WO1998018543A1 - Procede et appareil pour dissoudre/melanger un gaz dans un liquide - Google Patents

Procede et appareil pour dissoudre/melanger un gaz dans un liquide Download PDF

Info

Publication number
WO1998018543A1
WO1998018543A1 PCT/JP1997/001469 JP9701469W WO9818543A1 WO 1998018543 A1 WO1998018543 A1 WO 1998018543A1 JP 9701469 W JP9701469 W JP 9701469W WO 9818543 A1 WO9818543 A1 WO 9818543A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
mixing
mixing container
container
Prior art date
Application number
PCT/JP1997/001469
Other languages
English (en)
French (fr)
Inventor
Katsuyuki Machiya
Masakazu Kashiwa
Masaaki Nakayama
Original Assignee
Idec Izumi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP30118696A external-priority patent/JPH09173804A/ja
Application filed by Idec Izumi Corporation filed Critical Idec Izumi Corporation
Priority to US09/091,373 priority Critical patent/US6142456A/en
Priority to EP97919712A priority patent/EP0906780A4/en
Publication of WO1998018543A1 publication Critical patent/WO1998018543A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • B01F23/2341Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere
    • B01F23/23413Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere using nozzles for projecting the liquid into the gas atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/423Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components
    • B01F25/4231Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components using baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4331Mixers with bended, curved, coiled, wounded mixing tubes or comprising elements for bending the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0436Operational information
    • B01F2215/0481Numerical speed values

Definitions

  • the present invention relates to a gas-liquid dissolving / mixing method and apparatus for reacting a gas and a liquid under pressure or supplying pressurized water in which the gas is dissolved in a supersaturated state or the like.
  • a gas-liquid dissolving and mixing apparatus is provided with a gas suction device in which a part of a fluid flow path is restricted, Some liquids draw a gas into a liquid to form a gas-liquid mixed flow.
  • This gas suction device forms a widened portion with a gradually widened pipe downstream of the throttle, and a gas inflow passage for allowing gas to flow slightly downstream of the throttle is provided in the gas suction unit.
  • the liquid is pressure-fed to the gas absorption device I, a negative pressure is formed in the throttle section by the flow of the pressure-fed liquid, the gas is absorbed, and a gas-liquid mixed flow is supplied.
  • the liquid is pumped by a pump, the gas is sucked by the energy of the pumped liquid, that is, the gas is sucked by the negative pressure generated by the flow velocity, and the liquid is operated while supplying the gas into the liquid. Therefore, the pumping pressure of the liquid increased. For this reason, there is a problem that the energy consumed as the power of the pump is large, and the pumping pressure is large, so that the pump as the pumping means is expensive and the selection range is narrow.
  • the present invention has been made in view of the above-mentioned problems of the related art, and provides a gas-liquid dissolving / mixing method and a gas-liquid dissolving / mixing apparatus capable of efficiently performing a gas-liquid reaction or gas-liquid dissolution with little energy. With the goal. Disclosure of the invention
  • an injection section for injecting a liquid in a horizontal direction at a flow rate of about 5 m / s to 15 m / s is provided above a gas-filled mixing vessel, and a pressurized state in the mixing vessel is provided downstream of the mixing vessel.
  • a restrictor with a narrow flow path is provided to maintain the Injecting into the container, causing the gas in the mixing container and the injected liquid to react or dissolve in a pressurized state, and causing the gas-dissolved liquid to flow out from the lower part of the mixing container,
  • the gas inside the mixing container is reduced due to the dissolution of the gas into the liquid, the supply of the liquid into the mixing container is stopped, the gas is supplied into the mixing container, and the liquid is injected into the mixing container.
  • a gas-liquid dissolving and mixing method in which gas and gas are supplied alternately.
  • the present invention provides an injection unit provided with a throttle portion that narrows a part of the fluid flow path, and a gas suction device formed slightly downstream thereof with a gas inflow port through which gas flows in from the outside. Attached to the upper part of the mixing vessel filled with gas, a throttle having a narrowed flow path is provided downstream of the mixing vessel to maintain a pressurized state in the mixing vessel, and a liquid is injected into the mixing vessel from the injection unit. Injection is performed at a flow rate of about 5 mZs to 15 mZs to cause gas-liquid reaction or dissolution between the gas in the mixing container and the injected liquid, and to allow the liquid in which the gas is dissolved to flow out from the lower part of the mixing container.
  • the present invention provides an injection section for injecting a liquid in a horizontal direction at a flow rate of about 5 mZs to 15 m / s at an upper portion of a gas-filled mixing vessel, and a pressurized state in the mixing vessel at a downstream of the mixing vessel.
  • a restrictor with a narrowed flow path is provided to hold it, and the liquid is injected from the injection section into the mixing container, and the gas in the mixing container and the injected liquid react or dissolve in the pressurized state with the gas in the mixing container.
  • the pressure is slightly higher than the liquid supply pressure.
  • the pressure inside the mixing container is slightly higher than the gas pressure in the mixing container (110% or less of the gas pressure in the mixing container).
  • liquid level in the mixing container is adjusted to approximately the height of the outlet of the injection section.
  • the present invention also provides a mixing container filled with gas, a nozzle provided at an upper portion of the mixing container and injecting liquid into the mixing container in a sealed state at a flow rate of about 5 m / s to 15 m / s in a horizontal direction.
  • the present invention provides a throttle portion such as a bench lily tube in which a part of a fluid flow channel is throttled, a cylindrical flow channel formed slightly downstream thereof and having a slightly larger inner diameter than the throttle portion, Injection unit consisting of a gas-absorbing device provided with a divergent part provided downstream of the flow path and gradually expanding the conduit, and a gas inlet connected to the cylindrical flow path and allowing a gas to flow in from the outside
  • This jetting part is attached to the upper part of the mixing container filled with gas and opened in the mixing container.
  • the outlet of the liquid is provided in the lower part of the mixing container, and the downstream of the outlet is provided.
  • the pipe is branched, one of the pipes is provided with a throttle that narrows the flow path in order to maintain the pressurized state in the mixing vessel, the other pipe is provided with an on-off valve, and the liquid is supplied from the spray unit.
  • the gas is injected into the mixing container in a sealed state, and the gas is injected into the mixing container.
  • This is a gas-liquid dissolving / mixing device that causes a gas-liquid reaction or dissolution with a liquid that has been dissolved, and supplies the liquid in which the gas is dissolved via the outlet and the restrictor.
  • each of the above-mentioned injection units is connected to a liquid supply source via a pipe, and a pipe and a throttle are respectively provided at an outlet of each of the mixing containers. Is provided.
  • the present invention provides a mixing container filled with a gas, An injection unit and a nozzle for ejecting a liquid at a flow rate of about 5m / S ⁇ 15m / s in the horizontal direction in a sealed state to the mixing vessel, and the liquid supply device such as a pump for supplying the liquid, the jetting portion
  • the liquid supply device such as a pump for supplying the liquid, the jetting portion
  • a gas supply device for supplying gas to the liquid flow path at a pressure slightly higher than the liquid supply pressure of the liquid flow path on the upstream side (110% or less of the liquid supply pressure); and a gas supply device provided below the mixing vessel.
  • the liquid is injected into the mixing container, and the gas in the mixing container and the injected liquid react or dissolve the gas and liquid, and the liquid in which the gas is dissolved is supplied through the outlet, the throttle, and the like.
  • This is a gas-liquid dissolving and mixing device.
  • the gas supply device supplies the gas into the mixing container at a pressure slightly higher than the gas pressure in the mixing container (110% or less of the gas pressure in the mixing container).
  • a gas tank is provided downstream of a compressor or the like, and a throttle such as a valve or a fixed throttle is further provided downstream of the gas tank.
  • the liquid supply line is provided at predetermined time intervals or according to predetermined gas conditions.
  • a gas-liquid dissolving / mixing apparatus for supplying a gas into the mixing container at a pressure slightly higher than a supply pressure of the liquid.
  • another mixing vessel similar to the above is connected in series via a pipe at a downstream side of the outlet, and the pipe is connected to an upper portion of the other mixing vessel.
  • a partition is provided to partition the liquid ejected by a predetermined distance along the liquid ejecting direction of the ejecting section from the liquid below the ejected liquid.
  • the outlet is attached to a wall surface at a position facing the jetting direction of the liquid in the mixing container or a wall surface other than the vicinity thereof.
  • a gas-liquid dissolving / mixing apparatus is provided below the jetting section, in which the partition is provided in the liquid jetting direction, and the outflow port is located below the partition and almost directly below the jetting section. Then, a through-hole is formed on the side of the injection section of the partition wall, and the through-hole is formed so as to be relatively large below.
  • FIGS. 1 and 2 show a first embodiment of the present invention, and FIG. Fig. 2 shows the initial state, and the state during steady operation.
  • a nozzle 12 which is an injection unit connected to a pipe 10 for supplying a liquid, is connected to an upper part of a mixing container 14 formed in an airtight state.
  • a throttle 20 is connected to the lower part of the mixing vessel 14 from the outlet 16 via a pipe 18, and a pipe 22 for outflow is connected downstream of the throttle 20.
  • the diaphragm 20 is shown as a fixed diaphragm, but a variable diaphragm such as a valve may be used.
  • a liquid for dissolving a gas flows into the nozzle 12 from outside through the pipe 10.
  • the liquid is accelerated by the nozzle 12 and jetted into the mixing vessel 14 as a jet 15.
  • the mixing container 14 is previously filled with a gas to be dissolved in the liquid.
  • the volume of the gas is compressed by the inflow of the liquid, and the inside of the mixing container 14 is gradually pressurized. Then, gas-liquid reaction and gas-liquid dissolution occur in the pressurized mixing container 14.
  • the flow velocity of the accelerated liquid jet 15 is required to be at least about 5.0 m / s in order to efficiently perform gas-liquid reaction and gas-liquid dissolution, and it is particularly desirable to consider the energy efficiency around lOmZs. If it exceeds 15.0 mZs, the gas-liquid reaction does not improve, and only the energy required for pumping the liquid increases.
  • V Volume of the upper part from the nozzle opening of the mixing container [m 3 ]
  • the gas is not pumped and the gas is not suctioned and pumped, so that it is relatively small. This is possible with energy, and the gas-liquid mixing efficiency is high. Further, since the liquid is stored in the lower part, the gas does not easily flow out of the outlet 16 and the gas is not wasted and the utilization efficiency is high.
  • the liquid in the mixing container 14 is reduced by gas-liquid dissolution, but when the liquid decreases to some extent, the gas may be filled into the mixing container with a cylinder or a compressor as appropriate, and thereafter, as needed. repeat.
  • FIG. 3 shows a second embodiment of the present invention.
  • the gas-liquid dissolving / mixing device of the present embodiment is provided with a duct portion 26 separated by a partition wall 25 at an inflow portion of the jet 15 from the nozzle 12 of the gas-liquid dissolving / mixing device of the first embodiment. It is. Also various other articles The conditions are the same as in the first embodiment, and the method of use is also the same.
  • the periphery of the jet 15 is separated into a narrow space by the duct portion 26, and vortices of various sizes are generated inside the duct portion 26, and high contact between gas and liquid occurs. A state is obtained, and highly efficient gas-liquid reaction and gas-liquid dissolution occur inside the duct section 26.
  • the size of the duct portion 26 is preferably set to be 10 to 20 times the diameter of the jet 15. Also in this embodiment, when the surface of the liquid is near the nozzle 12, a higher gas-liquid contact state can be obtained.
  • FIG. 4 shows a third embodiment of the gas-liquid dissolving and mixing apparatus of the present invention.
  • the mixing container 28 is constituted by a pipe 29 formed in a loop shape.
  • the inner diameter of the pipe 29 continuous from the nozzle 12 is set to be 10 to 20 times the diameter of the pipe 15, an operation equivalent to the partition wall 25 of the second embodiment can be obtained. The effect of can be expected.
  • Other various conditions and methods of use are the same as those in the first embodiment.
  • the pipe 29 is formed in a spiral shape.
  • the shape of the pipe 29 can be set as appropriate.
  • the liquid jet from the nozzle 12 is jetted horizontally at a flow rate of 5.0 m / s or more, and the jet is jetted. Any configuration may be used as long as the liquid outlet 16 is below the inlet of port 15 and a throttle is provided downstream of the outlet 16. Also in this case, it is more preferable that the liquid level is near the position of the nozzle opening as described in the first embodiment.
  • FIG. 5 shows the configuration of the entire apparatus.
  • a water supply pipe 32 and a discharge pipe 34 are connected to a pump 30.
  • a check valve 35 is arranged in the middle of the discharge pipe 34, and a gas pipe 36 as a gas injection means is connected in the middle of the downstream side.
  • the discharge pipe 34 is connected to the nozzle 12, and is connected to an upper part of the mixing vessel 14 in which the gas is pressurized and sealed.
  • a compressor 39 is connected to the gas pipe 36 via a check valve 38 as a gas injection means.
  • the mixing vessel 14 is connected to a pipe 18 at a lower outlet 16, and the pipe 18 is connected to a pipe 22 via a throttle 20.
  • the throttle 20 may be a variable throttle such as various valves, and the gas pipe 36 may be connected to the mixing vessel 14 in addition to the upstream of the nozzle 12. It may be connected to the upper part of.
  • the liquid sucked up from the source water tank 40 by the pump 30 through the water supply pipe 32 is pumped by the pump 30 and flows into the nozzle 12 through the discharge pipe 34.
  • the liquid is accelerated by the nozzle 12 and fed into the mixing container 14 as a jet, similarly to the above embodiment.
  • the gas is sealed in the mixing vessel 14 in advance, and the volume of the gas is compressed by the inflow of the liquid, so that the inside of the mixing vessel 14 is pressurized, and is injected into the pressurized mixing vessel 14.
  • a gas-liquid reaction or gas-liquid dissolution occurs between the liquid and the contained gas.
  • the pump 30 is stopped and the pressure inside the mixing container 14 is reduced, and the compressor is depressurized.
  • gas is supplied into the mixing container 14.
  • the compressor 39 is stopped, and the pump 30 is operated again.
  • the compressor 39 is used as the gas pressure feeding means, another pressure feeding means such as a cylinder may be used.
  • the check valve 38 is provided in the middle of the gas pipe 36 from the compressor 39, the liquid does not flow backward to the compressor 39 during the liquid pressure feeding, and the check valve 35 is provided in the middle of the discharge pipe 34. The gas does not flow back to the pump 30 when refilling.
  • this method places a greater load on the liquid pumping means, especially when continuous gas-liquid dissolution mixing is not required. This is advantageous because the power of gas pressure can be reduced. Further, also in this embodiment, more efficient gas-liquid reaction and gas-liquid dissolution can be obtained because the liquid level is near the position of the nozzle opening during the steady operation. Further, as in the second embodiment, the partition may be provided near the opening of the nozzle 12 of the mixing container 14. Next, a fifth embodiment of the gas-liquid dissolving and mixing apparatus of the present invention is shown in FIG.
  • This embodiment is the same as the configuration of the fourth embodiment described above, except that the nozzle 12 and the mixing container 14 are connected in series via a pipe 41 in series.
  • a pipe 41 is connected to a nozzle 42 similar to the nozzle 12 from an outlet 16 of the mixing container 14, and the nozzle 42 is connected to a mixing container 44 similar to the mixing container 14.
  • this nozzle and the mixing vessel are connected in series.
  • the number of sets can be set as appropriate. Other various conditions are the same as those in the first embodiment.
  • two sets of the nozzle 12 and the mixing container 14 are connected in series, and gas-liquid contact twice as large as that of one set is obtained. As the number of sets is further increased, more gas-liquid contacts are obtained.
  • FIG. 7 shows a sixth embodiment of the gas-liquid dissolving and mixing apparatus of the present invention.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • two sets of gas-liquid dissolving and mixing devices of the fourth embodiment are arranged in parallel.
  • an operation of operating the other apparatus is performed while one apparatus is stopped for replenishing gas.
  • three or more sets of devices may be arranged in parallel. The other various conditions are the same as in the above embodiments.
  • FIGS. 8 to 11 show a seventh embodiment of the gas-liquid dissolving and mixing apparatus of the present invention.
  • a water supply pipe 32 connected to a water absorption source 60 is provided on the water absorption side of the pump 30, and a discharge pipe 34 is connected to the discharge side of the pump 30.
  • a gas suction device 50 as an injection unit is connected to a downstream end of the discharge pipe 34, and the gas suction device 50 is connected to an upper portion of the mixing container 14.
  • a gas pipe 36 is connected to the gas suction device 50 via a check valve 38.
  • a pipe 54 is connected to the outlet 16 at the lower part of the mixing vessel 14, and one of the branch points 55 of the pipe 54 is connected to a pipe 22 for outflow via a throttle 20.
  • the other pipe 54 at the branch point 55 is connected to a pipe 58 via an on-off valve 56.
  • the pipe 58 is connected to a water supply source 60.
  • the gas suction device 50 has a bench lily tube formed downstream of the liquid inlet 51, and is formed concentrically with the throttle (throat) 53 downstream of the throttle (throat) 53. It is composed of a cylindrical gas absorber with a slightly larger inner diameter, and a gas inlet 59 is created and opened in the gas absorber I section 57. A widened portion 61 is formed on the downstream side of the gas inlet 59, and the widened portion 61 opens to the upper part of the mixing vessel 14.
  • the liquid sucked up from the water supply source 60 by the pump 30 through the water supply pipe 32 is pumped by the pump 30 and flows into the gas suction I unit 50 through the discharge pipe 34. I do.
  • the liquid is accelerated by the gas absorption I device 50, and is fed into the mixing container 14 as a jet 15, as shown in FIG.
  • a gas-liquid reaction or gas-liquid dissolution occurs between the injected liquid and the enclosed gas.
  • the conditions in this case are the same as in the first embodiment.
  • the liquid level of the liquid is more efficient near the expanding portion 61 which is the jet port of the jet 15. A liquid contact state is obtained.
  • the opening / closing valve 56 is opened to suck the gas.
  • the opening / closing valve 56 By opening the opening / closing valve 56, the effect of the throttle 20 is lost, the inside of the mixing vessel 14 is depressurized, the gas suction of the gas suction device 50 becomes negative, and the device 57 becomes a negative pressure state. It is sucked into the mixing container 14 through the I device 50. Since the outlet 16 is provided in the lower part inside the mixing container 14, the liquid flows out before the gas, and the gas is sucked into the space.
  • the on-off valve 56 is closed again to restore the effect of the throttle 20, and in the mixing container 14, the gas pressure rises with the inflow of liquid as described above, and gas-liquid dissolution mixing is performed. . Thereafter, repeat this as necessary.
  • FIG. 12 an eighth embodiment of the gas-liquid dissolving and mixing apparatus of the present invention is shown in FIG.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • a partition wall 25 is provided at an inflow portion of the jet 15 from the gas suction device 50 to form a duct portion 26.
  • Other configurations and operations are as described above. This is the same as the seventh embodiment, and various conditions are also the same.
  • the jet 15 is confined in a narrow space by the partition wall 25, and high gas-liquid contact is obtained. Also in this case, it is desirable that the size of the duct portion 26 is set to be 10 to 20 times the diameter of the jet 15.
  • FIG. 13 a ninth embodiment of the gas-liquid dissolving and mixing apparatus of the present invention is shown in FIG.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • a gas suction unit 50 and a mixing vessel 14 are provided in series downstream of the outlet 16, and a gas pipe 36 and a mixing pipe downstream of the upstream gas suction unit 50 are provided.
  • a restrictor 20 is provided in the flow.
  • the number of sets of the gas suction device 50 and the mixing container 14 is two, but the number of sets may be increased by adding as appropriate.
  • a nozzle may be connected to the upper part of the mixing vessel 14 instead of the gas suction device 50.
  • Other various conditions are the same as those in the first embodiment.
  • FIG. 14 a tenth embodiment of the gas-liquid dissolving and mixing apparatus of the present invention is shown in FIG.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • two gas-liquid dissolving and mixing devices are arranged in parallel.
  • the other device is operated while one device is stopped to supply gas, and a gas-liquid dissolving / mixing device that can be continuously operated without stopping during gas supply can be realized.
  • three or more sets of devices may be arranged in parallel.
  • the other various conditions are the same as those in the first embodiment.
  • FIG. 15 an eleventh embodiment of the gas-liquid dissolving and mixing apparatus of the present invention is shown in FIG.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • a pressure adjusting valve 70 is attached in place of the restrictor 20 of the seventh embodiment, and the pressure reducing pipeline below the branch point of the seventh embodiment is omitted. It was done.
  • the pressure in the mixing container 14 is reduced by opening the pressure control valve 70, and then the pressure in the mixing container 14 is increased by squeezing the pressure control valve 70.
  • Other various conditions are the same as those in the first embodiment.
  • FIG. 16 a twelfth embodiment of the gas-liquid dissolving and mixing apparatus of the present invention is shown in FIG. 16 and FIG.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the gas suction device 50 of the seventh embodiment is provided in the middle of the discharge pipe 34, and the nozzle 12 is attached to the tip of the discharge pipe 34. Is connected to the upper part of the mixing container 14.
  • Other configurations are the same as those in the first and seventh embodiments, and other various conditions are the same as those in the first embodiment.
  • the cross-sectional area of the opening 13 of the nozzle 12 of this embodiment is the throat of the gas suction device 50. It is desirable that the cross-sectional area of the section 53 and the throttle 20 be sufficiently large, and that the flow velocity of the jet 15 be in the range of 5 to 15 mZs.
  • the cross-sectional area of the outlet-side opening 13 of the nozzle 12 is desirably 1.5 times or more the cross-sectional area of the throat 53 and the throttle 20.
  • Other various conditions are the same as those in the first embodiment.
  • the position of the outlet 16 of the gas-liquid dissolving and mixing apparatus of the second embodiment is set below the partition 25 of the mixing vessel 14 and almost immediately below the nozzle 12. It is attached to the lower part of 14.
  • a water supply pipe 32 and a discharge pipe 34 are connected to the pump 30, a check valve 35 is arranged in the middle of the discharge pipe 34, and a gas pipe 36 as a gas injection means is connected in the middle of the downstream side.
  • the discharge pipe 34 is connected to the nozzle 12, and is connected to an upper portion of the mixing vessel 14 in which gas is sealed in a pressurized state.
  • a compressor 39 is connected to the gas pipe 36 via a check valve 38 as a gas injection means.
  • a pipe 18 is connected to an outlet 16 immediately below the nozzle 12, and the pipe 18 is connected to a pipe 22 via a throttle 20.
  • the throttle 20 may be a variable throttle such as various valves, and the gas pipe 36 may be connected to the upper part of the mixing vessel 14 in addition to the upstream of the nozzle 12.
  • the position of the outlet 16 in this embodiment is set as described above because the outlet 16 is provided on the side opposite to the position in FIG. 18 or near the wall surface facing the jetting direction of the liquid as shown in FIG.
  • the gas that cannot be completely dissolved flows out together with the liquid as bubbles from the outlet at the position, resulting in poor gas utilization, and a gas-liquid mixed flow containing large bubbles is formed.
  • the position of the outlet 16 immediately below the nozzle 12 as in this embodiment the flow by the jet 15 does not go to the outlet 16 and the gas-liquid mixed flow reaches the outlet 16.
  • air bubbles that cannot be completely dissolved accumulate on the back surface of the partition wall 25 and do not easily come out of the outlet 16.
  • the accumulated bubbles are appropriately released upward to prevent the gas from flowing out wastefully.
  • the height H of the flow path below the mixing vessel 14 in FIG. It is preferable that the relationship of the length L is L / H> 4.
  • the position of the outlet 16 may be any wall surface other than the wall surface facing the liquid ejection direction or the vicinity thereof. Also, if the partition wall 25 is slightly inclined so that the opposite side of the outlet 16 is higher, the bubbles naturally flow upward and head toward the upper part of the mixing vessel 14. Other conditions and usage methods are the same as those of the first, second, and fourth embodiments. Further, instead of the nozzle 12, the gas suction device 50 of the above embodiment may be provided.
  • the gas-liquid dissolving / mixing apparatus of this embodiment has a through-hole 72 formed near the outlet 16 of the partition 25 of the mixing vessel 14 of the gas-liquid dissolving / mixing apparatus of the thirteenth embodiment.
  • the air bubbles collected on the back surface of the partition wall 25 rise up to the upper portion of the mixing container 14 via the through-holes 72, and are used for mixing with the liquid. Therefore, it is possible to reliably eliminate bubbles flowing out from the outlet 16 and to use gas with higher efficiency.
  • the through-hole 72 formed in the partition wall 25 spreads widely downward in the whole or a part of the back surface side as shown in FIGS. 21 (A) and (B) in addition to the one shown in FIG.
  • the truncated cone portion 72a By forming the truncated cone portion 72a, air bubbles are more easily drawn to the through-hole 72 through the truncated cone portion 72a, and are easily lifted upward.
  • FIG. 1 a fifteenth embodiment of the present invention is shown in FIG.
  • the gas-liquid dissolving and mixing apparatus of this embodiment is the same as the gas-liquid dissolving and mixing apparatus of the fourth embodiment shown in FIG.
  • a gas tank 74 is provided, and an electromagnetic valve 76 is provided in the gas pipe 36 between the gas tank 74 and the discharge pipe 34.
  • the compressor 39 is operated to fill the gas tank 74 with the pressurized gas.
  • the solenoid valve 76 is switched, and the gas in the gas tank 74 is filled into the mixing container 14.
  • the gas pressure in the gas tank 74 is substantially equal to the gas pressure in the mixer 14, and the gas in the gas tank 74 is filled into the mixing container 14 with the outflow of the liquid in the mixing container 14. To do. Thereby, the liquid in the mixing container 14 does not flow out at once, and also flows out reliably and continuously. Further, during the liquid pressure feeding, that is, while the electromagnetic valve 76 is closed, the gas is pressurized by the compressor 39 and filled in the gas tank 74, so that compared with the fourth embodiment shown in FIG. The stop time of the pump 30 for pumping the liquid is extremely short.
  • the compressor 39 since the compressor 39 takes a long time to start up, if the compressor 39 is operated after the pump 30 is stopped, it takes much time for the rise time until the gas pressure reaches the gas pressure in the mixing vessel 14. There was a problem. However, in this embodiment, since the rising is performed during the operation of the pump 30, the pump 30 for filling the gas may be stopped for about several seconds, for example.
  • FIG. 23 a sixteenth embodiment of the present invention is shown in FIG.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the gas suction device 50 of the seventh embodiment is provided in the middle of the discharge pipe 34, and the nozzle 12 is attached to the tip of the discharge pipe 34. It is connected to the upper part of the mixing vessel 14.
  • the gas-liquid dissolving and mixing apparatus of this embodiment is such that the on-off valve 56 of the twelfth embodiment is replaced by an electromagnetic valve 76.
  • Other configurations are the same as those of the first, seventh, and twelfth embodiments, and other various conditions are the same as those of the above-described embodiments.
  • the cross-sectional area of the opening 13 of the nozzle 12 in this embodiment is sufficiently larger than the cross-sectional area of the throat 53 and the restrictor 20 of the gas suction device 50.
  • the flow velocity of the jet 15 is desirably in the range of 5 to 15 m / s.
  • the cross-sectional area of the outlet-side opening 13 of the nozzle 12 is desirably 1.5 times or more the cross-sectional area of the throat 53 and the throttle 20.
  • the injection of liquid and the supply of gas can be automatically performed by switching the solenoid valve 76 without using a compressor.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the nozzle 12 which is an injection unit connected to the tip of a pipe 34 for supplying a liquid, is connected to the upper portion of one side surface of the mixing container 14 formed in an airtight state.
  • An outlet 16 is formed at the lower part of the one side of the mixing vessel 14.
  • the pressure nozzle 80 is connected, and the pressure reduction nozzle 80 is opened on the side wall surface of a water tank 88 for storing the treated water in which gas is dissolved in the liquid.
  • a pump 30 for supplying liquid is connected to the upstream side of the pipe 34, and a check valve 35 is provided in the middle of the pipe 34 from the pump 30 to the nozzle 12 to allow a flow in the direction of the nozzle 12.
  • a pipe 36 is connected between the check valve 35 and the nozzle 12, and the pipe 36 includes a compressor 39 as a gas supply device, a gas tank 74 for storing gas, a solenoid valve 82, and a throttle from the upstream side.
  • Valve 84 and check valve 38 are provided in series along line 36.
  • a partition 25 which partitions the inside of the container to a predetermined length in a horizontal direction from a side surface to which the nozzle 12 is connected.
  • a through hole 72 is formed at the end of the partition 25 on the nozzle 12 side.
  • the partition wall 25 is for preventing the liquid having insufficient gas-liquid dissolution and reaction from flowing out of the outlet 16.
  • the through-hole 72 is for returning the gas accumulated in the lower stage on the back side of the partition wall 25 to the upper stage and again dissolving the gas and liquid and performing the reaction.
  • the through-hole 72 formed in the partition wall 25 spread widely downward on the whole or a part of the back side as shown in FIGS. 26 (A) and (B).
  • the truncated cone portion 72a By forming the truncated cone portion 72a, air bubbles are more easily drawn to the through-hole 72 through the truncated cone portion 72a, and are easily lifted upward.
  • the position of the outlet 16 in this embodiment is located below the nozzle 12 because the outlet 16 is provided near the wall surface facing the liquid jetting direction on the opposite side to the position shown in FIGS. 24 and 25.
  • gas cannot be completely dissolved from the outlet at that position, and the gas flows out together with the liquid as bubbles, resulting in poor gas utilization, and a gas-liquid mixed flow containing large bubbles is formed. was there. Therefore, by providing the position of the outlet 16 immediately below the nozzle 12 as in this embodiment, the flow of the liquid by the jet 15 does not go to the outlet 16, and the gas-liquid mixed flow flows into the mixing vessel 14. In the course of reaching the outlet 16, undissolved air bubbles accumulate on the back surface of the partition wall 25 and do not easily come out of the outlet 16.
  • the accumulated bubbles are appropriately released upward through the through-holes 72 so that the gas does not flow out uselessly.
  • the flow rate below the mixing vessel 14 in FIG. It is preferable that the relationship between the height H and the length L of the road is LZH> 4.
  • the position of the outlet 16 may be any wall surface other than the wall surface facing the ejection direction of the liquid or the vicinity thereof. Also, if the partition wall 25 is slightly inclined so that the side opposite to the outlet 16 is higher, the bubbles naturally flow upward and toward the upper part of the mixing vessel 14.
  • the liquid for dissolving the gas is pumped by the pump 30 and flows into the nozzle 12 through the pipe 34.
  • the liquid is accelerated by the nozzle 12 to become a jet 15 and is injected into the mixing container 14.
  • the mixing container 14 is previously filled with a gas to be dissolved in the liquid.
  • the volume of the gas is compressed by the inflow of the liquid, and the inside of the mixing container 14 is gradually pressurized. Then, gas-liquid reaction and gas-liquid dissolution occur in the pressurized mixing vessel 14.
  • the flow velocity of the accelerated liquid jet 15 is required to be at least about 5.0 m / s in order to efficiently perform gas-liquid reaction and gas-liquid dissolution, and especially around 10 m / s considering energy efficiency. If it exceeds 15.0 m / s, the gas-liquid reaction does not improve, and only the energy required for pumping the liquid increases. Then, the liquid that has completed the gas-liquid reaction in the mixing vessel 14 flows out of the mixing vessel 14 through a pipe 18 connected to the outlet 16. Since the outlet 16 is provided at the lower part of the mixing vessel 14, only the liquid flows out without the gas contained in the vessel flowing out, and the liquid passing through the pipe 18 passes through the pressure reducing nozzle 80. It is accelerated and injected into the water tank 88.
  • the solenoid valve 82 is opened, and the gas is supplied from the pipe 36 to the pipe 34 upstream of the nozzle 12.
  • the gas supply pressure at this time is slightly higher than the liquid supply pressure at the connection between the pipes 34 and 36 (however, 110% or less of the liquid supply pressure in the pipe 34), and is preferably This is around 105% of the supply pressure.
  • the gas pressure is reduced by reducing the pressure in tank 74.
  • the opening of the valve 84 the setting is appropriately made to meet the above conditions. This gas supply is performed without stopping the pump 30 for pumping the liquid.
  • the gas supply timing is calculated based on the liquid flow rate and the static pressure in the mixing container 14, the gas supply timing is periodically performed by a predetermined period, for example, by timer control. Alternatively, control may be performed such that the amount of gas in the mixing container 14 is detected by detecting the liquid level 44 and the electromagnetic valve 82 is opened and closed so as to be within a predetermined position range.
  • a pump 30 that can cope with the pressure may be used, and there is no reverse flow of the gas by the check valve 35.
  • a relief valve 86 is connected to the pipe 34 as necessary in order to suppress a water hammer phenomenon caused by a pressure fluctuation during gas supply.
  • the pressure in the mixing vessel 14 when the gas supply is not performed is P
  • the liquid flow rate is Q
  • ⁇ ⁇ The pressure in the mixing vessel 14 when the gas supply is performed is P 2
  • the liquid flow rate is Q 2 . Then, the following relationship occurs between them.
  • the liquid can be pumped with relatively little energy because the gas is not sucked and pumped at the time of steady liquid pumping, and the gas-liquid mixing efficiency is also improved. It is expensive. Further, when the amount of gas decreases, a gas having a pressure slightly higher than the supply pressure of the liquid is supplied to the liquid supply pipe 34 to supply the gas, so that continuous operation can be performed without stopping the liquid supply. It is possible to supply the gas solution from the decompression nozzle 80 continuously and almost constantly. Further, in this embodiment, since the liquid returns from the lower part of the partition wall 25 to the upper stage through the through-hole 72, the gas does not easily flow out from the outlet 16 and the gas is not wasted and the utilization efficiency is high.
  • FIG. an eighteenth embodiment of the present invention is shown in FIG.
  • the gas-liquid dissolving and mixing apparatus of this embodiment supplies gas to the upper part of the mixing vessel 14 of the gas-liquid dissolving and mixing apparatus of the seventeenth embodiment.
  • the pipe 36 is connected and opened.
  • the gas is supplied directly to the space where the gas in the upper part of the mixing vessel 14 is stored, and it is sufficient that the pressure is slightly higher than the gas pressure in the mixing vessel 14.
  • the gas supply pressure may be slightly lower than in the case.
  • This gas pressure is also adjusted by adjusting the valve 84, and the gas pressure is set to a pressure slightly higher than the gas pressure in the mixing container 14 (110% or less of the gas pressure in the mixing container). In this case, the pressure is preferably about 105% of the gas pressure in the mixing vessel.
  • the supply of gas is performed by directly connecting to the mixing vessel 14, the pressure fluctuation applied to the liquid pressure supply pipe 34 and the pump 30 at the time of gas supply is small, and the pump 30 has a substantially constant load. Can be operated continuously.
  • the gas supply of the present invention may use a cylinder as a supply source in addition to the one using the compressor 39 and the tank 74, and the depressurizing nozzle 80 may be another fixed throttle or a variable throttle. A valve may be used. Further, the depressurizing nozzle 80 is directly connected to the water tank 88, but may be provided in the middle of the pipe 18.
  • the gas-liquid dissolving / mixing apparatus of the present invention is not limited to the above embodiment, and may be implemented in a state in which the above embodiments are appropriately combined.
  • a plurality of mixing vessels may be connected in series. By arranging the connected devices in parallel in a plurality of rows, highly efficient pressurized mixing and dissolution may be obtained.
  • the liquid supply pressure was set to 0.32 MPa
  • the gas supply pressure was set to 0.34 MPa
  • the pressure in the mixing vessel 14 when no gas was supplied was set to 0.30 MPa.
  • the fluctuation in liquid flow rate due to the presence or absence of gas supply was about 3 to 4%, confirming that the operation was almost continuous.
  • FIG. 28 shows an apparatus 90 according to the first embodiment, which is used for hydroponics.
  • the gas-liquid dissolving and mixing equipment When oxygen was supplied by 90, a dissolved oxygen concentration of 130% of the saturation-dependent oxygen concentration was obtained. This promoted the growth of stems, leaves and fruits of the cultivated plants.
  • FIG. 29 shows a case where the device 90 of the first embodiment is used as a device for supplying oxygen to live fish 94.
  • the oxygen supplied to the living 94 is supplied from an oxygen cylinder 96.
  • the oxygen utilization rate is increased from 5% to 98% in the present embodiment, compared to the conventional case where oxygen from the oxygen cylinder 96 is simply supplied into the foam 94 for oxygen. Considering the electric energy and other costs required in the case of this embodiment, the oxygen utilization rate is greatly improved, so that a very large cost reduction can be achieved.
  • the gas-liquid dissolving method and apparatus according to the present invention can efficiently dissolve and mix gas-liquid in a pressurized state with little energy and without wasting gas, and can also reduce the size of the entire apparatus. .
  • the apparatus can be continuously operated at a substantially constant level, and the gas supply can be easily performed with little energy.
  • FIG. 1 is a sectional view of a gas-liquid dissolving and mixing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view showing a use state of the gas-liquid dissolving and mixing apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a sectional view of a gas-liquid dissolving and mixing apparatus according to a second embodiment of the present invention.
  • FIG. 4 is a partially broken front view (A) and a right side view (B) of a gas-liquid dissolving and mixing apparatus according to a third embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a gas-liquid dissolving and mixing apparatus according to a fourth embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a gas-liquid dissolving and mixing apparatus according to a fifth embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a gas-liquid dissolving and mixing apparatus according to a sixth embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a gas-liquid dissolving and mixing apparatus according to a seventh embodiment of the present invention.
  • FIG. 9 is a sectional view of a gas-liquid dissolution / mixing apparatus according to a seventh embodiment of the present invention.
  • FIG. 10 is a sectional view showing a use state of the gas-liquid dissolving and mixing apparatus according to the seventh embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a gas suction device of a gas-liquid dissolving and mixing apparatus according to a seventh embodiment of the present invention.
  • FIG. 12 is a sectional view of a gas-liquid dissolving and mixing apparatus according to an eighth embodiment of the present invention.
  • FIG. 13 is a schematic view showing a gas-liquid dissolving and mixing apparatus according to a ninth embodiment of the present invention.
  • FIG. 14 is a schematic view showing a gas-liquid dissolving and mixing apparatus according to a tenth embodiment of the present invention.
  • FIG. 15 is a schematic view showing a gas-liquid dissolving and mixing apparatus according to an eleventh embodiment of the present invention.
  • FIG. 16 is a schematic diagram showing a gas-liquid dissolving and mixing apparatus according to a twelfth embodiment of the present invention.
  • FIG. 17 is a sectional view of a gas-liquid dissolving and mixing apparatus according to a twelfth embodiment of the present invention.
  • FIG. 18 is a cross-sectional view of a mixing container of a gas-liquid dissolving and mixing apparatus according to a thirteenth embodiment of the present invention.
  • FIG. 19 is a schematic diagram of a gas-liquid dissolving and mixing apparatus according to a thirteenth embodiment of the present invention.
  • FIG. 20 is a cross-sectional view of a mixing container of a gas-liquid dissolving and mixing apparatus according to a fourteenth embodiment of the present invention.
  • FIG. 21 is a cross-sectional view of a through-hole portion of a partition wall of a gas-liquid dissolving / mixing apparatus according to a fourteenth embodiment of the present invention.
  • FIG. 22 is a schematic diagram of a gas-liquid dissolving and mixing apparatus according to a fifteenth embodiment of the present invention.
  • FIG. 23 is a schematic diagram of a gas-liquid dissolution / mixing apparatus according to a sixteenth embodiment of the present invention.
  • FIG. 24 is a schematic view of a gas-liquid dissolution / mixing apparatus according to a seventeenth embodiment of the present invention.
  • FIG. 25 is a cross-sectional view of a mixing vessel of a gas-liquid dissolution / mixing apparatus according to a seventeenth embodiment of the present invention.
  • FIG. 26 is a cross-sectional view of a through-hole portion of a partition wall of a mixing container of a gas-liquid dissolving and mixing apparatus according to a seventeenth embodiment of the present invention.
  • FIG. 27 is a schematic view of a gas-liquid dissolving and mixing apparatus according to an eighteenth embodiment of the present invention.
  • FIG. 28 is a schematic view of an embodiment in which the gas-liquid dissolving and mixing apparatus of the present invention is used for hydroponics.
  • FIG. 29 is a schematic view of an embodiment in which the gas-liquid dissolving / mixing apparatus of the present invention is used for an oxygen supply apparatus for alive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Accessories For Mixers (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

明細書
気液溶解混合方法と装置 技術分野
この発明は、 気体と液体を加圧下で反応させたり、 気体が過飽和状態等となつ て溶解している加圧水を供給する気液溶解混合方法と装置に関する。 背景技術
従来、気液溶解混合装置は、本願出願人の特開平 6 - 285345号公報に開示され ているように、 流体流路の一部を絞った気体吸引器を設けて、 この気体吸引器に より液体中に気体を吸引して、 気液混合流を形成しているものがある。 この気体 吸引器は、絞り部の下流側で徐々に管路を広げた広がり部を形成するとともに、絞 り部のわずかに下流で気体を流入させる気体流入路を上記気体吸 3 1器に設け、 こ の気体吸弓 I器に液体を圧送し、 圧送された液体の流れにより上記絞り部で負圧を 形成して気体を吸 1し、 気液混合流を供給するものである。
上記公報に開示された気液混合装置の場合、 液体をポンプにより圧送し、 圧送 された液体のエネルギー、 即ち流速により生じる負圧により気体を吸引し、 液体 中に気体を供給しながら運転しているために、 液体の圧送圧が大きくなってしま うものであった。 このためポンプの動力として消費するエネルギーが大きく、 そ の圧送圧が大きいために圧送手段であるポンプが高価であり、 その選択幅も狭 、 という問題もあった。
この発明は、上記従来技術の問題点を鑑みてなされたもので、少ないエネルギー で効率よく気液反応や気液溶解を行うことができる気液溶解混合方法と気液溶解 混合装置を提供することを目的とする。 発明の開示
この発明は、 気体を充填した混合容器の上部に液体を水平方向に約 5m / s〜 15m/sの流速で噴射する噴射部を設け、上記混合容器の下流に上記混合容器内の 加圧状態を保持するために流路を絞った絞りを設け、 この噴射部から液体を混合 容器内に噴射し、 加圧状態で上記混合容器内の気体と噴射された液体とで気液の 反応または溶解を行わせるとともに、 上記混合容器の下部から気体が溶解した液 体を流出させ、 上記混合容器内での気体の液体への溶解により内部の気体が減少 すると、 上記混合容器内への液体の供給を停止し、 上記混合容器内へ気体を供給 し、 上記混合容器に対する液体の噴射及び気体の供給を交互に行う気液溶解混合 方法である。
またこの発明は、 流体流路の一部を絞った絞り部と、 そのわずかに下流に外部 から気体を流入させる気体流入口を形成した気体吸引器を備えた噴射部を設け、 この噴射部を気体が充満した混合容器の上部に取り付け、 上記混合容器の下流に 上記混合容器内の加圧状態を保持するために流路を絞つた絞りを設け、 この噴射 部から液体を上記混合容器内に約 5mZs〜15mZsの流速で噴射し、上記混合容器 内の気体と噴射された液体とで気液の反応または溶解を行わせるとともに、 上記 混合容器の下部から気体が溶解した液体を流出させ、 上記混合容器内での気体の 液体への溶解により内部の気体が減少すると、 上記混合容器内の圧力を低下させ て上記噴射部の気体吸引器から気体を吸引しつつ上記液体を上記混合容器内に噴 射し、 上記混合容器内の気体が増加すると、 上記混合容器内の減圧を中止し上記 気体吸引器からの気体吸引が止まり上記液体のみの噴射を行ない、 上記噴射部に よる液体のみの噴射と、 気体吸弓 iを伴う液体の噴射との動作を交互に行う気液溶 解混合方法である。
またこの発明は、 気体を充填した混合容器の上部に液体を水平方向に約 5mZs 〜15m/sの流速で噴射する噴射部を設け、上記混合容器の下流に上記混合容器内 の加圧状態を保持するために流路を絞った絞りを設け、 この噴射部から液体を混 合容器内に噴射し、 加圧状態で上記混合容器内の気体と噴射された液体とで気液 の反応または溶解を行わせるとともに、 上記混合容器の下部から気体が溶解した 液体を流出させ、 上記混合容器内での気体の液体への溶解により内部の気体が減 少すると、 液体の供給圧よりも僅かに高い圧力 (液体の供給圧の 110 %以下) で 気体を上記噴射部の上流側の液体供給管路に注入する気液溶解混合方法である。 また、上記混合容器内での気体の液体への溶解により内部の気体が減少すると、上 記混合容器内の気体圧よりも僅かに高い圧力 (混合容器内の気体圧の 110 %以下) で気体を上記混合容器内へ注入する気液溶解混合方法である。
さらに、 上記混合容器内の液面を、 ほぼ上記噴射部出口の高さに調節するもので ある。
またこの発明は、 気体を充填した混合容器と、 この混合容器の上部に設けられ 液体を上記混合容器内へ密閉状態で水平方向に約 5m/s〜15m/sの流速で噴射 するノズル等の噴射部と、上記混合容器の下部に設けられた上記液体の流出口と、 この流出口の下流に設けられ上記混合容器内の加圧状態を保持するために流路を 絞った圧力調節弁やその他の絞りを含む絞りとを設け、 上記混合容器内へ気体を 噴射して、 上記混合容器内の気体と噴射された液体とで気液の反応または溶解を 行わせ、 気体が溶解した液体を上記流出口及び絞りを経て供給する気液溶解混合 装置である。 さらに、上記混合容器の上部から上記噴射部の上流側までの間に、切 換弁と、 この切換弁の上流側に設けられた気体タンクと、 この気体タンクの上流 側に設けられたコンプレッサやボンベ等の気体供給源とからなる気体注入手段を 設けたものである。
またこの発明は、 流体流路の一部を絞ったベンチユリ管状などの絞り部と、 そ のわずかに下流に形成され上記絞り部よりわずかに内径の大きい円筒状の流路と、 この円筒状の流路の下流側に設けられ徐々に管路を広げた広がり部と、 上記円筒 状の流路に接続され外部から気体を流入させる気体流入口とを備えた気体吸弓 I器 からなる噴射部を設け、 この噴射部を、 気体が充填された混合容器の上部に取り 付けて上記混合容器内に開口させ、 上記混合容器の下部に上記液体の流出ロを設 け、 この流出口の下流の管路を分岐し、 一方の管路に上記混合容器内の加圧状態 を保持するために流路を絞った絞りを設け、 他方の管路に開閉弁を設け、 上記噴 射部から液体を上記混合容器内に密閉状態で噴射し、 上記混合容器内の気体と噴 射された液体とで気液の反応または溶解を行わせ、 気体が溶解した液体を上記流 出口及び絞りを経て供給する気液溶解混合装置である。
また、 上記噴射部を有した混合容器を複数並列に配設し、 上記各噴射部が配管 を介して各々液体供給源に接続され、 上記各混合容器の流出口には、 各々配管及 び絞りが設けられたものである。
またこの発明は、 気体を充填した混合容器と、 この混合容器の上部に設けられ 液体を上記混合容器内へ密閉状態で水平方向に約 5m/S〜15m/sの流速で噴射 するノズル等の噴射部と、 この液体を供給するポンプ等の液体供給装置と、 上記 噴射部の上流側の液体流路の液体の供給圧よりも僅かに高い圧力 (液体の供給圧 の 110 %以下) で気体を液体流路に供給する気体供給装置と、 上記混合容器の下 部に設けられた上記液体の流出口と、 この流出口の下流に設けられ上記混合容器 内の加圧状態を保持するために流路を絞った圧力調節弁やその他の絞りまたはノ ズルを含む絞りとを設け、 上記混合容器内へ液体を噴射して、 上記混合容器内の 気体と噴射された液体とで気液の反応または溶解を行わせ、 気体が溶解した液体 を上記流出口及び絞り等を経て供給する気液溶解混合装置である。 また、 上記気 体供給装置は、 上記混合容器内の気体圧よりも僅かに高い圧力 (混合容器内の気 体圧の 110 %以下) で上記混合容器内へ気体を供給するものである。
さらに、 上記気体供給装置はコンプレッサ等の下流側に気体タンクを設け、 さ らにその下流にバルブまたは固定絞り等の絞りを設け、 所定の期間毎または所定 の気体条件により上記液体供給管路ゃ上記混合容器内に、 上記液体の供給圧より も僅かに高い圧力で気体の供給を行なう気液溶解混合装置である。
またこの発明の気液溶解混合装置は、 上記流出口の下流側に、 配管を介して上 記と同様の他の混合容器を直列に接続し、 この配管が上記他の混合容器の上部に 接続され、 上記他の混合容器の流出口に、 上記絞りが接続されている気液溶解混 合装置である。
また、 上記噴射部による液体噴射方向に沿って所定距離だけ上記噴射された液 体をその下方の液体と仕切る隔壁を設けたものである。 また、上記流出口は上記 混合容器内の液体の噴射方向と対面する位置の壁面またはその近傍以外の壁面に 取り付けられているものである。 または、 上記噴射部の下方に上記液体噴射方向 に隔壁を設け、 上記流出口は上記隔壁の下方であって上記噴射部のほぼ直下に取 り付けられている気液溶解混合装置である。 そして、 上記隔壁の上記噴射部側に 透孔を形成し、 上記透孔は下方が相対的に大きく形成されているものである。 以下、 この発明の気液溶解混合方法および気液溶解混合装置の実施の形態を図 面に基づいて説明する。
第 1図、第 2図はこの発明の第 1実施形態を示したもので、第 1図は液体圧送開 始時の状態、第 2図は定常運転時の状態を示す。 この実施形態では、液体を供給す る配管 10に接続された噴射部であるノズル 12が、気密状態に形成された混合容器 14の上部に接続されている。 混合容器 14の下部には、流出口 16から配管 18を経 て絞り 20が接続され、 絞り 20の下流側には流出用の配管 22が接続されている。 なお、 第 1図では、絞り 20を固定絞りで示したが、 バルブ等の可変の絞りを用い ても良い。
この実施形態の気液溶解混合装置は、気体を溶解させる液体が外部から配管 10 を通してノズル 12へ流入する。 ノズル 12で液体は、加速されてジエツ ト 15とな つて混合容器 14内に噴射される。 混合容器 14の中には、液体中に溶解させる気体 があらかじめ充填されており、 液体の流入により気体の体積が圧縮され、 次第に 混合容器 14内が加圧状態になる。 そして、 この加圧状態の混合容器 14内で気液の 反応や気液溶解がおこる。
ここで、 効率よく気液反応や気液溶解を行わせるために加速された液体のジェ ッ ト 15の流速は、最低 5.0m/s程度必要であり、特に lOmZs前後がエネルギー 効率を考慮すると望ましく、 15.0mZsを超えると、気液反応は向上せず、液体の 圧送に要するエネルギーのみが増大するだけである。 また、 この流速を得るため のノズル 12の出口の開口部 13の断面積は、連続の式より以下の関係式により設定 する。 S】 = Q/U (1)
S,:開口部の断面積 [m2]
Q:液流量 [m3/s]
U:液流速 [m/s] 混合容器 14内で気液反応を終えた液体は、流出口 16に接続された配管 18を通 つて混合容器 14から流出する。 流出口 16は混合容器 14の下部に設けられている ために、 容器内に封じ込められている気体は流出せずに液体のみが流出し、 配管 18を通った液体は、 絞り 20で加速され流速が速くなる。 そして、 液体が絞り 20 を通過する流速に対応して、混合容器 14内が加圧状態になり、絞り 20を通過した 液体は、配管 22を通り装置外部へ流出する。 で、絞り 20の断面積と混合容器 14の加圧との間に、 以下の関係が成立する。
P, = Q2/2S2 2 (2)
P :液体の密度 [KgZm3]
P】:混合容器の加圧 (ゲージ圧) [Pa] )
S2:絞りの断面積 [m2] この実施形態においては、定常運転時に液面 24がノズル 12の開口部 13の位置 の近くにあることがより効率的な気液反応や気液溶解が得られる。 従って、 液面 をこの位置に設定するためには、混合容器 14の各部の体積と容器内圧力の間に以 下の関係を満足すれば良い。
P,/Po = Vo/V, 一 1 (3)
P。:液体注入前の混合容器の圧力 (絶対圧) [Pa]
P 密封容器の加圧 (ゲージ圧) [Pa]
Vo:混合容器の体積 [m3]
V,:混合容器のノズル開口部より上面部分の体積 [m3] この実施形態の気液溶解混合装置によれば、 液体の圧送時に、 気体の吸引及び 圧送が伴わないので、 相対的に少ないエネルギーで可能であり、 気液混合の効率 も高いものである。 さらに、液体が下部に溜るため気体が流出口 16から流出しに く く、気体の無駄がなく利用効率が高いものである。 なお、混合容器 14中の液体 は、 気液溶解により減少するが、 ある程度減少した時点で、 適宜ボンべまたはコ ンプレッサ等により気体を混合容器中に充填すれば良く、 以後、 必要に応じてこ れを繰り返す。
次に、 この発明の第 2実施形態を第 3図に示す。 本実施形態の気液溶解混合装置 は、上記第 1実施形態の気液溶解混合装置のノズル 12からのジエツ ト 15の流入部 分に、隔壁 25で隔離されたダク ト部 26を設けたものである。 またその他各種の条 件は、 上記第 1実施形態と同様であり、 使用方法も同様である。
この実施形態によれば、ダク ト部 26によってジヱッ ト 15の周囲が狭い空間に隔 離された状態になり、 このダク 卜部 26の内部に大小様々な大きさの渦が生じ気液 の高接触状態が得られ、ダク 卜部 26内部で高効率な気液反応や気液溶解が起こる。 なお、 このダク ト部 26の大きさは、 ジヱッ ト 15の直径の 10〜20倍の大きさに設 定することが好ましい。 また、 この実施形態においても、 液体の表面は、 ノズル 12の付近にあつた方が、 より高い気液の接触状態を得ることができる。
次に、 この発明の気液溶解混合装置の第 3実施形態を第 4図に示す。 この実施形 態では、混合容器 28がループ状に形成された配管 29で構成されている。 この実施 形態でも、 ノズル 12から連続する配管 29の内径をジヱッ ト 15の径の 10〜20倍 の大きさにすると、上記第 2実施形態の隔壁 25に相当する作用を得ることができ、 同様の効果を期待することができる。 またその他の各種条件及び使用方法は、 上 記第 1実施形態と同様である。
この実施形態では配管 29を螺旋状に構成したが、配管 29の形状は適宜設定可能 なものであり、 ノズル 12からの液体ジェッ トが 5.0m/s以上の流速で水平方向に 噴射され、 ジヱッ ト 15の入り口よりも液体の流出口 16が下にあり、その下流に絞 りが設けられていれば、 どのような構成にしてもかまわない。 また、 この場合も 液面を上記第 1実施形態に示したように、 ノズル開口部位置付近にすることがより 好ましい。
次にこの発明の気液溶解混合装置の第 4実施形態を第 5図に示す。 ここで、上述 の実施形態と同様の構成は同一の符号を付して説明を省略する。 第 5図は装置全 体の構成を示し、 この実施形態では、 ポンプ 30に給水配管 32と吐出配管 34が接 続されている。 吐出配管 34の途中には、逆止弁 35が配置され、 その下流側の途中 に気体注入手段である気体配管 36が接続されている。 吐出配管 34は、 ノズル 12 に接続され、 気体が加圧状態で密閉された混合容器 14の上部に接続されている。 気体配管 36には、 気体注入手段として、逆止弁 38を介してコンプレッサ 39が接 続されている。 混合容器 14には、下部の流出口 16に配管 18が接続され、配管 18 は絞り 20を介して配管 22に接続されている。 なお、絞り 20は、 各種のバルブ等 の可変絞りを用いても良く、気体配管 36も、 ノズル 12の上流以外に、混合容器 14 の上部に接続しても良い。
この実施形態の気液溶解混合装置の作用は、ポンプ 30によつて源水槽 40から給 水配管 32を通じて吸い上げられた液体が、 ポンプ 30によって圧送され、吐出配管 34を通してノズル 12へ流入する。 ノズル 12で液体は、上記実施形態と同様に、加 速されてジヱッ トとなって混合容器 14内に送り込まれる。 混合容器 14の中には、 気体があらかじめ封じ込められていて、 液体の流入により気体の体積が圧縮され 混合容器 14内が加圧状態になり、加圧状態の混合容器 14内で、注入された液体と 封じ込められていた気体の間で気液反応や気液溶解が起こる。 なお、 その他の各 種条件や使用方法は上記第 1実施形態と同様である。
この実施形態では特に、気液反応や気液溶解によつて混合容器 14内部の気体が 消費され気体が不足状態となった際に、ポンプ 30を停止させて混合容器 14内を減 圧し、コンプレッサ 39で混合容器 14内に気体を補給する。 そして、気体の補給後、 コンプレッサ 39を停止させ、ポンプ 30を再び作動させる。 なお、気体圧送手段と してコンプレッサ 39を用いたが、 ボンべ等の他の圧送手段を用いても良い。 ここ で、 コンプレッサ 39からの気体配管 36の途中に逆止弁 38が設けられているので、 液体圧送時に液体がコンプレッサ 39に逆流せず、 吐出配管 34の途中に逆止弁 35 が設けられているので、 気体補給時に気体がポンプ 30に逆流しない。
また、気体の補給時にポンプ 30による液体の圧送を止めて気体の補給を行うの は、 特に連続的な気液溶解混合を必要としない場合においては、 この方が液体圧 送手段に大きな負荷がかからず、 気体圧送動力も低減できて有利なためである。 さらにこの実施形態においても、 定常運転時には液面がノズル開口部の位置の近 くにあることでより効率的な気液反応や気液溶解が得られる。 また上記第 2実施 形態のように、 隔壁を混合容器 14のノズル 12の開口部付近に設けてもよい。 次にこの発明の気液溶解混合装置の第 5実施形態を第 6図に示す。 ここで、上述 の実施形態と同様の構成は同一の符号を付して説明を省略する。 この実施形態は、 上記第 4実施形態の構成であつて、 ノズル 12と混合容器 14が直列に配管 41を介 して 2連に繋がれたものである。 第 6図に示すように、混合容器 14の流出口 16か ら配管 41がノズル 12と同様のノズル 42に接続され、 ノズル 42は混合容器 14と 同様の混合容器 44に接続してる。 なお、 このノズルと混合容器を直列に接続する 組数は適宜設定可能なものである。 またその他の各種の条件は、上記第 1実施形態 と同様である。
この実施形態では、 ノズル 12と混合容器 14が直列に 2組接続され、 1組の場合 の倍の気液接触が得られ、 さらに組数を多くするとそれだけ多くの気液接触が得 られる。
次にこの発明の気液溶解混合装置の第 6実施形態を第 7図に示す。 ここで、上述 の実施形態と同様の構成は同一の符号を付して説明を省略する。 この実施形態は、 第 7図に示すように、第 4実施形態の気液溶解混合装置が 2組並列に配置されてい る。 この実施形態の気液溶解混合装置の使用方法は、 一方の装置が気体の補給の ために停止している間にもう一方の装置を運転する動作を行うものである。 これ により、 気体補給のための停止期間がなく連続運転可能な気液溶解混合装置を実 現できる。 また、 この実施形態も、 3組以上の装置を並列させても良い。 なお、 そ の他の各種の条件は、 上記各実施形態と同様である。
次にこの発明の気液溶解混合装置の第 7実施形態を第 8図〜第 11図に示す。 こ こで、 上述の実施形態と同様の構成は同一の符号を付して説明を省略する。 この 実施形態は、第 8図に示すようにポンプ 30の吸水側には吸水源 60に接続された給 水配管 32が設けられ、 ポンプ 30の吐出側には吐出配管 34が接続されている。 吐 出配管 34の下流側端部には、噴射部としての気体吸引器 50が接続され、気体吸引 器 50が混合容器 14上部に接続されている。 気体吸引器 50には、気体配管 36が逆 止弁 38を介して接続されている。
混合容器 14の下部の流出口 16には、 配管 54が接続され、 配管 54の分岐点 55 の一方は、絞り 20を経て流出用の配管 22に接続されている。 分岐点 55の他方の 配管 54は、開閉バルブ 56を経て、配管 58に接続されている。 そして、配管 58は、 給水源 60に接続されている。
気体吸引器 50は、 第 11図に示すように、 液体入口 51の下流側がベンチユリ管 状に形成され、絞り部 (喉部) 53の下流に、 この絞り咅 P (喉部) 53と同心円に構 成されわずかに内径の大きい円筒状の気体吸弓ほ が形成され、気体吸弓 I部 57に 気体流入口 59が作られ開口している。 気体流入口 59の下流側には広がり部 61が 形成され、 この広がり部 61が混合容器 14の上部に開口している。 この実施形態の気液溶解混合装置は、ポンプ 30によつて給水源 60から給水配管 32を通して吸い上げられた液体が、 ポンプ 30によって圧送され、 吐出配管 34を 通じて気体吸弓 I器 50へ流入する。 気体吸弓 I器 50で液体は加速されて第 9図に示す ように、 ジヱッ ト 15となって混合容器 14内に送り込まれる。 そして、上記実施形 態と同様に、 注入された液体と封じ込められている気体の間で気液反応や気液溶 解がおこる。 この場合の条件は、 上記第 1実施形態と同様であり、 第 10図に示す ように、液体の液面は、 ジヱッ ト 15の噴出口である広がり部 61付近である方が効 率良い気液の接触状態が得られる。
この実施形態では、 気液反応や気液溶解の結果気体の不足が生じた際には、 開 閉バルブ 56を開いて気体の吸引を行うものである。 開閉バルブ 56を開くことによ り、 絞り 20の効果が無くなり、 混合容器 14内部が減圧され、 気体吸引器 50の気 体吸弓 I器 57が負圧状態となり、 外部から気体が気体吸弓 I器 50を通り混合容器 14 内部に吸引される。 混合容器 14内部では、流出口 16が下部に設けられているため に、気体よりも液体が先に流出し、 その空間に気体が吸引される。 気体の補給後、 再び開閉バルブ 56を閉じ、絞り 20の効果を復活させると、混合容器 14内では、上 述のように、液体の流入とともに気体圧力が上昇し、気液溶解混合が行われる。 以 後、 必要に応じてこれを繰り返す。
次にこの発明の気液溶解混合装置の第 8実施形態を第 12図に示す。 ここで、 上 述の実施形態と同様の構成は同一の符号を付して説明を省略する。 この実施形態 は、第 12図に示すように、気体吸引器 50からのジヱッ ト 15の流入部分に隔壁 25 を設けてダク ト部 26を形成したものであり、 その他の構成及び作用は、 上記第 7 実施例と同様であり、 各種の条件も同様である。
この実施形態では、上述のように、隔壁 25によってジヱッ 卜 15が狭い空間に閉 じこめられ、気液の高接触が得られる。 またこの場合も、 このダク ト部 26の大き さは、 ジヱッ ト 15の直径の 10〜20倍の大きさに設定することが望ましい。 次にこの発明の気液溶解混合装置の第 9実施形態を第 13図に示す。 ここで、上 述の実施形態と同様の構成は同一の符号を付して説明を省略する。 この実施形態 は、第 13図に示すように、 流出口 16の下流に直列に気体吸引器 50、 混合容器 14 を設け、 上流側の気体吸引器 50の手前に気体配管 36、 下流側の混合容器 14の下 流に絞り 20が設けられている。 この実施形態では気体吸引器 50と混合容器 14の 組数を 2組としたが、適宜追加して組数を多く しても良い。 また、 2段目以降の下 流では、気体吸引器 50の代わりに、ノズルを混合容器 14の上部に接続してもよい。 またその他の各種の条件は、 上記第 1実施形態と同様である。
この実施形態では、気体吸引器 50、混合容器 14を直列に多段に接続することに より、 より大きい気液接触が得られる。
次にこの発明の気液溶解混合装置の第 10実施形態を第 14図に示す。 ここで、上 述の実施形態と同様の構成は同一の符号を付して説明を省略する。 この実施形態 は、 第 14図に示すように、 気液溶解混合装置が 2台並列に配置されているもので ある。 これにより、 一方の装置が気体の補給のために停止している間にもう一方 の装置を運転するようにし、 気体補給時の停止のな 、連続運転可能な気液溶解混 合装置を実現できる。 さらに、 3組以上の装置を並列させても良い。 なお、 その他 の各種の条件は、 上記第 1実施形態と同様である。
次にこの発明の気液溶解混合装置の第 11実施形態を第 15図に示す。 ここで、上 述の実施形態と同様の構成は同一の符号を付して説明を省略する。 この実施形態 は、第 15図に示すように、上記第 7実施形態の絞り 20の代わりに、圧力調節バル ブ 70を取り付け、上記第 7実施形態の分岐点以下の減圧用の管路を省略したもの である。 この実施形態では、気体吸引器 50から気体を吸引させる際に、圧力調節 バルブ 70を開放して混合容器 14内を減圧し、 その後、圧力調節バルブ 70を絞る ことによって混合容器 14内を加圧状態にする。 またその他の各種の条件は、上記 第 1実施形態と同様である。
次にこの発明の気液溶解混合装置の第 12実施形態を第 16図、 第 17図に示す。 ここで、 上述の実施形態と同様の構成は同一の符号を付して説明を省略する。 こ の実施形態は、第 16図に示すように、上記第 7実施形態の気体吸引器 50を吐出管 路 34の途中に設け、吐出管路 34の先端に、 ノズル 12を取り付け、 このノズル 12 を混合容器 14に上部に接続したものである。 その他の構成は、 上記第 1、 第 7実 施形態と同様であり、 またその他の各種の条件は、 上記第 1実施形態と同様であ る。
ここで、 この実施形態のノズル 12の開口部 13の断面積は、 気体吸引器 50の喉 部 53や絞り 20の断面積に比べて十分大きく、 しかも、 ジヱッ ト 15の流速は、 5 〜15mZsの範囲であることが望ましい。 特に、 ノズル 12の出口側開口部 13の断 面積は、 喉部 53や、絞り 20の断面積の 1.5倍以上であることが望ましい。 またそ の他の各種の条件は、 上記第 1実施形態と同様である。
この実施形態の気液溶解混合装置によれば、逆止弁 38や気体配管 36に漏洩が生 じても、 ノズル 12から液体が噴射されている間は、混合容器 14内の気体が逆流す ることはない。
次に、 この発明の第 13実施形態を第 18図、第 19図に示す。 この実施形態の気 液溶解混合装置は、上記第 2実施形態の気液溶解混合装置の流出口 16の位置を、混 合容器 14の隔壁 25の下方であってノズル 12のほぼ直下の混合容器 14の下部に取 り付けたものである。 そして、 ポンプ 30に給水配管 32と吐出配管 34が接続され、 吐出配管 34の途中には、逆止弁 35が配置され、 その下流側の途中に気体注入手段 である気体配管 36が接続されている。 吐出配管 34は、 ノズル 12に接続され、 気 体が加圧状態で密閉された混合容器 14の上部に接続されて 、る。 気体配管 36に は、気体注入手段として、逆止弁 38を介してコンプレッサ 39が接続されている。 ノズル 12の直下部の流出口 16に配管 18が接続され、 配管 18は絞り 20を介して 配管 22に接続されている。 なお、絞り 20は、各種のバルブ等の可変絞りを用いて も良く、 気体配管 36も、 ノズル 12の上流以外に、 混合容器 14の上部に接続して も良い。
この実施形態の流出口 16の位置をこのようにしたのは、 流出口 16を第 18図の 位置とは反対側または第 3図に示すように液体の噴射方向と対面する壁面近傍に 設けると、 その位置の流出口から溶解しきらない気体が気泡として液体とともに 流出し、 気体の利用率が悪いものとなり、 また、 大きな気泡の混じった気液混合 流が形成されてしまうという問題があった。 そこで、 この実施形態のように、 流 出口 16の位置を、 ノズル 12の直下に設けることにより、 ジエ ツ 卜 15による流れ が流出口 16に向かわず、気液混合流が流出口 16に至る間に、溶解しきらない気泡 が隔壁 25の裏面に溜り、 流出口 16から容易に出ることがないものである。 そし て、 溜った気泡を適宜上方に逃がすことにより気体が無駄に流出しないものであ る。 この気泡が隔壁 25の裏面に溜る条件としては、混合容器 14の下方の流路の流速 O.lmZs以下であるとすると、第 18図において、混合容器 14の下方の流路の高さ Hと長さ Lの関係が、 L/H > 4であることが好ましい。 なお、 流出口 16の位置 は、 液体の噴射方向と対面する壁面またはその近傍以外の壁面であれば良い。 ま た、隔壁 25にわずかに傾斜をつけて、流出口 16の反対側が高くなるようにしてお けば、気泡が自然に上方に流れて、混合容器 14の上部に向かうものである。 その 他の条件及び使用方法等は、 第 1、 第 2、 第 4実施形態と同様である。 また、 ノズ ル 12の代わりに、 上記実施形態の気体吸引器 50を設けても良い。
次に、 この発明の第 14実施形態を第 20図、第 21図に示す。 この実施形態の気 液溶解混合装置は、上記第 13実施形態の気液溶解混合装置の混合容器 14の隔壁 25 の流出口 16近傍に、 透孔 72を形成したものである。
これにより、 隔壁 25の裏面に溜った気泡が透孔 72を経て、 混合容器 14の上部 に浮き上がり、 液体との混合に供されるものである。 従って、流出口 16から流れ 出る気泡を確実になく し、 より高効率の気体使用を可能にする。
ここで、 隔壁 25に形成する透孔 72は、第 20図に示すものの他、 第 21図 (A)、 (B) に示すように、全体または裏面側の一部に、下方に広く広がった円錐台部 72a を形成することにより、より容易に気泡が円錐台部 72aを経て透孔 72に寄せられ、 容易に上方に浮き上がるものである。
次に、 この発明の第 15実施形態を第 22図に示す。 この実施形態の気液溶解混合 装置は、 第 5図に示す第 4実施形態の気液溶解混合装置の、 逆止弁 38と吐出配管 34との間に気体配管 36に、気体注入手段としての気体タンク 74を設け、 さらに、 気体タンク 74と吐出配管 34の間の気体配管 36に、電磁弁 76を設けたものである。 この実施形態によれば、 先ず、 ポンプ 30により液体が圧送されている間に、 コ ンプレッサ 39を作動させて、気体タンク 74に加圧された気体を充填しておく。 そ して、 混合容器 14内の気体が不足してくると、 ポンプ 30及びコンプレッサ 39を 停止し、 電磁弁 76を切り替えて、気体タンク 74中の気体を混合容器 14中に充填 する。 このとき、気体タンク 74の気体圧力は、混合器 14内の気体圧力とほぼ等し く し、混合容器 14内の液体の流出とともに、気体タンク 74内の気体が混合容器 14 中に充填されるようにする。 これにより、混合容器 14内の液体が一度に流出することがなく、 しかも確実に 連続的に流出する。 さらに、液体圧送中即ち電磁弁 76が閉じている間に、 コンプ レッサ 39により気体を加圧して気体タンク 74に充填しておくので、第 5図に示す 上記第 4実施形態と比較して、 液体を圧送するポンプ 30の停止時間がきわめて短 いものである。 即ち、 コンプレッサ 39は立ち上げに時間がかかるため、 ポンプ 30 の停止後にコンプレッサ 39を作動させると、気体の圧力が混合容器 14内の気体圧 力になるまでの立ち上がり時間に多くの時間をとられるという問題があった。 し かし、 この実施形態では、 この立ち上りをポンプ 30の作動中に行うため、気体の 充填のためのポンプ 30の停止は、 例えば数秒程度で良いものである。
次に、 この発明の第 16実施形態を第 23図に示す。 ここで、上述の実施形態と同 様の構成は同一の符号を付して説明を省略する。 この実施形態は、第 23図に示す ように、上記第 7実施形態の気体吸引器 50を吐出管路 34の途中に設け、吐出管路 34の先端に、 ノズル 12を取り付け、 このノズル 12を混合容器 14の上部に接続し たものである。 さらに、 この実施形態の気液溶解混合装置は、上記第 12実施形態 の開閉バルブ 56を、電磁弁 76に置き換えたものである。 その他の構成は、上記第 1、第 7、第 12実施形態と同様であり、 またその他の各種の条件は、上記実施形態 と同様である。
ここで、 この実施形態のノズル 12の開口部 13の断面積は、上記第 12実施形態 と同様に、 気体吸引器 50の喉部 53や絞り 20の断面積に比べて十分大きく、 しか も、 ジヱッ ト 15の流速は、 5〜15m/sの範囲であることが望ましい。 特に、 ノズ ル 12の出口側開口部 13の断面積は、喉部 53や、絞り 20の断面積の 1.5倍以上で あることが望ましい。
この実施形態によれば、 コンプレッサを用いずに、 電磁弁 76の切換で、 自動的 に液体の噴射と気体の供給を行なわせることができるものである。
次に、 この発明の第 17実施形態を第 24図〜第 26図に示す。 ここで、上述の実 施形態と同様の構成は同一の符号を付して説明を省略する。 この実施形態では、 液体を供給する配管 34の先端部に接続された噴射部であるノズル 12が、気密状態 に形成された混合容器 14の一側面の上部に接続されて L、る。 混合容器 14の上記一 側面の下部には流出口 16が形成され、流出口 16から配管 18を経て絞りである減 圧ノズル 80が接続され、減圧ノズル 80は液体中に気体が溶解した処理水を溜める 水槽 88の側壁面に開口している。
配管 34の上流側には、液体を供給するポンプ 30が接続され、 さらにこのポンプ 30からノズル 12に至る配管 34の途中には、 ノズル 12側方向への流れを許容する 逆止弁 35が設けられている。 さらに、逆止弁 35とノズル 12との間に配管 36が接 続され、配管 36にはその上流側から気体供給装置であるコンプレッサ 39、気体を 溜める気体タンク 74、電磁弁 82、絞りであるバルブ 84及び逆止弁 38が、配管 36 に沿つて直列に設けられている。
混合容器 14内には、 ノズル 12が接続された側面から水平方向に容器内を所定長 さに仕切る隔壁 25が設けられている。 この隔壁 25のノズル 12側の端部には、 透 孔 72が形成されている。 隔壁 25は、気液の溶解、反応が不十分な液体が流出口 16 から出てしまうのを防止するものである。 また透孔 72は、隔壁 25の裏面側の下段 に溜つた気体を上段へ戻して再び気液の溶解や反応に供するためのものである。 これらにより、流出口 16から無駄に流れ出る気泡を少なく し、 より高効率の気体 使用を可能にする。
ここで、 隔壁 25に形成する透孔 72は、第 25図に示すものの他、 第 26図 (A)、 (B) に示すように、全体または裏面側の一部に、下方に広く広がった円錐台部 72a を形成することにより、より容易に気泡が円錐台部 72aを経て透孔 72に寄せられ、 容易に上方に浮き上がるものである。
また、 この実施形態の流出口 16の位置をノズル 12の下方にしたのは、流出口 16 を第 24図、第 25図の位置とは反対側の液体の噴射方向と対面する壁面近傍に設け ると、 その位置の流出口から溶解しきらな 、気体が気泡として液体とともに流出 し、 気体の利用率が悪いものとなり、 また、 大きな気泡の混じった気液混合流が 形成されてしまうという問題があった。 そこで、 この実施形態のように、 流出口 16の位置を、 ノズル 12の直下に設けることにより、 液体のジヱッ 卜 15による流 れが流出口 16に向かわず、気液混合流が混合容器 14内で流出口 16に至る間に、溶 解しきらない気泡が隔壁 25の裏面に溜り、流出口 16から容易に出ることがないも のである。 そして、溜った気泡を透孔 72により適宜上方に逃がすことにより気体 が無駄に流出しないものである。 ここで、 この気泡が隔壁 25の裏面に溜る条件としては、混合容器 14の下方の流 路の流速が O.lm/s以下であるとすると、 第 25図において、 混合容器 14の下方 の流路の高さ Hと長さ Lの関係が、 LZH〉4であることが好ましい。 なお、流出 口 16の位置は、液体の噴射方向と対面する壁面またはその近傍以外の壁面であれ ば良い。 また、隔壁 25にわずかに傾斜をつけて、流出口 16の反対側が高くなるよ うにしておけば、 気泡が自然に上方に流れて、 混合容器 14の上部に向かう。 この実施形態の気液溶解混合装置は、気体を溶解させる液体がポンプ 30により 圧送され配管 34を通してノズル 12へ流入する。 ノズル 12で液体は、 加速されて ジヱッ ト 15となって混合容器 14内に噴射される。 混合容器 14の中には、 液体中 に溶解させる気体があらかじめ充填されており、 液体の流入により気体の体積が 圧縮され、次第に混合容器 14内が加圧状態になる。 そして、 この加圧状態の混合 容器 14内で気液の反応や気液溶解が起こる。
ここで、 効率よく気液反応や気液溶解を行わせるために加速された液体のジェ ッ ト 15の流速は、最低 5.0m/s程度必要であり、特に 10m/s前後がエネルギー 効率を考慮すると望ましく、 15.0m/sを超えると、気液反応は向上せず、液体の 圧送に要するエネルギーのみが増大するだけである。 そして、混合容器 14内で気 液反応を終えた液体は、流出口 16に接続された配管 18を通って混合容器 14から 流出する。 流出口 16は混合容器 14の下部に設けられているために、容器内に封じ 込められている気体は流出せずに液体のみが流出し、配管 18を通った液体は、 減 圧ノズル 80で加速され水槽 88内に噴射される。
この実施形態においては、定常運転時に液面 24がノズル 12の開口部の位置の近 くにあることがより効率的な気液反応や気液溶解が得られる。 従って、液面 24を この位置に設定するためには、混合容器 14の各部の体積と容器内圧力の間に前記 (3) の式で表わされる関係を満足すれば良い。
次に、混合容器 14内の気体が気液の溶解や反応により減少し不足状態となつた 場合、電磁弁 82を開き、気体を配管 36からノズル 12の上流の配管 34に供給する。 このときの気体の供給圧は、配管 34と配管 36の接続部の液体の供給圧よりも僅か に高い圧力 (ただし配管 34の液体の供給圧の 110 %以下) であり、 好ましくは液 体の供給圧の 105 %前後の圧力である。 気体圧は、 タンク 74内の圧力を絞りであ るバルブ 84の開度を調節することにより、 適宜上記条件に合うように設定する。 この気体供給は、液体を圧送するポンプ 30を止めずに行なう。 また気体の供給タ ィミングは、液体流量と混合容器 14内の静圧により気体の消費割合が算出される ので、所定の期間例えばタイマー制御により定期的に行なうものである。 また、混 合容器 14内の気体の量を、液面 44を検知して所定位置の範囲内に来るように電磁 弁 82を開閉する制御をしても良い。
気体の供給時には気体の流入により配管 34内の圧力が高まり、ポンプ 30の負荷 も高くなる力 これに対応可能なポンプ 30を用いれば良く、逆止弁 35により気体 の逆流はない。 また、 気体供給時の圧力変動によるウォーターハンマ一現象を抑 えるために、 必要に応じてリリーフ弁 86を配管 34に接続する。
ここで、気体供給を行なっていない時の混合容器 14内の圧力を P,、液体流量を Q„ 気体供給を行なっている際の混合容器 14内の圧力を P2、 液体流量を Q2とす ると、 これらの間には下記の関係が生じる。
Qノ Q2 = (Pノ P2) (4) これより、 混合容器 14内の圧力 P,、 P2の差が小さい程、 液体流量 Q,、 Q2の変 動が小さいといえる。
この実施形態の気液溶解装置によれば、 定常の液体の圧送時に、 気体の吸引及 び圧送が伴わないので、相対的に少ないエネルギーで液体の圧送が可能であり、気 液混合の効率も高いものである。 さらに、 気体が減少した際には、 液体の供給圧 よりも僅かに高い圧力の気体を液体の圧送配管 34に供給して気体を補給するもの であり、 液体の圧送を止めることなく連続運転が可能であり、 気体溶解液を減圧 ノズル 80から連続的にほぼ一定に供給可能なものである。 さらに、 この実施形態 では液体が隔壁 25の下部ら透孔 72を経て上段へ戻るため気体が流出口 16から流 出しにく く、 気体の無駄がなく利用効率が高いものである。
次に、 この発明の第 18実施形態を第 27図に示す。 ここで上述の実施形態と同様 の構成は同一の符号を付して説明を省略する。 この実施形態の気液溶解混合装置 は、上記第 17実施形態の気液溶解混合装置の混合容器 14の上部に気体を供給する 配管 36が接続され開口したものである。
この実施形態の場合、気体の供給は混合容器 14内の上部の気体が溜った空間に 直接供給され、混合容器 14内の気体圧より僅かに高い圧力であれば良く、上記第 17実施形態の場合より気体供給圧は僅かではあるが低くても良い。 この気体圧の 調整もバルブ 84を調整して行ない、気体圧は混合容器 14内の気体圧より僅かに高 い圧力 (混合容器内の気体圧の 110 %以下) に設定するものであり、 この場合も、 混合容器内の気体圧の 105 %前後の圧力が好ましい。
この実施形態によれば、気体の供給を混合容器 14に直接接続して行なうもので あり、気体供給時の液体圧送配管 34及びポンプ 30に与える圧力変動が少なく、 ポ ンプ 30をほぼ一定の負荷で連続運転することができる。
なお、 この発明の気体の供給はコンプレッサ 39とタンク 74を用いるものの他、 ボンべを供給源としても良く、 また、絞りである減圧ノズル 80は、 他の固定絞り や可変絞りでも良く、適宜のバルブを用いても良い。 さらに、減圧ノズル 80は、水 槽 88に直接接続しているが、 配管 18の途中に設けても良い。
尚、 この発明の気液溶解混合装置は上記実施形態に限定されるものではなく、上 記各実施形態を適宜組み合わせた状態で実施することも可能であり、 例えば、 混 合容器を複数直列に接続した装置を、複数列並列に並べて構成することにより、高 効率の加圧混合溶解を得ることができるようにしてもよい。
次にこの発明の気液溶解混合装置を用いた実施例について説明する。
まず、 上記第 1実施形態の態様の装置と従来の装置とで比較実験を行ったとこ ろ、 0.3MPaの加圧状態を得るために、 この実施例の装置は、上記従来の装置の 1 /3のエネルギー消費しかなく、非常に効率が高いことがわかった。 また、気体の 利用率もこの実施例の場合 98 %と、 きわめて高効率であった。
次に上記第 17実施形態の態様の装置を用いて液体の供給圧を 0.32MPa、気体の 供給圧を 0,34MPa、 気体供給がない時の混合容器 14内の圧力を 0.30MPaとして この装置を運転したところ、気体供給の有無による液体流量の変動は 3〜4 %程度 となり、 ほぼ連続運転となっていることが確認された。
第 28図は、 この上記第 1実施形態の態様の装置 90を、水耕栽培に利用したもの である。 水耕栽培用べッ ド 92に供給する栽培水に対して、 この気液溶解混合装置 90により酸素の供給を行つたところ、飽和依存酸素濃度の 130 %の溶存酸素濃度 を得ることができた。 これにより、栽培植物の茎、 葉、 実の成長が促進された。 第 29図は、 上記第 1実施形態の態様の装置 90を、 活魚の生けす 94に酸素を供 給する装置に利用したものである。 生けす 94に供給する酸素は、酸素ボンべ 96か ら供給するものである。 この場合、従来の、単に酸素ボンべ 96からの酸素を泡に して生けす 94内に供給している場合と比較して、酸素利用率が従来の 5 %からこ の実施例では 98 %に向上し、 この実施例の場合に必要となる電気エネルギーやそ の他のコストを考慮しても、 酸素利用率が大幅に向上することから、 きわめて大 幅なコストダウンを図ることができる。
この発明の気液溶解混合方法と装置は、少ないエネルギーで気体の無駄なく、加 圧状態で効率良く気液の溶解混合を行うことができ、 装置全体の小型化も図るこ ともできるものである。
また、装置構成によっては、 この装置をほぼ一定に連続運転することができ、 し かも気体供給が少ないエネルギーで容易に可能である。 図面の簡単な説明
第 1図は、 この発明の第 1実施形態の気液溶解混合装置の断面図である。
第 2図は、 この発明の第 1実施形態の気液溶解混合装置の使用状態を示す断面図 である。
第 3図は、 この発明の第 2実施形態の気液溶解混合装置の断面図である。
第 4図は、 この発明の第 3実施形態の気液溶解混合装置の部分破断正面図 (A) と右側面図 (B) である。
第 5図は、 この発明の第 4実施形態の気液溶解混合装置を示す概略図である。 第 6図は、 この発明の第 5実施形態の気液溶解混合装置を示す概略図である。 第 7図は、 この発明の第 6実施形態の気液溶解混合装置を示す概略図である。 第 8図は、 この発明の第 7実施形態の気液溶解混合装置を示す概略図である。 第 9図は、 この発明の第 7実施形態の気液溶解混合装置の断面図である。
第 10図は、 この発明の第 7実施形態の気液溶解混合装置の使用状態を示す断面 図である。 第 11図は、 この発明の第 7実施形態の気液溶解混合装置の気体吸引器を示す断 面図である。
第 12図は、 この発明の第 8実施形態の気液溶解混合装置の断面図である。 第 13図は、 この発明の第 9実施形態の気液溶解混合装置を示す概略図である。 第 14図は、 この発明の第 10実施形態の気液溶解混合装置を示す概略図である。 第 15図は、 この発明の第 11実施形態の気液溶解混合装置を示す概略図である。 第 16図は、 この発明の第 12実施形態の気液溶解混合装置を示す概略図である。 第 17図は、 この発明の第 12実施形態の気液溶解混合装置の断面図である。 第 18図は、 この発明の第 13実施形態の気液溶解混合装置の混合容器の断面図で ある。
第 19図は、 この発明の第 13実施形態の気液溶解混合装置の概略図である。 第 20図は、 この発明の第 14実施形態の気液溶解混合装置の混合容器の断面図で ある。
第 21図は、 この発明の第 14実施形態の気液溶解混合装置の隔壁の透孔部分の断 面図である。
第 22図は、 この発明の第 15実施形態の気液溶解混合装置の概略図である。 第 23図は、 この発明の第 16実施形態の気液溶解混合装置の概略図である。 第 24図は、 この発明の第 17実施形態の気液溶解混合装置の概略図である。 第 25図は、 この発明の第 17実施形態の気液溶解混合装置の混合容器の断面図で ある。
第 26図は、 この発明の第 17実施形態の気液溶解混合装置の混合容器の隔壁の透 孔部分の断面図である。
第 27図は、 この発明の第 18実施形態の気液溶解混合装置の概略図である。 第 28図は、 この発明の気液溶解混合装置を水耕栽培に利用した実施例の概略図 である。
第 29図は、 この発明の気液溶解混合装置を生けすの酸素供給装置に利用した実 施例の概略図である。

Claims

請求の範囲
1.気体を充填した混合容器の上部に液体を水平方向に噴射する噴射部を設け、 上 記混合容器の下流に上記混合容器内の加圧状態を保持するために流路を絞った絞 りを設け、 この噴射部から液体を混合容器内に噴射し、 加圧状態で上記混合容器 内の気体と噴射された液体とで気液の反応または溶解を行わせるとともに、 上記 混合容器の下部から気体が溶解した液体を流出させ、 上記混合容器内での気体の 液体への溶解により内部の気体が減少すると、 上記混合容器内への液体の供給を 停止し、 上記混合容器内へ気体を供給し、 上記混合容器に対する液体の噴射及び 気体の供給を交互に行う気液溶解混合方法。
2.流体流路の一部を絞った絞り部と、 そのわずかに下流に外部から気体を流入さ せる気体流入口を形成した気体吸引器を備えた噴射部を設け、 この噴射部を気体 が充満した混合容器の上部に取り付け、 上記混合容器の下流に上記混合容器内の 加圧状態を保持するために流路を絞った絞りを設け、 この噴射部から液体を上記 混合容器内に噴射し、 上記混合容器内の気体と噴射された液体とで気液の反応ま たは溶解を行なわせるとともに、 上記混合容器の下部から気体が溶解した液体を 流出させ、 上記混合容器内での気体の液体への溶解により内部の気体が減少する と、 上記混合容器内の圧力を低下させて上記噴射部の気体吸 3ほから気体を吸弓 I しつつ上記液体を上記混合容器内に噴射し、上記混合容器内の気体が増加すると、 上記混合容器内の減圧を中止し上記気体吸引器からの気体吸引が止まり上記液体 の噴射を行ない、 上記噴射部による液体のみの噴射と、 気体吸引を伴う液体の噴 射との動作を交互に行う気液溶解混合方法。
3.気体を充填した混合容器の上部に液体を水平方向に噴射する噴射部を設け、 上 記混合容器の下流に上記混合容器内の加圧状態を保持するために流路を絞った絞 りを設け、 この噴射部から液体を混合容器内に噴射し、 加圧状態で上記混合容器 内の気体と噴射された液体とで気液の反応または溶解を行わせるとともに、 上記 混合容器の下部から気体が溶解した液体を流出させ、 上記混合容器内での気体の 液体への溶解により内部の気体が減少した際に、 液体の供給圧よりも僅かに高い 圧力で気体を上記噴射部の上流側の液体供給管路に注入する気液溶解混合方法。
4.気体を充填した混合容器の上部に液体を水平方向に噴射する噴射部を設け、 上 記混合容器の下流に上記混合容器内の加圧状態を保持するために流路を絞った絞 りを設け、 この噴射部から液体を混合容器内に噴射し、 加圧状態で上記混合容器 内の気体と噴射された液体とで気液の反応または溶解を行わせるとともに、 上記 混合容器の下部から気体が溶解した液体を流出させ、 上記混合容器内での気体の 液体への溶解により内部の気体が減少した際に、 上記混合容器内の圧力よりも僅 力、に高い圧力で気体を上記混合容器内へ注入する気液溶解混合方法。
5.上記噴射部から噴射される液体の速度は、 5m/s〜15m/sである請求項 1乃至 4いずれか一項に記載の気液溶解混合方法。
6.上記混合容器内の液面を、 ほぼ上記噴射部の出口の高さに調節する請求項 1乃 至 4いずれか一項に記載の気液溶解混合方法。
7. 気体を充填した混合容器と、 この混合容器の上部に設けられ液体を上記混合 容器内へ密閉状態で水平方向に噴射する噴射部と、 上記混合容器の下部に設けら れた上記液体の流出口と、 この流出口の下流に設けられ上記混合容器内の加圧状 態を保持するために流路を絞った絞りとを設け、 上記混合容器内へ液体を噴射し て、上記混合容器内の気体と噴射された液体とで気液の反応または溶解を行わせ、 気体が溶解した液体を上記流出口及び絞りを経て供給する気液溶解混合装置。
8.上記噴射部の上流側から上記混合容器の上部までの間に、 気体注入手段を設け た請求項 7記載の気液溶解混合装置。
9.上記気体注入手段は、 切換弁と、 この切換弁の上流側に設けられた気体タンク と、 この気体タンクの上流側に設けられた気体供給源とにより構成した請求項 7記 載の気液溶解混合装置。
10.上記噴射部は、流体流路の一部を絞った絞り部と、 この絞り部のわずかに下流 側の流路に接続され外部から気体を流入させる気体流入口と、 上記絞り部の下流 側に設けられ徐々に管路を広げた広がり部とを備えた気体吸引器を備え、 上記流 出口の下流の管路を分岐し、 一方の管路に上記混合容器内の加圧状態を保持する ために流路を絞った絞りを設け、他方の管路に開閉弁を設けた請求項 7記載の気液
11.上記噴射部を有した混合容器を複数配設し、上記各噴射部が配管を介して各々 液体供給源に接続され、 上記各混合容器の流出口には、 各々配管及び絞りが設け られた請求項 7乃至 10いずれか一項に記載の気液溶解混合装置。
12.気体を充填した混合容器と、 この混合容器の上部に設けられ液体を上記混合容 器内へ密閉状態で水平方向に噴射する噴射部と、 この液体を上記混合容器に供給 する液体供給装置と、 上記噴射部の上流側の液体流路に液体の供給圧よりも僅か に高い圧力で気体を供給する気体供給装置と、 上記混合容器の下部に設けられた 上記液体の流出口と、 この流出口の下流に設けられ上記混合容器内の加圧状態を 保持するために流路を絞った絞りとを設け、上記混合容器内へ液体を噴射して、上 記混合容器内の気体と噴射された液体とで気液の反応または溶解を行わせ、 気体 が溶解した液体を上記流出口及び絞りを経て供給する気液溶解混合装置。
13.気体を充填した混合容器と、 この混合容器の上部に設けられ液体を上記混合容 器内へ密閉状態で水平方向に噴射する噴射部と、 この液体を上記混合容器に供給 する液体供給装置と、 上記混合容器内の気体の圧力よりも僅かに高い圧力でこの 混合容器内へ気体を供給する気体供給装置と、 上記混合容器の下部に設けられた 上記液体の流出口と、 この流出口の下流に設けられ上記混合容器内の加圧状態を 保持するために流路を絞った絞りとを設け、上記混合容器内へ液体を噴射して、上 記混合容器内の気体と噴射された液体とで気液の反応または溶解を行わせ、 気体 が溶解した液体を上記流出口及び絞りを経て供給する気液溶解混合装置。
14.上記流出口の下流側に、配管を介して上記と同様の他の混合容器を接続し、 こ の配管が上記他の混合容器の上部に接続され、 上記他の混合容器の流出口に、 上 記絞りが接続されている請求項 7乃至 13いずれか一項に記載の気液溶解混合装置。
15.上記噴射部による液体噴射方向に沿って上記噴射された液体をその下方の液 体と仕切る隔壁を設けた請求項 7乃至 14いずれか一項に記載の気液溶解混合装置。
16.上記流出口は上記混合容器内の液体の噴射方向と対面する位置の壁面または その近傍以外の壁面に取り付けられている請求項 7乃至 14いずれか一項に記載の 気液溶解混合装置。
17.上記噴射部の下方に上記液体噴射方向に隔壁を設け、上記流出口は上記隔壁の 下方であつて上記噴射部のほぼ直下に取り付けられて L、る請求項 7乃至 14いずれ か一項に記載の気液溶解混合装置。
18.上記隔壁の上記噴射部側に透孔を形成した請求項 17記載の気液溶解混合装置。
19.上記透孔は下方が相対的に大きく形成されている請求項 18記載の気液溶解混 合装置。
20.上記気体供給装置は、混合容器内に供給する気体圧を所定の圧力に設定する絞 りを有した請求項 12または 13記載の気液溶解混合装置。
PCT/JP1997/001469 1996-10-25 1997-04-23 Procede et appareil pour dissoudre/melanger un gaz dans un liquide WO1998018543A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/091,373 US6142456A (en) 1996-10-25 1997-04-23 Method and apparatus for dissolving and mixing gas and liquid
EP97919712A EP0906780A4 (en) 1996-10-25 1997-04-23 METHOD AND DEVICE FOR SOLVING / MIXING GAS IN LIQUID

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP30118696A JPH09173804A (ja) 1995-10-26 1996-10-25 気液溶解混合方法と装置
JP8/301186 1996-10-25

Publications (1)

Publication Number Publication Date
WO1998018543A1 true WO1998018543A1 (fr) 1998-05-07

Family

ID=17893815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001469 WO1998018543A1 (fr) 1996-10-25 1997-04-23 Procede et appareil pour dissoudre/melanger un gaz dans un liquide

Country Status (6)

Country Link
US (1) US6142456A (ja)
EP (1) EP0906780A4 (ja)
KR (1) KR19990044352A (ja)
CN (1) CN1197410A (ja)
TW (1) TW358755B (ja)
WO (1) WO1998018543A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365812B1 (ko) * 2000-04-03 2002-12-26 주식회사 오조네이쳐 유체 혼합 장치
JP4210462B2 (ja) * 2002-03-29 2009-01-21 株式会社ディスコ 切削装置
WO2005115596A1 (ja) * 2004-05-31 2005-12-08 Sanyo Facilities Industry Co., Ltd. 微細気泡含有液生成方法及び装置並びにこれに組み込まれる微細気泡発生器
US20070257381A1 (en) * 2006-05-08 2007-11-08 Chuang Shuo W Cavitation generating system
US8128741B2 (en) 2006-05-26 2012-03-06 Panasonic Electric Works Co., Ltd. Gas dissolving apparatus
KR100936878B1 (ko) * 2007-06-29 2010-01-14 이정수 기체용해장치
JP5666086B2 (ja) * 2008-12-25 2015-02-12 ジルトロニック アクチエンゲゼルシャフトSiltronic AG シリコンウェハ洗浄装置
CN101947418B (zh) * 2010-09-08 2013-08-14 营口艾特科技有限公司 在液体中加入氙气的设备
CN102145931B (zh) * 2011-02-24 2012-11-14 孙学军 一种利用压强提高氢气在水中溶解量的方法及装置
JP5825852B2 (ja) * 2011-05-31 2015-12-02 Idec株式会社 微細気泡生成ノズルおよび微細気泡生成装置
JP5670843B2 (ja) * 2011-08-11 2015-02-18 Idec株式会社 生物育成装置
FR3006209B1 (fr) * 2013-05-31 2016-05-06 Michel Bourdat Dispositif et procede de nettoyage d'objets en forme de plaque
JP6243778B2 (ja) * 2014-03-28 2017-12-06 三相電機株式会社 微細気泡発生装置
JP2016104474A (ja) 2014-08-22 2016-06-09 有限会社情報科学研究所 共鳴発泡と真空キャビテーションによるウルトラファインバブル製造方法及びウルトラファインバブル水製造装置。
KR102451972B1 (ko) * 2015-03-04 2022-10-11 코웨이 주식회사 탄산수 제조 시스템
KR102451971B1 (ko) * 2015-03-06 2022-10-11 코웨이 주식회사 탄산수 제조 시스템 및 이의 제어 방법
KR102473893B1 (ko) * 2015-03-10 2022-12-07 코웨이 주식회사 탄산수 제조 장치
CN106768843B (zh) * 2017-01-09 2023-07-28 广西大学 一种针孔喷射式两相流动态观测装置
JP6917790B2 (ja) * 2017-06-12 2021-08-11 株式会社荏原製作所 ガス溶解液製造装置
CN108722691A (zh) * 2018-07-04 2018-11-02 广东工业大学 一种果实分离装置及果实分离方法
CN111111491B (zh) * 2020-01-02 2022-12-20 科勒(中国)投资有限公司 碳酸水再溶解装置和碳酸水生成设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161235A (ja) * 1990-10-23 1992-06-04 Mitsuo Takano 加圧溶解水供給装置
JPH06269651A (ja) * 1993-01-22 1994-09-27 Idec Izumi Corp 気液加圧混合装置とこれを用いた廃液等の処理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2735720A (en) * 1956-02-21 evert
US904301A (en) * 1908-06-01 1908-11-17 James Black Apparatus for cleaning or washing smoke.
US2271896A (en) * 1940-04-27 1942-02-03 Harry H Lewis Carbonator
US3367402A (en) * 1965-06-08 1968-02-06 Air Prod & Chem Quench system
FR1565263A (ja) * 1968-05-17 1969-04-25
US4164541A (en) * 1976-11-22 1979-08-14 Lubas William Venturi mixer
EP0639160B1 (en) * 1992-05-14 2000-07-19 Idec Izumi Corporation Apparatus for dissolving a gas into and mixing the same with a liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161235A (ja) * 1990-10-23 1992-06-04 Mitsuo Takano 加圧溶解水供給装置
JPH06269651A (ja) * 1993-01-22 1994-09-27 Idec Izumi Corp 気液加圧混合装置とこれを用いた廃液等の処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0906780A4 *

Also Published As

Publication number Publication date
TW358755B (en) 1999-05-21
EP0906780A1 (en) 1999-04-07
CN1197410A (zh) 1998-10-28
KR19990044352A (ko) 1999-06-25
EP0906780A4 (en) 2003-03-19
US6142456A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
WO1998018543A1 (fr) Procede et appareil pour dissoudre/melanger un gaz dans un liquide
JPH09173804A (ja) 気液溶解混合方法と装置
JP5033921B2 (ja) 噴水装置
JP4298824B2 (ja) 気液溶解混合装置
KR20110089867A (ko) 기포 발생용 화재 진압 장치 및 방법
CN101878064A (zh) 间歇地用气体使饮用水碳酸化并输出该饮用水的装置和方法
WO2018198994A1 (ja) ジェット噴射装置
JPH1094722A (ja) 微細泡沫供給装置
JPH10244138A (ja) 気液溶解混合方法と装置
KR101232340B1 (ko) 에어포그 발생장치
JP2792016B2 (ja) 気液溶解混合装置
JP2003245533A (ja) 超微細気泡発生装置
US20170259091A1 (en) Fire-fighting system
WO2007001212A2 (en) Mixer and fire-extinguishing apparatus
KR102440907B1 (ko) 미세 기포 생성 장치
JP4748247B2 (ja) 洗浄装置及び洗浄方法
CN201832739U (zh) 一种可切换的喷射输出泡沫或清水装置和高效制泡装置
JP2012024719A (ja) 微細バブル含有液供給装置
JP5223484B2 (ja) エゼクタおよびイオン交換装置
RU2297864C2 (ru) Устройство пожаротушения
JP2003001101A (ja) 深層海水中への液体二酸化炭素送り込み装置及び液体二酸化炭素送り込み方法
JPH07308556A (ja) 気体溶解方法と装置
CN104759050A (zh) 大流量内置式非预混型压缩空气泡沫灭火装置
JPH07270097A (ja) キャビテ−ションの発生方法および発生装置
KR100839464B1 (ko) 혼합수 분사장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97190884.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1997919712

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019980701594

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09091373

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997919712

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980701594

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019980701594

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997919712

Country of ref document: EP