WO1998019534A1 - Thermoplastische polysaccharidsalze - Google Patents

Thermoplastische polysaccharidsalze Download PDF

Info

Publication number
WO1998019534A1
WO1998019534A1 PCT/EP1997/005883 EP9705883W WO9819534A1 WO 1998019534 A1 WO1998019534 A1 WO 1998019534A1 EP 9705883 W EP9705883 W EP 9705883W WO 9819534 A1 WO9819534 A1 WO 9819534A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyelectrolytes
hydroxypropyl cellulose
cellulose
amphiphiles
alkyl
Prior art date
Application number
PCT/EP1997/005883
Other languages
English (en)
French (fr)
Inventor
Joachim Simon
Hanns-Peter Müller
Jürgen Engelhardt
Wolfgang Koch
Volkhard Müller
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19718200A external-priority patent/DE19718200A1/de
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to AU51210/98A priority Critical patent/AU5121098A/en
Publication of WO1998019534A1 publication Critical patent/WO1998019534A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/02Amines; Quaternary ammonium compounds
    • A01N33/12Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]

Definitions

  • the present invention relates to new thermoplastically processable materials consisting of associates of polyelectrolytes which are formed by salt formation with oppositely charged amphiphilic low-molecular counterions, and to the production of such materials from polyelectrolytes and charged amphiphiles in a suitable solvent.
  • the materials according to the invention in particular those consisting of anionically charged polyelectrolytes and cationic alkyl, aryl or alkyl arylammonium counterions, have antimicrobial, fungicidal and bactericidal properties and can be processed as thermoplastic material, for example by injection molding, extrusion or hot pressing
  • the materials according to the invention are suitable for the production of e.g. Molded parts, fibers, foils as well as foams or coatings.
  • association, gels and lyotropic phases through the interaction of ionically charged polymers (polyelectrolytes) with oppositely charged salts, in particular those which have surface-active properties due to hydrophobic substituents and amphiphilic structures, is described in aqueous solvents, for example in Macromolecules 26 (1991) 3188- 3197, Colloids and surfaces 19 (1986) 301-329, Colloids and surfaces 47 (1990) 147-165, J Phys Chem 87, (1983) 506-509, and J. Phys Chem 86 (1982) 3866-3870
  • microcapsules are produced from oppositely charged polyelectrolytes and surfactants in DE 2459960.
  • EP 696598 describes associates from hyaluronic acids with oppositely charged pharmacologically active organic bases for use in pharmaceutical or cosmetic applications.
  • WO 92/6136 describes quaternary ammonium salts of chitosan, which have pharmacological activity.
  • JP 61056117 describes associations of ionic polysaccharides and alkylammonium compounds and their use in nail polishes.
  • JP 05043409 describes fabrics containing anionic polysaccharide polyelectrolytes, chlorhexidine and oppositely charged quaternary alkylammonium ions, which have bactericidal properties.
  • thermoplastic processability of complexes or associates consisting of polyelectrolytes and oppositely charged low molecular weight amphiphiles or polymers has not yet been described.
  • associates which are formed from polyelectrolytes and oppositely charged amphiphiles via ionic interactions can be processed thermoplastically and are water-insoluble. Starting from polyelectrolytes, stable thermoplastic materials can be obtained by salt bridging without the formation of covalent bonds.
  • Solvents are soluble.
  • thermoplastic materials consist of anionic polyelectrolytes and cationic alkyl aryl or alkyl aryl ammonium um counterions are formed, have antimicrobial, in particular bactericidal, bacteriostatic and fungicidal properties.
  • gram-positive cocci e.g. the genera Micrococcus and Staphylococcus such as Micrococcus luteus and Staphylococcus aureus;
  • gram-negative cocci e.g. the genus Acinetobacter such as Acinetobacter calcoaceticus;
  • gram-positive, non-spore-forming rods e.g. the genus Lactobacillus, Lactococcus, Leuconostoc, Streptococcus, Pediococcus;
  • Actinomycetes in the narrower sense such as representatives of the genera Nocordia, Actinomyces, Streptomyces, Themoactinomyces;
  • Clostridium and Desulfotomaculum such as Bacillus megaterium, Bacillus polymyxa, Bacillus cereus, Bacillus subtilis, Bacillus licheniformis, Bacillus pasteurii and Sporosarcina ureae, Desulfotomaculum nigrificans and Desulfotomaculum orientis, Clostridium pasteurianumiumumostylosticostidiumostylumicostridiumumostructumumostructum, Clostridium pasteurianumiumumostructumumostructum, Clostridium pasteurianumiumumostructumumostructum, Clostridium pasteurianumiumumostructumumostructum,
  • gram-negative rods including representatives of the Pseudomonas family such as Pseudomonas rubescens, P. aeruginosa, P. stutzeri, P. oleovorans, P. putida, P.
  • fluorescens and representatives of related genera of gram-negative bacteria such as Alcalignes faecalis and Citrobacter freundii or the dreaded vaginal bacterium Sphaerotilus natans known and feared as "sewage fungus”; also gram-negative, optional anarobic rods from the Enterobacteriaceae family, such as Escherichia coli and Salmonella typhimurium, Enterobacter aerogenes and Serratia marescens;
  • anaerobic, anoxygenic phototrophic bacteria such as species of the genera Rhodospirillum, Rhodopseudomonas and Chromatium;
  • cyanobacteria such as species of the genera Nostoc and Anabena;
  • Desulfobacterium Desulfococcus, Desulfomonas, Desulfobulbus, Desulfosarcina, Archaeoglobus and Desulfotomaculum.
  • Aspergillus such as Aspergillus niger
  • Chaetornium such as Chaetomium globosum
  • Coniophora such as Coniophora puetana
  • Lentinus such as Lentinus tigrinus
  • Penicillium such as Penicillium glaucum
  • Polyporus such as Polyporus versicolor
  • Aureobasidium such as Aureobasidium pullulans
  • Sclerophoma such as Sclerophoma pityophila
  • Trichoderma like Trichoderma viride
  • Fusaria like Fusaria nivale.
  • associates are the solids formed from polyelectrolytes and low-molecular amphiphiles, in which the positively or negatively charged groups of the polyelectrolytes are coordinated via a salt bridge with the opposite charge of the low-molecular compound.
  • This asso- Ziates generally precipitate out of aqueous solutions in which the components are soluble or at least readily dispersible during the manufacturing process.
  • Suitable polyelectrolytes are anionically or cationically charged polymers or copolymers with one or more different functionally charged functional groups.
  • Cationic charges can e.g. are formed by protonated tertiary amino groups, quaternary ammonium groups or phosphonium groups, which are covalently bound to the polymers.
  • polyethyleneimine polyvinylbenzyltrimethylammonium chloride
  • polyallylamine polyallylamine
  • chitosan as well as quaternary starch, cellulose or guar gum derivatives as described in FR 1 492 597, DE 3 018 600 and EP 80977.
  • Anionic charges can e.g. are formed by carboxylate, sulfate, sulfonate, phosphate, phosphonate-phosphinate groups which are covalently bonded to the polymers, which groups can be in the form of the protonic acids or the free bases (as metal salts).
  • Examples include polyacrylic acids, polyvinylsulfonic acids, polystyrene sulfonic acids, polylysine, polyaspartic acids, polytartaric acids, polyglutaric acids, polyamino acids, their copolymers and their salts.
  • Polysaccharides e.g. Carrageenan, hyaluronic acid, cellulose, starch, guar, gum arabic, tragacanth, xanthan, hypnean, furcellaran, dextran, alginic acid, pectin.
  • Carboxyalkyl celluloses and sulfoalkyl celluloses such as e.g. Carboxymethyl cellulose, dicarboxymethyl cellulose, carboxy ethyl cellulose, sulfoethyl cellulose, sulfopropyl cellulose and corresponding mixed ethers.
  • carboxymethyl guar cellulose sulfate, cellulose phosphate, oxycelluloses, and cellulose and cellulose ether dicarboxylic acid monoesters
  • carboxymethyl guar cellulose sulfate, cellulose phosphate, oxycelluloses, and cellulose and cellulose ether dicarboxylic acid monoesters
  • cellulose succinate cellulose maleate, hydroxypropyl cellulose malonate, hydroxypropyl cellulose succinate, hydroxypropyl cellulose maleate, hydroxypropyl cellulose glutarate, hydroxypropyl cellulose adipate, hydroxypropyl cellulose phthalate, hydroxypropyl cellulose hexahydrophtalate, hydroxypropyl cellulose succinate, hydroxypropyl cellulose succinate, hydroxypropyl cellulose succinate, hydroxypropyl cellulose succinate, hydroxypropyl cellulose succinate, hydroxypropyl cellulose succinate, hydroxypropyl cellulose succinate, hydroxypropyl
  • Amphiphiles in the sense of the invention are low-molecular compounds which have a hydrophilic positive or negatively charged group as structural elements and additionally contain a hydrophobic alkyl or aryl structural element. Amphiphiles are generally surface-active and can form micellar aggregate forms in an aqueous environment above a CMC (critical micell concentration).
  • Cationic amphiphiles such as e.g. quaternary ammonium salts or phosphonium salts.
  • Monomers to oligomeric ammonium salts of the formula are particularly preferred
  • L 2 , L 3 and L 4 each optionally branched alkyl or alkenyl with a maximum of 22 carbon atoms, which is optionally interrupted by oxygen atoms or acid amide residues and optionally terminated by hydroxyl,
  • Y 4 ⁇ is a halide, sulfate, nitrate, alkyl sulfate or alkylphosphonate anion with 1 to 4 carbon atoms in the alkyl radical or the anion of an alkylcarboxylic acid or an oxycarboxylic acid with at most 6 carbon atoms or a phosphoric acid
  • L j in formula (1) are alkenyl with 3 or 4 carbon atoms, for example allyl, 1- and 2-butenyl, or isopropenyl, hydroxyalkyl with 2 to 4 carbon atoms, for example hydroxypropyl or hydroxyethyl or especially alkyl with 1 up to 4 carbon atoms, for example butyl, isopropyl, propyl and in particular ethyl and methyl
  • L 2 , L 3 and L 4 in formula (1) are alkyl or alkenyl radicals, they generally have 1 to 22 carbon atoms.
  • Preferred alkyl or alkenyl radicals of this type include, in addition to the meanings given for L, for example diallyl, Isoamyl, cetyl or, in particular, alkyl or alkenyl radicals which are derived from the corresponding saturated or unsaturated fatty acids having 8 to 22, preferably 12 to 18, carbon atoms
  • fatty acids examples include caprylic, capric, arachic and behenic acid, in particular lauric, myinostic, palmitic and stearic acid or myristoleic, palmitoleic, elaeostearic, clupanodonic, in particular 01-,
  • Elaidinic, erucic, linoleic and linolenic acids called alkyl and alkenyl radicals for L 2 , L 3 and L 4 , which are derived from technical mixtures of the saturated and / or unsaturated fatty acids mentioned, are particularly preferred
  • the alkyl or alkenyl chains interrupted by acid amide residues generally have only one -CONH or -NHCO bridge link, 2 alkyl or alkenyl chains and one acid amide bridge link preferably having a total of at most 40 carbon atoms
  • L 2 , L 3 and L 4 in formula (1) are alkyl radicals which are interrupted by oxygen atoms, these are, for example, polyalkylene, preferably polypropylene and in particular polyethylene chains which have about 1 to 40 polyalkylene units Mixtures can also be used as amphiphiles in the sense of the invention. of the cationic amphiphiles.
  • ammonium salts are mentioned as specific examples of the amphiphiles:
  • the manufacturing process of the materials is characterized in that first of all amphiphile and polymer optionally in a solution or Diluents are dissolved or at least well dispersed and after assembly are separated together as an associate.
  • the product is separated from the solvent or diluent by conventional methods and dried.
  • the product obtained is not water-soluble.
  • the materials according to the invention are preferably produced at
  • Room temperature e.g. by mixing or dissolving the amphiphiles in solvents such as preferably water or also organic solvents such as preferably alcohols such as ethanol and methanol or also DMAC, DMF or DMSO or mixtures thereof, optionally with ultrasound, dispersion or stirring treatment.
  • solvents such as preferably water or also organic solvents such as preferably alcohols such as ethanol and methanol or also DMAC, DMF or DMSO or mixtures thereof, optionally with ultrasound, dispersion or stirring treatment.
  • solvents such as preferably water or also organic solvents such as preferably alcohols such as ethanol and methanol or also DMAC, DMF or DMSO or mixtures thereof, optionally with ultrasound, dispersion or stirring treatment.
  • solvents such as preferably water or also organic solvents such as preferably alcohols such as ethanol and methanol or also DMAC, DMF or DMSO or mixtures thereof, optionally with ultrasound, dispersion or stirring treatment.
  • the molar ratio of the substances to be used depends on the number of charged groups in the polymer and is 1 to 2 mol of the counter ion per ionic group of the polymer, preferably 1 to 1.5 mol, particularly preferably 1 to 1.2 mol.
  • the viscosity of the polyelectrolytes to be used is preferably in the range from 100 to 1,000,000 mPas, in particular 500 to 500,000 mPas, particularly preferably in the range from 1,000 to 100,000 mPas.
  • thermoplastic materials according to the invention can by thermal
  • Shaping processes for example injection molding, extrusion or hot pressing, are used for the production of moldings, films, fibers, coatings and laminates, which also have antimicrobial properties.
  • auxiliaries such as plasticizers, antioxidants, stabilizers, flame retardants, dyes or pigments can be added.
  • fiber composite materials can be manufactured by introducing natural or synthetic fibers.
  • the fungicidal effectiveness test of the material from Example 1 is tested with the following test organisms
  • Trichoderma viride (4.0 x 10 E4 germs / mL agar)
  • the test shows:
  • the mold is in the nutrient medium on or
  • Test subject meant.
  • a large zone of inhibition can have certain drug reserves or a weak one
  • Missing vegetation may also be considered good in the absence of an inhibition zone
  • Trichoderma viride (4.0 x 10 E4 germs / mL agar)
  • the test shows:

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Dentistry (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Beschrieben werden thermoplastisch verarbeitbare Werkstoffe bestehend aus Assoziaten von Polyelektrolyten, die durch Salzbildung mit gegensinnig geladenen amphiphilen niedermolekularen Gegenionen entstehen, sowie die Herstellung solcher Werkstoffe aus Polyelektrolyten und geladenen Amphiphilen in einem geeigneten Lösungsmittel.

Description

Thermoplastische Polysaccharidsalze
Die vorliegende Erfindung betrifft neue thermoplastisch verarbeitbare Werkstoffe bestehend aus Assoziaten von Polyelektrolyten, die durch Salzbildung mit gegensinnig geladenen amphiphilen niedermolekularen Gegenionen entstehen, sowie die Herstellung solcher Werkstoffe aus Polyelektrolyten und geladenen Amphiphilen in einem geeigneten Lösungsmittel.
Die erfindungsgemäßen Werkstoffe, im besonderen solche die aus anionisch gela- denen Polyelektrolyten und kationischen Alkyl-, Aryl- oder Alkyl-arylammonium- gegenionen bestehen, besitzen antimikrobielle, fungizide und bakterizide Eigenschaften und können als thermoplastisches Material beispielsweise durch Spritzguß, Extrusion oder Heißverpressen verarbeitet werden
Die erfindungsgemäßen Werkstoffe eignen sich zur Herstellung von z.B. Formtei- len, Fasern, Folien sowie auch Schäumen oder Beschichtungen.
Die Entstehung von Assoziaten, Gelen und lyotropen Phasen durch Wechselwirkung von ionisch geladenen Polymeren (Polyelektrolyten) mit gegensinnig geladenen Salzen, insbesondere solchen, die aufgrund hydrophober Substituenten und amphiphiler Strukturen oberflächenaktive Eigenschaften besitzen, wird in wäßrigen Losungsmitteln z.B in Macromolecules 26 (1991) 3188-3197, Colloids and surfaces 19 (1986) 301-329, Colloids and surfaces 47 (1990) 147 - 165, J Phys Chem 87, (1983) 506-509, sowie J. Phys Chem 86 (1982) 3866-3870 beschrieben
Durch Abtrennung der Polyelektrolyt-Salz-Assoziate und weitgehender Entfernung der Lösungsmittel konnten Festkörper erhalten werden, die sich durch hochgeordnete Strukturen auszeichnen (Advanced Mat. 7 (1995) 751-753, Angew Chem Int Ed. Engl. 33 (1994) 1869-1870
Die Stabilisierung hochgeordneter Membranstrukturen durch die Wechselwirkung von Polyelektrolyten und ionisch geladenen Amphiphilen wurde in J. Am chem Soc 1 13 (1991) 621-630 sowie in J. Chem. Soc Chem Commun. (1985) 1122-
1124 beschrieben Werkstoffe auf der Basis von Assoziaten aus Polyelektrolyten und gegensinnig geladenen Polymeren oder Amphiphilen wurden z.B. in DD 270012 zur Herstellung von Membranen durch Grenzflächenfällung verwendet.
Durch Komplexbildung und Fällung werden in DE 2459960 Mikrokapseln aus gegensinnig geladenen Polyelektrolyten und Tensiden hergestellt.
EP 696598 beschreibt Assoziate aus Hyaluronsäuren mit gegensinnig geladenen pharmakologisch aktiven organischen Basen zur Verwendung in pharmazeutischen oder kosmetischen Anwendungen.
WO 92/6136 beschreibt quartäre Ammoniumsalze des Chitosans, welche pharma- kologische Aktivität besitzen.
JP 61056117 beschreibt Assoziate aus ionischen Polysacchariden und Alkylammo- niumverbindungen und ihre Anwendung in Nagellacken.
JP 05043409 beschreibt Flächengebilde, enthaltend anionische Polysaccharidpoly- elektrolyte, Chlorhexidin und gegensinnig geladenen quartäre Alkylammonium- ionen, welche bakterizide Eigenschaften besitzen.
Die thermoplastische Verarbeitbarkeit von Komplexen oder Assoziaten bestehend aus Polyelektrolyten und gegensinnig geladenen niedermolekularen Amphiphilen oder Polymeren wurden bislang noch nicht beschrieben.
Es wurde nun gefunden, daß Assoziate, die aus Polyelektrolyten und gegensinnig geladenen Amphiphilen über ionische Wechselwirkungen gebildet werden, thermoplastisch verarbeitet werden können und wasserunlöslich sind. Damit können ausgehend von Polyelektrolyten stabile thermoplastische Werkstoffe durch Salzbrückenbildung ohne die Knüpfung von kovalenten Bidungen erhalten werden.
Dies ist für den Fachmann überraschend, da Polyelektrolyte oder deren Salze im allgemeinen keine thermoplastischen Eigenschaften besitzten und in wäßrigen
Lösungsmitteln löslich sind.
Weiterhin wurde gefunden, daß die thermoplastischen Werkstoffe die aus anionischen Polyelektrolyten und kationischen Alkyl-Aryl- oder Alkylarylammoni- um-Gegenionen gebildet werden, antimikrobielle, insbesondere bakterizide, bakteriostatische und fungizide Eigenschaften besitzen.
Diese Eigenschaften sind außerdem verbunden mit einem breiten Wirkspektrum gegen Mikroorganismen, die technische, d.h. nicht lebende Materialien angreifen. Sie sind vor allem wirksam gegen Bakterien, und zwar sowohl gegen grampositive als auch gram-negative Bakterien und Pilze.
Beispielhaft - ohne jedoch zu limitieren - seien folgende Gruppen von Arche- und Eubakterien genannt:
gram -positive Kokken z.B. der Gattungen Micrococcus und Staphylococcus wie Micrococcus luteus und Staphylococcus aureus;
gram-negative Kokken z.B. der Gattung Acinetobacter wie Acinetobacter calcoaceticus;
gram-positive, nicht sporenbildende Stäbchen z.B. der Gattung Lacto- bacillus, Lactococcus, Leuconostoc, Streptococcus, Pediococcus;
- coryneforme Bakterien wie Vertreter der Gattungen Corynebacterium und
Arthrobacter; verschiedene Actinomyceten im engeren Sinne wie Vertreter der Gattungen Nocordia, Actinomyces, Streptomyces, Themoactinomyces;
gram-positive, Endosporen-bildende Stäbchen und Kokken der Gattungen Bacillus, Sporosarcina. Clostridium und Desulfotomaculum wie Bacillus megaterium, Bacillus polymyxa, Bacillus cereus, Bacillus subtilis, Bacillus licheniformis, Bacillus pasteurii und Sporosarcina ureae, Desulfotomaculum nigrificans und Desulfotomaculum orientis, Clostridium pasteurianum, Clostridium butyricum, Clostridium acetobutylicum;
gram -negative Stäbchen, unter anderem Vertreter der Familie Pseudo- monaceae wie Pseudomonas rubescens, P. aeruginosa, P. stutzeri, P. oleovorans, P. putida, P. fluorescens und Vertreter verwandter Gattungen von gram-negativen Bakterien wie Alcalignes faecalis und Citrobacter freundii oder das als "Abwasserpilz" bekannte und gefürchtete Scheiden- bakterium Sphaerotilus natans; ferner gram-negative, fakultativ anarobe Stäbchen aus der Familie Entero- bacteriaceae wie Escherichia coli und Salmonella typhimurium, Entero- bacter aerogenes und Serratia marescens;
knospende und prosthekate Bakterien, sowie gestielte Bakterien wie Gallionella ferruginea und Nevskia ramosa;
Vertreter der anaeroben, anoxygenen phototrophen Bakterien wie Species der Gattungen Rhodospirillum, Rhodopseudomonas und Chromatium;
Vertreter der Cyanobakterien wie Species der Gattungen Nostoc und Anabena;
- Sulfatreduzierende Bakterien wie Arten der Gattungen Desulfovibrio,
Desulfobacterium, Desulfococcus, Desulfomonas, Desulfobulbus, Desulfo- sarcina, Archaeoglobus und Desulfotomaculum.
Für Pilze seien folgende Gattungen - ohne jedoch zu limitieren - genannt:
Aspergillus, wie Aspergillus niger, Chaetornium, wie Chaetomium globosum,
Coniophora, wie Coniophora puetana,
Lentinus, wie Lentinus tigrinus,
Penicillium, wie Penicillium glaucum,
Polyporus, wie Polyporus versicolor, Aureobasidium, wie Aureobasidium pullulans,
Sclerophoma, wie Sclerophoma pityophila,
Trichoderma, wie Trichoderma viride,
Fusarien, wie Fusarien nivale.
Als Assoziate werden erfϊndungsgemäß die aus Polyelektrolyten und nieder- molekularen Amphiphilen gebildeten Festkörper bezeichnet, in denen die positiv bzw. negativ geladenen Gruppen der Polyelektrolyte über eine Salzbrücke mit der entgegengesetzten Ladung der niedermolekularen Verbindung koordiniert ist.
Bevorzugt sind die Assoziate, die aus anionisch geladenen Polyelektrolyten und kationisch geladenen, niedermolekularen Amphiphilen erhältlich sind. Diese Asso- ziate fallen i.a. während des Herstellungsprozesses aus wäßrigen Lösungen, in denen die Komponenten löslich oder zumindest gut dispergierbar sind, aus.
Als Polyelektrolyte kommen anionisch oder kationisch geladene Polymere oder Copolymere mit einer oder mehreren verschiedenen gleichartig geladenenen funk- tionellen Gruppen in Frage.
Kationische Ladungen können dabei z.B. durch protonierte tertiäre Aminogruppen, quartäre Ammoniumgruppen oder Phosphoniumgruppen gebildet werden, welche kovalent an die Polymere gebunden sind.
Beispiele hierfür sind Polyethylenimin, Polyvinylbenzyltrimethylammoniumchlorid, Polyallylamin, und Chitosan sowie quaternäre Stärke-, Cellulose- oder Guar- gummiderivate wie sie in FR 1 492 597, DE 3 018 600 und EP 80977 beschrieben werden.
Anionische Ladungen können z.B. durch Carboxylat-, Sulfat-, Sulfonat-, Phosphat-, Phosphonat-Phosphinat-Gruppen gebildet werden, welche kovalent an die Polymere gebunden sind wobei die Gruppen in Form der Protonensäuren oder der freien Basen (als Metallsalze) vorliegen können.
Beispiele hierfür sind Polyacrylsäuren, Polyvinylsulfonsäuren, Polystyrolsulfon- säuren, Polylysin, Polyasparaginsäuren, Polyweinsäuren, Polyglutarsäuren, Poly- aminosäuren, deren Copolymere und deren Salze.
Bevorzugt sind anionisch geladene Polysaccharide oder anionische Derivate von
Polysacchariden z.B. Carrageenan, Hyaluronsäure, Cellulose, Stärke, Guar, Gummi arabicum, Tragacanth, Xanthan, Hypnean, Furcellaran, Dextran, Alginsäure, Pektin.
Darunter besonders bevorzugt sind z.B. Carboxyalkylcellulosen und Sulfoalkyl- cellulosen wie z.B. Carboxymethylcellulose, Dicarboxymethylcellulose, Carboxy- ethylcellulose, Sulfoethylcellulose, Sulfopropylcellulose sowie entsprechende Mischether.
Ebenso bevorzugt sind Carboxymethylguar, Cellulosesulfat, Cellulosephosphat, Oxycellulosen, sowie Cellulose- und Celluloseether-Dicarboncäure-Monoester wie z.B. Cellulose- succinat, Cellulose-maleat, Hydroxypropylcellulose- malonat, Hy- droxypropylcellulose-succinat, Hydroxypropylcellulose-maleat, Hydroxypropylcellulose- glutarat, Hydroxypropylcellulose -adipat, Hydroxypropylcellulose- phtalat, Hydroxypropylcellulose-hexahydrophtalat, Hydroxypropylcellulose-tetra- hydrophtalat, Hydroxypropylcellulose-alkenyl-succinate, Hydroxyethylcellulose- malonat, Hydroxyethylcellulose-succinat, Hydroxyethylcellulose-maleat, Hydroxy- ethylcellulose-glutarat, Hydroxyethylcellulose-adipat, Hydroxyethylcellulose- phtalat, Hydroxyethylcellulose-hexahydrophtalat, Hydroxyethylcellulose-tetrahydro- phtalat, Hydroxyethylcellulose-alkenyl-succinate.
Als Amphiphile im erfindungsgemäßen Sinne werden niedermolekulare Verbindungen bezeichnet, die als Struktureemente eine hydrophile positive oder negativ geladenene Gruppe besitzen und zusätzlich ein hydrophobes Alkyl- oder Aryl- Strukturelement beinhalten. Amphiphile sind im allgemeinen oberflächenaktiv und können im wäßrigen Millieu oberhalb einer CMC (Critical micell concentration) mizellare Aggregatformen bilden.
Bevorzugt als Amphiphile im erfindungsgemäßen Sinne eingesetzt werden kationische Amphiphile, wie z.B. quartäre Ammoniumsalze oder Phosphonium- salze.
Besonders bevorzugt sind Monomere bis oligomere Ammoniumsalze der Formel
Θ
(1) L — N - Y 4 >
L3 worin
L, Alkyl oder Alkenyl mit höchstens 4 Kohlenstoffatomen, das gegebenenfalls durch Hydroxyl substituiert ist,
L2, L3 und L4 je gegebenenfalls verzweigtes Alkyl oder Alkenyl mit höchstens 22 Kohlenstoffatomen, das gegebenenfalls durch Sauerstoffatome oder Säure- amidreste unterbrochen ist und gegebenenfalls endständig durch Hydroxyl,
Carbamoyl, Dialkylamino, unsubstituiertes Phenyl oder Phenoxy, halogen- substituiertes oder halogenmethylsubstituiertes Phenyl oder Phenoxy substituiert ist,
Y4 Θ ein Halogenid-, Sulfat-, Nitrat-, Alkylsulfat- oder Alkylphosphonatanion mit 1 bis 4 Kohlenstoffatomen im Alkylrest oder das Anion einer Alkyl- carbonsaure oder einer Oxycarbonsaure mit höchstens 6 Kohlenstoffatomen oder einer Phosphorsaure bedeuten
Bevorzugte Bedeutungen für Lj in Formel (1) sind Alkenyl mit 3 oder 4 Kohlenstoffatomen, z B Allyl, 1- und 2-Butenyl, oder Isopropenyl, Hydroxyalkyl mit 2 bis 4 Kohlenstoffatomen, z B Hydroxypropyl oder Hydroxyethyl oder vor allem Alkyl mit 1 bis 4 Kohlenstoffatomen, z B Butyl, Isopropyl, Propyl und insbesondere Ethyl und Methyl
Sind L2, L3 und L4 in Formel (1) Alkyl- oder Alkenylreste, so weisen sie in der Regel 1 his 22 Kohlenstoffatome auf Als bevorzugte Alkyl- oder Alkenylreste dieser Art kommen neben der für L, angegebenen Bedeutungen z B Diallyl, Iso- amyl, Cetyl oder vor allem Alkyl- oder Alkenylreste, die sich von den entsprechenden gesattigten oder ungesättigten Fettsauren mit 8 bis 22, vorzugsweise 12 bis 18, Kohlenstoffatomen ableiten, in Frage
Als Beispiele der entsprechenden Fettsauren seien Capryl-, Caprin-, Arachin- und Behensaure, insbesondere Laurin-, Myπstin-, Palmitin- und Stearinsaure oder Myristolein-, Palmitolein-, Elaeosteaπn-, Clupanodonsaure, insbesondere 01-,
Elaidin-, Eruka-, Linol- und Linolensaure genannt Alkyl- und Alkenylreste für L2, L3 und L4, die sich von technischen Gemischen der genannten gesattigten und/- oder ungesättigten Fettsauren ableiten, sind besonders bevorzugt
Die durch Saureamidreste unterbrochenen Alkyl- oder Alkenylketten weisen in der Regel nur ein -CONH- oder -NHCO-Bruckenglied auf, wobei 2 Alkyl- oder Alkenylketten und ein Saureamidbruckenglied insgesamt vorzugsweise höchstens 40 Kohlenstoffatome aufweisen
Bedeuten L2, L3 und L4 in Formel (1) durch Sauerstoffatome unterbrochene Alkyl- reste, so handelt es sich hierbei z B um Polyalkylen-, vorzugsweise Polypropylen- und insbesondere Polyethylenketten, die etwa 1 bis 40 Polyalkyleneinheiten aufweisen Als Amphiphile im erfindungsgemäßen Sinn können auch Mischungen . der kationischen Amphiphile eingesetzt werden.
Als spezifische Beispiele der Amphiphile seien die folgenden Ammoniumsalze genannt:
CH,
Θ|
(16) CH3-N-CH3 c :P
CH3
CH,
(17) CH3-N — CH— CH3 cP CH3
CH,— CH,
Θ|
(18) CH3-CH-N-CH-CH3 :P
CH2CH3
CH3
©I
(19) CH3-(CH2)1T -CH3 cP CH3
CH,
(20) CH3-(CH2)1TN-CH3 BP CH3
CH, Φ |
(21) CH3-(CH2)1TN-CH3 cP
CH3
CH, θ|
(22) CH3-(CH2)1TN-CH3 cP CH, CH,
(23) CH3-(CH2)-N-CH2-CH3
Figure imgf000011_0001
CH,
Figure imgf000011_0002
(26) CH, "(CH2) cf ,o
Figure imgf000011_0003
Figure imgf000011_0004
CH,
(29) CH3-(CH2)1TN — CH-CH — OH CP
CH,
CH, θ
(30) CH3-(CH2)1 N — CH-CH — OH cP
CH, ?H3
Φ|
(31) CH3- -(CH2)1TN-(CH2)9-CH3 cP CH3
?H3
Φ|
(32) CH3- -(CH2)-N-(CH2)7-CH3 cP CH3
CH3
Φ|
(33) CH3 -(CH2)9-N-(CH2)9-CH3 cP CH3
CH3
(34) CH3 -(CH2)1 N-(CH2)1 CH3 cP CH3
CH3
Θ|
(35) CH3 -(CH2)1TN-(CH2)17CH3 cP CH,
(CH2-CH2-0)b-H
©I
(36) CH3-N — (CH2-CH2-0)b,-H Cf b, b'undb" = je 1 bis 40 (CH2-CH2-0)b„-H
?H3 CH,
©I | Θ
(37) CHg-CCH^^CO — NH-(CH2)3 — N — CH-CH-OH CH3C00
CH3
CH3
©| Q
(38) CH3-(CH2)1-CO — NH-(CH2)3 — N — CH2— CH2-OH CH3COO
CH3 H
Φ|
(39) Θ
CH3-(CH2)7-CH : CH - (CH2)7- CO - NH - (CH2)3— N — CH3 Cl
CH,
H
-CH2CH3 Θ
(40) CH — (CH2)1-^^-C- -NH -CH2-CH2- N Cl
\
CH2CH3
?H3
© Θ
(41) CH3-(CH2)7-CH = CH -(CH2)7-CO-NH-(CH2)3— N — CH3 Cl
CH,
?H3
(43) CH3-(CH2)^CO -NH -(CH2)3— N — CH2-CO -NH2 Cl
CH,
(CH2)C,-CH3
I © O (44) CH3 - (CH2)C — N CH3 Cl
(CH2)C.,-CH3 c, c' und c" = je 5 bis 24
(CH2)d,-CH3
I © G
(45) CH3 - (CH2)d — N CH3 Br
(CH2)d.,CH3 d, d' und d" = je 5 bis 24.
Hierbei stehen die Ammoniumsalze der Formeln (19) bis (28), vorzugsweise (19), (20), (21) und (24), und vor allem der Formeln (31) bis (35), (43), (44), (45), insbesondere (33), (34), (35) und (44), (45), im Vordergrund des Interesses.
Das Herstellungsverfahren der Werkstoffe ist dadurch gekennzeichnet, daß zunächst Amphiphil und Polymer gegebenenfalls jeweils in einem Lösungs- oder Verdünnungsmittel gelöst oder zumindest gut dispergiert werden und nach dem Zusammenfügen gemeinsam als Assoziat abgeschieden werden. Das Produkt wird von dem Lösungs- bzw. Verdünnungsmittel nach üblichen Methoden getrennt und getrocknet. Das erhaltene Produkt ist nicht wasserlöslich.
Die Herstellung der erfindungsgemäßen Werkstoffe erfolgt vorzugsweise bei
Raumtemperatur z.B. durch Vermischen bzw. Auflösen der Amphiphile in Lösungsmittel wie bevorzugt Wasser oder auch organischen Lösungsmitteln wie vorzugsweise Alkohole wie Ethanol und Methanol oder auch DMAC, DMF oder DMSO oder Mischungen davon unter gegebenenfalls Ultraschall-, Dispergier- oder Rührbehandlung. Diese Mischung wird mit den Polymeren vorzugsweise in wäßriger Lösung zusammengeführt wobei das Polymer gegebenenfalls vorher in einem geeigneten Lösungsmittel gelöst wird.
Das molare Verhältnis der einzusetzenden Stoffe richtet sich nach der Anzahl der geladenen Gruppen im Polymer und beträgt 1 bis 2 mol des Gegenions pro ionischer Gruppe des Polymeren, bevorzugt 1 bis 1.5 mol, besonders bevorzugt 1 bis 1.2 mol.
Die Viskosität der einzusetzenden Polyelektrolyte liegt vorzugsweise im Bereich von 100 bis 1 000 000 mPas, insbesondere 500 bis 500 000 mPas, besonders bevorzugt im Bereich von 1 000 bis 100 000 mPas.
Die erfindungsgemäßen thermoplastischen Werkstoffe können durch thermische
Formgebungsverfahren, beispielsweise Spritzguß, Extrusion oder Heißverpressen zur Herstellung von Formteilen, Folien, Fasern, Beschichtungen und Laminaten verwendet werden, welche weiterhin antimikrobielle Eigenschaften besitzen.
Gegebenenfalls können Hilfsmittel wie Weichmacher, Antioxidantien, Stabilisato- ren, Flammschutzmittel, Farbstoffe oder Pigmente zugefügt werden.
Weiterhin gelingt die Herstellung von Faserverbundwerkstoffen durch Einbringen von natürlichen oder synthetischen Fasern.
Die nachfolgenden Beispiele dienen zur Erläuterung der Erfindung, die Erfindung ist nicht auf die Beispiele limitiert. Beispiele
Beispiel 1
18 8 g ( 0 05 mol) Tπsoctylmethylammomumchloπd werden in einer Mischung aus 20 ml EtOH und 1 1 deionisiertem Wasser vorgelegt, und 10 g (0 05 mol) Carboxymethylcellulose (DS 0 6-0 8, h = 1000 mPas (2% in Wasser)) unter starkem Ruhren zugegeben Das ausfallende Produkt wird 3 h gerührt, abfiltriert und getrocknet Ausbeute 25 g eines weißen Pulvers mit einem Schmelzpunkt von 110-150°C
Aus dem Produkt wird bei 200 bar / 110°C eine Folie gepresst, die Prüfung im Zugversuch nach DIN 53 457 ergibt folgende Werte
Zugmodul 300 MPa
Bruchdehnung 182 %
Bruchspannung 12,5 MPa
Beispiel 2
1 0 g (0 002 mol) Trisoctylmethylammoniumchlorid und 15 9 g (0 02 mol) Benzyl- dodecyl-dimethylammoniumchlorid werden in einer Mischung aus 30 ml EtOH und 1 1 deionisiertem Wasser vorgelegt, und 10 g (0 05 mol) Carboxymethylcellulose (DS 0 6-0 8, h = 1000 mPas (2% in Wasser)) unter starkem Ruhren zugegeben Das ausfallende Produkt wird 3 hr gerührt, abfiltriert und getrocknet Ausbeute 23 2 g eines weißen Pulvers mit einem Schmelzpunkt von 165°C
Aus dem Produkt wird bei 200 bar / 110°C eine Folie gepresst, die Prüfung im Zugversuch nach DESf 53 457 ergibt folgende Werte Zugmodul 12 000 MPa
Bruchdehnung 36 % Bruchspannung 7,0 Mpa Beispiel 3
Die fungizide Wirksamkeitsprüfung des Materials aus Beispiel 1 wird mit folgenden Prüforganismen geprüft
a) Mischimpfe 1 : Aspergillus niger (4,1 x 10 E4 Keime / mL Agar) mit Penicillium brevicaule (1,6 x 10 E4 Keime / mL Agar)
b) Mischimpfe 2. Chaetomium globosum (1,6 x 10 E4 Keime / mL Agar) mit Aspergillus terreus (1,2 x 10 E4 Keime / mL Agar) und Cladosporium herbarum (5,3 x 10 E3 Keime / mL Agar)
c) Trichoderma viride (4,0 x 10 E4 Keime / mL Agar)
d) Streptoverticillium reticulum (1,5 x 10 E3 Keime / mL Agar)
Die Prüfung ergibt:
Hemmzone (mm)
Kontrolle kein Schimmelwachstum
Mischimpfe 1 1-2
Mischimpfe 2 0-2
Trichoderma viride 3-5
Streptoverticillium : reticulum 9
Bewertungsschema
Figure imgf000017_0001
i) Mit Bewuchs ist die Schimmelpilzbesiedlung im Nährboden auf oder dem
Prüfling gemeint.
2) Die Große der Hemmzone darf nur bedingt Beachtung geschenkt werden
Eine große Hemmzone kann gewisse Wirkstoffreserven oder eine schwache
Fixierung eines Präparates auf dem Substrat anzeigen
3) Fehlender Bewuchs darf auch beim Fehlen einer Hemmzone als gute
Wirkung angesprochen werden, da eventuell nur ein geringes Diffusions- vermogen der Wirksubstanz die Ausbildung einer Hemmzone verhindert
4) Nahezu fehlender Bewuchs ist ein Hinweis auf die Wirkungsgrenze Beispiel 4
Die fungizide Wirksamkeitsprüfung des Materials aus Beispiel 2 wird mit folgenden Prüf Organismen geprüft
a) Mischimpfe 1 : Aspergillus niger (4,1 x 10 E4 Keime / mL Agar) mit Penicillium brevicaule (1,6 x 10 E4 Keime / mL Agar)
b) Mischimpfe 2. Chaetomium globosum (1,6 x 10 E4 Keime / mL Agar) mit Aspergillus terreus (1,2 x 10 E4 Keime / mL Agar) und Cladosporium herbarum (5,3 x 10 E3 Keime / mL Agar)
c) Trichoderma viride (4,0 x 10 E4 Keime / mL Agar)
d) Streptoverticillium reticulum (1,5 x 10 E3 Keime / mL Agar)
Die Prüfung ergibt:
Hemmzone (mm)
Kontrolle kein Schimmelwachstum
Mischimpfe 1 2-3
Mischimpfe 2 2-3
Trichoderma viride 10
Streptoverticillium reticulum 14
Bewertungsschema siehe Beispiel 3

Claims

Patentansprüche:
1. Thermoplastische Werkstoffe bestehend aus Assoziaten, die aus Polyelektrolyten und gegensinnig geladenen Amphiphilen gebildet werden.
2. Verfahren zur Herstellung der thermoplastischen Werkstoffe gemäß Anspruch 1, dadurch gekennzeichnet, daß die amphiphilen Stoffe in Wasser und/oder organischen Lösungsmitteln aufgelöst und dann mit dem gegebenenfalls in Lösung befindlichen Polymer zusammengeführt werden und das sich bildende Produkt in an sich bekannter Weise abgetrennt und getrocknet wird.
3. Verwendung von thermoplastischen Werkstoffen gemäß Anspruch 1 zur
Herstellung von Formkörpern, Fasern und Folien.
PCT/EP1997/005883 1996-11-06 1997-10-24 Thermoplastische polysaccharidsalze WO1998019534A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU51210/98A AU5121098A (en) 1996-11-06 1997-10-24 Thermoplastic polysaccharide salts

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19645661 1996-11-06
DE19645661.4 1996-11-06
DE19718200A DE19718200A1 (de) 1996-11-06 1997-04-30 Thermoplastische Polysaccharidsalze
DE19718200.3 1997-04-30

Publications (1)

Publication Number Publication Date
WO1998019534A1 true WO1998019534A1 (de) 1998-05-14

Family

ID=26031014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/005883 WO1998019534A1 (de) 1996-11-06 1997-10-24 Thermoplastische polysaccharidsalze

Country Status (2)

Country Link
AU (1) AU5121098A (de)
WO (1) WO1998019534A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0170053A2 (de) * 1984-07-03 1986-02-05 Daicel Chemical Industries, Ltd. Quaternäre Ammoniumsalze von Carboxymethylcellulose
DE3642371A1 (de) * 1985-12-11 1987-06-25 Daicel Chem Gegenstaende mit fungiziden und bakteriziden eigenschaften
US5006267A (en) * 1989-11-08 1991-04-09 The Dow Chemical Company Biocidal fluid filters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0170053A2 (de) * 1984-07-03 1986-02-05 Daicel Chemical Industries, Ltd. Quaternäre Ammoniumsalze von Carboxymethylcellulose
DE3642371A1 (de) * 1985-12-11 1987-06-25 Daicel Chem Gegenstaende mit fungiziden und bakteriziden eigenschaften
US5006267A (en) * 1989-11-08 1991-04-09 The Dow Chemical Company Biocidal fluid filters

Also Published As

Publication number Publication date
AU5121098A (en) 1998-05-29

Similar Documents

Publication Publication Date Title
DE2222733C3 (de) Chitosan-Derivate und Verfahren zu deren Herstellung
DE3751938T2 (de) Saure dekristallisierung von hochkristallin chitosan oder teilentacetylierten chitin
DE3008413C2 (de) Verfahren zur Herstellung von Äthylcarboxymethylcellulose
DE1215123B (de) Verfahren zur Herstellung feinzerkleinerter, wasserunloeslicher Polysaccharidderivate von kolloidaler Teilchengroesse
DE69419447T2 (de) Salbe zur Wundbehandlung
DE3223423A1 (de) Kosmetische mittel auf der basis von chitosanderivaten, neue chitosanderivate sowie verfahren zur herstellung dieser derivate
EP0192925B1 (de) Kosmetische Mittel auf der Basis von quaternären Chitosanderivaten, neue quaternäre hydroxypropyl-substituierte Chitosanderivate sowie Verfahren zu ihrer Herstellung
EP0721478A1 (de) Pyrrolidongruppenhaltige polyester und polyamide
EP3048119B1 (de) Reversibel vernetzte celluloseether und verfahren zu deren herstellung durch selektive oxidation von vicinalen oh-gruppen
EP2700656A1 (de) Carboxy-funktionalisiertes Alternan
WO2006117382A1 (de) Biozide beschichtungen
EP0192932B1 (de) Kosmetische Mittel auf der Basis von quaternären Chitosanderivaten, neue quaternäre hydroxyethyl-substituierte Chitosanderivate, sowie Verfahren zu ihrer Herstellung
US11819023B2 (en) Polyvinyl alcohol/chitosan composite soluble electrospun nanofibers for disinfectant anti-bacterial and anti-corrosion applications
WO2012025582A2 (de) Verfahren zur herstellung hochkonzentrierter lösungen von selbstassemblierenden proteinen
US2931753A (en) Organic ammonium salts of polysaccharide carboxylic acids
DE69414521T2 (de) Verfahren zur herstellung von iodierten biopolymeren mit desinfizierender und vernarbungsfördernder wirkung und darnach hergestellte iodierte biopolymeren
DE1768361A1 (de) Verfahren zur Herstellung von Ferrihydroxyd-Dextran-Komplexen
EP0563013B1 (de) N-Substituierte Chitosanderivate, ein Verfahren zu deren Herstellung und deren Verwendung
AT516070A1 (de) Verfahren zur Herstellung von Polyguanidinen
WO1998019534A1 (de) Thermoplastische polysaccharidsalze
DE2248880A1 (de) Bis-(2-pyridyl-1-oxid)-disulfidaddukte mit erdalkalimetallsalzen, verfahren zu ihrer herstellung und diese addukte enthaltende kosmetische praeparate
DE4404404A1 (de) Acroleinpolymer
WO2019213833A1 (zh) 一种具有抗菌作用的生物基材料及用途
DE19718200A1 (de) Thermoplastische Polysaccharidsalze
DE1143302B (de) Verspruehbare Haarfestlegemittel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA