WO1998040765A1 - Procede et dispositif pour determiner la distribution bidirectionnelle de la reflectance - Google Patents

Procede et dispositif pour determiner la distribution bidirectionnelle de la reflectance Download PDF

Info

Publication number
WO1998040765A1
WO1998040765A1 PCT/DE1998/000384 DE9800384W WO9840765A1 WO 1998040765 A1 WO1998040765 A1 WO 1998040765A1 DE 9800384 W DE9800384 W DE 9800384W WO 9840765 A1 WO9840765 A1 WO 9840765A1
Authority
WO
WIPO (PCT)
Prior art keywords
ccd line
line camera
reflectance distribution
optical
camera
Prior art date
Application number
PCT/DE1998/000384
Other languages
German (de)
English (en)
Inventor
Hans-Peter RÖSER
Marco Radke
Maria VON SCHÖNERMARK
Original Assignee
Deutsches Zentrum für Luft- und Raumfahrt e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum für Luft- und Raumfahrt e.V. filed Critical Deutsches Zentrum für Luft- und Raumfahrt e.V.
Priority to DE59809972T priority Critical patent/DE59809972D1/de
Priority to JP53905098A priority patent/JP2002500754A/ja
Priority to EP98910611A priority patent/EP0966694B1/fr
Publication of WO1998040765A1 publication Critical patent/WO1998040765A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/36Support for the head or the back
    • A47C7/40Support for the head or the back for the back
    • A47C7/42Support for the head or the back for the back of detachable or loose type

Definitions

  • the invention relates to a device and a method for determining the bidirectional reflectance distribution.
  • BRDF bidirectional reflectance distribution function
  • the bidirectional reflectance distribution function depends on the wavelength of the examined light and the radiance of the incident unreflected radiation. These in turn are dependent on the azimuth and zenith angles of the position of the sun or the observation azimuth and observation zenith angles.
  • the expression bidirectional thus indicates that the function depends not only on the zenith and azimuth of the observation point, but also on the zenith and azimuth of the light source (sun).
  • the spectrophotometer is attached to a rotating device that allows the spectrophotometer to be swiveled around two axes in all directions.
  • the radiance is usually determined over a reference surface ("white disk").
  • This is preferably a spectral plate with a precisely defined reflectivity that should be independent of the direction of the incident and emerging radiation.
  • a disadvantage of the known device is its lack of resolution. When measuring in a filter position and increments of 1 ° in the azimuth and zenith direction, the device needs 18 hours for a measurement, since every two seconds can be driven and measured.
  • a measurement can be carried out every three seconds.
  • the series of measurements thus takes one hour and five minutes. Since the bidirectional reflectance distribution function depends on the azimuth and zenith angle of the position of the sun, the measurement must be carried out very quickly to ensure an almost constant position of the sun.
  • either the opening angle (field of view) and / or the step size for the azimuth and zenith angles must be chosen to be relatively large in the known method. As a rule, one uses an opening angle and a step size of 5 ° to 15 ° and then measures the entire lower half space in a corresponding number of settings, some of which are carried out manually.
  • the result is a bidirectional reflectance distribution function with a resolution of 5 ° up to 15 ° angular increment.
  • Another disadvantage of the known device is the lack of accuracy of the determined reference, since the constancy of the reflectivity is not completely guaranteed, both at the different points of the spectral plate and in relation to the dependence on the viewing direction.
  • the invention is therefore based on the technical problem of creating a device and a method for determining the bidirectional reflectance distribution with which an improved resolution of the bidirectional reflectance distribution function can be achieved.
  • the optical detector device By designing the optical detector device as a CCD line camera, a segment of the surface to be scanned and a horizontal adjustment of the surface can be measured simultaneously, depending on the opening angle of the camera Detector device for detecting individual measuring points is unnecessary. This enables the surface to be measured faster by a factor of 2000, so that the errors due to a change in the position of the sun are negligible.
  • the time period for a series of measurements including polarization measurement is approx. 65 seconds with a resolution of up to 0.5 °.
  • Such wide-angle CCD line cameras have long been known from aerospace technology.
  • At least one further reference measurement can be carried out, in which certain points on the surface are measured in a different CCD line position. Since the intrinsic polarization of the CCD line camera is known, the measurement error can be eliminated using the two measurement data.
  • a spectral plate can be dispensed with for determining the reference and the reference directly through
  • Pivoting of the rotating device by 180 ° around the horizontal axis and repetition of the measurement in the compass direction can be determined
  • FIG. 1 is a perspective view of the device upon acquisition of the measurement data
  • 2 shows a perspective illustration of the device when the reference is acquired
  • FIG. 3 shows a perspective illustration of the device when an additional reference is acquired to compensate for the measurement errors due to the self-polarization of the CCD line camera.
  • the device for determining the bidirectional reflectance distribution comprises a CCD line camera 1 and a rotating device 2 on which the CCD line camera 1 is mounted.
  • the CCD line camera 1 can be pivoted both about a vertical axis 3 and about a horizontal axis 4.
  • Known CCD line cameras usually have three CCD lines, the line width comprising 5184 pixels.
  • these lines are arranged in such a way that the middle line looks vertically downwards and the other two look 25 ° forwards or backwards, only the middle CCD line being used to determine the bidirectional reflectance distribution .
  • a slit-shaped scattered light protection can be arranged in front of the camera optics.
  • the CCD line camera 1 is aligned in such a way that one end of the middle CCD line looks perpendicular to the surface 5 and thereby defines an imaginary center 6 of the surface 5. The opposite end of the CCD line is thus directed to a point 7 off-nadir. With an opening angle of 80 °, the optical axis of the CCD line camera 1 is at an angle of 40 ° to the surface 5. The segment shown in dashed lines is recorded by means of a simultaneous recording. Then the CCD line camera 1 is rotated by a certain angle about the vertical axis 3 and another segment is recorded. This process is repeated until the CCD line camera 1 has been rotated through 360 ° and has thus measured a circle 8 of the surface 5. The incremental vertical rotation can be done either manually or automatically using a suitable programmable controller.
  • the detected radiation density can be compared with a reference quantity corresponding to the incident radiation. 2
  • the CCD line camera 1 is rotated about the horizontal axis 4 by 180 ° and the incident radiation density is again recorded in segments.
  • both the incident and the reflected radiation density are known for each point on the surface 5, so that the resulting bidirectional reflectance distribution function of the surface 5 can be derived from this.
  • the CCD line camera 1 or the camera optics has a certain intrinsic polarization.
  • the intrinsic polarization of the camera optics is almost zero in the area of the optical axis and increases towards both ends of the CCD line.
  • the intrinsic polarization at the edges can be up to 20%.
  • the polarization of the incident light reflected from the earth's surface can be up to 30% with red
  • the measurement error which increases with decreasing wavelength, can be up to 6% or 12% due to the polarization alone.
  • a further reference measurement can be carried out according to FIG. For this, e.g. the
  • the CCD line camera 1 aligned such that the optical axis of the CCD line camera 1 is directed to the off-nadir point 7 of the first measurement, ie the points where the greatest self-polarization of the CCD line camera 1 in the previous measurement occurred. Since the natural polarization is zero in the region of the optical axis, the measurement error due to polarization for the off-nadir point 7 is zero in the reference measurement. By means of a comparison between the two measured values, the degree of polarization of the radiation reflected by the surface 5 can be deduced. Since the intrinsic polarization and its distribution over the CCD line is a fixed, determinable device size, the measurement error due to the polarization can be for everyone

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

L'invention concerne un procédé et un dispositif pour déterminer la distribution bidirectionnelle de la réflectance. Le dispositif comprend un dispositif détecteur optique et un mécanisme de pivotement (2) qui fait pivoter le dispositif optique détecteur constitué d'une caméra à CCD à balayage ligne par ligne (1).
PCT/DE1998/000384 1997-03-10 1998-02-02 Procede et dispositif pour determiner la distribution bidirectionnelle de la reflectance WO1998040765A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE59809972T DE59809972D1 (de) 1997-03-10 1998-02-02 Vorrichtung und verfahren zur bestimmung der bidirektionalen reflektanzverteilung
JP53905098A JP2002500754A (ja) 1997-03-10 1998-02-02 双方向性の反射率分布の決定のための装置と方法
EP98910611A EP0966694B1 (fr) 1997-03-10 1998-02-02 Procede et dispositif pour determiner la distribution bidirectionnelle de la reflectance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19711127A DE19711127C2 (de) 1997-03-10 1997-03-10 Vorrichtung und Verfahren zur Bestimmung der bidirektionalen Reflektanzverteilung
DE19711127.0 1997-03-10

Publications (1)

Publication Number Publication Date
WO1998040765A1 true WO1998040765A1 (fr) 1998-09-17

Family

ID=7823700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/000384 WO1998040765A1 (fr) 1997-03-10 1998-02-02 Procede et dispositif pour determiner la distribution bidirectionnelle de la reflectance

Country Status (4)

Country Link
EP (1) EP0966694B1 (fr)
JP (1) JP2002500754A (fr)
DE (2) DE19711127C2 (fr)
WO (1) WO1998040765A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110794382A (zh) * 2019-10-30 2020-02-14 上海禾赛光电科技有限公司 激光雷达及其探测方法
US11131583B2 (en) 2016-08-22 2021-09-28 National University Corporation Hokkaido University Object state detection and transmission system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608074B (zh) * 2012-03-21 2014-09-24 中国科学院安徽光学精密机械研究所 一种新型双向反射分布函数测量装置
JP6410451B2 (ja) 2014-03-31 2018-10-24 キヤノン株式会社 情報処理装置、計測システム、情報処理方法およびプログラム。
CN110083176B (zh) * 2019-05-05 2020-07-24 宁夏大学 一种基于无人机载高光谱成像的brdf数据采集系统和方法
JP7228860B1 (ja) 2022-02-07 2023-02-27 国立大学法人北海道大学 分光計測器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KARNER K F: "Using images to estimate reflectance functions", WSCG 96. FOURTH INTERNATIONAL CONFERENCE IN CENTRAL EUROPE ON COMPUTER GRAPHICS AND VISUALIZATION 96, IN COOPERATION WITH IFIP WORKING GROUP 5.10 ON COMPUTER GRAPHICS AND VIRTUAL WORLDS. CONFERENCE PROCEEDINGS, PROCEEDINGS OF WSCG 96: FOURTH INTERNA, ISBN 80-7082-238-4, 1996, PLZEN, CZECH REPUBLIC, UNIV. WEST BOHEMIA, CZECH REPUBLIC, PAGE(S) 133 - 140 VOL.1, XP002073418 *
KARNER KONRAD F ET AL: "Image based measurement system for anisotropic reflection", 26 August 1996, PROCEEDINGS OF THE 1996 17TH ANNUAL CONFERENCE AND EXHIBITION OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS, EUROGRAPHICS'96;POITIERS, FR AUG 26-30 1996, COMPUT GRAPHICS FORUM;COMPUTER GRAPHICS FORUM; GRAPHICS-VIRTUAL REALITY-GRAPHICS HIGHWAYS SEP 1996 BLACKWELL SCIENTIFIC PUBLISHERS, OXFORD, ENGL, PAGE(S) 119 - 128, XP002073416 *
KOVALICK W M ET AL: "Data processing and calibration of the Advanced Solid-State Array Spectroradiometer", IGARSS '94. INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM. SURFACE AND ATMOSPHERIC REMOTE SENSING: TECHNOLOGIES, DATA ANALYSIS AND INTERPRETATION (CAT. NO.94CH3378-7), PROCEEDINGS OF IGARSS '94 - 1994 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE, ISBN 0-7803-1497-2, 1994, NEW YORK, NY, USA, IEEE, USA, PAGE(S) 1652 - 1654 VOL.3, XP002073419 *
MAGNER THOMAS J: "Moderate-resolution imaging spectrometer-tilt baseline concept", 1991, EARTH AND ATMOSPHERIC REMOTE SENSING;ORLANDO, FL, USA APR 2-4 1991, PROC SPIE INT SOC OPT ENG;PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 1991 PUBL BY INT SOC FOR OPTICAL ENGINEERING, BELLINGHAM, WA, USA, PAGE(S) 272 - 285, XP002073417 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131583B2 (en) 2016-08-22 2021-09-28 National University Corporation Hokkaido University Object state detection and transmission system
CN110794382A (zh) * 2019-10-30 2020-02-14 上海禾赛光电科技有限公司 激光雷达及其探测方法

Also Published As

Publication number Publication date
EP0966694A1 (fr) 1999-12-29
DE19711127C2 (de) 2000-09-14
JP2002500754A (ja) 2002-01-08
EP0966694B1 (fr) 2003-10-22
DE19711127A1 (de) 1998-09-24
DE59809972D1 (de) 2003-11-27

Similar Documents

Publication Publication Date Title
DE3335336C2 (de) Vorrichtung zum Ausrichten einer Antriebswelle mit einer Abtriebswelle, die über eine Kupplung mit der Antriebswelle verbunden werden soll
DE3119688C2 (fr)
DE102010053422B3 (de) Messung der Positionen von Krümmungsmittelpunkten optischer Flächen eines mehrlinsigen optischen Systems
DE1930737C3 (de) AchsmeBgerat für Kraftfahrzeuge
WO2006000552A1 (fr) Systeme de balayage et procede d'enregistrement de surfaces
DE68910897T2 (de) Detektor- und Anzeigevorrichtung.
DE10205142B4 (de) Anordnung und Verfahren zur Wellenlängenkalibration bei einem Echelle-Spektrometer
DE4128912C2 (de) Verfahren und Einrichtung zur Kalibrierung von Spektralradiometern
DE69014781T2 (de) Instrument zur Messung eines Spektrums.
DE102012215153B3 (de) Verfahren und Messsystem zur Verschmutzungsmessung an einem Solarspiegel
DE102016216842B4 (de) Verfahren und Vorrichtung zum Betreiben eines Spektrometers
DE60014944T2 (de) Vorrichtung zur bestimmung der räumlichen verteilung der spektralen emission eines objekts
WO1998040765A1 (fr) Procede et dispositif pour determiner la distribution bidirectionnelle de la reflectance
DE69410498T2 (de) Messsystem der charakteristischen Stellungswinkel der Räder eines Kraftfahrzeugs und damit verbundene Messmittel
DE102013208565A1 (de) Verfahren und Vorrichtung zum Messen einer Reflektivität einer Probenoberfläche
DE4138679C1 (fr)
DE3517671A1 (de) Vorrichtung zum bildpunktweisen erfassen der oberflaechengestalt eines entfernten objektes
DE19547552C1 (de) Vorrichtung zur Bestimmung des Polarisationszustandes empfangener Strahlung
DE69934472T2 (de) Bestimmung der Position der optischen Achse einer Kamera
DE19523140A1 (de) Mehrkanal-Spektrometer mit Zeilensensor
DE102012014263B3 (de) Vorrichtung zur Kalibrierung eines optischenSensors
DD158189A3 (de) Kalibrierungsverfahren und vorrichtung fuer bestrahlungsstaerke-und strahldichtemessungen
DE19721044C2 (de) Anordnung zur Messung von polarisationsabhängigen optischen Parametern rotierender Proben mittels optischer Reflexion
DE10102261C1 (de) Einrichtung zur Strahlführung von einer Szene über ein Interferometer zu einem Detektor für ein abbildendes und/oder nicht abbildendes Fourier-Transform Spektrometer sowie Verfahren zur Optimierung dieser Einrichtung
DE102013106571B3 (de) Ermitteln einer radiometrischen Inhomogenität bzw. Homogenität einer flächigen Strahlungsverteilung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CZ JP PL SI US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09380126

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998910611

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 539050

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1998910611

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998910611

Country of ref document: EP