WO1998031427A2 - Formkörper zur kühlung heisser gase - Google Patents

Formkörper zur kühlung heisser gase Download PDF

Info

Publication number
WO1998031427A2
WO1998031427A2 PCT/EP1998/000259 EP9800259W WO9831427A2 WO 1998031427 A2 WO1998031427 A2 WO 1998031427A2 EP 9800259 W EP9800259 W EP 9800259W WO 9831427 A2 WO9831427 A2 WO 9831427A2
Authority
WO
WIPO (PCT)
Prior art keywords
shaped body
body according
water
hygroscopic material
carrier body
Prior art date
Application number
PCT/EP1998/000259
Other languages
English (en)
French (fr)
Other versions
WO1998031427A3 (de
Inventor
Hans-Peter Hebekeuser
Hans-Peter Mackowiak
Lothar Puppe
Original Assignee
Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik filed Critical Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik
Publication of WO1998031427A2 publication Critical patent/WO1998031427A2/de
Publication of WO1998031427A3 publication Critical patent/WO1998031427A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
    • A62C99/0018Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using gases or vapours that do not support combustion, e.g. steam, carbon dioxide
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C5/00Making of fire-extinguishing materials immediately before use
    • A62C5/006Extinguishants produced by combustion

Definitions

  • the present invention relates to a shaped body made of a suitable carrier body with free channels, which is coated with hygroscopic materials, a method for its production and its use for cooling hot gases.
  • the patent specification EP 0 637 458 describes a method and a device for producing a fire extinguishing mixture.
  • a pyrotechnic charge hereinafter referred to as an extinguishing charge
  • an aerosol-containing gas being generated as a reaction product, which emerges in the form of a jet from the hollow housing and acts as an extinguishing agent.
  • the temperature of the aerosol-containing gas is approximately 1,400 ° C.
  • the object of the present invention was to provide an agent with which hot gases, for example aerosol-containing gases, which i.a. can be used as an extinguishing agent, can be cooled.
  • hot gases for example aerosol-containing gases, which i.a. can be used as an extinguishing agent
  • the high evaporation enthalpy of the water is used to cool the hot gases.
  • a suitable carrier body is coated with hygroscopic materials, which is then loaded with water by adsorption.
  • hygroscopic materials that can bind water adsorptively and only release them at higher temperatures by evaporation can be used.
  • hygroscopic adsorbents are therefore those materials which have an adsorption isobar such that the water is not desorbed until the temperature is noticeably higher than the ambient temperature. Only when the water-laden adsorbent is exposed to the hot gases does evaporation release the water. The temperature required for the evaporation of the water is extracted from the hot gas so that it cools down.
  • silica gels preference is given to using silica gels, silicas, aluminum silicates and / or zeolites. These materials have a high water absorption capacity and also release the adsorptively bound water by applying temperature.
  • An advantage of the materials mentioned is that they are chemically inert, and therefore no health-endangering substances are released when they are used for cooling.
  • the aluminosilicates known under the name zeolites are particularly preferably used as hygroscopic materials. Because of their large internal surface area of about 600 to 900 m 2 / g, which is available for adsorption, such zeolites are often used in the activated state, inter alia for intensive drying or also for cleaning gases or liquids. The reversibility of these adsorption processes and the associated regenerability of the zeolites are of particular advantage.
  • the ability of the hygroscopic materials used according to the invention, particularly preferably the zeolites, to adsorb water, to keep the adsorbed water under normal temperature and humidity conditions and to desorb only when the temperature rises is used according to the invention to cool the hot gases.
  • a prerequisite for the cooling effect is that the hot gases come into close contact with the agent according to the invention.
  • the currently commercially available zeolites are spherical products with an average diameter of approximately 3.5 mm. The maximum grain diameter is a maximum of 5 mm due to the manufacturing process. To adequately cool hot combustion gases, a loose bed of 1 to 2 cm in height is generally sufficient, the exact amount of course depending on the respective water content of the zeolites used.
  • a disadvantage of this embodiment is the relatively high pressure loss caused by the loose bed. If an aerosol-containing gas stream is to be cooled, the aerosol particles can also be filtered out from a critical bed height. The aerosol-containing gas stream would be cooled, but the aerosol components essential for its use as fire extinguishing agents could be lost, and the aerosol-containing gas mixture would lose its extinguishing effect.
  • the hygroscopic materials used are applied in layers to a suitable carrier body, the carrier body having channels free for the gas flow.
  • the carrier body material all materials which can be coated with these hygroscopic materials used according to the invention can be used as the carrier body material.
  • Ceramic materials such as are also used as catalysts are preferred. Ceramic materials based on silicate, in particular layered or framework silicates, are particularly preferred.
  • the layer thickness of the applied hygroscopic materials according to the invention can be from 1 ⁇ m to 1 mm.
  • the channels in the carrier body are preferably arranged regularly.
  • Cylindrical disks have been found to be suitable which have grid-shaped perforation patterns on their end faces and channels extending through the disk and which are coated with the hygroscopic materials used according to the invention.
  • carrier bodies are known per se and are described, for example, in Car exhaust catalysts used. Examples of such carrier bodies are shown in Figure 1. The dimensions of the carrier body depend on the structural conditions of the gas generator.
  • These carrier bodies are coated with the hygroscopic materials used according to the invention.
  • the hygroscopic material to be used according to the invention is suspended, for example, in water or in a suitable suspension medium.
  • a binder for example a high temperature resistant binder for ceramic products (eg Holts Gun Gum) is added to this suspension.
  • This suspension is then applied to the carrier body.
  • the application can be done in a variety of ways. Dipping, brushing and spraying methods in particular have proven their worth.
  • layers of different thicknesses are formed. Several layers can also be applied.
  • the preferred coating method has been to immerse the carrier body one or more times in the suspension. After the desired layer thickness has been formed, the shaped body according to the invention is dried and loaded with water. The degree of loading is chosen so that the zeolite used is loaded with water to just below the maximum loading capacity.
  • the moldings according to the invention can be used excellently in processes for cooling hot gases.
  • the moldings according to the invention are preferably arranged before the hot gases exit.
  • the geometrical design of the shaped bodies according to the invention and their size are set such that sufficiently good heat transfer effects between gas and the hygroscopic material used according to the invention are achieved.
  • the aerosol-containing gas generated pyrotechnically in a fire extinguisher generator is to be cooled, care must also be taken to ensure that the geometrical configuration of the shaped bodies according to the invention and their size are set such that, on the one hand, sufficiently good heat transfer effects between gas and the inventive set hygroscopic material can be achieved, but on the other hand the pressure loss is as low as possible.
  • the advantage of the moldings according to the invention compared to a loose bed of hygroscopic materials is that the position of the coolant cannot change and the cooling effect is therefore constant, that when cooling hot aerosol-containing gases the aerosol particles are not filtered out, that the coolant also Vibration is not compacted and that no abrasion of the coolant is to be expected during transport.
  • the dimensioning of the moldings according to the invention which can be freely determined within wide limits, enables a wide range of uses.
  • the dimensioning of the shaped bodies according to the invention depends on their area of use.
  • the molded body according to the invention can also be used, for example, in large-scale combustion plants, such as waste incineration plants.
  • the molded body according to the invention is intended to be used wherever hot gases have to be cooled.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Gegenstand der vorliegenden Erfindung ist ein Formkörper aus einem geeigneten Trägerkörper mit freien Kanälen, der mit hygroskopischen Materialien beschichtet ist, die Wasser adsorptiv binden können und erst bei höheren Temperaturen durch Verdampfung wieder freisetzen, wobei das hygroskopische Material mit Wasser beladen ist, Verfahren zu dessen Herstellung sowie dessen Verwendung zur Kühlung heißer Gase.

Description

Formkörper zur Kühlung heißer Gase
Die vorliegende Erfindung betrifft einen Formkörper aus einem geeigneten Trägerkörper mit freien Kanälen, der mit hygroskopischen Materialien beschichtet ist, Verfahren zu dessen Herstellung sowie dessen Verwendung zur Kühlung heißer Gase.
In der Patentschrift EP 0 637 458 wird ein Verfahren und eine Vorrichtung zur Herstellung einer Feuerlöschmischung beschrieben. Bei diesem Verfahren wird in einem Hohlgehäuse eine pyrotechnische Ladung (im weiteren Löschsatz genannt) verbrannt, wobei als Reaktionsprodukt ein aerosolhaltiges Gas erzeugt wird, das in Form eines Strahls aus dem Hohlgehäuse austritt und als Löschmittel wirkt. Die Temperatur des aerosolhaltigen Gases beträgt etwa 1.400°C. Die Verwendung dieses Verfahrens zum Löschen von wärmeempfindlichen Objekten und in Gegenwart von Personen ist ohne Kühlung des aerosolhaltigen Gases nicht möglich.
Aufgabe der vorliegenden Erfindung war, ein Mittel bereitzustellen, mit dem heiße Gase, beispielsweise aerosolhaltige Gase, die u.a. als Löschmittel verwendet werden, gekühlt werden können.
Erfindungsgemäß gelöst wird diese Aufgabe durch Formkörper mit den Merkmalen des Hauptanspruchs. Vorzugsweise Ausgestaltungen sind in den Unteransprüchen charakterisiert.
Erfindungsgemäß vorgesehen ist die Ausnutzung der hohen Verdampfungsenthalpie des Wassers zur Kühlung der heißen Gase. Dazu wird ein geeigneter Trägerkörper mit hygroskopischen Materialien beschichtet, das mit Wasser anschließend adsorptiv beladen wird. Erfindungsgemäß einsetzbar sind an sich alle hygroskopischen Materialien, die Wasser adsorptiv binden können und erst bei höheren Temperaturen durch Verdampfung wieder freisetzen. Als hygroskopische Adsorbentien werden erfindungsgemäß daher solche Materialien eingesetzt, die eine Adsorptionsisobare in der Art aufweisen, daß eine Desorption des Wassers erst dann stattfindet, wenn die Temperatur merklich höher als die Umgebungstemperatur ist. Erst bei der Beaufschlagung des wasserbeladenen Adsorbens mit den heißen Gasen kommt es durch Verdampfung zu einer Freisetzung des Wassers. Die für die Verdampfung des Wassers erforderliche Temperatur wird dem heißen Gas entzogen, so daß sich dieses abkühlt.
Erfindungsgemäß bevorzugt eingesetzt werden Kieselgele, Kieselsäuren, Alu- mosilikate und/oder Zeolithe. Diese Materialien weisen ein hohes Aufnahmevermögen für Wasser auf und geben das adsorptiv gebundene Wasser durch Tem- peraturbeaufschlagung auch wieder ab. Vorteilhaft bei den genannten Materialien ist, daß sie chemisch inert sind, und somit bei ihrem Einsatz zur Kühlung keine gesundheitsgefährdenden Stoffe freigesetzt werden.
Erfindungsgemäß besonders bevorzugt als hygroskopische Materialien werden die unter dem Namen Zeolithe bekannten Alumosilicate eingesetzt. Wegen ihrer großen inneren Oberfläche von etwa 600 bis 900 m2/g, die für Adsorptionen zur Verfügung steht, werden solche Zeolithe häufig im aktivierten Zustand u.a. zur intensiven Trocknung oder auch zur Reinigung von Gasen oder Flüssigkeiten eingesetzt. Von ganz besonderem Vorteil ist die Reversibilität dieser Adsorpti- onsprozesse und die damit verbundene Regenerierbarkeit der Zeolithe.
Die Fähigkeit der erfindungsgemäß eingesetzten hygroskopischen Materialien, besonders bevorzugt der Zeolithe, Wasser zu adsorbieren, das adsorbierte Wasser unter normalen Temperatur- und Feuchteverhältnissen zu halten und erst bei Temperaturerhöhung zu desorbieren wird erfindungsgemäß zur Kühlung der heißen Gase genutzt. Voraussetzung für die Kühlwirkung ist, daß die heißen Gase mit dem erfindungsgemäßen Mittel in engen Kontakt kommen. Die zur Zeit handelsüblichen Zeolithe sind kugelförmige Produkte mit einem mittleren Durchmesser von etwa 3,5 mm. Der maximale Komdurchmesser beträgt herstellungsbedingt maximal 5 mm. Zur ausreichenden Kühlung von heißen Verbrennungsgasen reicht im allgemeinen zwar eine lose Schüttung von 1 bis 2 cm Höhe aus, wobei die genaue Menge selbstverständlich abhängig vom jeweiligen Wassergehalt der verwendeten Zeolithe ist. Nachteilig bei dieser Ausführungsform ist aber der durch die lose Schüt- tung bedingte relativ hohe Druckverlust. Soll ein aerosolhaltiger Gasstrom gekühlt werden, können ab einer kritischen Schütthöhe außerdem die Aerosolteilchen herausgefiltert werden. Der aerosolhaltige Gasstrom würde zwar gekühlt, doch die für ihren Einsatz als Feuerlöschmittel essentiell notwendigen Aerosol-Bestandteile könnten verloren gehen, das aerosolhaltige Gasgemisch würde damit seine Löschwirkung verlieren.
Dieses Problem wird erfindungsgemäß dadurch gelöst, daß die eingesetzten hygroskopischen Materialien, besonders bevorzugt die Zeolithe, schichtförmig auf einen geeigneten Trägerkörper aufgetragen werden, wobei der Trägerkörper für den Gasstrom freie Kanäle aufweist. Als Trägerkörpermaterial können prinzipiell alle Materialien verwendet werden, die sich mit diesen erfindungsgemäß eingesetzten hygroskopischen Materialien beschichten lassen. Bevorzugt sind keramische Materialien, wie sie auch als Katalysatoren Verwendung finden. Besonders bevorzugt sind keramische Materialien auf Silikatbasis, insbesondere Schicht- oder Gerüstsilikate. Die Schichtdicke der aufgetragenen erfindungsgemäß eingesetzten hygroskopischen Materialien kann von 1 μm bis zu 1 mm betragen. Die Kanäle im Trägerkörper sind bevorzugt regelmäßig angeordnet. Als geeignet haben sich zylinderförmige Scheiben erwiesen, die an ihren Stirnflächen gitter- förmige Lochmuster und durch die Scheibe reichende Kanäle aufweisen und die mit den erfindungsgemäß eingesetzten hygroskopischen Materialien beschichtet sind. Solche Trägerkörper sind an sich bekannt und werden beispielsweise in Autoabgaskatalysatoren eingesetzt. Beispiele für solche Trägerkörper sind in Abbildung 1 dargestellt. Die Abmessungen der Trägerkörper richten sich nach den konstruktiven Gegebenheiten des Gasgenerators. Diese Trägerkörper werden mit den erfindungsgemäß eingesetzten hygroskopischen Materialien be- schichtet. Das erfindungsgemäß einzusetzende hygroskopische Material wird dazu beispielsweise in Wasser oder in einem geeigneten Suspensionsmittel suspendiert. Falls erforderlich wird dieser Suspension ein Bindemittel, beispielsweise ein hochtemperaturbeständiges Bindemittel für keramische Produkte (z.B. Holts Gun Gum) zugegeben. Diese Suspension wird dann auf den Trägerkörper aufge- bracht. Das Auftragen kann auf vielfältige Weise erfolgen. Insbesondere Tauch-, Streich- und Sprühmethoden haben sich bewährt. Je nach Fließfähigkeit der Suspension entstehen unterschiedlich dicke Schichten. Auch mehrere Schichten können aufgetragen werden. Als bevorzugtes Beschichtungsverfahren hat sich das ein- oder mehrmalige Eintauchen der Trägerkörper in die Suspension erwiesen. Nach Ausbildung der gewünschten Schichtdicke wird der erfindungsgemäße Formkörper getrocknet und mit Wasser beladen. Der Beladungsgrad wird dabei so gewählt, daß das eingesetzte Zeolith bis knapp unterhalb der maximalen Beladungskapazität mit Wasser beladen ist.
Die erfindungsgemäßen Formkörper sind hervorragend bei Verfahren zur Kühlung heißer Gase einsetzbar. Dazu werden die erfindungsgemäßen Formkörper bevorzugt vor den Austritt der heißen Gase angeordnet. Um eine hohe Kühlwirkung zu erreichen, werden die geometrische Ausbildung der erfindungsgemäßen Formkörper und deren Größe so eingestellt, daß ausreichend gute Wärmeübertra- gungseffekte zwischen Gas und dem erfindungsgemäß eingesetzten hygroskopischen Material erreicht werden. Soll beispielsweise das in einem Feuerlöschgenerator pyrotechnisch erzeugte aerosolhaltige Gas gekühlt werden, ist darüber hinaus darauf zu achten, daß die geometrische Ausbildung der erfindungsgemäßen Formkörper und deren Größe so eingestellt ist, daß einerseits ausreichend gute Wärmeübertragungseffekte zwischen Gas und dem erfindungsgemäß ein- gesetzten hygroskopischen Material erreicht werden, andererseits aber auch der Druckverlust möglichst gering ist.
Der Vorteil der erfindungsgemäßen Formkörper im Vergleich zu einer losen Schüttung der hygroskopischen Materialien liegt darin, daß die Lage des Kühlmittels sich nicht verändern kann und damit die Kühlwirkung gleichbleibend ist, daß bei Kühlung heißer aerosolhaltiger Gase die Aerosolteilchen nicht herausgefiltert werden, daß das Kühlmittel auch bei Erschütterungen nicht kompaktiert wird und daß beim Transport nicht mit Abrieb des Kühlmittels zu rechnen ist.
Die in weiten Grenzen frei bestimmbare Dimensionierung der erfindungsgemäßen Formkörper ermöglicht einen vielfältigen Einsatz. Letztendlich richtet sich die Dimensionierung der erfindungsgemäßen Formkörpers nach deren Einsatzgebiet. Entsprechend angepaßt ist der erfindungsgemäße Formkörper beispielsweise auch in großtechnisch dimensionierten Verbrennungsanlagen, wie Müllverbrennungsanlagen einsetzbar. Prinzipiell ist der erfindungsgemäße Formkörper bestimmungsgemäß überall dort einzusetzen, wo heiße Gase gekühlt werden müssen.

Claims

Patentansprüche
1. Formkörper, dadurch gekennzeichnet, daß er aus einem geeigneten Trägerkörper mit freien Kanälen besteht, der mit hygroskopischen Materialien be- schichtet ist, die Wasser adsorptiv binden können und erst bei höheren Temperaturen durch Verdampfung wieder freisetzen, wobei das hygroskopische Material mit Wasser beladen ist.
2. Formkörper gemäß Anspruch 1 , dadurch gekennzeichnet, daß als hygrosko- pisches Material Kieselgele, Kieselsäuren, Alumosilikate und/oder Zeolithe, besonders bevorzugt Zeolithe eingesetzt werden.
3. Formkörper gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Trägerkörper aus Keramik, bevorzugt aus Keramik auf Silikatbasis, insbe- sondere aus Schicht- oder Gerüstsilikaten besteht.
4. Formkörper gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Trägerkörper die Form einer Scheibe hat, die an ihren Stirnflächen gitterförmige Lochmuster und durch die Scheibe reichende Kanäle aufweist.
5. Formkörper gemäß einem der Ansprüche. 1 bis 4, dadurch gekennzeichnet, daß die durch den Trägerkörper reichenden Kanäle regelmäßig angeordnet sind.
6. Formkörper gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Schichtdicke des hygroskopischen Materials 1 μm bis 1 mm beträgt.
7. Formkörper gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Trägerkörper mehrere Schichten des hygroskopischen Materials auf- weist.
8. Verfahren zur Herstellung eines Formkörpers gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Trägerkörper mit einer Suspension des hygroskopischen Materials beschichtet wird, nach Ausbildung der gewünschten Schichtdicke getrocknet und mit Wasser beladen wird.
9. Verfahren zur Herstellung eines Formkörpers gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Trägerkörper in eine Suspension des hygroskopischen Materials eingetaucht wird, nach Ausbildung der gewünschten Schichtdicke getrocknet und mit Wasser beladen wird.
10. Verfahren zur Herstellung eines Formkörpers gemäß einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, daß der Suspension ein geeignetes Bindemittel, beispielsweise ein hochtemperaturbeständiges Bindemittel für keramische Produkte zugegeben wird.
11. Verfahren zur Kühlung heißer Gase, dadurch gekennzeichnet, daß das heiße Gas durch einen Formkörper gemäß einem der Ansprüche 1 bis 7 geführt wird.
12. Verwendung eines Formkörpers gemäß einem der Ansprüche 1 bis 7 zur Kühlung eines pyrotechnisch erzeugten aerosolhaltigen Gases.
13. Verwendung eines Formkörpers gemäß einem der Ansprüche 1 bis 7 in großtechnisch dimensionierten Verbrennungsanlagen.
PCT/EP1998/000259 1997-01-17 1998-01-19 Formkörper zur kühlung heisser gase WO1998031427A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19701623.5 1997-01-17
DE19701623 1997-01-17

Publications (2)

Publication Number Publication Date
WO1998031427A2 true WO1998031427A2 (de) 1998-07-23
WO1998031427A3 WO1998031427A3 (de) 1998-11-05

Family

ID=7817713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/000259 WO1998031427A2 (de) 1997-01-17 1998-01-19 Formkörper zur kühlung heisser gase

Country Status (2)

Country Link
DE (1) DE19801734A1 (de)
WO (1) WO1998031427A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005000022A1 (de) * 2005-03-16 2006-09-28 Füsting, Bernd Sorbierender Formkörper, Verfahren zur Herstellung und Verwendung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637458A1 (de) 1991-04-08 1995-02-08 Vsesojuzny Nauchno-Issledovatelsky Institut, Verfahren und vorrichtung zur herstellung einer feuerlöschungsmischung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1759749A1 (de) * 1968-06-04 1971-07-01 Reuter Werner Feuerloesch-Schnellverfahren mittels Schnelldampferzeugern
US5423384A (en) * 1993-06-24 1995-06-13 Olin Corporation Apparatus for suppressing a fire
DE4419098A1 (de) * 1994-06-01 1995-12-07 Dynamit Nobel Ag Feuerlöschgenerator mit einem Gehäuse

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637458A1 (de) 1991-04-08 1995-02-08 Vsesojuzny Nauchno-Issledovatelsky Institut, Verfahren und vorrichtung zur herstellung einer feuerlöschungsmischung

Also Published As

Publication number Publication date
DE19801734A1 (de) 1999-07-22
WO1998031427A3 (de) 1998-11-05

Similar Documents

Publication Publication Date Title
DE19647236C2 (de) Geschichtete Gasfiltermedien, ihre Herstellung und ihre Verwendung
DE102006058554B4 (de) Abgasreinigungsvorrichtung
EP1859209B1 (de) Verfahren zur herstellung eines adsorberwärmetauschers
DE4442713C2 (de) Adsorptions-Luftfilter und Verfahren zu dessen Herstellung
DE2804154B1 (de) Filtermaterial sowie Verfahren und Vorrichtung zu seiner Herstellung
CH624856A5 (de)
EP1985360B1 (de) Verfahren zur herstellung von mit elementarschwefel dotierten braunkohlenkoks
CH676799A5 (de)
DE19712087C2 (de) Adsorber-Katalysator-Kombination für Brennkraftmaschinen
WO2006097493A2 (de) Sorbierender formkörper, verfahren zur herstellung und verwendung
DE4039951A1 (de) Hitzebestaendiger adsorptionsfilter
DE3719415A1 (de) Filtereinrichtung und verfahren zu ihrer herstellung
DE4343358A1 (de) Aktivkohle enthaltende poröse Körper
WO1998031427A2 (de) Formkörper zur kühlung heisser gase
DE4238142A1 (de) Poröse Körper mit adsorbierenden Eigenschaften
DE4101658A1 (de) Filtermaterial fuer kraftfahrzeuge
DE4020427A1 (de) Anpassungsfaehiges filtersystem
EP0823859B1 (de) Verfahren zur reinigung von gasströmen
DE19756779A1 (de) Mittel zur Kühlung von heißen Gasen
EP0864550A1 (de) Verfahren zur Herstellung von beschichteten Keramiken mit erhöhter Mikroporosität, beschichtete Keramiken mit erhöhter Mikroporosität sowie daraus hergestellter Gegenstand
DE19548281B4 (de) Adsorptionsfilter
DE2627327C2 (de) Verfahren zur Trocknung von Gasen
DE4041725C2 (de) Verfahren zum Erzeugen einer regenerierfähigen Sorptionsschicht auf einer metallischen Oberfläche und die nach diesem Verfahren hergestellte Sorptionsschicht
EP0864347B1 (de) Verfahren und Vorrichtung zum Abreinigen von mit Staub- und Aerosolpartikeln beladenen Filter
DE4241605A1 (de) Adsorptionsfilter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): IL NO US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): IL NO US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
122 Ep: pct application non-entry in european phase