WO1998036908A1 - Atmungsaktive mehrschichtfolie - Google Patents

Atmungsaktive mehrschichtfolie Download PDF

Info

Publication number
WO1998036908A1
WO1998036908A1 PCT/EP1998/000694 EP9800694W WO9836908A1 WO 1998036908 A1 WO1998036908 A1 WO 1998036908A1 EP 9800694 W EP9800694 W EP 9800694W WO 9836908 A1 WO9836908 A1 WO 9836908A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
film according
layer
water vapor
layers
Prior art date
Application number
PCT/EP1998/000694
Other languages
English (en)
French (fr)
Inventor
Ralf Schledjewski
Dirk Schultze
Original Assignee
Wolff Walsrode Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wolff Walsrode Ag filed Critical Wolff Walsrode Ag
Priority to EP98908072A priority Critical patent/EP0963293A1/de
Priority to CA002280790A priority patent/CA2280790A1/en
Priority to JP53620198A priority patent/JP2001512381A/ja
Priority to AU66212/98A priority patent/AU6621298A/en
Publication of WO1998036908A1 publication Critical patent/WO1998036908A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/14Air permeable, i.e. capable of being penetrated by gases
    • A41D31/145Air permeable, i.e. capable of being penetrated by gases using layered materials
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/12Hygroscopic; Water retaining
    • A41D31/125Moisture handling or wicking function through layered materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/26Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing

Definitions

  • the present invention relates to multi-layer, waterproof and breathable films made of thermoplastic polyurethanes produced by coextrusion, the characteristic feature of which is that the film is directional
  • It also relates to the use of the film according to the invention for the waterproof and breathable sealing of fabrics such as woven goods and nonwovens, and to the articles of everyday use made therefrom, in particular in the clothing sector and here mainly for workwear or rainwear.
  • Breathable materials are often used to ensure a high level of comfort for items of clothing, for example.
  • the breathable character of the film is generally demonstrated by its water vapor permeability. In order to prevent moisture build-up on the wearer of items of clothing equipped in this way, the water vapor permeability must be as high as possible.
  • high water vapor permeability can be achieved, for example, by microporosity as a result of biaxial stretching, as described in US Pat. No. 4,194,041.
  • microporosity as a result of biaxial stretching, as described in US Pat. No. 4,194,041.
  • Such microporous films cause problems in
  • the elbow area for outerwear is worth mentioning here.
  • the pores can easily expand and as a result crack formation and thus loss of watertightness.
  • thermoplastic elastomers to be processed thermoplastically are among the thermoplastic elastomers, such as are categorically reviewed in Rubber Chemistry and Technology 62 (1989)
  • thermoplastic polyurethanes are generally characterized by the combination of good tensile and tear propagation strength and at the same time great elasticity over a wide temperature range. Hepburn (ed.) Polyurethane Elastomers, Applied Science Publishers, Barking ( 1982) Pages 49 - 80 Special extrusion goods can be processed into film using both a slot die and Blasfo extrusion. Further information on extrusion technology can be found, for example, Kirk - Othmer-Encyclopedia of Chemical Technology, Volume 9 (1966) Pages 232 - 241 In addition to single-layer foils, it is also possible to manufacture multi-layer structures made of thermoplastic polyurethane, as shown, for example, in
  • EP 0 603 680 is described.
  • the comfort of breathable clothing is largely influenced by the water vapor permeability.
  • the desired high water vapor permeability should not lead to moisture being transported from the outside to the inside.
  • the task is to create a highly elastic, to provide waterproof but water vapor permeable film, the water vapor permeability of which has a directional dependence.
  • thermoplastic polyurethanes produced by means of coextrusion.
  • the invention accordingly relates to an at least two-layer TPU
  • Foil and its use for the production of breathable waterproof flat structures with direction-dependent water vapor permeability thereby characterized is characterized in that the foils each have different levels of water vapor permeability if one of the two outer layers of the foil according to the invention faces the water vapor source when determining the water vapor permeability according to one of the common standardized measuring methods.
  • Common methods for determining water vapor permeability are described, for example, in DIN 53122 or ASTM E96. These methods of determination are based on the penetration of water vapor from a source to a sink.
  • the water vapor source is generally realized by a climate chamber, a climate solution or a defined vapor phase.
  • the sink is mostly realized with a desiccant.
  • the films according to the invention suitably consist in the different layers of different TPU resin formulations.
  • the main idea of the invention is to use a preferred moisture transport from the higher water vapor permeable layer to the layer equipped with a lower water vapor permeability.
  • the comparatively hydrophilic polyurethanes are formed from alternating blocks of soft and hard segments, the soft segments being formed from difunctional polyols A) which are composed of polymerized ethers and / or esters, and the hard segments from the reaction products from a low molecular weight diol B), ie the chain extender and a diisocyanate C) are formed.
  • These blocks are advantageously linked to one another in such a way that the hard segment forms the two ends of the molecular chain and, if appropriate, the reactive cyanate groups located at the ends of the linear molecule can be capped by alcohols D).
  • thermoplastic polyurethanes are preferably linear block copolymers which always have a certain proportion of branches due to the side reaction of alophanate formation which occurs during the urethane reaction.
  • the average molecular weight of suitable thermoplastic polyurethanes is preferably between 10,000 g / mol and 250,000 g / mol.
  • functional compounds ie compounds containing two hydroxyl end groups.
  • ethylene oxide polymers and or copolymers which are often also referred to as polyoxyethylene glycols and / or polyethylene oxide glycols, the monomer unit of which is characterized by the structure (-O-CH 2 -CH 2 -) and an average molecular weight of at least 400 g / mol and a maximum of 2800 g / mol. In a particularly preferred embodiment, the average molecular weight is between 800 g / mol and 1200 g / mol. These are further characterized by a carbon to oxygen mass ratio which is at least 1.3 and at most 2.5.
  • the mass fraction of the soft segment A) in the thermoplastic elastomer which forms the film according to the invention is between 35% and 60%, preferably between 40% and 50%, in each case based on the total mass of the thermoplastic polyurethane.
  • the hard segment components can be selected from the isocyanate and diol components known for the production of film raw materials from thermoplastic polyurethanes.
  • diol component B Short-chain bifunctional substances whose molecular weight is between 18 and 350 g / mol are used as diol component B).
  • bivalent alcohols these are e.g. Ethylene glycol, 1,2-propylene glycol, 1,4-butylene glycol, also as
  • ester diols B) with a molecular weight of up to 350 g / mol which are suitable for the production of the polyurethanes to be used according to the invention are ester diols of the general formula
  • R is an alkylene radical having 1 to 10, preferably 2 to 6, carbon atoms or one
  • Adipic acid bis (ß-hydroxyethyl) ester and terephthalic acid bis (ß-hydroxyethyl) ester mean e.g. Adipic acid bis (ß-hydroxyethyl) ester and terephthalic acid bis (ß-hydroxyethyl) ester.
  • Suitable isocyanates C) are aliphatic, cycloaliphatic, aromatic and heterocyclic diisocyanates, described by the formula
  • Q is an aliphatic hydrocarbon radical with 2 to 18, preferably 6 to 10,
  • Carbon atoms a cycloaliphatic hydrocarbon radical with 4 to 15 carbon atoms men, or an aromatic hydrocarbon radical having 6 to 15, preferably 6 to 13, carbon atoms,
  • Such diisocyanates are, for example, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, cyclohexane-1,3- and -1,4-diisocyanate and any mixtures of these isomers, naphthylene-1,5-diisocyanate, 2,4 - and 2,6-tolylene diisocyanate and any mixtures of these isomers, diphenylmethane-2,4'- and / or -4,4'-diisocyanate.
  • Suitable alcohols D) as capping reagents are low molecular weight alcohols with a molecular weight of at least 32 g / mol and at most 100 g / mol. Not only monofunctional alcohols, but also di-, tri- or higher polyols are suitable as capping reagents. Aliphatic short-chain alcohols with a molecular weight of at least 32 g / mol and at most 400 g / mol are preferred.
  • thermoplastic polyurethane elastomers with different hydrophilicity or water vapor permeability are used for the individual layers of the film. This can be achieved by different soft segments and / or modified hard segments of the polyurethanes in the individual layers. According to the invention, for the soft segments there is, for example, an increase in hydrophilicity in the order:
  • Eg modifications are applicable to the hard segments such as ®, for example, by Bayer AG, Leverkusen marketed dual hydrophilicized Impraperm types are known (EP 0 525 567 and DE 4236569).
  • all layers of the film are based on thermoplastic polyurethane elastomers whose long-chain diol components are essentially formed from polyethers. Structures are particularly preferred in which all layers of the film are formed from different thermoplastic polyurethanes based on soft polyether segments
  • the polyurethane elastomer resins forming the different layers of the film according to the invention have different Shore hardnesses. With the soft segment structure possibly being the same, the soft segment portion of the film forming the film according to the invention becomes
  • thermoplastic polyurethanes used preferably have a Shore hardness of 75-95 A, particularly preferably 85-95 A, determined in accordance with DIN 53 505
  • thermoplastic polyurethanes are, for example, under the trade name Desmopan ®, Elastollan ®, Estane ®, Impraperm ®, B Pellethane, Morthane ® ® available or Texin
  • the proportion of said additives I to IV in total is preferably between 1% by weight and 30% by weight
  • the common additives which can be contained in the films according to the invention are described, for example, by Gachter and Muller in Plastic Additives, Carl Hanser Verlag Kunststoff, 3rd Edition (1989)
  • Films with a total thickness between 5 ⁇ m and 500 ⁇ m are preferred according to the invention. Particularly preferred between 5 ⁇ m and 50 ⁇ m.
  • the thickness of the individual layers can vary in the range from 10% to 90% of the total thickness.
  • a structure in which the thinner layer is particularly preferred Layer has a share between 10% and 49% of the total thickness
  • an additional backing layer for example based on polyethylene, can be used according to the invention for better handling, ie for stiffening.
  • the thickness of the layer (s) made of thermoplastic polyurethane (s) is preferably between 5 ⁇ m and 25 ⁇ m, the thickness of the carrier layer preferably between 5 ⁇ m and 100 ⁇ m
  • the conventional thermal forming processes for processing plastics into multilayer flat structures are particularly suitable for producing the multilayer film according to the invention.
  • the production by coextrusion should be mentioned, which is preferably carried out by the blow molding process. Because of the better achievable bond adhesion, coextrusion is among the suitable production processes for multilayer thermoplastic Flat structures are particularly preferred.
  • Solution or melt, coextrusion is also preferred because only one machine pass is required
  • the circular melt distribution for multi-layer blown film tools is carried out by means of quills, bar mandrel holders, spiral distributors or
  • Sandwich nozzle concepts (eg Bramton-Enginee ⁇ ng) According to the invention, preference is given to the circular melt distribution according to the spiral distributor principle
  • the films according to the invention can be modified on one or both sides in their surface properties using the known physical and chemical treatment methods such as, for example, corona, flame, plasma or fluorine treatment.
  • the films described here are preferably suitable as membrane films, which are used in particular in the clothing sector. They are particularly suitable for use in the area of workwear or workwear that is often worn permanently. In the field of casual clothing, they are particularly used as wind and weatherproof rain or outdoor membranes.
  • the films according to the invention are also suitable for applications in the medical or medical technology field.
  • Wound covers, active substance plasters, anti-allergic mattress covers and surgical protective clothing are explicitly mentioned here.
  • the films according to the invention are used as laminated composites with textile woven goods, knitwear or nonwovens or generally wovens and nonwovens.
  • thermoplastic resins e.g. by Wortberg, Mahlke and Effen in: Kunststoffe, 84 (1994) 1131-1138, by Pearson in:
  • a film was produced whose layer (1), with a thickness of 20 ⁇ m, made of a thermoplastic polyurethane, Shore hardness 90A according to DIN 53505, with an MFR of 27 g / 10 min, measured at
  • Grain sizes between 3 microns and 7 microns and 1 mass% of an amide wax added.
  • a thermoplastic polyurethane Shore hardness 85A according to DIN 53505, with an MFR of 25 g / 10 min, was measured at 190 ° C with a test mass of 10 kg , essentially composed of the components diphenylmethane-4,4'-diisocyanate as the hard segment, polytetrahydrofuran as the soft segment and 1,4-butanediol as the chain extender and with addition of the same amounts of silica and amide wax as in the layer (1).
  • the materials were each processed into film using a single-screw extruder with a blown film die attached. Rising temperatures of 160-190 ° C were set on the extruders with a diameter of 45 mm. The tool temperature was 190 ° C.
  • a film was produced whose layer (1), with a thickness of 20 ⁇ m, made of a thermoplastic polyurethane, Shore hardness 82A according to DIN 53505, with an MFR of 26 g / 10 min, measured at
  • thermoplastic polyurethane Shore-Harte 85A according to DIN 53505, with an MFR of 25 g / 10 min, measured at 190 ° C with a test mass of 10 kg, in essentially composed of the components diphenylmethane-4,4'-diisocyanate as a hard segment, polytetrahydrofuran as
  • Soft segment and 1,4-butanediol are used as chain extenders and with the addition of the same amounts of silica and amide wax as in layer (1)
  • the materials were each processed into film using a single-screw extruder with a blown film die attached. Rising temperatures of 160-190 ° C were set on the extruders with a diameter of 45 mm. The tool temperature was 190 ° C.
  • Example 2 With the help of a two-layer blown film tool, a film was produced as in Example 2, the layer (1) of which is 36 ⁇ m thick and the layer (2) of which is 10 ⁇ m thick.
  • a film was produced whose layer (1), with a thickness of 10 ⁇ m, made of a thermoplastic polyurethane, Shore-Harte 82A according to DIN 53505, with an MFR of 26 g / 10 min, measured at 190 ° C with a test mass of 10 kg, essentially built up from the components diphenylmethane-4,4'-diisocyanate as a hard segment, polyethylene oxide as a soft segment and 1,4-butanediol as a chain extender.
  • To adjust the sales Working properties were added 4% by mass, based on the total mass of the components used for film processing, of a natural silica with grain sizes between 3 ⁇ m and 7 ⁇ m and 1% by mass of an amide wax.
  • thermoplastic polyurethane with a thickness of 10 ⁇ m, a thermoplastic polyurethane, Shore hardness 85A according to DIN 53505, with an MFR of 25 g / 10 min, measured at 190 ° C with a test mass of 10 kg, in essentially composed of the components diphenylmethane-4,4'-diisocyanate as the hard segment, polytetrahydrofuran as the soft segment and 1,4-butanediol as a chain extender and with the addition of the same
  • the materials were each processed into film using a single-screw extruder with a blown film die attached. Rising temperatures of 160-190 ° C were set on the extruders with a diameter of 45 mm. The tool temperature was 190 ° C.
  • a film was produced whose layer (1), with a thickness of 50 ⁇ m, made of a thermoplastic polyurethane, Shore hardness 90A according to DIN 53505, with an MFR of 27 g / 10 min, measured at
  • Grain sizes between 3 microns and 7 microns and 1 mass% of an amide wax added The material was processed into a film using a single-screw extruder with a blown film die attached. Rising temperatures of 160-190 ° C. were set on the extruder with a diameter of 45 mm. The tool temperature was 190 ° C.
  • the water vapor permeability was determined in accordance with DIN 53122. It was carried out at a temperature of 23 ° C and a relative humidity of 85%. For example 4, the water vapor permeability was determined after the PE carrier film or layer (3) had been separated off.

Abstract

Die vorliegende Erfindung betrifft eine mindestens zweischichtige Folie aus thermoplastischem Polyurethan mit richtungsabhängiger Wasserdampfdurchlässigkeit, wobei die mindestens zweischichtige Folie jeweils unterschiedliche Wasserdampfdurchlässigkeit zeigt, wenn jeweils eine der beiden Aussenschichten der Folie bei der Bestimmung der Wasserdampfdurchlässigkeit nach DIN 53122, gemessen über die Gesamtdichte der mindestens zweischichtigen Folie, zur Feuchtigkeitsquelle zeigt, die verwendeten thermoplastichen Polyurethane sind dabei aus, gegebenenfalls hydrophilierten, Hartsegmenten, bestehend aus Diisocyanaten, in Verbindung mit niedermolekularen Diolen als Kettenverlängerer und Weichsegmenten aus difunktionellen Polyolen aufgebaut, wobei es sich bei letzteren um hochmolekulare und/oder Polyester handelt.

Description

Atmungsaktive Mehrschichtfolie
Die vorliegende Erfindung betrifft durch Coextrusion hergestellte, mehrschichtige, wasserdichte und atmungsaktive Folien aus thermoplastischen Polyurethanen, deren kennzeichnendes Merkmal darin bestehen, daß die Folie eine richtungsabhängige
Wasserdampfdurchlässigkeit besitzt.
Sie betrifft ebenso die Verwendung der erfindungsgemäßen Folie zur wasserdichten und atmungsaktiven Abdichtung von Flächengebilden wie Webwaren und Vliesen sowie die daraus hergestellten Gebrauchsgegenstände insbesondere im Bekleidungsbereich und hier hauptsächlich für Arbeitskleidung oder Regenbekleidung.
Die Möglichkeit, poröse Flächengebilde mittels einer wasserdichten Folie oder Be- schichtung gegen das Eindringen bzw. Durchdringen von Wasser zu schützen, ist allgemein bekannt und entspricht dem Stand der Technik.
Um beispielsweise bei Bekleidungsgegenständen ein hohes Maß an Tragekomfort zu gewährleisten, werden häufig atmungsaktive Materialien eingesetzt. Der atmungsaktive Charakter der Folie wird allgemein über die Wasserdampfdurchlässigkeit nachge- wiesen. Um einen Feuchtestau beim Träger solchermaßen ausgerüsteter Bekleidungsgegenstände zu verhindern, muß die Wasserdampfdurchlässigkeit möglichst hoch sein.
Hohe Wasserdampfdurchlässigkeiten lassen sich bei bestimmten Folientypen beispielsweise durch eine Mikroporosität infolge einer biaxialen Verstreckung, wie in der US 4.194.041 beschrieben, erzielen. Probleme bereiten derartige mikroporöse Folien im
Einsatz in Bereichen, in denen sie einer häufigen starken Dehnung ausgesetzt sind. Beispielsweise ist hier der Ellenbogenbereich bei Oberbekleidung zu nennen. Hier kann es leicht zur Aufweitung der Poren und als Folge zur Rißformation kommen und damit zum Verlust der Wasserdichtheit.
Derartige Probleme umgeht man, indem man porenfreie Folien mit hoher Wasserdampfdurchlässigkeit, wie beispielsweise in EP 0 591 782 beschrieben, verwendet. In EP 0 658 581 wird der Einsatz hydrophiler thermoplastischer Polyurethane im Bereich atmungsaktiver textiler Flachengebilde beschrieben
Thermoplastisch zu verarbeitende Polyurethane zahlen zu den thermoplastischen Elastomeren, wie sie ubersichtsmaßig in Rubber Chemistry and Technology 62(1989)
Seiten 529 - 54 beschrieben sind Handelsübliche thermoplastische Polyurethane sind allgemein gekennzeichnet durch die Verknüpfung von guter Zug- und Weiterreißfestigkeit bei gleichzeitig großer Dehnfahigkeit über einen weiten Temperaturbereich Einen Überblick über thermoplastische Polyurethane liefert Hepburn (Hrsg ) Polyure- thane Elastomers, Applied Science Publishers, Barking (1982) Seiten 49 - 80 Spezielle Extrusionsware laßt sich sowohl über eine Breitschlitzduse als auch über Blasfo en- extrusion zu Folie verarbeiten Weitere Informationen zur Extrusionstechnologie liefert z.B Kirk - Othmer- Encyclopedia of Chemical Technology, Band 9 (1966) Seiten 232 - 241 Dabei ist es möglich neben einschichtigen Folien auch mehrschichtige Aufbauten aus thermoplastischen Polyurethan herzustellen, wie dies zum Beispiel in
EP 0 603 680 beschrieben wird.
Wie oben bereits geschildert, wird der Tragekomfort von atmungsaktiv ausgestatteten Bekleidungsgegenständen zu einem wesentlichen Teil über die Wasserdampfdurchlas- sigkeit beeinflußt Die gewünschte hohe Wasserdampfdurchlassigkeit sollte allerdings nicht dazu fuhren, daß ein Feuchtetransport von Aussen nach Innen erfolgt Es stellt sich damit die Aufgabe, eine hochelastische, wasserdichte jedoch wasserdampfdurch- lassige Folie bereitzustellen, deren Wasserdampfdurchlassigkeit eine Richtungsabhan- gigkeit besitzt.
Erreicht wurde dies überraschenderweise durch die Herstellung einer mittels Co- extrusion hergestellten mehrschichtigen Folie auf der Basis von thermoplastischen Polyurethanen (TPU)
Gegenstand der Erfindung ist dementsprechend eine mindestens zweischichtige TPU-
Folie sowie ihre Verwendung zur Herstellung von atmungsaktiven wasserdichten Flachengebilden mit richtungsabhangiger Wasserdampfdurchlassigkeit, dadurch gekenn- zeichnet, daß die Folien jeweils unterschiedlich hohe Wasserdampfdurchlässigkeiten zeigen, wenn jeweils eine der beiden Aussenschichten der erfindungsgemäßen Folie bei der Bestimmung der Wasserdampfdurchlassigkeit nach einem der gängigen genormten Meßverfahren der Wasserdampfquelle zugewandt ist. Gängige Verfahren zur Bestimmung der Wasserdampfdurchlassigkeit sind beispielsweise in der DIN 53122 oder der ASTM E96 beschrieben. Diese Bestimmungsverfahren basieren auf der Penetration von Wasserdampf von einer Quelle zu einer Senke. Die Wasserdampfquelle ist i.a. durch eine Klimakammer, eine Klimalösung oder eine definierte Dampfphase realisiert. Die Senke wird meistens durch ein Trockenmittel realisiert. Die erfindungs- gemäßen Folien bestehen geeigneterweise in den unterschiedlichen Schichten aus unterschiedlichen TPU-Harz-Formulierungen. Der wesentliche Erfindungsgedanke liegt darin einen bevorzugten Feuchtetransport von der höher wasserdampfdurchlässigen Schicht zu der mit einer geringeren Wasserdampfdurchlassigkeit ausgestatteten Schicht zu nutzen.
Gelöst wurde diese Aufgabe durch eine mehrschichtige Folie, die dadurch gekennzeichnet ist, daß die einzelnen Schichten aus linearen, thermoplastisch verarbeitbaren, segmentierten Polyurethan-Molekülen aufgebaut sind. Die vergleichsweise hydrophilen Polyurethane werden aus alternierenden Blöcken von Weich- und Hartsegmenten gebildet, wobei die Weichsegmente aus difunktionellen Polyolen A) gebildet werden, die aus polymerisierten Ethern und/oder Estern aufgebaut sind, und die Hartsegmente aus den Reaktionsprodukten von einem niedermolekularen Diol B), d.h. dem Kettenverlängerer und einem Diisocyanat C) gebildet werden. Diese Blöcke werden vorteilhafterweise so miteinander verknüpft, daß das Hartsegment jeweils die beiden Enden der Molekülkette bildet und gegebenenfalls die an den Enden des linearen Moleküls befindlichen reaktiven Cyanatgruppen durch Alkohole D) verkappbar sind.
Die thermoplastischen Polyurethane sind vorzugsweise lineare Blockcopolymere, die durch die bei der Urethanreaktion auftretende Nebenreaktion der Alophanatbildung immer einen gewissen Anteil an Verzweigungen aufweisen. Das mittlere Molekulargewicht geeigneter thermoplastischer Polyurethane liegt bevorzugt zwischen 10 000 g/mol und 250 000 g/mol. Bevorzugt werden für das Weichsegment A) difünktionelle, d.h. günstigerweise zwei Hydroxylendgruppen enthaltende Verbindungen verwendet. Besonders bevorzugt sind Ethylenoxid-Polymerisate und oder Copolymerisate, die oft auch als Polyoxyethylen- glycole und/oder Polyethylenoxidglycole bezeichnet werden, deren Monomereinheit durch den Aufbau (-O-CH2-CH2-) gekennzeichnet ist sowie ein mittleres Molekulargewicht von mindestens 400 g/mol und höchstens 2800 g/mol besitzen. In einer besonders bevorzugten Ausführung liegt das mittlere Molekulargewicht zwischen 800 g/mol und 1200 g/mol. Diese sind ferner durch ein Kohlenstoff zu Sauerstoff Massenverhältnis charakterisiert, welches mindestens 1,3 und höchstens 2,5 beträgt.
Der Masseanteil des Weichsegments A) an dem thermoplastischen Elastomer, welches die erfindungsgemäße Folie bildet, beträgt zwischen 35 % und 60 %, bevorzugt zwischen 40 % und 50 %, jeweils bezogen auf die Gesamtmasse des thermoplastischen Polyurethans. Durch Copolymerisation des Ethylenoxids mit anderen cyclischen Ethern, beispielsweise Propylenoxid oder Tetrahydrofüran, läßt sich die Kristallisationsneigung des Weichsegmentes verringern und gegebenenfalls die Atmungsaktivität erhöhen.
Die Hartsegment-Bestandteile können aus den für die Produktion von Folienrohstof- fen aus thermoplastischen Polyurethanen bekannten Isocyanat- und Diol-Komponen- ten ausgewählt werden.
Als Diol-Komponente B) kommen kurzkettige bifünktionelle Stoffe zum Einsatz, deren Molekulargewicht zwischen 18 und 350 g/mol beträgt. Als zweiwertige Alko- hole sind dies z.B. Ethylenglycol, 1,2-Propylenglycol, 1,4-Butylenglycol, auch als
Tetramethylenglycol bezeichnet, 2,3 -Butylenglycol, 1,5-Pentandiol, 1,6-Hexandiol, 1,8-Octandiol, ferner Diethylenglycol, Triethylenglycol, Tetraethylenglycol und höhere Polyethylenglycole mit einem Molekulargewicht bis 350 g/mol, Dipropylenglycol und höhere Polypropylenglycole mit einem Molekulargewicht bis 350 g/mol sowie Di- butylenglycol und höhere Polybutylenglycole mit einem Molekulargewicht bis
350 g/mol. Weitere zur Herstellung der erfindungsgemäß zu verwendenden Polyurethane geeignete niedermolekulare Diole B) mit einem Molekulargewicht bis 350 g/mol sind Ester- diole der allgemeinen Formel
HO-(CH2)y-CO-O-(CH2)x-OH
und
HO-(CH2)x-O-CO-R-CO-O-(CH2)x-OH,
in denen
R einen Alkylenrest mit 1 bis 10, vorzugsweise 2 bis 6, C- Atomen bzw. einen
Cycloalkylen- oder Arylenrest mit 6 bis 10 C- Atomen,
x 2 bis 6 und
3 bis 5
bedeuten, z.B. Adipinsäure-bis-(ß-hydroxyethyl)-ester und Terephthalsäure-bis-(ß- hydroxyethyl)-ester.
Geeignete Isocyanate C) sind aliphatische, cycloaliphatische, aromatische und hetero- cyclische Diisocyanate, beschrieben durch die Formel
OCN-Q-NCO
in der
Q einen aliphatischen Kohlenwasserstoffrest mit 2 bis 18, vorzugsweise 6 bis 10,
C-Atomen, einen cycloaliphatischen Kohlenwasserstoffrest mit 4 bis 15 C-Ato- men, oder einen aromatischen Kohlenwasserstoffrest mit 6 bis 15, vorzugsweise 6 bis 13, C-Atomen,
bedeutet.
Solche Diisocyanate sind beispielsweise 1,4-Tetramethylen-diisocyanat, 1,6-Hexa- methylendiisocyanat, Cyclohexan-1,3- und -1,4-diisocyanat sowie beliebige Gemische dieser Isomeren, Naphthylen-l,5-diisocyanat, 2,4- und 2,6-Toluylen-diisocyanat sowie beliebige Gemische dieser Isomeren, Diphenylmethan-2,4'- und/oder -4,4'-diiso- cyanat.
In Frage kommende Alkohole D) als Verkappungsreagenzien sind niedermolekulare Alkohole mit einem Molekulargewicht von mindestens 32 g/mol und höchstens 100 g/mol. Es sind nicht nur monofünktionelle Alkohole, sondern auch Di-, Tri- oder höhere Polyole als Verkappungsreagenzien geeignet. Bevorzugt werden aliphatische kurzkettige Alkohole mit einem Molekulargewicht von mindestens 32 g/mol und höchstens 400 g/mol.
Erfindungsgemäß werden für die einzelnen Schichten der Folie thermoplastische Poly- urethanelastomere mit unterschiedlicher Hydrophilie bzw. Wasserdampfdurchlassigkeit verwendet. Dies kann durch unterschiedliche Weichsegmente und/oder modifizierte Hartsegmente der Polyurethane in den einzelnen Schichten erreicht werden. Für die Weichsegmente ergibt sich erfindungsgemäß beispielsweise eine Zunahme der Hydrophilie in der Reihenfolge:
Polyester < Polytetrahydrofuran < Polyethylenoxid.
Für die Hartsegmente sind z.B. Modifizierungen anwendbar, wie die beispielsweise von der Bayer AG, Leverkusen vertriebenen dual hydrophilierten Impraperm®-Typen bekannt sind (EP 0 525 567 und DE 4 236 569). In einer bevorzugten Ausführung basieren alle Schichten der Folie auf thermoplastischen Polyurethanelastomeren deren langerkettigen Diolkomponenten im wesentlichen aus Polyethern gebildet werden Besonders bevorzugt sind dabei Aufbauten, bei denen alle Schichten der Folie aus unterschiedlichen, auf Polyether- Weichsegmenten aufbauenden thermoplastischen Polyurethanen gebildet werden
In einer besonders bevorzugten Ausführung weisen die, die unterschiedlichen Schichten der erfindungsgemaßen Folie bildenden, Polyurethan-Elastomer-Harze unterschiedliche Shore-Harten auf Hierbei wird bei gegebenenfalls gleichen Weichseg- mentaufbau der Weichsegmentanteil der die erfindungsgemaße Folie bildenden
Schichten variiert, so daß die die einzelnen Schichten bildenden Harze unterschiedliche Wasserdampfdurchlassigkeiten besitzen
Die verwendeten thermoplastischen Polyurethane weisen vorzugsweise eine Shore- Harte von 75 - 95 A, besonders bevorzugt 85 - 95 A, bestimmt nach DIN 53 505, auf
Erfindungsgemaß geeignete thermoplastische Polyurethane sind beispielsweise unter den Handelsnamen Desmopan®, Elastollan®, Estane®, Impraperm®, PellethaneB, Morthane® oder Texin® erhältlich
Eine geeignete Ausführung der erfindungsgemaßen Folie enthalt in den einzelnen
Schichten zusatzlich gebrauchliche Additive aus der Gruppe umfassend
I Antiblockmittel, anorganische oder organische Abstandshalter,
II Gleit- oder Entformungsmittel, III Pigmente oder Füllstoffe und
IV Stabilisatoren.
Der Anteil der genannten Additive I bis IV liegt in Summe bevorzugt zwischen 1 Gew -% und 30 Gew -% Die gebräuchlichen Additive, die in den erfindungsgemaßen Folien enthalten sein können, sind beispielsweise bei Gachter und Muller beschrieben in Kunststoff-Additive, Carl Hanser Verlag München, 3 Ausgabe (1989)
Erfindungsgemaß bevorzugt sind Folien mit einer Gesamtdicke zwischen 5 μm und 500 μm Besonders bevorzugt zwischen 5 μm und 50 μm Die Dicke der einzelnen Schichten kann erfindungsgemaß jeweils im Bereich von 10 % bis 90 % der Gesamtdicke variieren Besonders bevorzugt ist ein Aufbau, bei dem die dünnere Schicht einen Anteil zwischen 10 % und 49 % der Gesamtdicke besitzt
Bei sehr dünnen atmungsaktiven Aufbauten kann erfindungsgemaß eine zusatzliche Tragerschicht, z B auf Basis von Polyethylen, zum besseren Handling, d h zur Versteifung, verwendet werden Bei einer solchen Folie liegt die Dicke der Schιcht(en) aus thermoplastischen Polyurethan(en) bevorzugt zwischen 5 μm und 25 μm, die Dicke der Tragerschicht bevorzugt zwischen 5 μm und 100 μm
Zur Herstellung der erfindungsgemaßen Mehrschichtfolie eignen sich besonders die gangigen thermischen Umformverfahren zur Verarbeitung von Kunststoffen zu mehrschichtigen Flachengebilden Hier wäre die Herstellung durch Coextrusion zu nennen, die bevorzugt nach dem Blasfo enverfahren erfolgt Aufgrund der besseren erzielbaren Verbundhaftung ist die Coextrusion unter den geeigneten Herstellungsverfahren von mehrschichtigen thermoplastischen Flachengebilden im besonderen Maß bevorzugt
Gegenüber den nach dem Stand der Technik bekannten Beschichtungsverfahren aus
Losung oder Schmelze ist die Coextrusion zudem bevorzugt, da nur ein Maschinen- durchlauf erforderlich ist
Nach dem Stand der Technik erfolgt die kreisförmige Schmelzeverteilung für mehr- schichte Blasfolienwerkzeuge durch Pinolen-, Stegdornhalter-, Wendelverteiler- oder
Sandwich-Dusen-Konzepte (z B Bramton-Engineeπng) Erfindungsgemaß bevorzugt ist die kreisförmige Schmelzeverteilung nach dem Wendelverteiler-Prinzip Die erfindungsgemäßen Folien können mit den bekannten physikalischen und chemischen Behandlungsmethoden wie beispielsweise der Corona-, Flamm-, Plasmaoder Fluor-Behandlung ein- oder beidseitig in ihren Oberflächeneigenschaften modifi- ziert werden.
Aufgrund der erfindungsgemäßen Eigenschaften eignen sich die hier beschriebenen Folien vorzugsweise als Membranfolien, die insbesondere im Bekleidungsbereich Verwendung finden. Besonders geeignet sind sie für die Anwendung im Bereich der oft dauerhaft getragenen Arbeits- oder Berufsbekleidung. Im Bereich der Freizeitbekleidung finden sie besonders als wind- und wetterfeste Regen- oder Outdoormembran Verwendung.
Ebenso eignen sich die erfindungsgemäßen Folien für Anwendungen im medizinischen oder medizintechnischen Bereich. Explizit seien hier Wundabdeckungen, Wirkstoffpflaster, antiallergische Matratzenabdeckungen und OP-Schutzbekleidung genannt.
In einer besonders bevorzugten Ausführung werden die erfindungsgemäßen Folien als laminierte Verbünde mit textilen Webwaren, Strickwaren oder Vliesen bzw. allgemein wovens und nonwovens eingesetzt.
Die im Rahmen der nachfolgenden Beispiele und Vergleichsbeispiele beschriebenen Folien wurden durch Blasfoliencoextrusion hergestellt. Die zum Aufschluß thermoplastischer Harze geeigneten Schneckenwerkzeuge sind in ihrem Aufbau z.B. von Wortberg, Mahlke und Effen in: Kunststoffe, 84 (1994) 1131-1138, von Pearson in:
Mechanics of Polymer Processing, Elsevier Publishers, New York, 1985 oder der Fa. Davis-Standard in: Paper, Film & Foil Converter 64 (1990) S. 84 - 90 beschrieben. Werkzeuge zum Ausformen der Schmelze zu Folien sind u.a. von Michaeli in: Extrusions-Werkzeuge, Hanser Verlag, München 1991 erläutert. Beispiel 1
Mit Hilfe eines Zweischicht-Blasfolienwerkzeuges wurde eine Folie hergestellt, deren Schicht (1), mit einer Dicke von 20 μm, aus einem thermoplastischen Polyurethan, Shore-Härte 90A nach DIN 53505, mit einem MFR von 27 g/10 min, gemessen bei
190°C mit einer Prüfmasse von 10 kg, im wesentlichen aufgebaut aus den Komponenten Diphenylmethan-4,4'-Diisocyanat als Hartsegment, Polyethylenoxid als Weichsegment und 1 ,4-Butandiol als Kettenverlängerer, hergestellt ist. Zur Anpassung der Verarbeitungseigenschaften wurden 4 Massen-%, bezogen auf die Gesamtmasse der zur Folienverarbeitung eingesetzten Komponenten, einer natürlichen Kieselsäure mit
Korngrößen zwischen 3 μm und 7 μm und 1 Massen-% eines Amidwachses zugesetzt.
In der Schicht (2), mit einer Dicke von 10 μm, wurde ein thermoplastisches Polyure- than, Shore-Härte 85A nach DIN 53505, mit einem MFR von 25 g/10 min, gemessen bei 190°C mit einer Prüfmasse von 10 kg, im wesentlichen aufgebaut aus den Komponenten Diphenylmethan-4,4'-Diisocyanat als Hartsegment, Polytetrahydrofüran als Weichsegment und 1,4-Butandiol als Kettenverlängerer und unter Zugabe derselben Kieselsäure- und Amidwachsmengen wie in der Schicht (1), eingesetzt.
Die Materialien wurden jeweils mit einem Einschneckenextruder bei angeflanschtem Blasfolienwerkzeug zu Folie verarbeitet. An den Extrudern mit einem Durchmesser von 45 mm wurden aufsteigende Temperaturen von 160-190°C eingestellt. Die Werkzeugtemperatur betrug 190°C.
Beispiel 2
Mit Hilfe eines Zweischicht-Blasfolienwerkzeuges wurde eine Folie hergestellt, deren Schicht (1), mit einer Dicke von 20 μm, aus einem thermoplastischen Polyurethan, Shore-Härte 82A nach DIN 53505, mit einem MFR von 26 g/10 min, gemessen bei
190°C mit einer Prüfmasse von 10 kg, im wesentlichen aufgebaut aus den Komponenten Diphenylmethan-4,4'-Diisocyanat als Hartsegment, Polyethylenoxid als Weichseg- ment und 1,4-Butandiol als Kettenverlängerer, hergestellt ist Zur Anpassung rJer Verarbeitungseigenschaften wurden 4 Massen-%, bezogen auf die Gesamtmasse der zur Folienverarbeitung eingesetzten Komponenten, einer naturlichen Kieselsaure mit Korngroßen zwischen 3 μm und 7 μm und 1 Massen-% eines Amidwachses zuge- setzt.
In der Schicht (2), mit einer Dicke von 10 μm, wurde ein thermoplastisches Polyurethan, Shore-Harte 85A nach DIN 53505, mit einem MFR von 25 g/10 min, gemessen bei 190°C mit einer Prufmasse von 10 kg, im wesentlichen aufgebaut aus den Kompo- nenten Diphenylmethan-4,4'-Diisocyanat als Hartsegment, Polytetrahydrofüran als
Weichsegment und 1,4-Butandiol als Kettenverlängerer und unter Zugabe derselben Kieselsaure- und Amidwachsmengen wie in der Schicht (1), eingesetzt
Die Materialien wurden jeweils mit einem Einschneckenextruder bei angeflanschtem Blasfolienwerkzeug zu Folie verarbeitet. An den Extrudern mit einem Durchmesser von 45 mm wurden aufsteigende Temperaturen von 160-190°C eingestellt. Die Werkzeugtemperatur betrug 190°C.
Beispiel 3
Mit Hilfe eines Zweischicht-Blasfolienwerkzeuges wurde eine Folie wie in Beispiel 2 hergestellt, deren Schicht (1) eine Dicke von 36 μm und deren Schicht (2) eine Dicke von 10 μm aufweist.
Beispiel 4
Mit Hilfe eines Dreischicht-Blasfolienwerkzeuges wurde eine Folie hergestellt, deren Schicht (1), mit einer Dicke von 10 μm, aus einem thermoplastischen Polyurethan, Shore-Harte 82A nach DIN 53505, mit einem MFR von 26 g/10 min, gemessen bei 190°C mit einer Prufmasse von 10 kg, im wesentlichen aufgebaut aus den Komponenten Diphenylmethan-4,4'-Diisocyanat als Hartsegment, Polyethylenoxid als Weichsegment und 1,4-Butandiol als Kettenverlängerer, hergestellt ist. Zur Anpassung der Ver- arbeitungseigenschaften wurden 4 Massen-%, bezogen auf die Gesamtmasse der zur Folienverarbeitung eingesetzten Komponenten, einer natürlichen Kieselsäure mit Korngrößen zwischen 3 μm und 7 μm und 1 Massen-% eines Amidwachses zugesetzt.
In der Schicht (2), mit einer Dicke von 10 μm, wurde ein thermoplastisches Polyurethan, Shore-Härte 85A nach DIN 53505, mit einem MFR von 25 g/10 min, gemessen bei 190°C mit einer Prüfmasse von 10 kg, im wesentlichen aufgebaut aus den Komponenten Diphenylmethan-4,4'-Diisocyanat als Hartsegment, Polytetrahydrofuran als Weichsegment und 1 ,4-Butandiol als Kettenverlängerer und unter Zugabe derselben
Kieselsäure- und Amidwachsmengen wie in der Schicht (1), eingesetzt.
In der Schicht (3), mit einer Dicke von 20 μm, wurde ein Polyethylen mit einem MFR von 3 g/10 min, gemessen bei 160°C mit einer Prüfmasse von 2,16 kg eingesetzt.
Die Materialien wurden jeweils mit einem Einschneckenextruder bei angeflanschtem Blasfolienwerkzeug zu Folie verarbeitet. An den Extrudern mit einem Durchmesser von 45 mm wurden aufsteigende Temperaturen von 160-190°C eingestellt. Die Werkzeugtemperatur betrug 190°C.
Vergleichsbeispiel 1
Mit Hilfe eines Einschicht-Blasfolienwerkzeuges wurde eine Folie hergestellt, deren Schicht (1), mit einer Dicke von 50 μm, aus einem thermoplastischen Polyurethan, Shore-Härte 90A nach DIN 53505, mit einem MFR von 27 g/10 min, gemessen bei
190°C mit einer Prüfmasse von 10 kg, im wesentlichen aufgebaut aus den Komponenten Diphenylmethan-4,4'-Diisocyanat als Hartsegment, Polyethylenoxid als Weichsegment und 1,4-Butandiol als Kettenverlängerer, hergestellt ist. Zur Anpassung der Verarbeitungseigenschaften wurden 4 Massen-%, bezogen auf die Gesamtmasse der zur Folienverarbeitung eingesetzten Komponenten, einer natürlichen Kieselsäure mit
Korngrößen zwischen 3 μm und 7 μm und 1 Massen-% eines Amidwachses zugesetzt. Das Material wurde mit einem Einschneckenextruder bei angeflanschtem Blasfolienwerkzeug zu Folie verarbeitet. An dem Extruder mit einem Durchmesser von 45 mm wurden aufsteigende Temperaturen von 160-190°C eingestellt. Die Werkzeugtemperatur betrug 190°C.
Tabelle 1
Figure imgf000015_0001
Aus Tabelle 1 läßt sich ersehen, daß die erfindungsgemäßen Folien eine richtungsabhängige Wasserdampfdurchlassigkeit aufweisen, wohingegen dies bei der Folie aus dem Vergleichsbeispiel nicht zu beobachten ist. Insbesondere ist im Vergleich zwischen Beispiel 2 und Beispiel 3 zu sehen, daß sich durch die erfindungsgemäße Variation der Schichtdicken der Grad der Richtungsabhängigkeit der Wasserdampf- durchlas sigkeit gezielt einstellen läßt. Bestimmung der Wasserdampfdurchlassigkeit:
Die Wasserdampfdurchlassigkeit wurde gemäß DIN 53122 bestimmt. Sie erfolgte bei einer Temperatur von 23°C und einer relativen Leuftfeuchtigkeit von 85%. Für Beispiel 4 erfolgte die Bestimmung der Wasserdampfdurchlassigkeit nach Abtrennen der PE-Trägerfolie bzw. Schicht (3).

Claims

Patentansprüche
1. Eine mindestens zweischichtige Folie aus thermoplastischem Polyurethan mit richtungsabhängiger Wasserdampfdurchlassigkeit, dadurch gekennzeichnet, daß die mindestens zweischichtige Folie jeweils unterschiedliche Wasserdampfdurchlassigkeit zeigt, wenn jeweils eine der beiden Aussenschichten der Folie bei der Bestimmung der Wasserdampfdurchlassigkeit nach DIN 53122, gemessen über die Gesamtdichte der mindestens zweischichtigen Folie, zur Feuchtigkeitsquelle zeigt, die verwendeten thermoplastischen Polyurethane sind dabei aus, gegebenenfalls hydrophilierten, Hartsegmenten, bestehend aus
Diisocyanaten, in Verbindung mit niedermolekularen Diolen als Kettenverlängerer und Weichsegmenten aus difunktionellen Polyolen aufgebaut, wobei es sich bei letzteren um hochmolekulare Polyether und/oder Polyester handelt.
2. Folie nach Anspruch 1, dadurch gekennzeichnet, daß sie in den unterschiedlichen Schichten aus unterschiedlichen Harz-Formulierungen thermoplastischer Polyurethane aufgebaut ist.
3. Folie nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß alle Schichten der Folie aus thermoplastischen Polyurethan mit Weichsegmenten auf Polyether- basis bestehen.
4. Folie nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß in den unterschiedlichen Schichten verschiedene Ethertypen im Weichsegment eingesetzt werden.
5. Folie nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Schicht mit der höchsten Wasserdampfdurchlassigkeit ein Weichsegment auf der Basis Ethylenoxid besitzt.
Folie nach Anspruch 1 bis 5, dadurch gekenzeichnet, daß mindestens in einer Schicht ein hydrophiliertes Hartsegment verwendet wird. Folie nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die, die Folie aufbauenden Schichten eine unterschiedliche Harte aufweisen
Folie nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Folie eine Dicke zwischen 5 μm und 500 μm aufweist
Folie nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Folie eine Dicke im Bereich von 5 μm bis 50 μm besitzt
Folie nach mindestens einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß die einzelnen Schichten der Folie unterschiedliche Dicken haben und die dünnere Schicht einen Anteil zwischen 10 % und 49 % der Gesamtdicke aufweist
Folie nach Anspruch 10, dadurch gekennzeichnet, daß die dünnere Schicht ein geringeres Wasseraufnahmevermögen besitzt
Folie nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß sie eine abziehbare Tragerfolie besitzt
Folie nach mindestens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Folie mittels Coextrusionsverfahren hergestellt wird
Folie nach mindestens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Folie als Blasfolie mittels Coextrusionsverfahren gefertigt wird
Folie nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß mindestens ein Additiv aus der Gruppe umfassend I Antiblockmittel, anorganische oder organische Abstandshalter,
II Gleit- oder Entformungsmittel, III. Pigmente oder Füllstoffe und
IV. Stabilisatoren.
.in einem Anteil von 1 % bis 30 % in mindestens einer Schicht verwendet werden.
16. Folie nach mindestens einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Folie mindestens auf einer Seite physikalisch oder chemisch vorbehandelt wird.
17. Verwendung einer Folie nach mindestens einem der Ansprüche 1 bis 16 als Membranfolie.
18. Verwendung einer Folie nach mindestens einem der Ansprüche 1 bis 16 im Be- kleidungsbereich.
19. Verwendung einer Folie nach mindestens einem der Ansprüche 1 bis 16 im Bereich der Arbeitsbekleidung.
20. Verwendung einer Folie nach mindestens einem der Ansprüche 1 bis 16 im Bereich der Regenbekleidung.
21. Verwendung einer Folie nach mindestens einem der Ansprüche 1 bis 16 im medizinischen Bereich.
PCT/EP1998/000694 1997-02-19 1998-02-09 Atmungsaktive mehrschichtfolie WO1998036908A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98908072A EP0963293A1 (de) 1997-02-19 1998-02-09 Atmungsaktive mehrschichtfolie
CA002280790A CA2280790A1 (en) 1997-02-19 1998-02-09 Breathable multilayer foil
JP53620198A JP2001512381A (ja) 1997-02-19 1998-02-09 呼吸可能な多層ホイル
AU66212/98A AU6621298A (en) 1997-02-19 1998-02-09 Breathable multilayer foil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19706380A DE19706380A1 (de) 1997-02-19 1997-02-19 Atmungsaktive Mehrschichtfolie
DE19706380.2 1997-02-19

Publications (1)

Publication Number Publication Date
WO1998036908A1 true WO1998036908A1 (de) 1998-08-27

Family

ID=7820720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/000694 WO1998036908A1 (de) 1997-02-19 1998-02-09 Atmungsaktive mehrschichtfolie

Country Status (7)

Country Link
EP (1) EP0963293A1 (de)
JP (1) JP2001512381A (de)
KR (1) KR20000071181A (de)
AU (1) AU6621298A (de)
CA (1) CA2280790A1 (de)
DE (1) DE19706380A1 (de)
WO (1) WO1998036908A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014177393A1 (de) * 2013-04-29 2014-11-06 Evonik Industries Ag Elastomer-pmma-schichtverbunde mit verbesserten eigenschaften

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193289A1 (de) * 2000-10-02 2002-04-03 The Procter & Gamble Company Verbesserte thermoplastische hydrophile Zusammensetzungen für feuchtigkeitsdampfdurchlässige Strukturen
KR100432707B1 (ko) * 2001-12-31 2004-05-24 주식회사 디피아이 일액형 폴리우레탄 수지 조성물
DE10356776B4 (de) * 2003-12-02 2011-04-14 BLüCHER GMBH Plasmabehandeltes Adsorptionsfiltermaterial mit Schutz gegenüber chemischen Giftstoffen, dessen Verwendung und dieses Adsorptionsfiltermaterial aufweisende Schutzmaterialien
ATE516327T1 (de) * 2008-10-15 2011-07-15 Evonik Degussa Gmbh Prozesshilfsmittel für thermoplastische polyurethane
PL2377898T3 (pl) * 2010-04-13 2013-05-31 Evonik Degussa Gmbh Środek ułatwiający przetwarzanie poliuretanów termoplastycznych
TW201609396A (zh) * 2014-07-11 2016-03-16 拜耳材料科學股份有限公司 水汽可滲透之複合組分(二)
CN106660340B (zh) * 2014-07-11 2019-09-20 科思创德国股份有限公司 水蒸气可透过的复合部件
TW201609395A (zh) * 2014-07-11 2016-03-16 拜耳材料科學股份有限公司 水汽可滲透之複合組分(一)
DE102017129900A1 (de) * 2017-12-14 2019-06-19 Ewald Dörken Ag Bauverbundfolie

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2024100A (en) * 1978-06-29 1980-01-09 Gore & Ass Flexible layered article
EP0603680A2 (de) * 1992-12-23 1994-06-29 Wolff Walsrode Aktiengesellschaft Mehrschichtige Polyurethan-Folie und ihre Verwendung zur Herstellung von Verpackungen für lichtempfindliches Material
EP0658581A2 (de) * 1993-11-19 1995-06-21 Wolff Walsrode Ag Knisterfreie, antistatische Polyurethanfolie mit hoher Atmungsaktivität sowie ihre Verwendung
WO1995030793A1 (en) * 1994-05-06 1995-11-16 W.L. Gore & Associates, Inc. Three-dimensional seamless waterproof breathable flexible composite articles
EP0803348A1 (de) * 1996-04-24 1997-10-29 Elf Atochem S.A. Folie aus Kunststoff

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2024100A (en) * 1978-06-29 1980-01-09 Gore & Ass Flexible layered article
EP0603680A2 (de) * 1992-12-23 1994-06-29 Wolff Walsrode Aktiengesellschaft Mehrschichtige Polyurethan-Folie und ihre Verwendung zur Herstellung von Verpackungen für lichtempfindliches Material
EP0658581A2 (de) * 1993-11-19 1995-06-21 Wolff Walsrode Ag Knisterfreie, antistatische Polyurethanfolie mit hoher Atmungsaktivität sowie ihre Verwendung
WO1995030793A1 (en) * 1994-05-06 1995-11-16 W.L. Gore & Associates, Inc. Three-dimensional seamless waterproof breathable flexible composite articles
EP0803348A1 (de) * 1996-04-24 1997-10-29 Elf Atochem S.A. Folie aus Kunststoff

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014177393A1 (de) * 2013-04-29 2014-11-06 Evonik Industries Ag Elastomer-pmma-schichtverbunde mit verbesserten eigenschaften
CN105228829A (zh) * 2013-04-29 2016-01-06 赢创罗姆有限公司 具有改进性能的弹性体-pmma层状复合体
AU2014261648B2 (en) * 2013-04-29 2017-03-09 Basf Se Elastomer-PMMA-layered composites having improved properties

Also Published As

Publication number Publication date
KR20000071181A (ko) 2000-11-25
JP2001512381A (ja) 2001-08-21
EP0963293A1 (de) 1999-12-15
DE19706380A1 (de) 1998-08-20
AU6621298A (en) 1998-09-09
CA2280790A1 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
EP0658581B1 (de) Knisterfreie, antistatische Polyurethanfolie mit hoher Atmungsaktivität sowie ihre Verwendung
EP0714950B1 (de) Wasserdichte und atmungsaktive Flächengebilde aus Harzmischungen thermoplastischer Polyurethane
EP2496415B1 (de) Einseitig mattierte folien und deren verwendung
EP2121312B1 (de) Laminat enthaltend folie und vlies auf der basis von thermoplastischem polyurethan
EP0591782B1 (de) Wasserdampfdurchlässige, atmungsaktive Polyetheresterfolien sowie deren Verwendung
WO1998036908A1 (de) Atmungsaktive mehrschichtfolie
EP2582757A1 (de) Verfahren zur herstellung von blends aus polylactiden (pla) und thermoplastischen polyurethanen (tpu)
DE2415457A1 (de) Mischung aus thermoplastischem polyurethan-elastomer, chloriertem polyaethylen und zusaetzlichem polyaethylen
EP1884358B1 (de) Verfahren zur Herstellung von Mehrschichtfolien aus thermoplastischen Polyurethanen
WO2022223163A1 (de) Polyurethan, walzenbezug und herstellungsverfahren
EP0800916B1 (de) Mehrschichtige thermoplastische Folien aus Polyurethanen und Verfahren zu deren Herstellung
EP3166792B1 (de) Wasserdampfdurchlässige verbundteile
EP0842768A2 (de) Weichelastische Mehrschichtfolie und ihre Verwendung
EP1145847A1 (de) Weichelastische Mehrschichtfolie und ihre Verwendung zur Herstellung geschlossener Füllkörper
EP0944667A2 (de) Elastische folien mit verbesserter biologischer abbaubarkeit sowie verfahren für ihre herstellung
DE19804713A1 (de) Latexfreie Kunststoffmischung
DE10204396A1 (de) Technisches glasmattenverstärktes Thermoplastisches Polyurethan
DE19704275A1 (de) Mehrschichtige transparente Folie, insbesondere für die Lebensmittelverpackung unter modifizierter Atmosphäre, sowie Verfahren zu ihrer Verwendung
DE10234007A1 (de) Folie auf der Basis von thermoplastischem Polyurethan
EP0960156A1 (de) Verfahren zur modifizierung von produkten oder halbzeugen aus formmassen bestehend aus mischungen thermoplastischer kunststoffe
MXPA99007556A (en) Breathable multilayer foil
EP0795575A2 (de) Folie aus Acrylat-Terpolymer-Mischungen und deren Verwendung
WO2013124249A1 (de) Verfahren zur herstellung von blends aus polyhydroxyalkanoaten (pha) und thermoplastischen polyurethanen (tpu)
WO1999037715A1 (de) Latexfreie kunststoffmischung
JPH0694514B2 (ja) 無孔透湿性防水膜

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998908072

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1998 536201

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2280790

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2280790

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/007556

Country of ref document: MX

Ref document number: 09367533

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019997007471

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1998908072

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1998908072

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997007471

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019997007471

Country of ref document: KR