containing by-products, usually alcohols, which are obtained as reaction coupling products.
  • Molybdenum complexes that epoxidize ethylene with t-butyl hydroperoxide
  • the process proceeds with high selectivity, but an expensive oxidation agent is used. Furthermore, there are problems with reproducibility, which prevents the method from being used industrially.
  • Molybdenum based epoxy catalysts capable of olefins in the presence of
  • Heterogenized Mo complexes for the epoxidation of olefins are also known from WO-A-
  • the invention thus relates to catalysts for the selective oxidation of olefins in the presence of air or oxygen, containing compounds of
  • 2y + z preferably give 5 or 6 characterized in that the ligand L is a compound of the formulas (2) or (3)
  • X is a nitrogen, oxygen or sulfur atom
  • R 3 and R 4 form a ring consisting of 4 to 8 carbon atoms, to which one or two aromatic rings can be fused,
  • R 1 and R 2 are hydrogen, branched or straight-chain ⁇ -C ⁇ alkyl! or branched or straight-chain C 1 -C 4 -haloalkyl which substitute the ring formed by R 3 and R 4 and / or the rings fused onto this ring, or that the ligand L is a compound of the formulas (4) or (5)
  • R is hydrogen, C r C 8 alkyl, C r C 8 alkoxy, COOCH 3 , carbonyl oxygen, C 6 -C 14 aryl or C 3 -C 8 cycloalkyl, and n is the same 1 or 2 and m represent a number from 1 to 6.
  • the ligand is generally attached bidentate to the metal center, which can bind up to two such ligands. In the case of the four-toothed ligand (5), only one ligand is bound.
  • the dioxo complexes can exist both as ice and as trans isomers
  • Examples of preferred ligands L are the following compounds:
  • Complexes of the formula (1) are prepared by reacting a suitable precursor with the corresponding ligands in an organic solvent.
  • suitable precursors are, for example, the commercially available oxo-acetylacetonates such as molybdenyl acetylacetonate MoO 2 (acac) 2 or oxodithiocarbamates, for example molybdenyl bis (N, N-diethyl dithiocarbamate), the pyridyl and / or acetate complexes the oxides, the higher oxides, for example molybdenum trioxide or the corresponding acids and their salts.
  • the precursor is suspended in an organic solvent.
  • organic solvents are best polar protic such as methanol or ethanol and aprotic solvents such as acetonitrile or methyl tert-butyl ether (MTBE) or halogenated hydrocarbons, such as. B. CH 2 CI 2 , CHCI 3 or CCI 4 .
  • the corresponding ligand is then added with stirring, preferably in dissolved form.
  • the amount of ligand used is preferably twice the amount of the precursor used.
  • the filter residue obtained can be used in this form or after drying in vacuo as a catalyst.
  • Supported complexes can be prepared by adding a suitable carrier material during and / or after the synthesis of the complex.
  • the starting complex of the formula (1) is dissolved in an organic solvent or water, the support material is added and the whole is stirred.
  • the quantitative ratio of complex / carrier material is preferably in the range from 1: 1 to 1: 1000, in particular in the range from 1: 2 to 1: 100.
  • Inorganic and organic carriers are suitable as carrier materials.
  • inorganic carriers are aluminum oxides, silicon dioxide, aluminum silicates, titanium dioxide, zirconium dioxide, thorium dioxide, lanthanum oxide, magnesium dioxide, calcium oxide, barium oxide, tin oxide, cerium dioxide, zinc oxide, boron oxide, boron nitride, boron carbide, boron phosphate, zirconium phosphate, silicon nitride, carbon and
  • Suitable organic carriers are all polymers which have donor centers which can interact with the Mo center, or functionalized polymers which, by reaction with the complexes of the formula 1 or ligands of the formulas (2) -
  • the heterogenized ligand thus obtained must still be converted into a complex by reaction with a suitable precursor (for example MoO 2 (acac) 2 ) in an organic solvent.
  • a suitable precursor for example MoO 2 (acac) 2
  • the catalysts of the invention are able to selectively epoxidize olefins with atmospheric oxygen. All that is required as the oxidizing agent is oxygen, which can be used in pure form or as atmospheric oxygen or diluted with an inert gas such as CO 2 , N 2 , noble gases or methane.
  • oxygen which can be used in pure form or as atmospheric oxygen or diluted with an inert gas such as CO 2 , N 2 , noble gases or methane.
  • They are preferably suitable for the oxidation of aliphatic, optionally branched C 2 -C 30 -alkenes and C 5 -C 12 -cycloalkenes, in particular for the oxidation of linear C 2 -C 25 -alkenes and C 5 -C 8 -cycloalkenes, especially for Oxidation of C 2 -C 12 -alkenes, such as ethene, propene or octene, but also epoxides of longer-chain or higher alkenes are accessible with the aid of the complexes according to the invention.
  • the olefins can also be substituted by further alkyl, alkoxy or by aromatic groups and / or by halogens.
  • the oxidation conditions are chosen so that a noticeable oxidation occurs even without the addition of catalyst, in which case the selectivity to the epoxide is low.
  • the epoxidation of octene using the heterogeneous catalysts according to the invention is generally carried out in a temperature range from 30 to 300 ° C., preferably in the range from 70 to 130 ° C.
  • the temperature is preferably in a range from 100 to 500 ° C., in particular in a range from 125 to 230 ° C.
  • the pressure should be in the range from 20 to 200 bar, in particular from 35 to 100 bar.
  • liquid phase oxidation takes place either in pure olefin or diluted in an oxidation-stable solvent.
  • Suitable solvents are e.g. the following
  • halogenated aromatics such as chlorobenzene, 1-chloro-4-bromobenzene, bromobenzene, halogenated and non-halogenated hydrocarbons, e.g. Chloroform, chloropropanol, dichloromethane, 1,2-dichloroethane, trichloromethylene, furthermore alcohols, in particular C 1 -C 4 -alcohols, such as ethanol, methanol or propanol, as well as higher alcohols and water.
  • halogenated aromatics such as chlorobenzene, 1-chloro-4-bromobenzene, bromobenzene
  • halogenated and non-halogenated hydrocarbons e.g. Chloroform, chloropropanol, dichloromethane, 1,2-dichloroethane, trichloromethylene
  • alcohols in particular C 1 -C 4 -alcohols, such as ethanol, methanol or propanol
  • Butyllithium slowly added dropwise under argon. The temperature should not exceed -20 ° C. Now 0.13 mol of 2-bromopyridine, dissolved in 75 ml of methyl t-butyl ether, are slowly added dropwise to the ethereal BuLi solution. This creates the red solution that is characteristic of organolithium compounds. 0.15 mol of the respective solution are now added to the dark red, clear solution prepared in this way
  • Carbonyl compound (fluorenone or suberenone), dissolved in 75 ml of methyl t-butyl ether, is added dropwise. The temperature should not exceed -20 ° C here either.
  • the solution is stirred for 2 hours at -30 ° C and then slowly warmed to 0 ° C and then carefully hydrolyzed with a little distilled water. The solution is then warmed to room temperature and extracted with a little 15% hydrochloric acid.
  • the water phase is then neutralized with 15% sodium hydroxide solution and extracted with methyl tert-butyl ether.
  • the ether phase is then spun off.
  • the desired product remains, which is purified by recrystallization (solid product) or distillation (liquid product). The following molybdenum complexes were produced:
  • Oct-1-ene was epoxidized according to the above procedure using molybdenum complexes of the prior art (comparative examples 1-3) and the molybdenum complexes according to the invention (examples 1-2). The following results were obtained:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epoxy Compounds (AREA)
  • Catalysts (AREA)

Abstract

Katalysatoren für die selektive Oxidation von Olefinen in Gegenwart von Luft oder Sauerstoff, enthaltend Verbindungen der Formel (1) MoxOy(L)z, worin L ein Ligand bedeutet, x 1, 2 oder 3, y eine ganze Zahl von 0 bis 2x + 1, z eine ganze Zahl von 1 bis 2x bedeuten.

Description

Beschreibung
Katalysatoren zur selektiven Epoxidierung von Olefinen mit Luftsauerstoff
Die vorliegende Erfindung betrifft Verbindungen, die die Epoxidierung von Olefinen mit Luftsauerstoff selektiv katalysieren, ein Verfahren zu ihrer Herstellung und ihre Verwendung.
Epoxide (Oxirane), wie beispielsweise Ethylenoxid, Propylenoxid, 1 ,2-Butenoxid oder ähnliche Epoxide sind gebräuchliche Zwischenprodukte bei der Herstellung einer Vielzahl von Erzeugnissen. Die Oxiranfunktion in solchen Verbindungen ist sehr reaktionsfreudig, wobei mit nucleophilen Reaktanden Ringöffnungsreaktionen stattfinden. So können Epoxide beispielsweise zu Glykolen hydrolysiert werden, die als Enteisungsmittel oder als reaktive Monomere für die Herstellung von Kondensationspolymeren Anwendung finden.
Polyetherpolyole, hergestellt durch Ringöffnungspolymerisation von Epoxiden, sind gebräuchlich als Zwischenprodukte bei der Herstellung von Polyurethan- Schaumstoffen, Elastomeren, Überzügen, Dichtungsmitteln oder ähnlichen Artikeln.
Die Reaktion von Epoxiden mit Alkoholen führt zu Glykolethern, die z. B. als polare Lösungsmittel Verwendung finden.
Zur Herstellung von Epoxiden sind viele verschiedene Verbindungen entwickelt worden, die die Epoxidierung von Alkenen selektiv katalysieren sollen.
So beschreibt beispielsweise Huybrecht (J. Mol. Catal. 71 , 129 (1992); EP-A-31 1983) die Epoxidierung von Olefinen mit Wasserstoffperoxid in Gegenwart von Titan-Silikalitverbindungen als Katalysator. Eine wirtschaftliche Anwendung des hier offenbarten Verfahrens ist jedoch nicht gegeben, da Wasserstoffperoxid einerseits ein relativ teures Oxidationsmittel ist und zum anderen nicht vollständig genutzt werden kann, da es teilweise zu Wasser und Sauerstoff zerfällt. Die Epoxidierung von Propylen mit Luftsauerstoff in Gegenwart von wolfram- oder molybdänhaltigen Katalysatoren wird in DE-C-22 35 229 beschrieben. Die Epoxidierungsreaktion wird in einem Lösungsmittel durchgeführt, das sich mit
Sauerstoff unter Bildung von Hydroperoxiden oxidieren läßt. Jedoch führen die gebildeten Hydroperoxide in Folgereaktionen zu sauerstoffhaltigen Nebenprodukten, in der Regel Alkohole, die als Reaktionskopplungsprodukte anfallen.
Molybdän-Komplexe, die die Epoxidierung von Ethylen mit t-Butylhydroperoxid
(TBHP) katalysieren sind von Kelly et al. beschrieben worden (Polyhedron, Vol. 5,271-275, (1986)). Als Komplexe mit hoher Katalysatoraktivität werden Komplexe wie z.B. MoO2(8-hydroxychinolin)2, MoO2(phenylen-bis-salicylimin) (=MoO2(salphen)), MoO2(5-nitrose-8-hydroxychinolin)2 genannt. Der eigentlich aktive Katalysator ist ein Molybdänkomplex, der bereits TBHP und ein Äquivalent Epoxid addiert hat.
Der Prozeß verläuft zwar mit hoher Selektivität, jedoch wird ein teures Oxidationsagens verwendet. Ferner treten Probleme hinsichtlich der Reproduzierbarkeit auf, was einen technischen Einsatz des Verfahrens verhindert.
Die Epoxidierung von Oct-1-en mit Molybdänkatalysatoren war Gegenstand einer Untersuchung im J. Prakt. Chem. (1992, 334, 165 - 175). In Gegenwart von Molybdänyl-acetylacetonat wird eine Selektivität für 1 ,2-Epoxyoctan von 34%, in Gegenwart von Molybdäntrioxid von 28% gefunden. Gleichfalls wird bestätigt, daß die Stellung des Übergangsmetalls im Periodensystem und sein Oxidationszustand den weitaus größten Einfluß auf die Katalysatoraktivität haben, wobei die Struktur des Katalysatorkomplexes selbst nur eine untergeordnete Rolle spielt.
Der Komplex MoCI2(NO)2(HMPT) (HMPT = Hexamethylphosphorsäureamid) mit zweiwertigem Molybdän zeigte in Untersuchungen (J. Prakt. Chem. 1984, 326, 1025 - 26; DD-A-159 075) die beste Epoxid-Selektivität von 43,8 %, hat jedoch den Nachteil, den krebserzeugenden HMPT-Liganden einzusetzen.
Epoxidkatalysatoren auf Molybdänbasis, die es vermögen Olefine in Gegenwart von
Luftsauerstoff selektiv zu oxidieren, werden in DE-A-44 47 233, und DE-A-44 47 231 offenbart, doch auch diese Katalysatoren zeigen keine zufriedenstellenden Epoxidselektivitäten, insbesondere nicht im Hinblick auf Octenoxid.
Heterogenisierte Mo-Komplexe zur Epoxidierung von Olefinen sind auch aus WO-A-
94/04268 bekannt. Die offenbarten Verbindungen haben jedoch Nachteil, teure Hydroperoxide zu benötigen und darüber hinaus sind die verwendeten Liganden in Gegenwart von Sauerstoff nicht genügend oxidationsstabil.
Überraschenderweise wurde gefunden, daß eine Reihe zweizähniger, cyclisch substituierter Liganden ausgezeichnete Ausbeuten und Selektivitäten bei der Oxidation von Olefinen mit Luftsauerstoff liefern.
Gegenstand der Erfindung sind somit Katalysatoren für die selektive Oxidation von Olefinen in Gegenwart von Luft oder Sauerstoff, enthaltend Verbindungen der
Formel (1)
xOy(L)z (1) worin x 1 , 2 oder 3, y eine ganze Zahl von 0 bis 2x + 1 , vorzugsweise ist y > 1 z eine ganze Zahl von 1 bis 2x bedeuten und
2y+z vorzugsweise 5 oder 6 ergeben dadurch gekennzeichnet, daß der Ligand L eine Verbindung der Formeln (2) oder (3) ist
Figure imgf000006_0001
worin n O odeM,
X ein Stickstoff-, Sauerstoff- oder Schwefelatom,
Y Wasserstoff, CrC8-Alkyl, C C8-Alkoxy, F, Cl, Br, I, COOCH3, C6-C14-
Aryl oder C3-C8-Cycloalkyl bedeuten,
R3 und R4 einen aus 4 bis 8 Kohlenstoffatomen bestehenden Ring bilden, an den ein oder zwei aromatische Ringe kondensiert sein können,
R1 und R2 Wasserstoff, verzweigtes oder geradkettiges ^-C^-Alky! oder verzweigtes oder geradkettiges C^C^-Halogenalkyl bedeuten, die den durch R3 und R4 gebildeten Ring und/oder die an diesen Ring ankondensierten Ringe substituieren, oder daß der Ligand L eine Verbindung der Formeln (4) oder (5) ist
Figure imgf000007_0001
<4> (5) worin R für Wasserstoff, CrC8-Alkyl, CrC8-Alkoxy, COOCH3, Carbonylsauerstoff, C6-C14-Aryl oder C3-C8-Cycloalkyl steht, und n gleich 1 oder 2 und m eine Zahl von 1 bis 6 bedeuten.
Der Ligand wird im allgemeinen zweizähnig an das Metallzentrum gebunden, welches bis zu zwei solcher Liganden binden kann. Im Fall des vierzähnigen Liganden (5) wird nur ein Ligand gebunden. Die Dioxo-Komplexe können sowohl als eis- als auch als trans-lsomere vorliegen
Figure imgf000007_0002
άs-Dαxo trans-Dc_ o
Beispiele für bevorzugte Liganden L sind folgende Verbindungen:
Figure imgf000007_0003
Figure imgf000008_0001
Komplexe der Formel (1) werden durch Umsetzung eines geeigneten Vorläufers mit den entsprechenden Liganden in einem organischen Lösungsmittel hergestellt. Geeignete Vorläufer sind zum Beispiel die käuflichen Oxo-Acetylacetonate, wie Molybdänyl-acetylacetonat MoO2 (acac)2 oder Oxo-dithiocarbamate, z.B. Molybdänyl-bis-(N,N-diethyl-dithiocarbamat), die Pyridyl- und/oder Acetat-Komplexe der Oxide, die höheren Oxide, z.B. Molybdäntrioxid oder die entsprechenden Säuren und deren Salze.
Der Vorläufer wird in einem organischen Lösungsmittel suspendiert. Als organisches Lösungsmittel eignen sich am besten polar protische wie Methanol oder Ethanol und aprotische Lösungsmittel wie Acetonitril oder Methyl-tert.-Butylether (MTBE) oder halogenierte Kohlenwasserstoffe, wie z. B. CH2CI2, CHCI3 oder CCI4.
Unter Rühren wird anschließend der entsprechende Ligand zugegeben, vorzugsweise in gelöster Form. Die Menge des eingesetzten Liganden ist vorzugsweise doppelt so groß wie die Menge des eingesetzten Precursors.
Nach Abschluß der Reaktion wird das Lösungsmittel abfiltriert und der Rückstand gewaschen. Der erhaltene Filterrückstand kann in dieser Form oder nach dem Trocknen im Vakuum als Katalysator eingesetzt werden.
Geträgerte Komplexe können dargestellt werden, indem während und/oder nach der Synthese des Komplexes ein geeignetes Trägermaterial zugegeben wird. Dabei wird der Ausgangskomplex der Formel (1 ) in einem organischen Lösemittel oder Wasser gelöst, das Trägermaterial zugegeben und das ganze gerührt. Das Mengenverhältnis Komplex/Trägermaterial liegt vorzugsweise im Bereich von 1 :1 bis 1 :1000, insbesondere im Bereich von 1 :2 bis 1 :100.
Als Trägermaterialien eignen sich anorganische und organische Träger. Beispiele für anorganische Träger sind Aluminiumoxide, Siliciumdioxide, Alumosilikate, Titandioxid, Zirkoniumdioxid, Thoriumdioxid, Lanthanoxid, Magnesiumdioxid, Calciumoxid, Bariumoxid, Zinnoxid, Cerdioxid, Zinkoxid, Boroxid, Bornitrid, Borcarbid, Borphosphat, Zirkoniumphosphat, Siliciumnitrid, Kohlenstoff und
Siliciumcarbid.
Als organische Träger eignen sich alle Polymere, die Donorzentren besitzen, welche mit dem Mo-Zentrum wechselwirken können, oder funktionalisierte Polymere, die durch Umsetzung mit den Komplexen der Formel 1 oder Liganden der Formeln (2) -
(4) eine chemische Bindung eingehen. In letzterem Fall muß der so erhaltene heterogenisierte Ligand noch durch Umsetzung mit einem geeigneten Vorläufer (z.B. MoO2 (acac)2) in einem organischen Lösungsmittel zum Komplex umgesetzt werden. Beispiele für solche Träger sind z.B. Polypyridine, Polyacrylate sowie PR2l O=PR2 oder NR2 (R=H, Alkyl, Aryl)-Gruppen enthaltende Polymere.
Die erfindungsgemäßen Katalysatoren vermögen es, Olefine mit Luftsauerstoff selektiv zu epoxidieren. Als Oxidationsmittel wird lediglich Sauerstoff benötigt, der in reiner Form oder als Luftsauerstoff oder verdünnt mit einem Inertgas wie CO2, N2, Edelgasen oder Methan eingesetzt werden kann. Vorzugsweise eignen sie sich zur Oxidation von aliphatischen, gegebenenfalls verzweigten C2-C30-Alkenen und C5-C12-Cycloalkenen, insbesondere zur Oxidation von linearen C2-C25-Alkenen und C5-C8-Cycloalkenen, speziell zur Oxidation von C2- C12-Alkenen, wie z.B. Ethen, Propen oder Octen, aber auch Epoxide längerkettiger bzw. höherer Alkene sind mit Hilfe der erfindungsgemäßen Komplexe zugänglich.
Die Olefine können hierbei auch durch weitere Alkyl-, Alkoxy- oder durch aromatische Gruppen und/oder durch Halogene substituiert sein. Die Oxidationsbedingungen werden so gewählt, daß bereits ohne Zusatz von Katalysator eine merkliche Oxidation eintritt, wobei in diesem Fall die Selektivität zum Epoxid gering ist.
Bei der Epoxidierung von Octen unter Verwendung der erfindungsgemäßen heterogenen Katalysatoren wird im allgemeinen in einem Temperaturbereich von 30 bis 300°C, vorzugsweise im Bereich von 70 bis 130°C gearbeitet. Im Fall von Propen liegt die Temperatur vorzugsweise in einem Bereich von 100 bis 500°C, insbesondere im Bereich von 125 bis 230°C. Der Druck sollte im Bereich von 20 bis 200 bar sein, insbesondere von 35 bis 100 bar.
Die Flüssigphasenoxidation erfolgt entweder in reinem Olefin oder verdünnt in einem oxidationsstabilen Lösemittel. Als geeignete Lösemittel kommen z.B. folgende
Gruppen in Frage: halogenierte Aromaten, wie beispielsweise Chlorbenzol, 1-Chlor- 4-brombenzol, Brombenzol, halogenierte und nicht halogenierte Kohlenwasserstoffe, wie z.B. Chloroform, Chlorpropanol, Dichlormethan, 1 ,2- Dichlorethan, Trichlormethylen, ferner Alkohole, insbesondere C^C^-Alkohole, wie Ethanol, Methanol oder Propanol sowie höhere Alkohole und Wasser.
Die Erfindung wird an Hand der nachfolgenden Beispiele näher erläutert. Beispiele
Folgende Liganden wurden dargestellt:
Beispiel 1 : 1 ,1-Fluorenyl-1-(2-pyridyl)methanol
Beispiel 2: 1 ,1 -Suberyl-1 (2-pyridyl)methanol
Ligandensynthese für die Beispiele 1 und 2: Zu 300 ml Methyl-t-butylether, der auf -30°C gekühlt wird, werden 0,12 mol
Butyllithium unter Argon langsam zugetropft. Dabei soll die Temperatur -20°C nicht übersteigen. Nun werden 0,13 mol 2-Brompyridin, gelöst in 75 ml Methyl-t- Butylether, langsam zur etherischen BuLi-Lösung zugetropft. Dabei entsteht die für die lithiumorganischen Verbindungen charakteristische rote Lösung. Zur so hergestellten dunkelroten klaren Lösung werden nun 0.15 mol der jeweiligen
Carbonylverbindung (Fluorenon bzw. Suberenon), gelöst in 75 ml Methyl-t- Butylether zugetropft. Auch hier sollte die Temperatur -20°C nicht übersteigen. Die Lösung wird 2 Stunden bei -30°C gerührt und dann langsam auf 0°C erwärmt und anschließend vorsichtig mit wenig destilliertem Wasser hydrolysiert. Danach wird die Lösung auf Raumtemperatur erwärmt und mit wenig 15 %iger Salzsäure ausgeschüttelt. Die Wasserphase wird anschließend mit 15 %iger Natronlauge neutralisiert und mit Methyl-tert.-Butylether extrahiert. Anschließend wird die Etherphase abrotiert. Zurück bleibt das gewünschte Produkt, das durch Umkristallisation (festes Produkt) oder Destillation (flüssiges Produkt) gereinigt wird. Folgende Molybdänkomplexe wurden hergestellt:
Bis[9-(2'-Pyridinyl)fluoren-9-olato]dioxomolybdän(VI) (Beispiel 1 ) Ausbeute:
Summenformel: MoC36H24N2O4 Molare Masse: 644.54 MS/EI: 644+ M/z
Figure imgf000012_0001
1H-NMR [CDCI3, 20°C, ppm]
9.10. (H6', d, 3J(H6', H5') = 5Hz, 1 H), 7.80 (H3/7, dd, 3J(H3/7, H4/8) = 8Hz, 3J(H37, H276) = 8Hz, 2H), 7.65 (H1 5, d, 3J(H1/5, H2"5) = 9Hz, 2H), 7.60 (H4, dd, 3J(H1', H3') = 8Hz, 3J(H1', H5') = 8HZ, 1 H), 7.40 (H5', dd, 3J(H5', H6 = 6Hz, 3J(H5', H1') = 7HZ, 1 H), 7.33 (H276, m, 2H), 7.33 (H4'8, m, 2H), 7.05 (H1/5, d, 3J(H1/5, H2"3) = 9Hz, 2H), 6.70 (H3\ d, 3J(H3', H1') = 8Hz, 1 H)
{1H}-13C-NMR [CDCI3, 20°C, ppm]
164.86 (C2), 147.82 (C6), 150.85 (C1011), 149.13 (C10/11), 141.52 (C12/13) 138.92 (C12 13'), 139.04 (C4), 129.66 (C1 5), 129.53 (C1'5), 129.03 (C3/8), 127.52 (C3/8), 125.62 (C1/6), 124.91 (C1/6), 124.91 (C1 6), 123.13 (C3), 121.94 (C5), 120.51 (Cw), 119.63 (C4/9), 120.51 (Cw), 119.63 (C4/9), 95.56 (C9)
IR[KBr, cm 1] : v(Mo=O)=921 (s), 903(s)
Bis[5-(2'-Pyridinyl)-10,11-dihydrodibenzo[a,d]cyclohepten-5-olato]dioxomolybdän(VI) (Beispiel 2)
Ausbeute:
Summenformel: MoC40H32N2O4 Molare Masse: 700.65 EA ber.: H 4.60 C 68.57 N 4.00 EA gef: H 5.04 C 67.63 N 3.50
Figure imgf000013_0001
1H-NMR [CDCI3, 20°C, ppm]
7.68 (H1 6, d, 3J(H1'6, H277) = 9Hz, 2H), 7.40 (H6', d, 3J(H8', H5') = 5Hz, 1 H), 7.53 (H4', dd, 3J(H4', H3') = 8Hz, 3J(H4', H5') = 8Hz, 1 H), 7.21 (H3/8, dd, 3J(H3'8, H277') = 7Hz, 3J(H3'8, H479') = 7Hz, 2H), 6.98 (H5', dd, 3J(H5', H6') = 6Hz, 3J(H5', H4') = 7Hz, 1 H), 6.91 (H277, dd, ^(H277, H378) = 8Hz, ^(H277, H1 δ) = 8Hz, 2H), 6.90 (H3', d, 3J(H3', H4) = 8Hz, 1 H), 6.50 (H4/9, d, 3J(H4'9, H3'8) = 8Hz, 1 H), 6.38 (H49, d, 3J(H49, H378) = 8Hz, 1 H), 4.15 (H1 /12, m 1 H), 3.80 (H11 12, m 1 H), 3.15 (H11 12, m 2H).
{1H}- 3C-NMR [CDCI3, 20°C, ppm]
167.21 (C2), 147.64 (C6), 142.13 (C15'16), 143.62 (C15/16), 141.45 (C12/13'), 137.98 (C1 /13"), 136.51 (C4), 132.05 (C277), 130.81 (C277), 130.64 (C378),
129.85 (C38), 128.24 (C176), 127.87 (C176), 126.25 (C4'9'), 126.25 (C49), 124.95 (C3), 124.91 (C479), 122.83 (C5), 96.64 (C5), 35.33 (C10711), 34.78 (C10 11).
IR[KBr, cm 1] : v(Mo=O)=915(s), 895(s)
Oxidation von Oct-1-en
In einen 10-ml-Reaktor (Septum, Rückflußkühler-Gasbürette) werden 2,0 ml (12,6 mMol) Oct-1-en und 80 μmol des jeweiligen Katalysators gegeben. Die Apparatur wird mit O2 gespült, mit einer reinen O2-Atmosphäre (1 bar) gefüllt und anschließend auf 100°C temperiert. Nach einer O2-Aufnahme von 10 ml wird die Reaktion durch Abkühlung abgebrochen, 1 ml der Reaktionslösung mit exakt 50 μl Heptan (externer GC-Standard) versetzt und gaschromatographisch die Selektivität für 1 ,2-Epoxyoctan analysiert.
Oct-1-en wurde nach vorstehender Arbeitsvorschrift unter Verwendung von Molybdänkomplexen des Standes der Technik (Vergleichsbeispiele 1-3) und der erfindungsgemäßen Molybdänkomplexe (Beispiele 1-2) epoxidiert. Dabei wurden folgende Ergebnisse erhalten:
In einen gereinigten 200 ml Autoklaven werden 80 μmol des jeweiligen Katalysators gegeben und mit 20 ml Chlorbenzol gelöst. Nach Zugabe der Rührvorrichtung (Magnetrührkern) wird der Autoklav verschlossen und mit Hilfe einer Isopropanol
Trockeneismischung auf -15"C abgekühlt. Anschließend werden rund 27 g Propen einkondensiert. Nach erfolgter Dichtigkeitsprüfung wird das Eduktgemisch auf 150°C unter Rühren erwärmt. Sind die 150°C erreicht, werden 10 bar synthetische Luft aufgepresst. Die Reaktion wird nun 4 Minuten bei 150°C durchgeführt, anschließend wird abgekühlt. Der auf Raumtemperatur abgekühlte Reaktionsansatz wird nun vorsichtig über die Gasprobennahme entspannt. Dabei wird am Anfang des Entspannens die Probe für die Gasanalytik genommen. Nach vollständigem Entspannen wird die Probe zur GC Untersuchung der Flüssigphase genommen.
Figure imgf000015_0002
Bu =
Figure imgf000015_0001

Claims

Patentansprüche
1. Katalysatoren für die selektive Oxidation von Olefinen in Gegenwart von Luft oder Sauerstoff, enthaltend Verbindungen der Formel (1)
Figure imgf000016_0001
worin x 1 , 2 oder 3, y eine ganze Zahl von 0 bis 2x + 1 , z eine ganze Zahl von 1 bis 2x bedeuten, dadurch gekennzeichnet, daß der Ligand L eine Verbindung der Formeln (2) oder (3) ist
Figure imgf000016_0002
worin n 0 oder 1 , X ein Stickstoff-, Sauerstoff- oder Schwefelatom, Y Wasserstoff, CrCβ-Alkyl,
Figure imgf000016_0003
F, Cl, Br, I, COOCH3, C6-C14- Aryl oder C3-C8-Cycloalkyl bedeuten, R3 und R4 einen aus 4 bis 8 Kohlenstoffatomen bestehenden Ring bilden, an den ein oder zwei aromatische Ringe kondensiert sein können, R1 und R2 Wasserstoff, verzweigtes oder geradkettiges CrC12-Alkyl oder verzweigtes oder geradkettiges C C12-Halogenalkyl bedeuten, die den durch R3 und R4 gebildeten Ring und/oder die an diesen Ring ankondensierten Ringe substituieren, oder daß der Ligand L eine Verbindung der Formeln (4) oder (5) ist
Figure imgf000017_0001
(4) (5) worin R für Wasserstoff, CrC8-Alkyl, CrC8-Alkoxy, COOCH3, Carbonylsauerstoff, C6-C14-Aryl oder C3-C8-Cycloalkyl steht, und n 1 oder 2 und m eine Zahl von 1 bis 6 bedeuten.
2. Katalysatoren nach Anspruch 1 , dadurch gekennzeichnet, daß es sich bei dem Liganden L um eine der folgenden Verbindungen handelt:
Figure imgf000017_0002
Figure imgf000018_0001
3. Katalysatoren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie auf Trägermaterialien aufgetragen sind und daß das Mengenverhältnis Komplex/Trägermaterial im Bereich von 1 :1 bis 1 :1000, insbesondere im Bereich von 1 :2 bis 1 :100 liegt.
4. Katalysatoren nach Anspruch 3, dadurch gekennzeichnet, daß das Trägermaterial ausgewählt ist aus der Gruppe Aluminiumoxide, Siliciumdioxide, Alumosilikate, Titandioxid, Zirkoniumdioxid, Thoriumdioxid, Lanthanoxid, Magnesiumdioxid, Caiciumoxid, Bariumoxid, Zinnoxid, Cerdioxid, Zinkoxid, Boroxid, Bornitrid, Borcarbid, Borphosphat, Zirkoniumphosphat, Siliziumnitrid und Siliziumcarbid, Polypyridine, Polyacrylate sowie PR3, O=PR2 oder NR2 mit R=H, Alkyl, Aryl enthaltenden Polymeren.
5. Verwendung der Katalysatoren nach Anspruch 1 oder 2 zur Oxidation von C2- C30-Alkenen oder C5- bis C12-Cycloalkenen.
PCT/EP1998/004240 1997-07-11 1998-07-08 Katalysatoren zur selektiven epoxidierung von olefinen mit luftsauerstoff WO1999002261A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98940180A EP0994750A1 (de) 1997-07-11 1998-07-08 Katalysatoren zur selektiven epoxidierung von olefinen mit luftsauerstoff
US09/462,451 US6248913B1 (en) 1997-07-11 1998-07-08 Catalysts for olefin selective epoxidation with atmospheric oxygen
CA002297195A CA2297195A1 (en) 1997-07-11 1998-07-08 Catalysts for olefin selective epoxidation with atmospheric oxygen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19729837.0 1997-07-11
DE1997129837 DE19729837A1 (de) 1997-07-11 1997-07-11 Katalysatoren zur selektiven Epoxidierung von Olefinen mit Luftsauerstoff
DE1998128012 DE19828012A1 (de) 1998-06-24 1998-06-24 Katalysatoren zur selektiven Epoxidierung von Olefinen mit Luftsauerstoff
DE19828012.2 1998-06-24

Publications (1)

Publication Number Publication Date
WO1999002261A1 true WO1999002261A1 (de) 1999-01-21

Family

ID=26038236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/004240 WO1999002261A1 (de) 1997-07-11 1998-07-08 Katalysatoren zur selektiven epoxidierung von olefinen mit luftsauerstoff

Country Status (4)

Country Link
US (1) US6248913B1 (de)
EP (1) EP0994750A1 (de)
CA (1) CA2297195A1 (de)
WO (1) WO1999002261A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668227A (en) * 1968-09-05 1972-06-06 Snam Progetti Molybdenum catalysts for the oxidation of unsaturated compounds in liquid phase
US3956180A (en) * 1970-12-28 1976-05-11 Texaco Development Corporation Hydrocarbon soluble molybdenum catalysts
WO1996020788A1 (de) * 1994-12-30 1996-07-11 Hoechst Aktiengesellschaft Epoxiden durch oxidation von olefinen mit luft oder sauerstoff

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2070406A5 (en) 1969-12-08 1971-09-10 Inst Francais Du Petrole Olefin epoxidation - with molecular oxygen and nitrile (co) solvent
FR2115752A5 (en) 1970-11-26 1972-07-07 Progil Propylene oxide - from propylene and oxygen in contact with titanium surfaces

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668227A (en) * 1968-09-05 1972-06-06 Snam Progetti Molybdenum catalysts for the oxidation of unsaturated compounds in liquid phase
US3956180A (en) * 1970-12-28 1976-05-11 Texaco Development Corporation Hydrocarbon soluble molybdenum catalysts
WO1996020788A1 (de) * 1994-12-30 1996-07-11 Hoechst Aktiengesellschaft Epoxiden durch oxidation von olefinen mit luft oder sauerstoff

Also Published As

Publication number Publication date
US6248913B1 (en) 2001-06-19
CA2297195A1 (en) 1999-01-21
EP0994750A1 (de) 2000-04-26

Similar Documents

Publication Publication Date Title
WO1996020788A1 (de) Epoxiden durch oxidation von olefinen mit luft oder sauerstoff
DE19533331A1 (de) Peroxogruppenhaltige Metallkomplexe mit Aminoxid- oder Phosphanoxid-Liganden als Epoxidierungskatalysatoren
DE2607768A1 (de) Katalytisches verfahren zur herstellung von olefinoxiden
DE19847629A1 (de) Verfahren zur Oxidation einer mindestens eine C-C-Doppelbindung aufweisenden organischen Verbindung
US4046783A (en) Method of olefin epoxidation
DE2239681B2 (de) Verfahren zur Epoxidierung von olefinisch ungesättigten Verbindungen mit Wasserstoffperoxid
DE69306117T2 (de) Epoxydierungskatalysator
EP0994750A1 (de) Katalysatoren zur selektiven epoxidierung von olefinen mit luftsauerstoff
DE19729837A1 (de) Katalysatoren zur selektiven Epoxidierung von Olefinen mit Luftsauerstoff
DE19828012A1 (de) Katalysatoren zur selektiven Epoxidierung von Olefinen mit Luftsauerstoff
DE19717181A1 (de) Verfahren zur selektiven katalytischen Oxidation von Olefinen zu Aldehyden/Ketonen unter C=C-Bindungsspaltung
US5344946A (en) Process for the preparation of vicinal diols and/or epoxides
DE4447231A1 (de) Verfahren zur Herstellung von Epoxiden durch Oxidation von Olefinen mit Luft oder Sauerstoff
EP0811003B1 (de) Verfahren zur herstellung von epoxiden mittels aromatischer peroxycarbonsäuren
US4587057A (en) β-Hydroxycyclopentylperoxide compounds and the use thereof
DE19729838A1 (de) Verfahren zur Herstellung von Epoxiden durch Oxidation von Olefinen mit Luft oder Sauerstoff
EP1003732A1 (de) Verfahren zur herstellung von epoxiden durch oxidation von olefinen mit luft oder sauerstoff
DE19536076A1 (de) Katalysatoren zur selektiven Epoxidierung von Olefinen mit Luftsauerstoff
DE19519008A1 (de) Neue ruthenium- und selen- oder schwefelhaltige Metalloxidkatalysatoren sowie ein Verfahren zu ihrer Herstellung und ihre Verwendung
DE19828011A1 (de) Verfahren zur Herstellung von Epoxiden durch Oxidation von Olefinen mit Luft oder Sauerstoff
JP3177666B2 (ja) オレフィン類の酸化反応法
DE3031288A1 (de) Verfahren zur herstellung cyclischer alkylencarbonatester.
DE4111506A1 (de) Verfahren zur herstellung vicinaler diole oder/und epoxide
EP0381622B1 (de) Verfahren zur Herstellung von Dihalogenbutyraldehyden
DE4343268A1 (de) Rutheniumporphyrinkomplexe, Verfahren zu ihrer Herstellung, sowie ihre Verwendung zur katalytischen Epoxidierung von Olefinen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998940180

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09462451

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2297195

Country of ref document: CA

Ref country code: CA

Ref document number: 2297195

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1998940180

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998940180

Country of ref document: EP