WO1998032166A1 - Verfahren zur herstellung eines siliziumkondensators - Google Patents
Verfahren zur herstellung eines siliziumkondensators Download PDFInfo
- Publication number
- WO1998032166A1 WO1998032166A1 PCT/DE1998/000089 DE9800089W WO9832166A1 WO 1998032166 A1 WO1998032166 A1 WO 1998032166A1 DE 9800089 W DE9800089 W DE 9800089W WO 9832166 A1 WO9832166 A1 WO 9832166A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- hole structures
- conductive
- silicon substrate
- silicon
- Prior art date
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 239000003990 capacitor Substances 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 41
- 229910052710 silicon Inorganic materials 0.000 claims description 48
- 239000010703 silicon Substances 0.000 claims description 48
- 238000005530 etching Methods 0.000 claims description 14
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 14
- 229920005591 polysilicon Polymers 0.000 claims description 14
- 239000002019 doping agent Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 8
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 10
- 238000005452 bending Methods 0.000 description 10
- 239000003792 electrolyte Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002800 charge carrier Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000005368 silicate glass Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229940069814 mi-omega Drugs 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/03—Making the capacitor or connections thereto
- H10B12/038—Making the capacitor or connections thereto the capacitor being in a trench in the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66083—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
- H01L29/66181—Conductor-insulator-semiconductor capacitors, e.g. trench capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/96—Porous semiconductor
Definitions
- a silicon capacitor is known from EP 05 28 281 A2. This comprises an n-doped silicon substrate, the surface of which is structured in a characteristic manner by electrochemical etching in a fluoride-containing, acidic electrolyte in which the substrate is connected as an anode. In electrochemical etching, more or less regularly arranged hole structures are formed on the surface of the substrate. The hole structures have an aspect ratio in the range of 1: 1000.
- the surface of the hole structures is provided with a dielectric layer and a conductive layer. Conductive layer, dielectric layer and silicon substrate form a capacitor in which specific capacities of up to 100 ⁇ V / mrn ⁇ are achieved due to the surface enlargement caused by the hole structures.
- Silicon capacitors are usually manufactured in silicon wafers. Bending of the silicon wafers is ascertained, which is associated with mechanical stresses by the n + -doped region on the surface of the hole structures, which are up to 300 ⁇ m thick. This bending of the silicon wafer leads to problems in further process steps, such as lithography, wafer thinning and separation, which are necessary for installing the silicon capacitor in a housing.
- the doped area is additionally doped with germanium.
- the additional doping with germanium leads to an increase in process complexity.
- the invention is based on the problem of specifying a method for producing a silicon capacitor which is simpler than the known one.
- a large number of hole structures are produced in a main surface of a silicon substrate.
- the perforated structures have a round or polygonal cross-section and side walls essentially perpendicular to the main surface.
- a conductive region provided with an electrically active dopant is produced along the surface of the hole structures.
- the conductive area forms a capacitor electrode in the finished silicon capacitor. It is preferably doped with phosphorus or boron.
- a dielectric layer and a conductive layer which do not fill up the hole structures are applied to the surface of the conductive region.
- An auxiliary layer with an essentially conformal edge covering is formed on the surface of the conductive layer, which is under compressive mechanical stress. Finally the hole structures are filled up.
- the concave bending of the silicon substrate has the disadvantage that in conventional manufacturing devices the substrates are held on supports by vacuum (so-called vacuum chucks).
- a concave bending of the substrate means that the substrate can no longer be sucked in, so that automated production is not possible. Slightly convex shaped substrates, however, can be sucked onto these carriers, since the substrate edge tends to seal against atmospheric pressure.
- a layer of thermal SiO 2 is particularly suitable as an auxiliary layer which is under compressive mechanical stress.
- the incorporation of oxygen during the formation of SiO 2 by thermal oxidation of silicon leads to a compressive mechanical stress in the layer of thermal SiO 2 on the silicon base.
- a layer of undoped polysilicon can be used. When a layer of polysilicon is grown, many small crystals grow in the lower part of the layer, which compete for further growth in the course of the layer deposition. As a result, the polysilicon layer is under compressive mechanical stress.
- the silicon substrate has such a deflection that there is a height difference of up to about 500 ⁇ m between the center and the edge of the silicon substrate, this can be concave Compensate for bending with an auxiliary layer of thermal oxide in a layer thickness of 30 to 250 nm.
- the auxiliary layer made of thermal oxide is under a compressive stress of about 10 ⁇ N / cm.2.
- e j_ use of a Auxiliary layer made of polysilicon requires a layer thickness between 50 nm and 100 nm.
- the hole structures are preferably formed by electrochemical etching in a fluoride-containing acid electrolyte, the main surface being in contact with the electrolyte and a voltage being applied between the electrolyte and the silicon substrate in such a way that the silicon substrate is connected as an anode. A back side of the silicon substrate opposite the main surface is illuminated during the electrochemical etching.
- perforated structures with diameters in the range between 0.5 ⁇ m and 10 ⁇ m and with depths in the range between 50 ⁇ m and 500 ⁇ m can be formed, the perforated structures each having an aspect ratio in the range between 30 and 300.
- the aspect ratio is the quotient of depth to diameter. The higher the aspect ratio, the more serious the concave bending of the silicon substrate becomes due to the conductive area that extends along the surface of the hole structures.
- the hole structures can be formed by masked or unmasked anisotropic etching.
- the dielectric layer is preferably a multiple layer with a layer sequence of SiO 2, and SiO 2 formed.
- Such layers which are often referred to as ONO layers, can be formed with very low defect densities. This is an essential prerequisite for the production of the silicon capacitor, which has a large surface due to the surface enlargement due to the hole structures.
- the surface of the conductive layer is preferably exposed in the region of the main surface.
- the auxiliary layer remains on the surface of the hole structures.
- the surface of the conductive area is also exposed in the area of the main area.
- the auxiliary layer remains in the area of the hole structures.
- FIG. 1 shows a section through a silicon substrate after the formation of hole structures, a conductive region along the surface of the hole structures, a dielectric layer, a conductive layer and an auxiliary layer and after filling up the hole structures.
- FIG. 2 shows the section through the silicon substrate after exposing the conductive layer in the region of the main surface and exposing the surface of the conductive region to form a contact.
- the main surface 11 is brought into contact with an electrolyte.
- an electrolyte For example, a 6 weight percent hydrofluoric acid (HF) is used as the electrolyte.
- the silicon substrate 1 is acted on as a anode with a potential of 3 volts.
- the silicon substrate 1 is illuminated from a rear side opposite the main surface 11.
- a current density of 10 A / cm ⁇ is set.
- minority charge carriers in the n-doped silicon move to the main surface 11 in contact with the electrolyte.
- a space charge zone is formed on the main surface 11. Since the field strength in the area of depressions in the main surface 11 is greater than outside it, the minority charge carriers preferably move to these points. This leads to a structuring of the main surface 11. The deeper an initially small unevenness becomes due to the etching, the more minority charge carriers move there and the stronger the etching attack at this point.
- the perforated structures 2 begin to grow from unevenness in the main surface 11, which are present with a statistical distribution in each surface.
- These bumps can be produced using conventional photolithography, for example.
- the perforated structures After approximately 180 minutes of etching time, the perforated structures have a substantially circular diameter of 2 ⁇ m at a depth of 175 ⁇ m. Then the silicon substrate 1 is rinsed with water.
- a conductive region 3 is produced along the surface of the hole structures and is provided with an electrically active dopant.
- an electrically active dopant As an electrically active dopant
- Example phosphorus with a dopant concentration between 10 ⁇ 0 cm ⁇ 3 U ⁇ nd 10 1 cm “3 or boron having a dopant concentration between 10 ⁇ 0 ⁇ 3 cm and 10 cm ⁇ 1" is used.
- the conductive region 3 an electrical conductivity of about 10 -3 cm. It is therefore suitable as a capacitor electrode.
- a gas phase diffusion is carried out using phosphine or borane at a temperature of 1400 ° Kelvin.
- the electrically active dopant can also be diffused in by depositing an appropriately doped silicate glass layer and diffusing out of the silicate glass layer. This silicate glass layer must be removed again after the diffusion out.
- a dielectric layer 4 and a conductive layer 5 are then applied to the surface of the conductive region 3.
- the dielectric layer 4 is preferably formed by combined production of SiO 2 and Si3N4 as a multiple layer with a layer sequence SiO2 / Si3N4 SiO2, since this material has a defect density which is sufficiently low for a large-area capacitor.
- the dielectric layer 4 is produced as a multilayer with a layer sequence SiO 2 / Si3N4 SiO 2 with layer thicknesses of, for example, 5 nm SiO 2, 20 nm Si3N4 and 5 nm SiO 2.
- the conductive layer 5 is formed, for example, from n + -doped polysilicon. It is formed in a layer thickness of, for example, 400 nm. As a result, it takes about 20 to 50
- auxiliary layer 6 is subsequently formed, which is under compressive mechanical tension.
- the auxiliary layer 6 is preferably formed by thermal oxidation at, for example, 900 ° C., 2000 seconds.
- the auxiliary layer 6 is formed in a layer thickness of 30 to 250 nm, preferably 50 nm.
- the auxiliary layer 6 is under a compressive voltage of approximately 10 ⁇ N / cm 4 and thereby compensates for the doping in the conductive region 3 and, if appropriate, the dielectric layer 4 and the conductive layer
- An n-doped reference substrate is usually used to measure the thickness of the auxiliary layer 6, and an oxide layer is simultaneously formed on its flat surface. Since the oxidation rate on the surface of the n + -doped conductive layer 5 is greatly increased, the thickness of the auxiliary layer 6 on the surface of the conductive layer 5 is a factor of 2 to 4 thicker than the thickness of the oxide layer on the flat surface of the reference substrate. The thickness of the auxiliary layer
- 6 on the reference substrate is typically 10 to 60 nm.
- the auxiliary layer -6 is formed from undoped polysilicon. In this case it has a thickness of 100 nm.
- the remaining space in the hole structures 2 is filled by depositing a polysilicon layer 7.
- the polysilicon layer 7 is formed in a layer thickness of 800 nm, for example.
- the conductive layer 5 and the conductive region 3 act as capacitor electrodes. It is to form connections to the capacitor electrodes to t ⁇ » ⁇ >
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/341,937 US6165835A (en) | 1997-01-21 | 1998-01-12 | Method for producing a silicon capacitor |
JP53351598A JP2001508948A (ja) | 1997-01-21 | 1998-01-12 | シリコンキャパシタの製造方法 |
EP98905245A EP0963601A1 (de) | 1997-01-21 | 1998-01-12 | Verfahren zur herstellung eines siliziumkondensators |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19701935.8 | 1997-01-21 | ||
DE19701935A DE19701935C1 (de) | 1997-01-21 | 1997-01-21 | Verfahren zur Herstellung eines Siliziumkondensators |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998032166A1 true WO1998032166A1 (de) | 1998-07-23 |
Family
ID=7817901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1998/000089 WO1998032166A1 (de) | 1997-01-21 | 1998-01-12 | Verfahren zur herstellung eines siliziumkondensators |
Country Status (7)
Country | Link |
---|---|
US (1) | US6165835A (de) |
EP (1) | EP0963601A1 (de) |
JP (1) | JP2001508948A (de) |
KR (1) | KR20000070287A (de) |
DE (1) | DE19701935C1 (de) |
TW (1) | TW370705B (de) |
WO (1) | WO1998032166A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7911802B2 (en) | 2007-04-06 | 2011-03-22 | Ibiden Co., Ltd. | Interposer, a method for manufacturing the same and an electronic circuit package |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10138759A1 (de) | 2001-08-07 | 2003-03-06 | Bosch Gmbh Robert | Verfahren zur Herstellung eines Halbleiterbauelements sowie Halbleiterbauelement, insbesondere Membransensor |
DE102004063560B4 (de) * | 2004-12-30 | 2009-01-29 | Infineon Technologies Ag | Kapazitive Struktur und Verfahren zur Herstellung einer kapazitiven Struktur |
US7670931B2 (en) * | 2007-05-15 | 2010-03-02 | Novellus Systems, Inc. | Methods for fabricating semiconductor structures with backside stress layers |
US8487405B2 (en) | 2011-02-17 | 2013-07-16 | Maxim Integrated Products, Inc. | Deep trench capacitor with conformally-deposited conductive layers having compressive stress |
US11201155B2 (en) * | 2018-12-14 | 2021-12-14 | Xia Tai Xin Semiconductor (Qing Dao) Ltd. | Semiconductor device and method for fabricating the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2262186A (en) * | 1991-12-04 | 1993-06-09 | Philips Electronic Associated | A capacitive structure for a semiconductor device |
DE4428195C1 (de) * | 1994-08-09 | 1995-04-20 | Siemens Ag | Verfahren zur Herstellung eines Siliziumkondensators |
US5431766A (en) * | 1993-05-12 | 1995-07-11 | Georgia Tech Research Corporation | System for the photoelectrochemical etching of silicon in an anhydrous environment |
EP0709900A2 (de) * | 1994-10-28 | 1996-05-01 | International Business Machines Corporation | Graben- und Kondensatorstrukturen aus porösem Silizium |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4125199C2 (de) * | 1991-07-30 | 1994-04-28 | Siemens Ag | Kompakte Halbleiterspeicheranordnung, Verfahren zu deren Herstellung und Speichermatrix |
RU2082258C1 (ru) * | 1991-08-14 | 1997-06-20 | Сименс АГ | Схемная структура с по меньшей мере одним конденсатором и способ ее изготовления |
JPH07130871A (ja) * | 1993-06-28 | 1995-05-19 | Toshiba Corp | 半導体記憶装置 |
US5619061A (en) * | 1993-07-27 | 1997-04-08 | Texas Instruments Incorporated | Micromechanical microwave switching |
-
1997
- 1997-01-21 DE DE19701935A patent/DE19701935C1/de not_active Expired - Fee Related
- 1997-12-30 TW TW086119961A patent/TW370705B/zh active
-
1998
- 1998-01-12 KR KR1019997006516A patent/KR20000070287A/ko not_active Application Discontinuation
- 1998-01-12 WO PCT/DE1998/000089 patent/WO1998032166A1/de not_active Application Discontinuation
- 1998-01-12 EP EP98905245A patent/EP0963601A1/de not_active Withdrawn
- 1998-01-12 JP JP53351598A patent/JP2001508948A/ja active Pending
- 1998-01-12 US US09/341,937 patent/US6165835A/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2262186A (en) * | 1991-12-04 | 1993-06-09 | Philips Electronic Associated | A capacitive structure for a semiconductor device |
US5431766A (en) * | 1993-05-12 | 1995-07-11 | Georgia Tech Research Corporation | System for the photoelectrochemical etching of silicon in an anhydrous environment |
DE4428195C1 (de) * | 1994-08-09 | 1995-04-20 | Siemens Ag | Verfahren zur Herstellung eines Siliziumkondensators |
EP0709900A2 (de) * | 1994-10-28 | 1996-05-01 | International Business Machines Corporation | Graben- und Kondensatorstrukturen aus porösem Silizium |
Non-Patent Citations (1)
Title |
---|
LEHMANN V ET AL: "A novel capacitor technology based on porous silicon", THIN SOLID FILMS, vol. 276, no. 1, 15 April 1996 (1996-04-15), pages 138-142, XP004017980 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7911802B2 (en) | 2007-04-06 | 2011-03-22 | Ibiden Co., Ltd. | Interposer, a method for manufacturing the same and an electronic circuit package |
Also Published As
Publication number | Publication date |
---|---|
JP2001508948A (ja) | 2001-07-03 |
EP0963601A1 (de) | 1999-12-15 |
US6165835A (en) | 2000-12-26 |
KR20000070287A (ko) | 2000-11-25 |
TW370705B (en) | 1999-09-21 |
DE19701935C1 (de) | 1997-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006001493B4 (de) | MEMS-Sensor und Verfahren zur Herstellung | |
DE102012003118B4 (de) | Tiefgrabenkondensator mit konform aufgebrachten leitenden Schichten, die Druckspannung aufweisen | |
DE19752968C1 (de) | Speicherzellenanordnung und Verfahren zu deren Herstellung | |
DE69635953T2 (de) | VERFAHREN ZUR HERSTELLUNG EINER Ta205 DIELEKTRISCHEN SCHICHT | |
DE69730377T2 (de) | Permanente Halbleiterspeicherzelle und deren Herstellungsverfahren | |
DE10008580C2 (de) | Halbleiterspeicher mit einem ferroelektrischen kapazitiven Element und Herstellverfahren für denselben | |
DE102017215381A1 (de) | Doppelmembran-MEMS-Bauelement und Herstellungsverfahren für ein Doppelmembran-MEMS-Bauelement | |
DE10345394B4 (de) | Verfahren zum Herstellen von Speicherzellen | |
DE4428195C1 (de) | Verfahren zur Herstellung eines Siliziumkondensators | |
EP1958480A1 (de) | Mikromechanische struktur zum empfang und/oder zur erzeugung von akustischen signalen, verfahren zur herstellung einer mikromechanischen struktur und verwendung einer mikromechanischen struktur | |
WO1999025026A1 (de) | Schaltungsstruktur mit mindestens einem kondensator und verfahren zu dessen herstellung | |
WO2007016924A1 (de) | Halbleitersubstrat und verfahren zur herstellung | |
EP0963601A1 (de) | Verfahren zur herstellung eines siliziumkondensators | |
DE102007018098A1 (de) | Verfahren zum Herstellen eines Halbleiterkörpers mit einem Graben und Halbleiterkörper mit einem Graben | |
WO2000012427A1 (de) | Mikromechanisches bauelement und verfahren zu dessen herstellung | |
EP1114455B1 (de) | Verfahren zum herstellen einer speicherzelle | |
DE19712540C1 (de) | Herstellverfahren für eine Kondensatorelektrode aus einem Platinmetall | |
DE4418430C1 (de) | Verfahren zur Herstellung eines Siliziumkondensators | |
DE69707232T2 (de) | Vakuumverschlossene Feldemissionselektronenquelle und ihr Herstellungsverfahren | |
DE102017204622B4 (de) | Verfahren zum Herstellen eines Hybridkondensators und Hybridkondensator | |
DE102016217001B4 (de) | Verfahren zum Ausbilden eines mikroelektromechanischen Bauelementes mit einer eine Lamellenstruktur haltenden Stützstruktur | |
DE102006057328A1 (de) | Solarzelle mit Dielektrikumschichtenfolge, länglichen Kontaktregionen und quer dazu verlaufenden Metallkontakten sowie Herstellungsverfahren für diese | |
DE19620833A1 (de) | Verfahren zur Herstellung eines Kondensators einer Halbleitereinrichtung | |
DE4325708C1 (de) | Verfahren zur Herstellung einer elektrisch leitenden Spitze aus dotiertem Silizium mittels lokaler Molekularstrahlepitaxie und Anwendung des Verfahrens zur Herstellung von Bauelementen der Vakuumelektronik (Feldemissionskathoden) | |
WO2000072377A1 (de) | Verfahren zur erzeugung eines vergrabenen kontakts einer speicherzellenanordnung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1998905245 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1998 533515 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019997006516 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09341937 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1998905245 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1019997006516 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1019997006516 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1998905245 Country of ref document: EP |