WO1998038694A1 - Resonanzantenne - Google Patents

Resonanzantenne Download PDF

Info

Publication number
WO1998038694A1
WO1998038694A1 PCT/EP1998/001040 EP9801040W WO9838694A1 WO 1998038694 A1 WO1998038694 A1 WO 1998038694A1 EP 9801040 W EP9801040 W EP 9801040W WO 9838694 A1 WO9838694 A1 WO 9838694A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor section
resonator
conductor
antenna
antenna according
Prior art date
Application number
PCT/EP1998/001040
Other languages
English (en)
French (fr)
Inventor
Lutz Rothe
Original Assignee
Pates Technology Patentverwertungsgesellschaft Für Satelliten- Und Moderne Informationstechnologien Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pates Technology Patentverwertungsgesellschaft Für Satelliten- Und Moderne Informationstechnologien Mbh filed Critical Pates Technology Patentverwertungsgesellschaft Für Satelliten- Und Moderne Informationstechnologien Mbh
Priority to US09/380,131 priority Critical patent/US6304219B1/en
Priority to DE59805415T priority patent/DE59805415D1/de
Priority to AT98912379T priority patent/ATE223621T1/de
Priority to DE19880222T priority patent/DE19880222D2/de
Priority to EP98912379A priority patent/EP0965152B1/de
Priority to IL13155898A priority patent/IL131558A0/xx
Priority to AU67243/98A priority patent/AU6724398A/en
Priority to JP53729098A priority patent/JP2001513283A/ja
Priority to CA002282611A priority patent/CA2282611C/en
Publication of WO1998038694A1 publication Critical patent/WO1998038694A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines

Definitions

  • the invention relates to an antenna for receiving and transmitting electromagnetic microwaves of wavelength ⁇ , consisting of a substrate layer made of low-dielectric material, which has a conductive ground plane on one side and the opposite side of which is structured in the form of microstrip lines.
  • the area of application of the invention extends primarily to the sector of mobile radio and handheld technology. Inside of the spectral ranges between 890 MHz and 960 MHz or 1710 MHz and 1890 MHz, by integrating the component m according to the invention into the corresponding terminal and handheld technology .
  • Known antenna solutions for the field of mobile radio applications are based on linear antenna designs in the form of monopole arrangements in a shortened or unabridged design. These linear antennas are known both as externally mountable on-board antennas and as components that are directly coupled to the terminal device, and they have different directional factors and efficiency, these components in the azimuthal plane being exclusively r-stranien ⁇ .
  • Known flat antenna solutions are based on Dipole-like configurations arranged flat-like, the directional diagram of which shows irregular and m connection with the respective antenna carrier or antenna body the characteristics of a significant radiation field deformation. The radiation properties related to the area of application are clearly inferior to those of the classic linear antennas. Likewise, targeted masking properties of the radiation diagram cannot be demonstrated. Furthermore, no solutions are known whose electromagnetic or radiation properties are achieved on the basis of asymmetrical and open waveguide technology, in particular microstrip technology, using film conductors or film-like guide surfaces.
  • the azimuthal omnidirectional antenna configuration shown in the patent specification DE 41 13 277 is based exclusively on a film as a mechanical structure support, the named antenna component being afflicted with a head capacity arranged outside the terminal equipment container.
  • the az-mutually omnidirectional antenna configuration shown in patent DE 41 21 333 is based on an electrically non-conductive film as a mechanical structure support, the main radiation direction with respect to the elevation values being an inclination of approx. (Minus) -30 ° (angular degree), that means has a negative elevation angle.
  • a disadvantage of the known antenna configurations is that they are either omnidirectional in the azimuthal plane or only radiate within the negative elevation range.
  • the antenna according to the invention which can also be referred to as a foil radiator, is a modified ⁇ / 4 radiator which is short-circuited to ground on one side.
  • the elongated conductor section which serves as a resonator, is made shorter than ⁇ ⁇ / 4.
  • the resonator becomes inductive and the vibration insulation is not complied with.
  • an end capacitance is generated at the end of the resonator opposite the short-circuited side.
  • This end capacitance is generated by at least one additional additional conductor section which connects at one end to the end of the resonator opposite the short-circuited side and the other end forms an open circuit.
  • the length of the additional further conductor sections determine the vibration condition and thus the resulting resonance frequency of the entire structure.
  • Various embodiments of the conductor sections at the end of the resonator are conceivable for realizing a defined end capacity for receiving the vibration condition.
  • the final capacity can be realized by one or more lines of appropriate length, which do not necessarily have to run parallel to one another or to the resonator. All lines can also be made in any curved shape and not just in a straight shape.
  • the cover of the antenna or the foil radiator by an additional dielectric layer can be largely insensitive to other dielectrics located near the stranger. This is important so that the installation of the film radiator m fun devices (dielectric influence) as well as the influence that results from holding the radio in hand, the functionality remains and the radiator is not detuned.
  • This antenna e.g. Good impedance bandwidth, efficiency and gain depend on the size of the mechanical shortening (reduction) achieved, the width of the resonator, the distance between the resonator and the end capacitance sections, the effective permittivity constant, the substrate thickness and the dielectric loss angle.
  • an essential feature of the invention is that the resonators implemented in microstrip technology for receiving the microwaves are shorter than ⁇ ⁇ / 4, which means that a particularly compact and small design can be achieved.
  • the fact that the resonator length is chosen to be shorter than ⁇ ⁇ / 4 means that, as already explained, the vibration condition is no longer greater Fulfills.
  • the required end capacities are realized by further line sections.
  • An increase in the frequency bandwidth can be achieved by additional radiator elements by electromagnetic coupling. This is done by means of further additional microstrip lines which are arranged at certain distances from the resonator and its end capacitors.
  • resonators On a substrate with two or more resonators, the resonators being able to be spatially nested and matched to the required frequency bands.
  • the individual antennas do not have to be arranged on one level, but can also be arranged in layers one above the other. It is also possible that several antenna arrangements are provided per layer, so that more than two different frequency bands can be operated. This makes it possible for a mobile radio telephone to be able to communicate with different mobile radio networks.
  • Figure 1 Invention antenna with one with the
  • Resonator connected to the ground plane and two conductor sections which represent the end capacitors and which adjoin the resonator on both sides;
  • Figure 3 Antenna acc. 1 with only one conductor section forming the final capacitance
  • Figure 4 Antenna acc. FIG. 1, in which the conductor cuts are arranged on one side of the resonator;
  • FIG. N antenna, the end capacitance conductor sections of which are not straight, but rather rectangular in shape;
  • FIGS. 8 to 10 Antenna according to the invention in accordance with FIG. 2, in which a plurality of resonators nested in one another are provided in order to enlarge the frequency bandwidth;
  • FIG. 12 Two antennas according to the invention arranged on a substrate for receiving two frequency bands, each with additional coupling for increasing the respective frequency bandwidth;
  • Figure 13 Top view of a layer antenna for
  • Figure 14 Cross-sectional view of an antenna acc.
  • FIG. 1 shows an antenna according to the invention with a film-like, low-dielectric carrier 10, which is coated on one side with a conductive structure S, consisting of conductor sections 2, 3 and 4 of different lengths that run parallel to one another and rectilinearly, the conductor section 3 being conductive and one-sided is connected to a ground plane 8, which in turn, as shown in FIG. 2, is connected to the ground plane 1 via a conductive coating of the cross-sectional area of the carrier substrate 10.
  • the ground plane 8 can be connected to the ground plane 1 m by means of one or more contact pins which pass through the dielectric substrate layer 10.
  • the conductor sections 2, 3 and 4 are each arranged separately from one another by a gap 5, 6 of a defined gap width, the conductor sections 2, 3 and 4 being conductively connected to one another by a strip-shaped conductor section 7 of a defined section length and width running in the transverse direction, the conductor section running in the transverse direction being arranged on the conductor section end of the antenna opposite the ground contact 8.
  • the conductor section 3 which is connected to the ground plane 8 at one end of the conductor section and to the transverse strip-shaped conductor section 7 at the opposite end of the conductor section, is coupled to a signal waveguide at the location 9 by the inner conductor 13 of a coaxial waveguide being connected by an aperture 15 which is shown in FIG the rear ground plane 1 is arranged, guided centrally and coupled to the conductor section 3 at location 9 on the longitudinal symmetry line of the conductor section, and the outer conductor of the coaxial waveguide is conductively connected to the rear ground plane 1 at the aperture boundary 15.
  • the vibration condition of the open and asymmetrical waveguide structure in the form of microstrip technology is determined by the geometric length and width of the conductor sections 2, 3 and 4.
  • the input impedance of the microstrip anoronation is determined via the location of the coupling 9 along the symmetry of the conductor section 3, which in turn depends on the resulting length of the conductor sections 2 and 4, the signal embedding or decoupling at the location 9 via a circular coaxial aperture or a slit or rectangular aperture.
  • the detuning of the emitter due to dielectric environmental influences is compensated for over the length of the conductor sections 2 and / or 4, the degree of detuning of the emitter due to dielectric environmental influences being additionally influenced or minimized by the application of a dielectric layer 11 of a defined dielectric number and a defined geometry.
  • the dielectric carrier layer 10 is in particular a polystyrene film with a layer thickness of 1 mm, which is provided on one side and over the entire area with a copper or aluminum foil with a layer thickness between 0.01 mm and 0.5 mm, which forms the ground plane.
  • the dielectric layer 11 also has a layer thickness of approximately 1 mm.
  • the antenna has a length L of 119 mm ⁇ and a width B A of 40 mm.
  • the length L 8 of the ground plane 8 is 20 mm.
  • the distance L B from the ground surface 8 to the feed point of the antenna 9 is also ⁇ if 20 mm.
  • the diameter of the aperture 15 is 4.1 mm.
  • the length of the conductor capacity forming the final capacity K: and K measure 82.6 mm and 56.7 mm.
  • the length L R of the conductor section 3 or R forming the resonator is 85.7 mm.
  • the width of the conductor section 2 is 11.5 mm and the width of the conductor section 4 is 9.5 mm.
  • the width of the resonator conductor section is 12 mm.
  • FIG. 3 shows a radiator according to the invention, in which only a conductor section K arranged parallel to the resonator conductor section 3 or R forms the end capacitance.
  • FIG. 4 shows a radiator according to the invention, in which the end capacitance is formed by two conductor sections Ki and K 2 arranged in parallel, which are arranged on one side of the resonator conductor section R.
  • an antenna can be configured in which the resulting end capacitance is realized by three or four conductor sections Ki to K.
  • FIG. 7 shows a further embodiment of the antenna according to the invention, in which the conductor sections 16 and 17 forming the end capacitance are not rectilinear but have a rectangular shape.
  • FIGS. 8 to 10 show antennas in which the frequency bandwidth of the antenna is set or increased by electromagnetic coupling with additional conductor elements which are arranged on the same dielectric carrier substrate.
  • the basic structure of the antenna according to FIG. 8 corresponds to the antenna according to FIG. 3, with additionally a U-shaped conductor section 19, 20, 21 with its one leg 21 reaching into the gap between the resonator conductor section 3 and the conductor section 2 forming the final capacitance.
  • the other leg 19 is connected to an additional ground surface 18, which in turn is connected to the ground plane I in accordance with the ground surface 9.
  • the figure 9 corresponds in its basic ⁇ construction of Figure 1, now two additional U- Forma ⁇ e Leiteraoschnitte 23 to 28 are provided, each with one leg 27, 28 m engage the gap formed by the conductor sections 2, R, 4.
  • FIGS. 9 and 10 show further possible configurations of the antenna according to the invention, the arrangement of the additional conductor sections 30 to 38 influencing the coupling for increasing the frequency bandwidths being in principle arbitrary. It is also conceivable that the conductor sections interlock in a spiral manner, so that a long parallel guidance of conductor sections is produced in a relatively small space.
  • FIGS. 11 to 14 show antennas in which two antenna signals can be coupled in or out, as a result of which two frequency bands can be received or operated simultaneously using only one film antenna. Due to the different design of the resonator conductor sections R 3 and R b , the resonance conditions connection with the conductor sections 41a, b and 42a, b and the locations 43a, 43b of the coupling-out of the electromagnetic waves are determined. Due to the nesting of the two radiator arrangements, they can be arranged in a very small space.
  • FIG. 12 shows a further embodiment of an antenna with two connections 51a, 51b for dielectric waveguides, with only the radiator arrangement shown in FIG. 8, each having different dimensions, being arranged next to one another on a substrate carrier.
  • FIGS. 13 and 14 show a multi-layer antenna in which the antennas according to the invention are arranged in a sandwich-like manner above a plurality of layers, one antenna in each case corresponding to the oscillation conditions for the frequencies of a specific mobile radio network. Due to the different resonance frequencies, the excessive radiation structures arranged only insignificantly. In contrast to the arrangement according to FIG. 2, less space is required when the radiator structures are layered on top of one another, as a result of which the antenna according to FIG. 13 can be made more compact and thus the housing of a mobile radio telephone surrounding it can be made relatively small.
  • FIG. 14 shows the antenna according to FIG. 13 in cross section.
  • the conductive coating 12a, b of the cross-sectional area of the Tragersubstrate 10a and 10b is connected to the patterned layers S A and S B m-conductive connection.
  • Such a conductive cross-sectional coating can also be provided on the opposite side after execution of the antenna.
  • Waveform 18, 22, 29, 40b, 7 additional ground area; with the ground plane

Landscapes

  • Waveguide Aerials (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Details Of Aerials (AREA)
  • Burglar Alarm Systems (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Die Erfindung betrifft eine Antenne zum Empfang und Senden von elektromagnetischen Mikrowellen der Wellenlängen μ, bestehend aus einer Substratschicht (10) aus niederdielektrischem Material, welche auf einer Seite eine leitfähige Masseebene (1) hat und deren gegenüberliegende Seite leitfähig in Form von Mikrostreifenleitungen strukturiert ist, wobei die leitfähige Struktur (S) einen länglichen Leiterabschnitt (3, 3a, 3b, R, Ra, Rb) als Resonator hat, dessen Länge (LR) kürzer als με/4 ist, und der mit seinem einem Ende mit der Masseebene (8, 1) leitfähig in Verbindung ist, und dessen anderes Ende mit mindestens einem weiteren Leiterabschnitt (2, 2a, 2b, 4, 42a, 42b, 46a, 46b, K) leitfähig in Verbindung ist, der als Endkapazität zur Einstellung der Resonanzbedingung dient, wobei der Resonatorleiterabschnitt (3, 3a, 3b, R, Ra, Rb) mit einem Innenleiter eines koaxialen Wellenleiters und der Außenleiter des koaxialen Wellenleiters mit der Masseebene (1) in Verbindung ist.

Description

RESONANZANTENNE
Die Erfindung betrifft eine /Antenne zum Empfang und Senden von elektromagnetischen Mikrowellen der Wellenlangen λ, bestehend aus einer Substratschicht aus niederdielektrischem Material, welche auf einer Seite eine leitfahige Masseebene hat und deren gegenüberliegende Seite leitfahig in Form von Mikrostreifenleitungen strukturiert ist.
Der /Anwendungsbereich der Erfindung erstreckt sich vordergründig auf den Sektor der Mobilfunk- und Handheld-Technik .nnernalb der Spektralbereiche zwischen 890 MHz und 960 MHz oder 1710 MHz und 1890 MHz, indem die erfmdungsgemäße Komponente m die entsprechenden Endgerate- und Handheld- Techni integriert wird.
Bekannte Antennenlosungen für den Bereich der Mobilfun an- wendungen beruhen auf Linearantennenkonzeptionen m Form von Monopolanordnungen m verkürzter oder unverKurzter Ausfuhrung. Diese Linearantennen sind sowohl als extern montierbare Bordantennen als auch als unmittelbar mit dem Endgerat gekoppelte Komponenten bekannt, sowie mit unterschiedlichem Richtfaktor und Wirkungsgrad behaftet, wobei diese Komponenten m der Azimutalebene ausschließlich r nd- stranienα sind. Bekannte Flachantennenlosungen beruhen auf flachennaft angeordneten, dipolahnlichen Konfigurationen, deren Richtdiagramm unregelmäßig und m Verbindung mit dem jeweiligen Antennentrager bzw. Antennenkorper die Merkmale einer signifikanten Strahlungsfelddeformation aufweisen. Die auf den Anwendungsbereich bezogenen Strahlungseigenschaften sind denen der klassischen Linearantennen deutlich unterlegen. Gleichfalls sind gezielte Ausblendungseigen- schaften des Strahlungsdiagramms nicht nachweisbar. Weiterhin sind keine Losungen bekannt, deren elektromagnetische bzw. Strahlungseigenschaften auf der Basis unsymmetrischer und offener Wellenleitertechn k, insbesondere der Mikro- streifentechnik, unter Verwendung von Folienleitern oder folienannlichen Leitflachen erzielt werden.
Die in der Patentschrift DE 41 13 277 dargestellte und azimutal rundstrahlende Antennenkonfiguration geht ausschließlich von einer Folie als mechanischen Strukturtrager aus, wobei die benannte Antennenkomponente mit einer außerhalb des Endgeratcontainments angeordneten Kopfkapazitat behaftet ist. In gleicher Weise geht die m der Patentschrift DE 41 21 333 dargestellte und azimutal rundstrahlende Antennenkonfiguration von einer elektrisch nicht leitenden Folie als mechanischem Strukturtrager aus, wobei die Hauptstrahlungsrichtung bezüglich der Elevationswerte eine Neigung von ca. (Minus) -30° (Winkelgrad), das heißt, einen negativen Elevationswmkel aufweist.
Nachteilig bei den bekannten Antennenkonfigurationen ist somit, daß sie entweder m azimutaler Ebene ausschließlich rundstrahlend sind oder lediglich innerhalb des negativen Elevationswmkelbereiches strahlen.
Aufgaioe der vorliegenden Erfindung ist es, eine systemmte- gπeroare Antennenkomponente mit möglichst kleiner flachen- hafter Ausdehnung mit möglichst einseitiger azimutaler Richtwirkung, das heißt der bevorzugten Ausleuchtung einer Raumnemisphare sowie einer begrenzten Winkelversetzung der elevationsbezogenen Richtwirkung innerhalb des positiven Elevationswmkelbereiches bereitzustellen.
Diese Aufgabe wird erfmdungsgemaß durch die Merkmale des kennzeichnenden Teils des Anspruchs 1 sowie der auf den An- sprucn 1 ruckbezogenen Unteranspruche gelost.
Bei der erfmdungsgemaßen Antenne, welche auch als Foli- enstrahler bezeichnet werden kann, handelt es sich um einen modifizierten λ/4-Strahler, der auf seiner einen Seite gegen Masse kurzgeschlossen ist. Um eine möglichst kompakte Bauform zu erhalten, wird der längliche Leiterabschnitt, welcher als Resonator dient, kurzer als λε/4 ausgeführt. Dadurch wird der Resonator jedoch induktiv und die Schwin- gungsoedmgung wird nicht eingehalten. Damit die Resonanzbedingung des Strahlerelements erfüllt wird, wird an dem zur kurzgeschlossenen Seite gegenüberliegenden Ende des Resonators eine Endkapazitat erzeugt. Diese Endkapazitat wird durch mindestens einen zusätzlichen weiteren Leiterabschnitt erzeugt, der mit seinem einen Ende an dem zur kurzgeschlossenen Seite gegenüberliegenden Ende des Resonators anscniießt und dessen anderes Ende einen Leerlauf bildet. Die Lange der zusätzlichen weiteren Leiterabschnitte bestimmen die Schwingungsbedingung und somit die resultierende Resonanzfrequenz der gesamten Struktur. Hierbei sind zur Realisierung einer definierten Endkapazitat f r die Emnal- tung der Schwingungsbedingung verschiedene Ausfuhrungsformen der Leiterabschnitte am Ende des Resonators denkbar. Die Endkapazitat kann durch eine oder mehrere Leitungen entsprechender Lange, die nicht unbedingt parallel zueinander oder zum Resonator verlaufen müssen, realisiert werden. Alle Leitungen können ebenfalls m beliebiger gekrümmter Form und nicht nur in gerader Form ausgeführt werden. Durcn die Abdeckung der Antenne bzw. des Folienstrahlers durcn eine zusatzliche dielektrische Schicht, die m den Designprozeß mit berücksichtigt wird, kann eine weitgehende Unempfmdlichkeit gegenüber anderen sich m der Nahe des Stran ers befindlichen Dielektrika erreicht werden. Dies ist wichtig, damit durch den Einbau des Folienstrahlers m Fun gerate (dielektrische Beeinflussung) sowie durch die Beein lussung, die sich durch das Halten des Funkgeräts in der Hand ergibt, die Funktionsweise erhalten bleibt und der Strahler nicht verstimmt wird.
Da bei dieser Art von Strahlern eine Seite kurzgeschlossen ist, existiert nur ein abstrahlendes oder empfangendes Ende. Dies fuhrt zu einer Unsymmetrie der Richtcharakteristik m der Schwingungsebene des elektrischen Feldvektors (E- Ebene) und somit zu einem Winkelversatz der Hauptstrahlungsrichtung m dieser Ebene um ca. 30° m Blickrichtung kurzgeschlossene Strahierseite - strahlendes Ende.
Die elektrischen Eigenschaften dieser Antenne, wie z.B. Gute, ϊmpedanzbandbreite, Wirkungsgrad und Gewinn hangen von der Große der erreichten mechanischen Verkürzung (Verkleinerung) , der Breite des Resonators, dem Abstand zwiscnen dem Resonator und den Endkapazitatleiterabschnitten, der effektiven Permitivitats onstante, der Substratdicke bzw. des dielektrischen Verlustwinkels ab.
Mittels der vorgestellten Erfindung ist es möglich, auf relativ kleinem Raum zwei oder mehrere Antennen für unterschiedliche Wellenlangen unterzubringen. Ein wesentlicnes Merkmal der Erfindung ist es, daß die m Mikrostreifentech- nik realisierten Resonatoren zum Empfang der Mikrowellen kurzer als λε/4 realisiert sind, wodurch sich eine besonders kompakte und kleine Bauweise erzielen laßt. Dadurch, daß die Resonatorlange kurzer als λε/4 gewählt wird, _st, wie oereits erläutert, die Schwingungsbedmgung nicnt mehr erfüllt. Die erforderlichen Endkapazitaten werden durch weitere Leitungsabschnitte realisiert. Eine Vergrößerung der Frequenzbandbreite kann durch zusatzliche Strahlerelemente durch elektromagnetische Verkopplung erreicht werden. Dies geschieht durch weitere zusätzliche Mikrostreifenlei- tungen, die m bestimmten Abstanden zu dem Resonator und seinen Endkapazitaten angeordnet werden. Es st möglich, mit zwei oder mehreren Resonatoren auf einem Substrat mehrere Wellenbereiche zu empfangen, wobei die Resonatoren ineinander räumlich verschachtelt angeordnet werden können und auf die geforderten Frequenzbander abgestimmt sind. Die einzelnen Antennen müssen nicht m einer Ebene, sondern Können auch in Schichten übereinander angeordnet sein. Dabei ist es auch möglich, daß pro Schicht mehrere Antennenanordnungen vorgesehen sind, so daß mehr als zwei verschiedene Frequenzbander bedient werden können. Hierdurch ist es möglich, daß ein Mobilfunktelefon mit verschiedenen Mobil- funknetzen kommunizieren kann.
Nachfolgend werden einige Ausfuhrungsformen der Erfindung anhand von Zeichnungen naher erläutert.
Es zeigen:
Figur 1: Erfmdungsgemaße Antenne mit einem mit der
Masseebene verbundenen Resonator und zwei die Endkapazitaten darstellenden beidseitig an den Resonator angrenzenden Leiterabschnitten;
Figur 2: Querschnittsdarstellung der Antenne gem.
Figur 1;
Figur 3: Antenne gem. Figur 1 mit nur einem die Endkapazitat bildenden Leiterabschnitt; Figur 4: Antenne gem. Figur 1, bei der die Leiterao- schnitte auf einer Seite des Resonators angeordnet sind;
Figur 5 und 6: Antenne mit 4 bzw. 3 die Endkapazitaten bildenden Leiterabschnitten;
Figur n : Antenne, deren Endkapazitatsleiterabschnit- te nicht gerade, sondern rechteckformig gestaltet sind;
Figur 8 bis 10: Erfmdungsgemaße Antenne gemäß Figur 2, bei der mehrere ineinander verschachtelt angeordnete Resonatoren zur Vergrößerung der Frequenzbandbreite vorgesehen sind;
Figur 11: Zwei erf dungsgemaße ineinander verschachtelte Antennen, für den Empfang von zwei Frequenzbandern;
Figur 12: Zwei auf einem Substrat angeordnete erfin- dungsgemaße Antennen zum Empfang von zwei Frequenzbander mit jeweils zusätzlicher Verkopplung zur Vergrößerung der jeweiligen Frequenzbandbreite;
Figur 13: Draufsicht auf eine Schicht-Antenne zum
Empfang von zwei Frequenzbandern;
Figur 14: Querschnittsdarstellung einer Antenne gem.
Figur 13.
Die Figur 1 zeigt eine erfmdungsgemaße Antenne mit einem folienhaften niederdielektrischen Trager 10, welcher einseitig mit einer leitfahigen Struktur S, bestehend aus parallel zueinander und geradlinig verlaufenden Leiterabschnitten 2, 3 und 4 unterschiedlicher Lange beschichtet ist, .vobei der Leiterabschnitt 3 leitfahig und einseitig mit einer Masseflache 8 Verbindung ist, welche wiederum, wie m Figur 2 dargestellt ist, über eine leitfahige Beschichtung der Querschnittsflache des Tragersubstrats 10 mit der Masseebene 1 Verbindung ist. Anstatt der leitfa- higen Beschichtung 12 kann in einem nicht dargestellten Ausfuhrungsbeispiel die Masseflache 8 mittels eines oder mehrerer Kontaktstifte, welche die dielektrische Substrat- schicπt 10 durchgreifen, mit der Masseebene 1 m Verbindung sein. Die m Figur 2 gezeigte Leitfahige Beschichtung der Querschnittsflache des Tragesubstrats 10 muß nicht über die gesamte Breite der Antenne verlaufen, sondern es kann eine partielle Beschichtung der Folienquerschnittsflache vorgenommen werden. Die Leiterabschnitte 2, 3 und 4 sind jeweils durcn einen Spalt 5, 6 definierter Spaltbreite voneinander getrennt angeordnet, wobei die Leiterabschnitte 2, 3 und 4 jeweils durch einen m Querrichtung verlaufenden streifen- formigen Leiterabschnitt 7 definierter Abschnittslange und -breite leitfahig miteinander verbunden sind, wobei der in Querrichtung verlaufende Leiterabschnitt an dem der Masse- kontaktierung 8 gegenüberliegenden Leiterabschnittsende der Antenne angeordnet ist. Der Leiterabschnitt 3, der an einem Leiterabschnittsende mit der Masseflache 8 verbunden und am gegenüberliegenden Leiterabschnittsende mit dem quer verlaufenden streifenformigen Leiterabschnitt 7 verbunden ist, wird am Ort 9 mit einem Signalwellenleiter gekoppelt, indem der Innenleiter 13 eines koaxialen Wellenleiters durch eine Blende 15, die in der rückwärtigen Masseebene 1 angeordnet ist, zentπsch gefuhrt und mit dem Leiterabschnitt 3 am Ort 9 auf der Langssymmetrielinie des Leiterabschnitts gekoppelt -vird, und der Außenleiter des koaxialen Wellenleiters mit oer rückwärtigen Masseebene 1 leitfahig an der Blenden- berandung 15 verbunden ist.
Die Schwingungsbedmgung der offenen und unsymmetriscnen Wellenieiterstruktur in Form der Mikrostreifentechnik wird über die geometrische Lange und Breite der Leiterabschnitte 2, 3 und 4 festgelegt. Die Eingangsimpedanz der Mikrostrei- fenanoronung wird über den Ort der Emkopplung 9 entlang der Symmetrielmie des Leiterabschnitts 3 bestimmt, der wiederum von der resultierenden Lange der Leiterabschnitte 2 und 4 abhangt, wobei die Signalem- bzw. -auskopplunσ am Ort 9 über eine kreisförmige koaxiale Blende oder eine schlitz- bzw. rechteckformige Blende erfolgt.
Die Verstimmung des Strahlers infolge dielektrischer Umgebungseinflüsse wird über die Lange der Leiterabschnitte 2 und/oder 4 kompensiert, wobei der Verstimmungsgrad des Strahlers infolge dielektrischer Umgebungseinflüsse durch die Auflage einer dielektrischen Schicht 11 definierter Dielektrizitatszahl sowie definierter Geometrie zusätzlich beeinflußt bzw. minimiert wird.
Die dielektrische Tragerschicht 10 ist insbesondere eine Polystyrolfolie der Schichtdicke von 1 mm, welche einseitig und ganzflachig mit einer Kupfer- oder Alummiumfolie der Schichtdicke zwischen 0,01 mm und 0,5 mm versehen ist, die die Masseebene bildet. Gemäß der Figur 2 wird der selbige Polystyroltrager mit einer folienartigen und aus Kupfer oder Aluminium bestehenden Struktur S der Schichtdicke zwischen 0,01 mm und 0,5 mm, bestehend aus den parallel zueinander verlaufenden und jeweils durch einen Langsspalt getrennten, geradlinig verlaufenden Leiterabschnitten 2, 3, 4 versehen. Die dielektrische Schicht 11 hat ebenfalls eine Schichtdicke von ca. 1 mm.
In einer besonderen Ausfuhrungsform hat die Antenne eine Lange L^ von 119 mm und eine Breite BA von 40 mm. Die Lange L8 der Masseflache 8 betragt 20 mm. Der Abstand LB von der Masseflache 8 zum Speisepunkt der Antenne 9 betragt eben¬ falls 20 mm. Der Durchmesser der Blende 15 betragt 4,1 mm. Die Lange der die Endkapazitat bildenden Leiteraoscnmtte K: und K bemessen sich mit 82,6 mm und 56,7 mm. Die Länge LR des den Resonator bildenden Leiterabschnitts 3 bzw. R beträgt 85,7 mm. Die Breite des Leiterabschnitts 2 beträgt 11,5 mm, und die Breite des Leiterabschnitts 4 beträgt 9,5 mm. Die Breite des Resonatorleiterabschnitts beträgt 12 mm.
Die Figur 3 zeigt einen erfindungsgemäßen Strahler, bei dem lediglich ein parallel zum Resonatorleiterabschnitt 3 bzw. R angeordneter Leiterabschnitt K die Endkapazität bildet.
Die Figur 4 zeigt einen erfindungsgemäßen Strahler, bei dem die Endkapazität durch zwei parallel angeordnete Leiterabschnitte Ki und K2 gebildet wird, welche auf einer Seite des Resonatorleiterabschnitts R angeordnet sind. Ebenso ist wie in Figur 5 und 6 dargestellt eine Antenne konfigurierbar, bei der die resultierende Endkapazität durch drei oder vier Leiterabschnitte Ki bis K realisiert ist.
Die Figur 7 zeigt eine weitere Ausfuhrungsform der erfin- dungsgemäßen Antenne, bei der die die Endkapazität bildenden Leiterabschnitte 16 und 17 nicht geradlinig sind, sondern einen rechteckigen Verlauf haben.
Die Figuren 8 bis 10 zeigen Antennen, bei denen die Frequenzbandbreite der Antenne durch elektromagnetische Ver- kopplung mit zusätzlichen Leiterelementen, welche auf dem gleichen dielektrischen Trägersubstrat angeordnet sind, eingestellt bzw. vergrößert wird. Die Antenne gemäß Figur 8 entspricht in ihrem Grundaufbau der Antenne gemäß Figur 3, wobei zusätzlich ein U-förmiger Leiterabschnitt 19, 20, 21 mit seinem einen Schenkel 21 in den Spalt zwischen dem Resonatorleiterabschnitt 3 und dem die Endkapazität bildenden Leiterabschnitt 2 greift. Der andere Schenkel 19 ist mit einer zusätzlichen Massefläche 18 in Verbindung, welche ihrerseits entsprechend der Massefläche 9 mit der Masseebene I in Verbindung ist. Die Figur 9 entspricht in ihrem Grund¬ aufbau der Figur 1, wobei nunmehr zwei zusätzliche U- formiσe Leiteraoschnitte 23 bis 28 vorgesehen sind, welche jeweils mit ihrem einen Schenkel 27, 28 m die durch die Leiterabschnitte 2, R, 4 gebildeten Spalte eingreifen.
Die Figuren 9 und 10 zeigen weitere mögliche Ausgestaltungen der erfmdungsgemaßen Antenne, wobei die Anordnung der zusätzlichen, die Verkopplung zur Vergrößerung der Frequenzbandbreiten beeinflussenden Leiterabschnitte 30 bis 38 prinzipiell beliebig ist. Es ist auch vorstellbar, daß die Leiterabschnitte spiralförmig ineinandergreifen, so daß auf relativ geringem Raum eine lange parallele Fuhrung von Leiterabschnitten erzeugt wird.
Die Figuren 11 bis 14 zeigen Antennen, bei denen zwei Antennensignale ein- bzw. auskoppelbar sind, wodurch zwei Frequenzbander gleichzeitig mittels nur einer Folienantenne empfangbar bzw. bedienbar sind. Durch die unterschiedliche Gestaltung der Resonatorleiterabschnitte R3 und Rb werden die Resonanzbedingungen Verbindung mit den Leiterab- schnitten 41a, b und 42a, b sowie den Orten 43a, 43b der Auskopplung der elektromagnetischen Wellen bestimmt. Durch die Inemanderverschachtelung der beiden Strahleranordnungen können diese auf engstem Raum angeordnet werden.
Die Figur 12 zeigt eine weitere Ausfuhrungsform einer Antenne mit zwei Anschlüssen 51a, 51b für dielektrische Wellenleiter, wobei lediglich die m Figur 8 dargestellte Strahleranordnung m jeweils unterschiedlicher Dimensionie- rung nebeneinander auf einem Substrattrager angeordnet sind.
Die Figuren 13 und 14 zeigen eine Mehrschichtantenne, bei der die erfmdungsgemaßen Antennen übereinander mehreren schichten sandwichartig angeordnet sind, wobei jeweils eine Antenne den Schwingungsbedingungen für die Frequenzen eines bestimmten Mobilfunknetzes entspricht. Durch die unterschiedlichen Resonanzfrequenzen behindern sich die uberem- ander angeordneten Strahlungsstrukturen nur unwesentlicn. Gegenuoer der Anordnung gemäß der Figur 2 wird bei dem Uberemanderschichten der Strahlerstrukturen weniger Raum benotigt, wodurch die Antenne gemäß der Figur 13 kompaκter und somit das sie umschließende Gehäuse eines Mobilfunkte- lefons relativ klein gestaltet sein kann.
Die Figur 14 zeigt die Antenne gemäß der Figur 13 im Querschnitt. Die leitfahige Beschichtung 12a, b der Querschnittsflache der Tragersubstrate 10a und 10b ist mit den strukturierten Schichten SA und SB leitend m Verbindung. Eine derartige leitfahige Querschnittsbeschichtung ist e nach Ausführung der Antenne auch an der gegenüberliegenden Seite vorsehbar.
Es versteht sich von selbst, daß je nach gewünschter Resonanzfrequenz, Verkopplung und Verstimmung die jeweiligen Geometrien der einzelnen Leiterabschnitte entsprechend gewählt werden müssen, wobei zur Erzielung vorgegebener Frequenzwerte die Geometrien der Leiterstrukturen teilweise empirisch ermittelt werden müssen.
Bezugszeichenl ste :
1 Masseebene
2, 2a/b, 4, 4a/b, Leiterabschnitt als Endkapazitat
Figure imgf000014_0001
3,R,Ri Resonatorleiterabschnitt
5,6 Abstandsspalte zwischen den Endkapazitats- leiterabschnitten und den Resonatorleiter- abschnitten
7,7a/b, Resonatorleiterabschnitt mit Endkapazi
41a/b,45a/b tatsleiterabschnitten verbindender querverlaufender Leiterabschnitt
8 Masseflache; mit der Masseebene 1 Verbindung
9 Speisepunkt der Antenne
10 Dielektrische Tragerschicht;
11 Dielektrische Schicht
12 Leitfahige Beschichtung der Querschnittsflache des Tragersubstrats
13, 13a, 13b Innenleiter eines koaxialen Wellenleiters
14, 14a, 14b Lotstelle
15, 15a, 15b Blende
16, l 1 Leiterabschnitt als Endkapazitat m eckiger
Wellenform 18, 22, 29, 40b, 7 zusätzliche Massefläche; mit der Masseebene
1 in Verbindung
19-21;23-28; Zusätzlicher im wesentlichen U-förmiger 30-35;31\33λ Leiterabschnitt 35\ 48a/b-50a/b
36, 37, 38, 36 Leiterabschnitt zur Einstellung der Ver- 37 38Λ,40b Stimmung der Antenne
BA Breite der Antenne
L9 Länge der Massefläche 8
LA Länge der Antenne
LB Abstand des Emkopplungspunktes von der
Massefläche 8
LR Länge des Resonatorleiterabschnitts
LKi Länge der Endkapazitätsleiterabschnitte
LSP/ LSpι Breite der Abstandsspalte
S,Sa,Sb Leitfähige in Mikrostreifenleitungen struk¬ turierte Schicht

Claims

Patentanspr che
Antenne zum Empfang und Senden von elektromagnetischen Mikrowellen der Wellenlangen λ, bestehend aus einer Substratschicht (10) aus niederdielektπschem Material, welche auf einer Seite eine leitfahige Masseebene (1) hat und deren gegenüberliegende Seite leitfahig m Form von Mikrostreifenleitungen strukturiert st, da du r c h ge k e n n z e i ch n e t , daß die leitfahige Struktur (S) einen länglichen Leiterabschnitt (3, 3a, 3b, R, Ra, Rb) als Resonator hat, dessen Lange (LR) kurzer als λε/4 ist, und der mit seinem einem Ende mit der Masseebene (8,1) leitfahig in Verbindung ist, und dessen anderes Ende mit mindestens einem weiteren Leiterabschnitt (2, 2a, 2b, 4, 42a, 42b, 46a, 46b, K) leitfahig in Verbindung ist, der als Endkapazitat zur Einstellung der Resonanzbedingung dient, wobei der Resonatorleiterabschnitt (3, 3a, 3b, R, Ra, Rb) mit einem Innenleiter eines koaxialen Wellenleiters und der Au- ßenleiter des koaxialen Wellenleiters mit der Masseebe- ne (1) m Verbindung ist.
Antenne nach Anspruch 1, dadu r ch ge k e n n z e i c h n e t , daß der mindestens eine weitere Leiterabschnitt (2, 2a, 2b, 4, 42a, 42b, 46a, 46b, K) eoenfalls als Mikrostreifenleitung ausgebildet ist und parallel zum Resonatorleiterabschnitt (3, 3a, 3b, R, Ra, Rb) angeordnet ist.
. Antenne nach Anspruch 1 oder 2, da du r c h g e k e n n z e i ch n e t , daß der Resonatorleiterabschnitt (3, 3a, 3b, R, Ra, Rb) mit dem weiteren Leiterabschnitt (2, 2a, 2b, 4, 42a, 42b, 46a, 46b, K) derart leitfähig in Verbindung ist, daß die beiden Leiterabschnitte (2, 2a, 2b, 4, 42a, 42b, 46a, 46b, K; 3, 3a, 3b, R, Ra, Rb) zusammen mit dem sie verbindenden Verbindungsleiterabschnitt (7, 41a, 41b, 45a, 45b, 49a, 49b) ein U mit gleich- oder unterschiedlich langen Schenkeln bilden.
4. Antenne nach einem der Ansprüche 1 oder 3, da du r c h g e k e n n z e i c h n e t , daß mindestens zwei weitere Leiterabschnitte (2, 2a, 2b, 4, 42a, 42b, 46a, 46b, K) , welche insbesondere parallel zu dem Resonatorleiterabschnitt (3, 3a, 3b, R, Ra, Rb) angeordnet sind, mit jeweils ihrem einen Ende über einen quer zur Längssymmetrielinie des Resonatorleiterabschnitts (3, 3a, 3b, R, Ra, Rb) angeordneten Verbindungsleiter (7, 41a, 41b, 45a, 45b, 49a, 49b) mit dem einen Ende des Resonatorleiterabschnitts (3, 3a, 3b, R, Ra, Rb) in Verbindung sind, wobei die weiteren Leiterabschnitte
(2, 2a, 2b, 4, 42a, 42b, 46a, 46b, K) entweder auf einer Seite oder auf beiden Seiten des Resonatorleiterabschnitts (3, 3a, 3b, R, Ra, R ) verteilt angeordnet sind, wobei insbesondere die Länge (Lκ) der weiteren Leiterabschnitte (2, 2a, 2b, 4, 42a, 42b, 46a, 46b, K) unterschiedlich ist.
5. Antenne nach einem der vorherigen Ansprüche, da du r ch ge k e n n z e i ch n e t , daß das eine Ende des Resonatorleiterabschnitts (3, 3a, 3b, R, Ra, R ) über mindestens einen durch die Substratschicht (10, 10a, 10b) greifenden Verbindungsstift mit der Masseeoe- ne (1) m Verbindung ist.
6. Antenne nach einem der Ansprüche 1 bis 4, dadu r ch ge k e n n z e i c h n e t , daß das eine Ende des Reso- natorleiterabschnitts (3, 3a, 3b, R, Ra, Rb) über eine leitfahige Beschichtung (12, 12ab) der Querschnittsflache der Substratschicht (10, 10a, 10b) m Verbindung
7. Antenne nach einem der vorherigen Ansprüche, da du r c h ge k e n n z e i ch n e t , daß der mindestens eine weitere Leiterabschnitt (2, 2a, 2b, 4, 42a, 42b, 46a, 46b, K) gerade, abgewinkelt, gebogen, wellenförmig, Zickzack- oder rechteckformig ausgebildet ist.
8. Antenne nach einem der vorherigen Ansprüche, da du r ch g e k e n n z e i ch n e t , daß zum Einstellen der Resonatorbedingung mindestens em zusätzlicher im wesentlichen U-formiger Leiterabschnitt (19, 20, 21; 23-28; 30-35; 31 \ 33 \ 35λ; 48a/b-50a/b) auf der Substratschicht (10) angeordnet ist, wobei ein Schenkel (21, 27, 28, 34, 35, 35\50a, 50b) dieses U-formigen zusätzlichen Leiterabschnitts m die durch den Resonatorabschnitt (3, 3a, 3b, R, Ra, Rb) und weiteren Leiterabschnitt (2, 2a, 2b, 4, 42a, 42b, 46a, 46b, K) gebildete Öffnung greift und das Ende des anderen Schenkels (19, 23, 24, 30, 31, 48a, 48b) des zusatzlicnen Leiterabschnitts mit der Masseebene (1, 18, 22, 29, 47, 47 ) m Verbindung ist.
9. Antenne nach Anspruch 8, dadu r c h g e k e n n z e i ch n e t , daß der zusätzliche U-formige Leiterabschnitt (Rb, 41b, 42b) ebenfalls eine Antenne zum Senden und Empfangen von elektromagnetiscnen Wellen ist, wobei aus dem mit der Masseeoene (1, 40b) in Ver- omdung befindlichen Leiterabschnitt (Rb) die Wellen aus- bzw. eingekoppelt werden, derart, daß die ineinandergreifenden Strukturen der Antennen durch die gegenseitige elektromagnetische Verkopplung die Resonanzbedingungen und/oder Verstimmung der Einzelresonatoren beeinflussen und eine größere Frequenzbandbreite erzielbar ist.
10. Antenne nach einem der vorherigen Ansprüche, da du r c h ge k e n n z e i c h n e t , daß mehrere Antennen zum Senden und/oder Empfangen von unterschiedlichen Wellenlangen auf der Substratschicht (10, 10a, 10b) nebeneinander angeordnet sind, die jeweils mit einem koaxialen Wellenleiter gekoppelt sind.
11. Antenne nach einem der vorherigen Ansprüche, da du r c h ge k e n n z e i c h n e t , daß mehrere Antennen jeweils getrennt durch mindestens eine Substratschicht (10a) übereinander angeordnet sind.
12. Antenne nach einem der vorherigen Ansprüche, da du r c h ge k e n n z e i ch n e t , daß der Innen- leiter (13, 13a, 13b) des koaxialen Wellenleiters durch eine Blende (15, 15a, 15b) m der Masseebene (1) und eine Aussparung in der Schicht (10, 10a, 10b) gefuhrt und mit dem Resonatorleiterabschnitt (3, 3a, 3b, R, Ra, Rb) m Verbindung ist, wobei sich die Eingangsimpedanz der Antenne über den Ort (9) der Emkopplung entlang der Langssymmetrielmie des Resonatorleiterabschnitts
(3, 3a, 3b, R, Ra, Rb) bestimmt.
13. Antenne nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t , daß die Blende (15, 15a, 15b) kreis, schlitz- bzw. rechteckformig ist.
4. Antenne nach einem der vorherigen Ansprüche, da du rch gekenn z e i chne t , daß die Verstimmung der Antenne infolge dielektrischer Umgebungseinflüsse über die Länge der weiteren Leiterabschnitte (19, 20, 21; 23-28; 30-35; 31 \ 33 \ 35 ; 48a/b-50a/b) und/oder durch die zusätzlich auf dem Substrat angeordneten Antennen kompensiert wird.
15. Antenne nach einem der vorherigen Ansprüche, da durch gekenn z e i chne t , daß der Verstimmungsgrad der Antenne infolge dielektrischer Umgebungseinflüsse durch die Auflage einer dielektrischen Schicht (11) definierter Dielektrizitätszahl sowie definierter Geometrie insbesondere Dicke, beeinflußt bzw. minimiert wird.
PCT/EP1998/001040 1997-02-25 1998-02-24 Resonanzantenne WO1998038694A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US09/380,131 US6304219B1 (en) 1997-02-25 1998-02-24 Resonant antenna
DE59805415T DE59805415D1 (de) 1997-02-25 1998-02-24 Resonanzantenne
AT98912379T ATE223621T1 (de) 1997-02-25 1998-02-24 Resonanzantenne
DE19880222T DE19880222D2 (de) 1997-02-25 1998-02-24 Resonanzantenne
EP98912379A EP0965152B1 (de) 1997-02-25 1998-02-24 Resonanzantenne
IL13155898A IL131558A0 (en) 1997-02-25 1998-02-24 Resonant antenna
AU67243/98A AU6724398A (en) 1997-02-25 1998-02-24 Resonant antenna
JP53729098A JP2001513283A (ja) 1997-02-25 1998-02-24 共振アンテナ
CA002282611A CA2282611C (en) 1997-02-25 1998-02-24 Resonant antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19707535A DE19707535A1 (de) 1997-02-25 1997-02-25 Folienstrahler
DE19707535.5 1997-02-25

Publications (1)

Publication Number Publication Date
WO1998038694A1 true WO1998038694A1 (de) 1998-09-03

Family

ID=7821434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/001040 WO1998038694A1 (de) 1997-02-25 1998-02-24 Resonanzantenne

Country Status (10)

Country Link
US (1) US6304219B1 (de)
EP (1) EP0965152B1 (de)
JP (1) JP2001513283A (de)
KR (1) KR20000075673A (de)
AT (1) ATE223621T1 (de)
AU (1) AU6724398A (de)
CA (1) CA2282611C (de)
DE (3) DE19707535A1 (de)
IL (1) IL131558A0 (de)
WO (1) WO1998038694A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1128466A2 (de) * 2000-02-24 2001-08-29 Filtronic LK Oy Planare Antennenstruktur
US6346914B1 (en) 1999-08-25 2002-02-12 Filtronic Lk Oy Planar antenna structure
US6380905B1 (en) 1999-09-10 2002-04-30 Filtronic Lk Oy Planar antenna structure
EP1258052A2 (de) * 2000-02-22 2002-11-20 Telefonaktiebolaget LM Ericsson (publ) Kleine breitbandige gedruckte antenne mit paräsitärem element
ES2185463A1 (es) * 2000-11-10 2003-04-16 Univ Cartagena Politecnica Antena dual para terminales moviles.
EP1378021A1 (de) * 2001-03-23 2004-01-07 Telefonaktiebolaget LM Ericsson (publ) System mit eingebauter multiband-mehrfachantenne
EP1439606A1 (de) * 2001-10-11 2004-07-21 Taiyo Yuden Co., Ltd. Dielektrische antenne
US6839040B2 (en) 1999-12-20 2005-01-04 Siemens Ag Antenna for a communication terminal
DE102004016157A1 (de) * 2004-04-01 2005-11-03 Kathrein-Werke Kg Antenne nach planarer Bauart
EP1717902A1 (de) * 2005-04-20 2006-11-02 Wistron NeWeb Corp. Planare Monopolantennen
US7193566B2 (en) 2005-04-18 2007-03-20 Wistron Neweb Corp Planar monopole antennas
EP1959518A2 (de) * 2001-06-26 2008-08-20 Ethertronics, Inc. Magnetische Multifrequenz-Dipol-Antenne und Verfahren zur Wiederverwendung des Volumens einer Antenne

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6343208B1 (en) * 1998-12-16 2002-01-29 Telefonaktiebolaget Lm Ericsson (Publ) Printed multi-band patch antenna
US6408190B1 (en) * 1999-09-01 2002-06-18 Telefonaktiebolaget Lm Ericsson (Publ) Semi built-in multi-band printed antenna
JP3658639B2 (ja) * 2000-04-11 2005-06-08 株式会社村田製作所 表面実装型アンテナおよびそのアンテナを備えた無線機
DE10022107A1 (de) * 2000-05-08 2001-11-15 Alcatel Sa Integrierte Antenne für Mobilfunktelefone
JP2003188637A (ja) * 2001-12-20 2003-07-04 Hitachi Cable Ltd 平板多重アンテナおよび携帯端末
KR20030078448A (ko) * 2002-03-29 2003-10-08 현우마이크로 주식회사 아이엠티-2000(IMT-2000) 소형 중계기용 광대역 이슬롯(E-shaped SloT) 패치 안테나
JP2003347827A (ja) * 2002-05-28 2003-12-05 Ngk Spark Plug Co Ltd アンテナ及びそれを備えた無線周波モジュール
TWI281782B (en) * 2002-12-25 2007-05-21 Quanta Comp Inc Portable wireless device
US6850199B2 (en) * 2003-06-11 2005-02-01 Auden Techno Corp. U-shaped multi-frequency antenna of high efficiency
KR100623683B1 (ko) * 2003-12-13 2006-09-18 학교법인 한국정보통신학원 다중대역 케이블 안테나
KR100675383B1 (ko) 2004-01-05 2007-01-29 삼성전자주식회사 극소형 초광대역 마이크로스트립 안테나
JP2006140589A (ja) * 2004-11-10 2006-06-01 Casio Hitachi Mobile Communications Co Ltd アンテナ構造
US7439511B2 (en) * 2007-01-31 2008-10-21 Emcore Corporation Pulsed terahertz frequency domain spectrometer with single mode-locked laser and dispersive phase modulator
US7535005B2 (en) * 2007-01-31 2009-05-19 Emcore Corporation Pulsed terahertz spectrometer
US7936453B2 (en) * 2008-04-04 2011-05-03 Emcore Corporation Terahertz frequency domain spectrometer with integrated dual laser module
US8604433B2 (en) 2008-05-19 2013-12-10 Emcore Corporation Terahertz frequency domain spectrometer with frequency shifting of source laser beam
US7781736B2 (en) * 2008-05-19 2010-08-24 Emcore Corporation Terahertz frequency domain spectrometer with controllable phase shift
US9029775B2 (en) 2008-05-19 2015-05-12 Joseph R. Demers Terahertz frequency domain spectrometer with phase modulation of source laser beam
TWI369816B (en) * 2009-07-24 2012-08-01 Acer Inc Shorted monopole antenna
US9400214B1 (en) 2013-03-15 2016-07-26 Joseph R. Demers Terahertz frequency domain spectrometer with a single photoconductive element for terahertz signal generation and detection
US9103715B1 (en) 2013-03-15 2015-08-11 Joseph R. Demers Terahertz spectrometer phase modulator control using second harmonic nulling
EP2806497B1 (de) * 2013-05-23 2015-12-30 Nxp B.V. Fahrzeugantenne
US9086374B1 (en) 2014-04-25 2015-07-21 Joseph R. Demers Terahertz spectrometer with phase modulation and method
US9404853B1 (en) 2014-04-25 2016-08-02 Joseph R. Demers Terahertz spectrometer with phase modulation
US9239264B1 (en) 2014-09-18 2016-01-19 Joseph R. Demers Transceiver method and apparatus having phase modulation and common mode phase drift rejection
US9429473B2 (en) 2014-10-16 2016-08-30 Joseph R. Demers Terahertz spectrometer and method for reducing photomixing interference pattern
US10206649B2 (en) * 2015-12-29 2019-02-19 Analogic Corporation Data transfer across a rotating boundary of a computed tomography imaging apparatus
CA3140866A1 (en) 2019-05-17 2020-11-26 Aclara Technologies Llc Multiband circular polarized antenna arrangement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075691A (en) * 1989-07-24 1991-12-24 Motorola, Inc. Multi-resonant laminar antenna
US5663639A (en) * 1994-01-18 1997-09-02 Massachusetts Institute Of Technology Apparatus and method for optical heterodyne conversion
US5666091A (en) * 1995-03-20 1997-09-09 Hitachi Media Electronics Co., Ltd. Structure of surface acoustic wave filter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4113277C2 (de) * 1991-04-19 1996-08-08 Hagenuk Telecom Gmbh Antenne für ein mobiles Telefon
DE4121333A1 (de) * 1991-06-25 1993-01-14 Hagenuk Telecom Gmbh Folienantenne
FR2718292B1 (fr) * 1994-04-01 1996-06-28 Christian Sabatier Antenne d'émission et/ou de réception de signaux électromagnétiques, en particulier hyperfréquences, et dispositif utilisant une telle antenne.
US5748149A (en) * 1995-10-04 1998-05-05 Murata Manufacturing Co., Ltd. Surface mounting antenna and antenna apparatus
JP3114605B2 (ja) * 1996-02-14 2000-12-04 株式会社村田製作所 表面実装型アンテナおよびこれを用いた通信機
US6008762A (en) * 1997-03-31 1999-12-28 Qualcomm Incorporated Folded quarter-wave patch antenna
US6049314A (en) * 1998-11-17 2000-04-11 Xertex Technologies, Inc. Wide band antenna having unitary radiator/ground plane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075691A (en) * 1989-07-24 1991-12-24 Motorola, Inc. Multi-resonant laminar antenna
US5663639A (en) * 1994-01-18 1997-09-02 Massachusetts Institute Of Technology Apparatus and method for optical heterodyne conversion
US5666091A (en) * 1995-03-20 1997-09-09 Hitachi Media Electronics Co., Ltd. Structure of surface acoustic wave filter

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346914B1 (en) 1999-08-25 2002-02-12 Filtronic Lk Oy Planar antenna structure
US6380905B1 (en) 1999-09-10 2002-04-30 Filtronic Lk Oy Planar antenna structure
US6839040B2 (en) 1999-12-20 2005-01-04 Siemens Ag Antenna for a communication terminal
EP1250723B1 (de) * 1999-12-20 2005-03-30 Siemens Aktiengesellschaft Antenne für ein kommunikationsendgerät
EP1258052A2 (de) * 2000-02-22 2002-11-20 Telefonaktiebolaget LM Ericsson (publ) Kleine breitbandige gedruckte antenne mit paräsitärem element
EP1128466A2 (de) * 2000-02-24 2001-08-29 Filtronic LK Oy Planare Antennenstruktur
EP1128466A3 (de) * 2000-02-24 2003-09-17 Filtronic LK Oy Planare Antennenstruktur
US6922171B2 (en) 2000-02-24 2005-07-26 Filtronic Lk Oy Planar antenna structure
ES2185463A1 (es) * 2000-11-10 2003-04-16 Univ Cartagena Politecnica Antena dual para terminales moviles.
EP1378021A1 (de) * 2001-03-23 2004-01-07 Telefonaktiebolaget LM Ericsson (publ) System mit eingebauter multiband-mehrfachantenne
EP1959518A2 (de) * 2001-06-26 2008-08-20 Ethertronics, Inc. Magnetische Multifrequenz-Dipol-Antenne und Verfahren zur Wiederverwendung des Volumens einer Antenne
EP1439606A1 (de) * 2001-10-11 2004-07-21 Taiyo Yuden Co., Ltd. Dielektrische antenne
EP1439606A4 (de) * 2001-10-11 2005-07-06 Taiyo Yuden Kk Dielektrische antenne
DE102004016157A1 (de) * 2004-04-01 2005-11-03 Kathrein-Werke Kg Antenne nach planarer Bauart
US7193566B2 (en) 2005-04-18 2007-03-20 Wistron Neweb Corp Planar monopole antennas
EP1717902A1 (de) * 2005-04-20 2006-11-02 Wistron NeWeb Corp. Planare Monopolantennen

Also Published As

Publication number Publication date
AU6724398A (en) 1998-09-18
EP0965152A1 (de) 1999-12-22
CA2282611A1 (en) 1998-09-03
US6304219B1 (en) 2001-10-16
KR20000075673A (ko) 2000-12-26
EP0965152B1 (de) 2002-09-04
DE59805415D1 (de) 2002-10-10
IL131558A0 (en) 2001-01-28
ATE223621T1 (de) 2002-09-15
DE19707535A1 (de) 1998-08-27
JP2001513283A (ja) 2001-08-28
DE19880222D2 (de) 2000-06-15
CA2282611C (en) 2005-11-15

Similar Documents

Publication Publication Date Title
EP0965152B1 (de) Resonanzantenne
DE112016004868B4 (de) Millimeterwellenantenne und diese verwendender Millimeterwellensensor
DE102017103161B4 (de) Antennenvorrichtung und Antennenarray
EP0952625B1 (de) Antenne für mehrere Funkdienste
DE69535431T2 (de) Antenne
DE102005008063B4 (de) Antenne
EP3440738B1 (de) Antennenvorrichtung
DE60036195T2 (de) Antenne mit einer filtermaterialanordnung
DE102017116920A1 (de) Dual-polarisierter Kreuzdipol und Antennenanordnung mit zwei solchen dual-polarisierten Kreuzdipolen
EP2693565B1 (de) Elektrischer Strahler für vertikal polarisierte Funksignale
DE102005015561A1 (de) Interne Breitbandantenne
DE60213902T2 (de) M-förmige Antenne
DE102007003388A1 (de) Rundhohlleiter-Antenne und Rundhohlleiter-Array-Antenne
DE60035304T2 (de) Monopolantenne
DE69833070T2 (de) Gruppenantennen mit grosser Bandbreite
DE60105447T2 (de) Gedruckte patch-antenne
EP1619751B1 (de) Breitbandige Antenne mit geringer Bauhöhe
DE19729664C2 (de) Planare Breitbandantenne
EP1769564B1 (de) Vorrichtung und verfahren zum senden/empfangen elektromagnetischer hf-signale
EP3707775B1 (de) Ein- und auskopplungsvorrichtung zwischen einem schaltungsträger und einem wellenleiter
DE3420046C2 (de)
WO2004102742A1 (de) Mehrbandfähige antenne
WO1998013896A1 (de) Mobilfunk-planarantenne
EP1487052B1 (de) Antennenanordnung in der Apertur einer elektrisch leitenden Fahrzeug-Karosserie
EP3827478B1 (de) Leiterplatten-antenne

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 131558

Country of ref document: IL

AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BA BB BG BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL JP KE KG KP KR KZ LC LK LR LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TT UA US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998912379

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2282611

Country of ref document: CA

Ref document number: 2282611

Country of ref document: CA

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1998 537290

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/007865

Country of ref document: MX

Ref document number: 1019997007739

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09380131

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998912379

Country of ref document: EP

REF Corresponds to

Ref document number: 19880222

Country of ref document: DE

Date of ref document: 20000615

WWE Wipo information: entry into national phase

Ref document number: 19880222

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1019997007739

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998912379

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019997007739

Country of ref document: KR