WO1998017810A2 - Multi-functional chimeric hematopoietic receptor agonists - Google Patents

Multi-functional chimeric hematopoietic receptor agonists Download PDF

Info

Publication number
WO1998017810A2
WO1998017810A2 PCT/US1997/020037 US9720037W WO9817810A2 WO 1998017810 A2 WO1998017810 A2 WO 1998017810A2 US 9720037 W US9720037 W US 9720037W WO 9817810 A2 WO9817810 A2 WO 9817810A2
Authority
WO
WIPO (PCT)
Prior art keywords
xaa
leu
ser
ala
arg
Prior art date
Application number
PCT/US1997/020037
Other languages
English (en)
French (fr)
Other versions
WO1998017810A3 (en
Inventor
Charles A. Mc Wherter
Yiqing Feng
John P. Mc Kearn
Neena L. Summers
Nicholas R. Staten
Philip R. Streeter
John C. Minnerly
Nancy I. Minster
Susan L. Woulfe
Original Assignee
G.D. Searle & Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G.D. Searle & Co. filed Critical G.D. Searle & Co.
Priority to NZ335382A priority Critical patent/NZ335382A/xx
Priority to EP97946495A priority patent/EP0935663A2/en
Priority to JP51975498A priority patent/JP2001504689A/ja
Priority to RO99-00480A priority patent/RO120919B1/ro
Priority to AU51652/98A priority patent/AU725547B2/en
Priority to IL12956597A priority patent/IL129565A0/xx
Priority to BR9713668-9A priority patent/BR9713668A/pt
Priority to CA002268742A priority patent/CA2268742A1/en
Publication of WO1998017810A2 publication Critical patent/WO1998017810A2/en
Publication of WO1998017810A3 publication Critical patent/WO1998017810A3/en
Priority to NO991948A priority patent/NO991948L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/5403IL-3
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/505Erythropoietin [EPO]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/53Colony-stimulating factor [CSF]
    • C07K14/535Granulocyte CSF; Granulocyte-macrophage CSF
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to multi-functional chimeric hematopoietic receptor agonists.
  • These multifunctional chimeric hematopoietic receptor agonists retain one or more activities of individual components of the chimera molecule and may also show improved hematopoietic cell-stimulating activity and/or an improved activity profile which may include reduction of undesirable biological activities associated with individual hematopoietic growth factors and/or have improved physical properties which may include increased solubility, stability and refold efficiency.
  • IL- 3 also stimulates the formation of mast, megakaryocyte and pure and mixed erythroid colonies .
  • U.S. 4,877,729 and U.S. 4,959,455 disclose a gibbon IL-3 cDNA and a deduced human IL-3 DNA sequence and the protein sequences for which they code. The hIL-3 disclosed has serine rather than proline at position 8 in the protein sequence.
  • PCT International Patent Application
  • WO 88/00598 discloses gibbon- and human-like IL-3.
  • the hIL-3 contains a Ser 8 -> Pro 8 replacement. Suggestions are made to replace Cys by Ser, thereby breaking the disulfide bridge, and to replace one or more amino acids at the glycosylation sites.
  • U.S. 4,810,643 discloses a DNA sequence encoding human G-CSF.
  • WO 91/02754 discloses a fusion protein comprised of GM-CSF and IL-3 which has increased biological activity compared to GM-CSF or IL-3 alone. Also disclosed are nonglycosylated IL-3 and GM-CSF analog proteins as components of the multi-functional chimeric hematopoietic receptor agonist.
  • WO 92/04455 discloses fusion proteins composed of IL-3 fused to a lymphokine selected from the group consisting of IL-3, IL-6, IL-7, IL-9, IL-11, EPO and G- CSF.
  • WO 95/21197 and WO 95/21254 disclose fusion proteins capable of broad multi-functional hematopoietic properties .
  • GB 2,285,446 relates to the c-mpl ligand ( thrombopoietin) and various forms of thrombopoietin which are shown to influence the replication, differentiation and maturation of megakaryocytes and megakaryocytes progenitors which may be used for the treatment of thrombocytopenia .
  • EP 675,201 Al relates to the c-mpl ligand (Megakaryocyte growth and development factor (MGDF) , allelic variations of c-mpl ligand and c-mpl ligand attached to water soluble polymers such as polyethylene glycol .
  • MGDF Megakaryocyte growth and development factor
  • WO 95/21920 provides the murine and human c-mpl ligand and polypeptide fragments thereof.
  • the proteins are useful for in vivo and ex vivo therapy for stimulating platelet production.
  • U.S. Patent No. 4,703,008 by Lin, F-K. discloses the a cDNA sequence encoding erythropoietin, methods of production and uses for erythropoietin.
  • WO 94 /24160 discloses erythropoietin muteins which have enhanced activity, specifically amino acid substitutions at positions 20, 49, 73, 140, 143, 146, 147 and 154.
  • WO 94/28391 discloses the native flt3 ligand protein sequence and a cDNA sequence encoding the flt3 ligand, methods of expressing flt3 ligand in a host cell transfected with the cDNA and methods of treating patients with a hematopoietic disorder using flt3 ligand.
  • US Patent No. 5,554,512 is directed to human flt3 ligand as an isolated protein, DNA encoding the flt3 ligand, host cells transfected with cDNAs encoding flt3 ligand and methods for treating patients with flt3 ligand.
  • WO 94/26891 provides mammalianflt3 ligands, including an isolate that has an insertion of 29 amino acids, and fragments there of.
  • a new N-terminus is selected at an internal site (breakpoint) of the original sequence, the new sequence having the same order of amino acids as the original from the breakpoint until it reaches an amino acid that is at or near the original C-terminus.
  • breakpoint an internal site of the original sequence
  • the new sequence is joined, either directly or through an additional portion of sequence (linker), to an amino acid that is at or near the original N-terminus, and the new sequence continues with the same sequence as the original until it reaches a point that is at or near the amino acid that was N-terminal to the breakpoint site of the original sequence, this residue forming the new C- terminus of the chain.
  • proteins which range in size from 58 to 462 amino acids (Goldenberg & Creighton, J. Mol . Biol . 165:407-413, 1983; Li & Coffino, Mol . Cell . Biol . 13:2377-2383, 1993).
  • the proteins examined have represented a broad range of structural classes, including proteins that contain predominantly a-helix (interleukin-4; Kreitman et al . , Cytokine 7:311-318, 1995), b-sheet (interleukin-1; Horlick et al . , Protein Eng.
  • sequence rearranged protein appeared to have many nearly identical properties as its natural counterpart (basic pancreatic trypsin inhibitor, T4 lysozyme, ribonuclease Tl, Bacillus b-glucanase, interleukin-lb, a-spectrin SH3 domain, pepsinogen, interleukin-4).
  • an unexpected improvement over some properties of the natural sequence was observed, e.g., the solubility and refolding rate for rearranged a-spectrin SH3 domain sequences, and the receptor affinity and anti-tumor activity of transposed interleukin-4—Pseudomonas exotoxin fusion molecule (Kreitman et al . , Proc . Natl . Acad. Sci . U. S. A . 91:6889-6893, 1994; Kreitman et al . , Cancer Res . 55:3357-3363, 1995).
  • the positions of the internal breakpoints used in the studies cited here are found exclusively on the surface of proteins, and are distributed throughout the linear sequence without any obvious bias towards the ends or the middle (the variation in the relative distance from the original N-terminus to the breakpoint is ca . 10 to 80% of the total sequence length) .
  • the linkers connecting the original N- and C-termini in these studies have ranged from 0 to 9 residues. In one case (Yang & Schachman, Proc . Na tl . Acad . Sci . U. S . A . 90:11980-11984, 1993), a portion of sequence has been deleted from the original C-terminal segment, and the connection made from the truncated C-terminus to the original N-terminus.
  • a hematopoietic protein comprising; an amino acid sequence of the formula:
  • a human stem cell factor receptor agonist polypeptide comprising a modified stem cell factor amino acid sequence of the Formula: //
  • N-terminus is joined to the C-terminus directly or through a linker (L 2 ) capable of joining the
  • Xaa at position 1 is Thr, Ser, Arg, Tyr or Gly;
  • Xaa at position 2 is Pro or Leu
  • Xaa at position 3 is Leu, Arg, Tyr or Ser;
  • Xaa at position 13 is Phe, Ser, His, Thr or Pro
  • Xaa at position 16 is Lys, Pro, Ser, Thr or His
  • Xaa at position 17 is Cys, Ser, Gly, Ala, lie, Tyr or Arg;
  • Xaa at position 18 is Leu, Thr, Pro, His, lie or Cys;
  • Xaa at position 22 is Arg, Tyr, Ser, Thr or Ala;
  • Xaa at position 24 is lie, Pro, Tyr or Leu;
  • Xaa at position 27 is Asp, or Gly;
  • Xaa at position 30 is Ala, lie, Leu or Gly;
  • Xaa at position 34 is Lys or Ser
  • Xaa at position 36 is Cys or Ser
  • Xaa at position 42 is Cys or Ser
  • Xaa at position 43 is His, Thr, Gly, Val, Lys, Trp, Ala, Arg, Cys, or Leu;
  • Xaa at position 46 is Glu, Arg, Phe, Arg, lie or Ala;
  • Xaa at position 47 is Leu or Thr;
  • Xaa at position 49 is Leu, Phe, Arg or Ser;
  • Xaa at position 50 is Leu, lie, His, Pro or Tyr;
  • Xaa at position 104 is Asp, Gly or Val
  • Xaa at position 156 is His, Gly or Ser;
  • Xaa at position 159 is Ser, Arg, Thr, Tyr, Val or Gly;
  • Xaa at position 162 is Glu, Leu, Gly or Trp;
  • Xaa at position 163 is Val, Gly, Arg or Ala;
  • Xaa at position 169 is Arg, Ser, Leu, Arg or Cys;
  • Xaa at position 170 is His, Arg or Ser;
  • N-terminus is joined to the C-terminus directly or through a linker (L 2 ) capable of joining the
  • Xaa at position 18 is Asn, His, Leu, lie, Phe, Arg, or Gin;
  • Xaa at position 19 is Met, Phe, lie, Arg, Gly, Ala, or Cys;
  • Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gin, Asn,
  • Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gin,
  • Xaa at position 23 is lie, Val, Ala, Gly, Trp, Lys, Phe,
  • Xaa at position 24 is lie, Gly, Val, Arg, Ser, Phe, or Leu;
  • Xaa at position 25 is Thr, His, Gly, Gin, Arg, Pro, or Ala
  • Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
  • Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
  • Xaa at position 29 is Gin, Asn, Leu, Pro, Arg, or Val;
  • Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gin, Ser, Leu, or Lys;
  • Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gin;
  • Xaa at position 33 is Pro, Leu, Gin, Ala, Thr, or Glu;
  • Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gin, Thr, Arg, Ala, Phe, lie or Met;
  • Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
  • Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu,
  • Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp,
  • Xaa at position 45 is Gin, Pro, Phe, Val, Met, Leu, Thr, Lys,
  • Xaa at position 47 is lie, Gly, Val, Ser, Arg, Pro, or His;
  • Xaa at position 48 is Leu, Ser, Cys, Arg, lie. His, Phe, Glu,
  • Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
  • Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser,
  • Ala lie, Val, His, Phe, Met or Gin
  • Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His;
  • Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
  • Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or
  • Xaa at position 54 is Arg, Asp, lie, Ser, Val, Thr, Gin, Asn,
  • Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
  • Xaa at position 56 is Pro, Gly, Cys, Ser, Gin, Glu, Arg, His, Thr, Ala, Tyr, Phe, Leu, Val or Lys;
  • Xaa at position 57 is Asn or Gly; Xaa at position 58 is Leu, Ser, Asp, Arg, Gin, Val, or Cys; Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg; Xaa at position 60 is Ala Ser, Pro Tyr Asn, or Thr; Xaa at position 61 is Phe Asn, Glu Pro Lys, Arg, or Ser; Xaa at position 62 is Asn His, Val Arg Pro, Thr, Asp, or lie; Xaa at position 63 is Arg Tyr, Trp Lys Ser, His, Pro, or Val; Xaa at position 64 is Ala Asn, Pro Ser or Lys ; Xaa at position 65 is Val Thr, Pro His Leu, Phe , or Ser ; Xaa at position 66 is Lys lie, Arg Val Asn, Glu, or Ser ; Xaa at position 67 is Ser Ala, Phe Val
  • Xaa at position 68 is Leu Val, Trp Ser He, Phe, Thr, or His; Xaa at position 69 is Gin Ala, Pro Thr Glu, Arg, Trp, Gly, or
  • Trp Trp, or Asn
  • Xaa at position 72 is Ser Glu, Met Ala, His, Asn, Arg, or Asp;
  • Xaa at position 73 is Ala Glu, Asp Leu, Ser, Gly, Thr, or Arg;
  • Xaa at position 74 is lie , Met, Thr , Pro, Arg, Gly, Ala;
  • Xaa at position 75 is Glu Lys , Gly Asp, Pro, Trp, Arg, Ser,
  • Xaa at position 76 is Ser Val, Ala Asn Trp, Glu, Pro, Gly, or
  • Xaa at position 77 is lie Ser, Arg Thr or Leu; Xaa at position 78 is Leu Ala, Ser Glu Phe, Gly, or Arg; Xaa at position 79 is Lys Thr , Asn Met Arg, He, Gly, or Asp; Xaa at position 80 is Asn Trp, Val Gly Thr, Leu, Glu, or Arg; Xaa at position 81 is Leu Gin, Gly Ala Trp, Arg, Val, or Lys; Xaa at position 82 is Leu Gin, Lys Trp Arg, Asp, Glu, Asn,
  • Xaa at position 83 is Pro Ala, Thr Trp Arg, or Met; Xaa at position 84 is Cys Glu, Gly Arg Met, or Val; Xaa at position 85 is Leu Asn, Val or Gin; Xaa at position 86 is Pro Cys , Arg Ala or Lys ; Xaa at position 87 is Leu Ser, Trp or Gly; Xaa at position 88 is Ala Lys , Arg Val or Trp; Xaa at position 89 is Thr Asp, Cys Leu Val, Glu, His, Asn, or
  • Xaa at position 90 is Ala Pro, Ser Thr Gly, Asp, He, or Met; Xaa at position 91 is Ala Pro, Ser Thr Phe, Leu, Asp, or His; Xaa at position 92 is Pro Phe , Arg Ser Lys, His, Ala, Gly, He or Leu ; 13
  • Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg;
  • Xaa at position 94 is Arg, He, Ser, Glu, Leu, Val, Gin, Lys, His,
  • Xaa at position 95 is His, Gin, Pro, Arg, Val, Leu, Gly, Thr, Asn, Lys, Ser, Ala, Trp, Phe, He, or Tyr;
  • Xaa at position 96 is Pro, Lys, Tyr, Gly, He, or Thr;
  • Xaa at position 97 is He, Val, Lys, Ala, or Asn;
  • Xaa at position 98 is His, He, Asn, Leu, Asp, Ala, Thr, Glu, Gin, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
  • Xaa at position 99 is He, Leu, Arg, Asp, Val, Pro, Gin, Gly, Ser, Phe, or His;
  • Xaa at position 100 is Lys, Tyr, Leu, His, Arg, He, Ser, Gin, or
  • Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val, Tyr, Glu, Asn, Ser, Ala, Gly, He, Leu, or Gin;
  • Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gin, Lys, Ala, Phe, or Gly;
  • Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gin, Tyr, Leu, Lys, He, Asp, or His;
  • Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, He, Gly, or Pro;
  • Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, He, Gin, His, Ser, Ala or Pro;
  • Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
  • Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gin, His, Glu,
  • Xaa at position 111 is Leu, He, Arg, Asp, or Met;
  • Xaa at position 112 is Thr, Val, Gin, Tyr, Glu, His, Ser, or Phe;
  • Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp, Lys, Leu, He, Val or Asn;
  • Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;
  • Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
  • Xaa at position 116 is Lys, Leu, Pro, Thr, Met, Asp, Val, Glu, Arg, Trp, Ser, Asn, His, Ala, Tyr, Phe, Gin, or lie;
  • Xaa at position 117 is Thr, Ser, Asn, He, Trp, Lys, or Pro;
  • Xaa at position 118 is Leu, Ser, Pro, Ala, Glu,
  • Xaa at position 121 is Ala, Ser, He, Asn, Pro, Lys, Asp, or Gly; Xaa at position 122 is Gin, Ser, Met, Trp, Arg, Phe, Pro, His,
  • Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu; wherein from 1 to 14 amino acids can optionally be deleted from the N-terminus and/or from 1 to 15 amino acids can optionally be deleted from the C-terminus of said modified human IL-3 amino acid sequence; wherein from 0 to 44 of the amino acids designated by Xaa are different from the corresponding amino acids of native (1-133) human interleukin-3 ; and
  • N-terminus is joined to the C-terminus directly or through a linker (L 2 ) , capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;
  • Xaa at position 112 is deleted or Leu, Ala, Val, lie,
  • Xaa at position 113 is deleted or Pro, Phe, Ala, Val, Leu, lie, Trp, or Met;
  • Xaa at position 114 is deleted or Pro, Phe, Ala, Val, Leu, lie, Trp, or Met;
  • VII A polypeptide comprising; a modified human IL-3 amino acid sequence of the formula:
  • Xaa at position 17 is Ser, Lys, Gly, Asp, Met, Gin, or Arg
  • Xaa at position 18 is Asn, His, Leu, He, Phe, Arg, or Gin;
  • Xaa at position 19 is Met, Phe, He, Arg, Gly, Ala, or Cys;
  • Xaa at position 20 is He, Cys, Gin, Glu, Arg, Pro, or Ala;
  • Xaa at position 21 is Asp, Phe, Lys, Arg, Ala, Gly, Glu, Gin, Asn, Thr, Ser or Val;
  • Xaa at position 22 is Glu, Trp, Pro, Ser, Ala, His, Asp, Asn, Gin, Leu, Val or Gly;
  • Xaa at position 23 is He, Val, Ala, Gly, Trp, Lys, Phe,
  • Xaa at position 24 is He, Gly, Val, Arg, Ser, Phe, or Leu;
  • Xaa at position 25 is Thr, His, Gly, Gin, Arg, Pro, or Ala;
  • Xaa at position 26 is His, Thr, Phe, Gly, Arg, Ala, or Trp;
  • Xaa at position 27 is Leu, Gly, Arg, Thr, Ser, or Ala;
  • Xaa at position 28 is Lys, Arg, Leu, Gin, Gly, Pro, Val or Trp;
  • Xaa at position 29 is Gin, Asn, Leu, Pro, Arg, or Val
  • Xaa at position 30 is Pro, His, Thr, Gly, Asp, Gin, Ser, Leu, or Lys ;
  • Xaa at position 31 is Pro, Asp, Gly, Ala, Arg, Leu, or Gin;
  • Xaa at position 32 is Leu, Val, Arg, Gin, Asn, Gly, Ala, or Glu;
  • Xaa at position 33 is Pro, Leu, Gin, Ala, Thr, or Glu;
  • Xaa at position 34 is Leu, Val, Gly, Ser, Lys, Glu, Gin, Thr, Arg, Ala, Phe, He or Met;
  • Xaa at position 35 is Leu, Ala, Gly, Asn, Pro, Gin, or Val;
  • Xaa at position 36 is Asp, Leu, or Val
  • Xaa at position 37 is Phe, Ser, Pro, Trp, or lie
  • Xaa at position 38 is Asn, or Ala
  • Xaa at position 40 is Leu, Trp, or Arg
  • Xaa at position 41 is Asn, Cys, Arg, Leu, His, Met, or Pro;
  • Xaa at position 42 is Gly, Asp, Ser, Cys, Asn, Lys, Thr, Leu, Val, Glu, Phe, Tyr, He, Met or Ala;
  • Xaa at position 43 is Glu, Asn, Tyr, Leu, Phe, Asp, Ala, Cys, ⁇
  • Xaa at position 44 is Asp, Ser, Leu, Arg, Lys, Thr, Met, Trp,
  • Xaa at position 45 is Gin, Pro, Phe, Val, Met, Leu, Thr, Lys, Trp, Asp, Asn, Arg, Ser, Ala, He, Glu or His;
  • Xaa at position 46 is Asp, Phe, Ser, Thr, Cys, Glu, Asn, Gin,
  • Xaa at position 47 is He, Gly, Val, Ser, Arg, Pro, or His;
  • Xaa at position 48 is Leu, Ser, Cys, Arg, He, His, Phe, Glu, Lys, Thr, Ala, Met, Val or Asn;
  • Xaa at position 49 is Met, Arg, Ala, Gly, Pro, Asn, His, or Asp;
  • Xaa at position 50 is Glu, Leu, Thr, Asp, Tyr, Lys, Asn, Ser,
  • Xaa at position 51 is Asn, Arg, Met, Pro, Ser, Thr, or His
  • Xaa at position 52 is Asn, His, Arg, Leu, Gly, Ser, or Thr;
  • Xaa at position 53 is Leu, Thr, Ala, Gly, Glu, Pro, Lys, Ser, or
  • Xaa at position 54 is Arg, Asp, He, Ser, Val, Thr, Gin, Asn,
  • Xaa at position 55 is Arg, Thr, Val, Ser, Leu, or Gly;
  • Xaa at position 56 is Pro, Gly, Cys, Ser, Gin, Glu, Arg, His,
  • Xaa at position 57 is Asn or Gly;
  • Xaa at position 58 is Leu, Ser, Asp, Arg, Gin, Val, or Cys;
  • Xaa at position 59 is Glu Tyr, His, Leu, Pro, or Arg;
  • Xaa at position 60 is Ala, Ser, Pro, Tyr, Asn, or Thr;
  • Xaa at position 61 is Phe, Asn, Glu, Pro, Lys, Arg, or Ser;
  • Xaa at position 62 is Asn, His, Val, Arg, Pro, Thr, Asp, or lie;
  • Xaa at position 63 is Arg, Tyr, Trp, Lys, Ser, His, Pro, or Val;
  • Xaa at position 64 is Ala, Asn, Pro, Ser, or Lys;
  • Xaa at position 65 is Val, Thr, Pro, His, Leu, Phe, or Ser;
  • Xaa at position 66 is Lys, He, Arg, Val, Asn, Glu, or Ser;
  • Xaa at position 67 is Ser, Ala, Phe, Val, Gly, Asn, He, Pro, or
  • Xaa at position 68 is Leu, Val, Trp, Ser, He, Phe, Thr, or His;
  • Xaa at position 69 is Gin, Ala, Pro, Thr, Glu, Arg, Trp, Gly, or
  • Xaa at position 70 is Asn, Leu, Val, Trp, Pro, or Ala;
  • Xaa at position 71 is Ala, Met, Leu, Pro, Arg, Glu, Thr, Gin, Trp, or Asn;
  • Xaa at position 72 is Ser, Glu, Met, Ala, His, Asn, Arg, or Asp;
  • Xaa at position 73 is Ala, Glu, Asp, Leu, Ser, Gly, Thr, or Arg;
  • Xaa at position 74 is He, Met, Thr, Pro, Arg, Gly, Ala;
  • Xaa at position 75 is Glu, Lys, Gly, Asp, Pro, Trp, Arg, Ser, Gin, or Leu;
  • Xaa at position 76 is Ser, Val, Ala, Asn, Trp, Glu, Pro, Gly, or
  • Xaa at position 77 is He, Ser, Arg, Thr, or Leu;
  • Xaa at position 78 is Leu, Ala, Ser, Glu, Phe, Gly, or Arg;
  • Xaa at position 79 is Lys, Thr, Asn, Met, Arg, He, Gly, or Asp;
  • Xaa at position 80 is Asn, Trp, Val, Gly, Thr, Leu, Glu, or Arg;
  • Xaa at position 81 is Leu, Gin, Gly, Ala, Trp, Arg, Val, or Lys;
  • Xaa at position 82 is Leu, Gin, Lys, Trp, Arg, Asp, Glu, Asn,
  • Xaa at position 83 is Pro, Ala, Thr, Trp, Arg, or Met;
  • Xaa at position 84 is Cys, Glu, Gly, Arg, Met, or Val;
  • Xaa at position 85 is Leu, Asn, Val, or Gin;
  • Xaa at position 86 is Pro, Cys, Arg, Ala, or Lys;
  • Xaa at position 87 is Leu, Ser, Trp, or Gly;
  • Xaa at position 88 is Ala, Lys, Arg, Val, or Trp;
  • Xaa at position 89 is Thr, Asp, Cys, Leu, Val, Glu, His, Asn, or
  • Xaa at position 90 is Ala, Pro, Ser, Thr, Gly, Asp, He, or Met;
  • Xaa at position 91 is Ala, Pro, Ser, Thr, Phe, Leu, Asp, or His
  • Xaa at position 92 is Pro, Phe, Arg, Ser, Lys, His, Ala, Gly, He or Leu
  • - Xaa at position 93 is Thr, Asp, Ser, Asn, Pro, Ala, Leu, or Arg
  • Xaa at position 94 is Arg, He, Ser, Glu, Leu, Val, Gin, Lys, His,
  • Xaa at position 95 is His, Gin, Pro, Arg, Val, Leu, Gly, Thr, Asn,
  • Xaa at position 96 is Pro, Lys, Tyr, Gly, He, or Thr
  • Xaa at position 97 is He, Val, Lys, Ala, or Asn
  • Xaa at position 98 is His, He, Asn, Leu, Asp, Ala, Thr, Glu, Gin, Ser, Phe, Met, Val, Lys, Arg, Tyr or Pro;
  • Xaa at position 99 is He, Leu, Arg, Asp, Val, Pro, Gin,
  • Xaa at position 100 is Lys, Tyr, Leu, His, Arg, He, Ser, Gin, or
  • Pro; Xaa at position 101 is Asp, Pro, Met, Lys, His, Thr, Val,
  • Xaa at position 102 is Gly, Leu, Glu, Lys, Ser, Tyr, or Pro;
  • Xaa at position 103 is Asp, or Ser;
  • Xaa at position 104 is Trp, Val, Cys, Tyr, Thr, Met, Pro, Leu, Gin, Lys, Ala, Phe, or Gly;
  • Xaa at position 105 is Asn, Pro, Ala, Phe, Ser, Trp, Gin, Tyr,
  • Xaa at position 106 is Glu, Ser, Ala, Lys, Thr, He, Gly, or Pro
  • Xaa at position 108 is Arg, Lys, Asp, Leu, Thr, He, Gin, His, Ser, Ala or Pro
  • Xaa at position 109 is Arg, Thr, Pro, Glu, Tyr, Leu, Ser, or Gly;
  • Xaa at position 110 is Lys, Ala, Asn, Thr, Leu, Arg, Gin, His, Glu,
  • Xaa at position 111 is Leu, He, Arg, Asp, or Met;
  • Xaa at position 112 is Thr, Val, Gin, Tyr, Glu, His, Ser, or Phe;
  • Xaa at position 113 is Phe, Ser, Cys, His, Gly, Trp, Tyr, Asp,
  • Xaa at position 114 is Tyr, Cys, His, Ser, Trp, Arg, or Leu;
  • Xaa at position 115 is Leu, Asn, Val, Pro, Arg, Ala, His, Thr, Trp, or Met;
  • Xaa at position 123 is Ala, Met, Glu, His, Ser, Pro, Tyr, or Leu;
  • breakpoints at which new C- terminus and N-terminus can be made in the polypeptide (II) above are; 64-65, 65-66, 92-93 and 93-94 respectively .
  • breakpoints at which new C- terminus and N-terminus can be made in the polypeptide (VI) above are; 80-81, 81-82, 82-83, 83-84, 84-85, 85- 86, 86-87, 108-109, 109-110, 110-111, 111-112, 112-113, 113-114, 114-115, 115-116, 116-117, 117-118, 118-119, 119-120, 120-121, 121-122, 122-123, 123-124, 124-125, 125-126 and 126-127.
  • the multi-functional receptor agonist of the present invention can also be represented by the following formulas:
  • X 1 is a peptide comprising an amino acid sequence corresponding to the sequence of residues n+1 through J of the original protein having amino acids residues 3° numbered sequentially 1 through J with an amino terminus at residue 1;
  • L is an optional linker
  • X 2 is a peptide comprising an amino acid sequence of residues 1 through n of the original protein
  • Y 2 is a peptide comprising an amino acid sequence of residues 1 through n of the original protein
  • L 1 and L 2 are optional peptide spacers : n is an integer ranging from 1 to J-l; b, c, and d are each independently 0 or 1 ; a and e are either 0 or 1 , provided that both a and e cannot both be 0 ; and
  • T 1 and T 2 are proteins .
  • the multi-functional chimeric hematopoietic receptor agonists of the present invention may contain amino acid substitutions, deletions and/or insertions in the individual protein components of the chimera molecule. It is also intended that the multi-functional chimeric hematopoietic receptor agonists of the present invention may also have amino acid deletions at either/or both the N- and C- termini of the original protein and or deletions from the new N- and/or C- termini of the sequence rearranged proteins in the formulas shown above.
  • in vitro uses would include the ability to stimulate bone marrow and blood cell activation and growth before infusion into patients .
  • Another intended use is for the production of dendritic cells both in vivo and ex vivo .
  • Figure 1 schematically illustrates the sequence rearrangement of a protein.
  • the N-terminus (N) and the C-terminus (C) of the native protein are joined through a linker, or joined directly.
  • the protein is opened at a breakpoint creating a new N-terminus (new N) and a new C-terminus (new-C) resulting in a protein with a new linear amino acid sequence.
  • a rearranged molecule may be synthesized e novo as linear molecule and not go through the steps of joining the original N-terminus and the C-terminus and opening of the protein at the breakpoint .
  • Figure 2 shows a schematic of Method I, for creating new proteins in which the original N-terminus and C-terminus of the native protein are joined with a linker and different N-terminus and C-terminus of the protein are created.
  • the sequence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original C-terminus (a. a. 174) joined to the amino acid 11 (a. a. 1- 10 are deleted) through a linker region and a new C-terminus created at amino acid 96 of the original sequence.
  • sequence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original C-terminus (a. a. 174) joined to amino acid 1 through a linker region and a new C-terminus created at amino acid 96 of the original sequence .
  • Figure 5 shows the bioactivity of the multifunctional receptor agonists comprising flt3 receptor agonists pMON32332, pMON32333, pMON32334 and pMON32335 compared to recombinant native flt3 (Genzyme) in the MUTZ-2 cell proliferation assay.
  • MT mock transfection
  • Figure 6 shows a DNA sequence encoding human mature EPO based on the sequence of Lin et al . ( PNAS 82:7580- 7584, 1985) .
  • Figure 8 shows a DNA sequence encoding soluble stem cell factor based on the sequence of Langley et al . (Archives of Bichemistry and Biophys ica 311:55-61, 1994) .
  • Figure 9a and 9b shows the DNA sequence encoding the 209 amino acid mature form of flt3 ligand from Lyman et al. ( Oncogene 11:1165-1172, 1995).
  • Figure 10 shows the DNA sequence encoding the 134 amino acid soluble form of flt3 ligand from Lyman et al. ( Oncogene 11:1165-1172, 1995). Detailed Description of the Invention
  • the present invention encompasses multi-functional chimeric hematopoietic receptor agonists formed from covalently linked polypeptides, each of which may act through a different and specific cell receptor to initiate complementary biological activities.
  • Hematopoiesis requires a complex series of cellular events in which stem cells generate continuously into large populations of maturing cells in all major lineages.
  • regulators with hematopoietic proliferative activity There are currently at least 20 known regulators with hematopoietic proliferative activity. Most of these proliferative regulators can only stimulate one or another type of colony formation in vitro, the precise pattern of colony formation stimulated by each regulator is quite distinctive. No two regulators stimulate exactly the same pattern of colony formation, as evaluated by colony numbers or, more importantly, by the lineage and maturation pattern of the cells making up the developing colonies.
  • tyrosine kinase receptors including those for epidermal growth factor, M-CSF (Sherr, Blood 75:1, 1990) and SCF (Yarden et al . , EMBO J. 6:3341, 1987): and (2) hematopoietic receptors, not containing a tyrosine kinase domain, but exhibiting obvious homology in their extracellular domain (Bazan, PNAS USA 87:6934-6938, 1990). Included in this latter group are erythropoietin (EPO) (D'Andrea et al .
  • EPO erythropoietin
  • the use of a multiply acting hematopoietic factor may also have a potential advantage by reducing the demands placed on factor-producing cells and their induction systems. If there are limitations in the ability of a cell to produce a factor, then by lowering the required concentrations of each of the factors, and using them in combination may usefully reduce demands on the factor-producing cells.
  • the use of a multiply acting hematopoietic factor may lower the amount of the factors that would be needed, probably reducing the likelihood of adverse side-effects.
  • Novel compounds of this invention are represented by a formula selected from the group consisting of:
  • L 2 represents a chemical bond or polypeptide segment to which both R 1 and R 2 are joined in frame
  • L x is a linear peptide to which Rl and R 2 are joined by amide bonds linking the carboxy terminus of R 1 to the amino terminus of L x and carboxy terminus of L x to the amino terminus of R 2 .
  • joined in frame is meant that there is no translation termination or disruption between the reading frames of the DNA encoding R 1 and R 2 .
  • colony stimulating factors are cytokines, lymphokines, interleukins, hematopoietic growth factors which can be joined to (I) , (II) or (III) include GM- CSF, G-CSF, c-mpl ligand (also known as TPO or MGDF) , M- CSF, erythropoietin (EPO), IL-1, IL-4, IL-2, IL-3, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12 , IL-13 , IL- 15, LIF, flt3/flk2 ligand, human growth hormone, B-cell growth factor, B-cell differentiation factor, eosinophil differentiation factor and stem cell factor (SCF) also known as steel factor or c-kit ligand.
  • CSFs colony stimulating factors
  • SCF stem cell factor
  • this invention encompasses the use of modified R ⁇ or R 2 molecules or mutated or modified DNA sequences encoding these R 1 or R 2 molecules.
  • the present invention also includes multi-functional chimeric hematopoietic receptor agonists in which R 1 or R 2 is an hIL-3 variant, c-mpl ligand variant, or G-CSF variant.
  • a "hIL-3 variant” is defined as a hIL-3 molecule which has amino acid substitutions and/or portions of hIL-3 deleted as disclosed in WO 94/12638, WO 94/12639 and WO 95/00646, as well as other variants known in the art.
  • a "c-mpl ligand variant” is defined an c-mpl ligand molecule which has amino acid substitutions and/or portions of c- mpl ligand deleted, disclosed in United States Application Serial Number 08/383,035 as well as other variants known in the art.
  • a "G-CSF variant” is defined an G-CSF molecule which has amino acid substitutions and/or portions of G-CSF deleted, as disclosed herein, as well as other variants known in the art.
  • IL-3 variants taught in WO 94/12639 and WO 94/12638 can be R 1 or R 2 of the present invention.
  • IL-3 variants refer to IL-3 variants taught in WO 94/12639 and WO 94/12638.
  • fusion proteins refer to fusion protein taught in WO 95/21197, and WO 95/21254.
  • linker sequence may also be used in the linker sequence.
  • Additional amino acids may also be included in the linkers due to the addition of unique restriction sites in the linker sequence to facilitate construction of the multi-functional chimeric hematopoietic receptor agonists.
  • a highly-flexible linker is the glycine and serine-rich spacer region present within the pill protein of the filamentous bacteriophages , e.g. bacteriophages M13 or fd (Schaller et al . , PNAS USA 72: 737-741, 1975) .
  • This region provides a long, flexible spacer region between two domains of the pill surface protein.
  • the spacer region consists of the amino acid sequence :
  • the present invention also includes linkers in which an endopeptidase recognition sequence is included. Such a cleavage site may be valuable to separate the individual components of the multi-functional chimeric hematopoietic receptor agonist to determine if they are properly folded and active in vitro.
  • the present invention is, however, not limited by the form, size or number of linker sequences employed and the only requirement of the linker is that functionally it does not interfere with the folding and function of the individual molecules of the multifunctional chimeric hematopoietic receptor agonist.
  • the length of the amino acid sequence of the linker L 2 to be used in R 1 and/or R 2 can be selected empirically or with guidance from structural information, or by using a combination of the two approaches.
  • Sequences of R x and R 2 capable of folding to biologically active states can be prepared by appropriate selection of the beginning (amino terminus) and ending (carboxyl terminus) positions from within the original polypeptide chain while using the linker sequence L 2 as described above.
  • Amino and carboxyl termini are selected from within a common stretch of sequence, referred to as a breakpoint region, using the guidelines described below.
  • a novel amino acid sequence is thus generated by selecting amino and carboxyl termini from within the same breakpoint region. In many cases the selection of the new termini will be such that the original position of the carboxyl terminus immediately preceded that of the amino terminus . However, those skilled in the art will recognize that selections of termini anywhere within the region may function, and that these will effectively lead to either deletions or additions to the amino or carboxyl portions of the new sequence.
  • Examples of structural information that are relevant to the identification of breakpoint regions include the location and type of protein secondary structure (alpha and 3-10 helices, parallel and anti-parallel beta sheets, chain reversals and turns, and loops; Kabsch & Sander, Biopolymers 22: 2577-2637, 1983), the degree of solvent exposure of amino acid residues, the extent and type of interactions of residues with one another (Chothia, Ann . Rev. Biochem . 53:537-572, 1984) and the static and dynamic distribution of conformations along the polypeptide chain (Alber & Mathews, Methods Enzymol . 154: 511-533, 1987).
  • mutant amino acid sequence refers to a polypeptide having an amino acid sequence which varies from a native sequence due to amino acid deletions, substitutions, or both, or is encoded by a nucleotide sequence intentionally made variant from a native sequence.
  • Native sequence refers to an amino acid or nucleic acid sequence which is identical to a wild-type or native form of a gene or protein.
  • Hematopoietic growth factors can be characterized by their ability to stimulate colony formation by human hematopoietic progenitor cells.
  • the colonies formed include erythroid, granulocyte, megakaryocyte, granulocytic macrophages and mixtures thereof.
  • Many of the hematopoietic growth factors have demonstrated the ability to restore bone marrow function and peripheral blood cell populations to therapeutically beneficial m levels in studies performed initially in primates and subsequently in humans. Many or all of these biological activities of hematopoietic growth factors involve signal transduction and high affinity receptor binding.
  • Multi-functional chimeric hematopoietic receptor agonists of the present invention may exhibit useful properties such as having similar or greater biological activity when compared to a single factor or by having improved half-life or decreased adverse side effects, or a combination of these properties.
  • the present invention also includes the DNA sequences which code for the multi-functional chimeric hematopoietic receptor agonist proteins, DNA sequences which are substantially similar and perform substantially the same function, and DNA sequences which differ from the DNAs encoding the multi-functional chimeric hematopoietic receptor agonists of the invention only due to the degeneracy of the genetic code. Also included in the present invention are the oligonucleotide intermediates used to construct the mutant DNAs and the polypeptides coded for by these oligonucleotides .
  • Cloning of the DNA sequences of the novel multi- functional hematopoietic agonists wherein at least one of the with the DNA sequence of the other colony stimulating factor may be accomplished by the use of intermediate vectors .
  • one gene can be cloned directly into a vector containing the other gene.
  • Linkers and adapters can be used for joining the DNA sequences, as well as replacing lost sequences, where a restriction site was internal to the region of interest.
  • genetic material (DNA) encoding one polypeptide, peptide linker, and the other polypeptide is inserted into a suitable expression vector which is used to transform bacteria, yeast, insect cells or mammalian cells.
  • the transformed organism is grown and the protein isolated by standard techniques.
  • the resulting product is therefore a new protein which has a colony stimulating factor joined by a linker region to a second colony stimulating factor.
  • Another aspect of the present invention provides plasmid DNA vectors for use in the expression of these novel multi-functional chimeric hematopoietic receptor agonists.
  • These vectors contain the novel DNA sequences described above which code for the novel polypeptides of the invention.
  • Appropriate vectors which can transform microorganisms capable of expressing the multifunctional chimeric hematopoietic receptor agonists include expression vectors comprising nucleotide sequences coding for the multi-functional chimeric hematopoietic receptor agonists joined to transcriptional and translational regulatory sequences which are selected according to the host cells used.
  • Vectors incorporating modified sequences as described above are included in the present invention and are useful in the production of the multi-functional chimeric hematopoietic receptor agonist polypeptides.
  • the vector employed in the method also contains selected regulatory sequences in operative association with the DNA coding sequences of the invention and which are capable of directing the replication and expression thereof in selected host cells.
  • the gene encoding the multi-functional chimeric hematopoietic receptor agonists of the present invention may also be constructed such that at the 5' end of the gene codons are added to encode Met -2 -Ala -1 - or Met -1 at the N-terminus of the protein.
  • the multi-functional chimeric hematopoietic receptor agonists of the present invention may include multi-functional chimeric hematopoietic receptor agonist polypeptides having Met -1 , Ala -1 or Met -2 -Ala -1 at the N-terminus. These mutant multi-functional chimeric hematopoietic receptor agonists may also be expressed in E.
  • mammalian cells such as Chinese hamster ovary cells (CHO) .
  • CHO Chinese hamster ovary cells
  • An expression vector is constructed in which a strong promoter capable of functioning in mammalian cells drives transcription of a eukaryotic secretion signal peptide coding region, which is translationally joined to the coding region for the multi-functional chimeric hematopoietic receptor agonist.
  • the cells can be cultured, for example, in DMEM media (JRH Scientific) .
  • the polypeptide secreted into the media can be recovered by standard biochemical approaches following transient expression for 24 - 72 hours after transfection of the cells or after establishment of stable cell lines following selection for antibiotic resistance.
  • Another suitable mammalian cell line is the monkey COS-1 cell line.
  • a similarly useful mammalian cell line is the CV-1 cell line.
  • insect cells may be utilized as host cells in the method of the present invention. See, e.g., Miller et al . , Genetic Engineering, 8:277-298 (Plenum Press 1986) and references cited therein.
  • general methods for expression of foreign genes in insect cells using Baculovirus vectors are described in: Summers, M. D. and Smith, G. E., 1987) - A manual of methods for Baculovirus vectors and insect cell culture procedures, Texas Agricultural Experiment Station Bulletin No. 1555.
  • An expression vector is constructed comprising a Baculovirus transfer vector, in which a strong Baculovirus promoter (such as the polyhedron promoter) drives transcription of a eukaryotic secretion signal peptide coding region, which is translationally joined to the coding region for the multi-functional chimeric hematopoietic receptor agonist polypeptide.
  • a strong Baculovirus promoter such as the polyhedron promoter
  • the plasmid pVL1392 obtained from Invitrogen Corp., San Diego, California
  • the multi-functional chimeric hematopoietic receptor agonists of the present invention may be useful in the treatment of diseases characterized by decreased levels of either myeloid, erythroid, lymphoid, or megakaryocyte cells of the hematopoietic system or combinations thereof. In addition, they may be used to activate mature myeloid and/or lymphoid cells.
  • diseases susceptible to treatment with the polypeptides of the present invention is leukopenia, a reduction in the number of circulating leukocytes (white cells) in the peripheral blood. Leukopenia may be induced by exposure to certain viruses or to radiation.
  • the multi-functional chimeric hematopoietic receptor agonists of the present invention may be useful in the treatment of neutropenia and, for example, in the treatment of such conditions as aplastic anemia, cyclic neutropenia, idiopathic neutropenia, Chediak-Higashi syndrome, systemic lupus erythematosus (SLE) , leukemia, myelodysplastic syndrome and myelofibrosis .
  • the multi-functional chimeric hematopoietic receptor agonist of the present invention may be useful in the treatment or prevention of thrombocytopenia.
  • thrombocytopenia Currently the only therapy for thrombocytopenia is platelet transfusion which are costly and carry the significant risks of infection (HIV, HBV) and alloimunization.
  • the multi-functional chimeric hematopoietic receptor agonist may alleviate or diminish the need for platelet transfusion.
  • Severe thrombocytopenia may result from genetic defects such as Fanconi ' s Anemia, Wiscott-Aldrich, or May Hegglin syndromes.
  • Acquired thrombocytopenia may result from auto- or allo-antibodies as in Immune Thrombocytopenia Purpura, Systemic Lupus Erythromatosis, hemolytic anemia, or fetal maternal incompatibility.
  • thrombocytopenia may result in thrombocytopenia. Severe thrombocytopenia may also result from chemotherapy and/or radiation therapy or cancer. Thrombocytopenia may also result from marrow invasion by carcinoma, lymphoma, leukemia or fibrosis.
  • the multi-functional chimeric hematopoietic receptor agonists of the present invention may be useful in the mobilization of hematopoietic progenitors and stem cells in peripheral blood.
  • Peripheral blood derived progenitors have been shown to be effective in reconstituting patients in the setting of autologous marrow transplantation.
  • Hematopoietic growth factors including G-CSF and GM-CSF have been shown to enhance the number of circulating progenitors and stem cells in the peripheral blood. This has simplified the procedure for peripheral stem cell collection and dramatically decreased the cost of the procedure by decreasing the number of pheresis required.
  • the multi-functional chimeric hematopoietic receptor agonist may be useful in mobilization of stem cells and further enhance the efficacy of peripheral stem cell transplantation.
  • the multi-functional chimeric hematopoietic receptor agonists of the present invention may also be useful in the ex vivo expansion of hematopoietic progenitors and stem cells.
  • CSFs such as hIL-3
  • CSFs have been administered alone, co- administered with other CSFs, or in combination with bone marrow transplants subsequent to high dose chemotherapy to treat the neutropenia and thrombocytopenia which are often the result of such treatment.
  • the myeloid lineage which is comprised of monocytes
  • Macrophages granulocytes (including neutrophils) and megakaryocytes
  • neutrophils neutrophils
  • megakaryocytes is critical in preventing infections and bleeding which can be life-threatening.
  • Neutropenia and thrombocytopenia may also be the result of disease, genetic disorders, drugs, toxins, radiation and many therapeutic treatments such as conventional oncology therapy.
  • Bone marrow transplants have been used to treat this patient population.
  • problems are associated with the use of bone marrow to reconstitute a compromised hematopoietic system including: 1) the number of stem cells in bone marrow, spleen, or peripheral blood is limited, 2) Graft Versus Host Disease, 3) graft rejection and 4) possible contamination with tumor cells.
  • Stem cells make up a very small percentage of the nucleated cells in the bone marrow, spleen and peripheral blood. It is clear that a dose response exists such that a greater number of stem cells will enhance hematopoietic recovery. Therefore, the in vitro expansion of stem cells should enhance hematopoietic recovery and patient survival .
  • Bone marrow from an allogeneic donor has been used to provide bone marrow for transplant.
  • Graft Versus Host Disease and graft rejection limit bone marrow transplantation even in recipients with HLA-matched sibling donors.
  • An alternative to allogeneic bone marrow transplants is autologous bone marrow transplants.
  • autologous bone marrow transplants some of the patient's own marrow is harvested prior to myeloablative therapy, e.g. high dose chemotherapy, and is transplanted back into the patient afterwards .
  • Autologous transplants eliminate the risk of Graft Versus Host Disease and graft rejection.
  • stem cells can be specifically isolated, based on the presence of specific surface antigens such as CD34+ in order to decrease tumor cell contamination of the marrow graft .
  • 5,061,620 relates to compositions comprising human hematopoietic stem cells provided by separating the stem cells from dedicated cells.
  • 5,199,942 describes a method for autologous hematopoietic cell transplantation comprising: (1) obtaining hematopoietic progenitor cells from a patient; (2) ex-vivo expansion of cells with a growth factor selected from the group consisting of IL-3, flt3 ligand, c-kit ligand, GM-CSF, IL-1, GM-CSF/IL-3 fusion protein and combinations thereof; (3) administering cellular preparation to a patient.
  • a growth factor selected from the group consisting of IL-3, flt3 ligand, c-kit ligand, GM-CSF, IL-1, GM-CSF/IL-3 fusion protein and combinations thereof.
  • 5,240,856 relates to a cell separator that includes an apparatus for automatically controlling the cell separation process.
  • WO 91/16116 describes devices and methods for selectively isolating and separating target cells from a mixture of cells.
  • WO 91/18972 describes methods for in vitro culturing of bone marrow, by incubating suspension of bone marrow cells, using a hollow fiber bioreactor.
  • WO 92/18615 relates to a process for maintaining and expanding bone marrow cells, in a culture medium containing specific mixtures of cytokines, for use in transplants .
  • WO 93/08268 describes a method for selectively expanding stem cells, comprising the steps of (a) separating CD34+ stem cells from other cells and (b) incubating the separated cells in a selective medium, such that the stem cells are selectively expanded.
  • WO 93/18136 describes a process for in vitro support of mammalian cells derived from peripheral blood.
  • WO 93/18648 relates to a composition comprising human neutrophil precursor cells with a high content of myeloblasts and promyelocytes for treating genetic or acquired neutropenia.
  • WO 94/08039 describes a method of enrichment for human hematopoietic stem cells by selection for cells which express c-kit protein.
  • WO 94/11493 describes a stem cell population that are CD34+ and small in size, which are isolated using a counterflow elutriation method.
  • WO 94/27698 relates to a method combining immunoaffinity separation and continuous flow centrifugal separation for the selective separation of a nucleated heterogeneous cell population from a heterogeneous cell mixture.
  • WO 94/25848 describes a cell separation apparatus for collection and manipulation of target cells.
  • stem cell refers to the totipotent hematopoietic stem cells as well as early precursors and progenitor cells which can be isolated from bone marrow, spleen or peripheral blood.
  • expansion refers to the differentiation and proliferation of the cells.
  • the present invention provides a method for selective ex- vivo expansion of stem cells, comprising the steps of: (a) separating stem cells from other cells, (b) culturing said separated stem cells with a selective media which contains multi-functional chimeric hematopoietic receptor agonist protein (s) and (c) harvesting said stems cells.
  • Stem cells as well as committed progenitor cells destined to become neutrophils, erythrocytes, platelets, etc. may be distinguished from most other cells by the presence or absence of particular progenitor marker antigens, such as CD34, that are present on the surface of these cells and/or by morphological characteristics.
  • progenitor marker antigens such as CD34
  • the phenotype for a highly enriched human stem cell fraction is reported as CD34+, Thy-1+ and lin-, but it is to be understood that the present invention is not limited to the expansion of this stem cell population.
  • the CD34+ enriched human stem cell fraction can be separated by a number of reported methods, including affinity columns or beads, magnetic beads or flow cytometry using antibodies directed to surface antigens such as the CD34+.
  • CD34+ progenitors are heterogeneous, and may be divided into several sub- populations characterized by the presence or absence of co-expression of different lineage associated cell surface associated molecules.
  • the most immature progenitor cells do not express any known lineage associated markers, such as HLA-DR or CD38, but they may express CD90(thy-l).
  • Other surface antigens such as
  • CD33, CD38, CD41, CD71, HLA-DR or c-kit can also be used to selectively isolate hematopoietic progenitors.
  • the separated cells can be incubated in selected medium in a culture flask, sterile bag or in hollow fibers.
  • Various colony stimulating factors may be utilized in order to selectively expand cells.
  • Representative factors that have been utilized for ex-vivo expansion of bone marrow include, c-kit ligand, IL-3, G-CSF, GM-CSF, IL-1, IL-6, IL-11, flt-3 ligand or combinations thereof.
  • the proliferation of the stem cells can be monitored by enumerating the number of stem cells and other cells, by standard techniques (e.g. hemacytometer, CFU, LTCIC) or by flow cytometry prior and subsequent to incubation.
  • hIL-3 has been shown to be one of the most potent in expanding peripheral blood CD34+ cells (Sato et al . , Blood 82:3600-3609 [1993], Kobayashi et al., Blood 73 :1836-1841 [1989]).
  • no single factor has been shown to be as effective as the combination of multiple factors.
  • the present invention provides methods for ex vivo expansion that utilize multi-functional chimeric hematopoietic receptor agonists that are more effective than a single factor alone .
  • Another aspect of the invention provides methods of sustaining and/or expanding hematopoietic precursor cells which includes inoculating the cells into a culture vessel which contains a culture medium that has been conditioned by exposure to a stromal cell line such as HS-5 (WO 96/02662, Roecklein and Torok-Strob, Blood 85:997-1105, 1995) that has been supplemented with a multi-functional hematopoietic chimeric receptor agonist of the present invention.
  • a stromal cell line such as HS-5 (WO 96/02662, Roecklein and Torok-Strob, Blood 85:997-1105, 1995) that has been supplemented with a multi-functional hematopoietic chimeric receptor agonist of the present invention.
  • multi-functional hematopoietic chimeric receptor agonists of the present invention would include blood banking applications, where the EPO receptor agonists are given to a patent to increase the number of blood cells and blood products are removed from the patient, prior to some medical procedure. The blood products stored and transfused back into the patient after the medical procedure. Additionally, it is envisioned that uses of multifunctional hematopoietic chimeric receptor agonists would include giving the multi-functional hematopoietic chimeric receptor agonists to a blood donor prior to blood donation to increase the number of blood cells, thereby allowing the donor to safely give more blood.
  • hematopoietic progenitor cells are good candidates for ex vivo gene transfection.
  • Hematopoietic stem cells cycle at a very low frequency which means that growth factors may be useful to promote gene transduction and thereby enhance the clinical prospects for gene therapy.
  • Gene therapy Potential applications include; 1) the treatment of many congenital metabolic disorders and immunodeficiencies (Kay and Woo, Trends Genet . 10:253-257 [1994]), 2) neurological disorders (Friedmann, Trends Genet . 10:210-214 [1994]), 3) cancer (Culver and Blaese, Trends Genet . 10:174-178 [1994]) and 4) infectious diseases (Gilboa and Smith, Trends Genet . 10:139-144 [1994]).
  • Viral based vectors include; 1) replication deficient recombinant retrovirus (Boris- Lawrie and Temin, Curr . Opin . Genet . Dev. 3:102-109 [1993], Boris-Lawrie and Temin, Annal . New York Acad . Sci . 716:59-71 [1994], Miller, Current Top . Microbiol . Immunol .
  • Non-viral based vectors include protein/DNA complexes (Cristiano et al . , PNAS USA . 90:2122-2126 [1993], Curiel et al . , PNAS USA 88:8850-8854 [1991], Curiel, Annal . New York Acad . Sci .
  • the present invention provides an improvement to the existing methods of expanding hematopoietic cells, which new genetic material has been introduced, in that it provides methods utilizing multi-functional chimeric hematopoietic receptor agonist proteins that have improved biological activity, including an activity not seen by any single colony stimulation factor. Many drugs may cause bone marrow suppression or hematopoietic deficiencies.
  • drugs examples include AZT, DDI, alkylating agents and anti-metabolites used in chemotherapy, antibiotics such as chloramphenicol, penicillin, gancyclovir, daunomycin and sulfa drugs, phenothiazones , tranquilizers such as meprobamate, analgesics such as aminopyrine and dipyrone, anti- convulsants such as phenytoin or carbamazepine, antithyroids such as propylthiouracil and methimazole and diuretics.
  • the multi-functional chimeric hematopoietic receptor agonists of the present invention may be useful in preventing or treating the bone marrow suppression or hematopoietic deficiencies which often occur in patients treated with these drugs .
  • Hematopoietic deficiencies may also occur as a result of viral, microbial or parasitic infections, burns and as a result of treatment for renal disease or renal failure, e.g., dialysis.
  • the multi-functional chimeric hematopoietic receptor agonists of the present invention may be useful in treating such hematopoietic deficiencies .
  • the treatment of hematopoietic deficiency may include administration of a pharmaceutical composition containing the multi-functional chimeric hematopoietic receptor agonists to a patient.
  • the multi-functional chimeric hematopoietic receptor agonists of the present invention may also be useful for the activation and amplification of hematopoietic precursor cells by treating these cells in vitro with the multi-functional chimeric hematopoietic receptor agonist proteins of the present invention prior to injecting the cells into a patient .
  • Immunodeficiencies may also be beneficially affected by treatment with the multi-functional chimeric hematopoietic receptor agonists of the present invention.
  • Immunodeficiencies may be the result of viral infections, e.g., HTLVI, HTLVII, HTLVIII, severe exposure to radiation, cancer therapy or the result of other medical treatment.
  • the multi-functional chimeric hematopoietic receptor agonists of the present invention may also be employed, alone or in combination with other colony stimulating factors, in the treatment of other blood cell deficiencies, including thrombocytopenia (platelet deficiency), or anemia.
  • Other uses for these novel polypeptides are the in vivo and ex vivo treatment of patients recovering from bone marrow transplants, and in the development of monoclonal and polyclonal antibodies generated by standard methods for diagnostic or therapeutic use.
  • compositions for treating the conditions referred to above.
  • Such compositions comprise a therapeutically effective amount of one or more of the multi-functional chimeric hematopoietic receptor agonists of the present invention in a mixture with a pharmaceutically acceptable carrier.
  • This composition can be administered either parenterally, intravenously or subcutaneously.
  • the therapeutic composition for use in this invention is preferably in the form of a pyrogen-free, parenterally acceptable aqueous solution.
  • the preparation of such a parenterally acceptable protein solution having due regard to pH, isotonicity, stability and the like, is within the skill of the art.
  • Dendritic cells play a crucial role in the immune system. They are the professional antigen-presenting cells most efficient in the activation of resting T cells and are the major antigen-presenting cells for activation of na ⁇ ve T cells in vivo and, thus, for initiation of primary immune responses. They efficiently internalize, process and present soluble tumor-specific antigens (Ag) .
  • Dendritic cells have the unique capacity to cluster na ⁇ ve T cells and to respond to Ag encounter by rapid upregulation of the expression of major histocompatability complex (MHC) and co-stimulatory molecules, the production of cytokines and migration towards lymphatic organs . Since dendritic cells are of central importance for sensitizing the host against a neoantigen for CD4- dependent immune responses, they may also play a crucial role in the generation and regulation of tumor immunity.
  • MHC major histocompatability complex
  • Dendritic cells originate from a bone marrow CD34+ precursor common to granulocytes and macrophages, and the existence of a separate dendritic cell colony- forming unit (CFU-DC) that give rise to pure dendritic cell colonies has been established in humans.
  • CFU-DC dendritic cell colony- forming unit
  • a post-CFU CD14+ intermediate has been described with the potential to differentiate along the dendritic cell or the macrophage pathway under distinct cytokine conditions. This bipotential precursor is present in the bone marrow, cord blood and peripheral blood.
  • Dendritic cells can be isolated based on specific cell surface markers, such as CDla+, CD3-, CD4-, CD20-, CD40+, CD80+, and CD83+, to delineate the maturation of cultured dendritic cells.
  • Dendritic cells based strategies provide a method for enhancing immune response against tumors and infectious agents.
  • AIDS is another disease for which dendritic cell based therapies can be used, since dendritic cells can play a major role in promoting HIV- 1 replication.
  • An immunotherapy requires the generation of dendritic cells from cancer patients, their in vi tro exposure to tumor Ag, derived from surgically removed tumor masses, and reinj ection of these cells into the tumor patients. Relatively crude membrane preparations of tumor cells will suffice as sources of tumor antigen, avoiding the necessity for molecular identification of the tumor antigen.
  • the tumor antigen may also be synthetic peptides, carbohydrates, or nucleic acid sequences.
  • cytokines such as the multi-functional chimeric hematopoietic receptor agonists of the present invention may further facilitate the induction of tumor immunity.
  • the immunotherapy can be in an in vivo setting, wherein the multi-functional chimeric hematopoietic receptor agonists of the present invention is administered to a patient, having a tumor, alone or with other hematopoietic growth factors to increase the number of dendritic cells and endogenous tumor antigen is presented on the dendritic cells. It is also envisioned that in vivo immunotherapy can be with exogenous antigen.
  • the immunotherapy treatment may include the mobilization of dendritic cell precursors or mature dendritic, by administering the multi-functional chimeric hematopoietic receptor agonists of the present invention alone or with other hematopoietic growth factors to the patient, removing the dendritic cell precursors or mature dendritic cells from the patient, exposing the dendritic cells to antigen and returning the dendritic cells to the patient.
  • the dendritic cells that have been removed can be cultured ex vivo with the multi-functional chimeric hematopoietic receptor agonists of the present invention alone or with other hematopoietic growth factors to increase the number of dendritic cells prior to exposure to antigen.
  • Dendritic cells based strategies also provide a method for reducing the immune response in auto-immune diseases.
  • GM-CSF granulocyte-macrophage colony-stimulating factor
  • TNF- ⁇ tumor necrosis factor-
  • CD34+ cells hematopoietic progenitors
  • SCF stem cell factor
  • a daily regimen may be in the range of 0.2 - 150 ⁇ g/kg of multifunctional chimeric hematopoietic receptor agonist protein per kilogram of body weight. Dosages would be adjusted relative to the activity of a given multifunctional chimeric hematopoietic receptor agonist protein and it would not be unreasonable to note that dosage regimens may include doses as low as 0.1 microgram and as high as 1 milligram per kilogram of body weight per day.
  • multi-functional chimeric hematopoietic receptor agonist would be adjusted higher or lower than the range of 0.2 - 150 micrograms per kilogram of body weight.
  • these include co-administration with other colony stimulating factors or IL-3 variants or growth factors; co-administration with chemotherapeutic drugs and/or radiation; the use of glycosylated multi-functional chimeric hematopoietic receptor agonist protein; and various patient-related issues mentioned earlier in this section.
  • the therapeutic method and compositions may also include co-administration with other human factors.
  • CSFs colony stimulating factors
  • cytokines cytokines
  • lymphokines lymphokines
  • hematopoietic growth factors and interleukins for simultaneous or serial co-administration with the polypeptides of the present invention
  • M-CSF c-mpl ligand
  • EPO erythropoietin
  • IL-1 IL-4, IL-2, IL-3, IL-5, IL- 6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, IL-16, LIF, flt3/flk2 ligand, B-cell growth factor, B- cell differentiation factor and eosinophil differentiation factor, stem cell factor (SCF) also known as steel factor or c-kit ligand, or combinations thereof.
  • SCF stem cell factor
  • E. coli strains such as DH5aTM (Life Technologies, Gaithersburg, MD) and TGI (Amersham Corp., Arlington Heights, IL) are used for transformation of ligation reactions and are the source of plasmid DNA for transfecting mammalian cells.
  • E. coli strains such as JM101 (Yanisch-Perron, et al . , Gene, 33: 103-119, 1985) and MON105 (Obukowicz, et al . , Appl . and Envir . Micr . , 58: 1511-1523, 1992) can be used for expressing the multi-functional chimeric hematopoietic receptor agonist of the present invention in the cytoplasm or periplasmic space .
  • MON105 ATCC#55204 F-, lambda- , IN (rrnD, rrE)l, rpoD+ , rpoH358
  • DH5aTM F-, phi80dlacZdeltaM15 , delta (lacZYA-argF) U169 , deoR, recAl, endAl, hsdR17 (rk- ,mk+) , phoA, supE441amda- , thi-1, gyrA96, relAl
  • TGI delta ( lac-pro) , supE, thi-1, hsdD5/F ' ( traD36 , proA+B+, laclq, lacZdeltaM15 )
  • JM101 ATCC#33876 delta (pro lac), supE, thi , F'(traD36, proA+B+, laclq, lacZdeltaM15 )
  • DH5aTM Subcloning efficiency cells are purchased as competent cells and are ready for transformation using the manufacturer's protocol, while both E. coli strains TGI and MON105 are rendered competent to take up DNA using a CaCl 2 method.
  • 20 to 50 mL of cells are grown in LB medium (1% Bacto-tryptone, 0.5% Bacto- yeast extract, 150 mM NaCl) to a density of approximately 1.0 optical density unit at 600 nanometers (OD600) as measured by a Baush & Lomb Spectronic spectrophotometer (Rochester, NY) .
  • the cells are collected by centrifugation and resuspended in one-fifth culture volume of CaCl 2 solution (50 mM CaCl 2 , 10 mM
  • the cells are again collected by centrifugation and resuspended in one-tenth culture volume of CaCl 2 solution.
  • Ligated DNA is added to 0.2 mL of these cells, and the samples are held at 4°C for 30-60 minutes.
  • the samples are shifted to 42°C for two minutes and 1.0 mL of LB is added prior to shaking the samples at 37°C for one hour.
  • Cells from these samples are spread on plates (LB medium plus 1.5% Bacto-agar) containing either ampicillin (100 micrograms/mL, ug/mL) when selecting for ampicillin-resistant transformants, or spectinomycin (75 ug/mL) when selecting for spectinomycin-resistant transformants .
  • the plates are incubated overnight at 37°C. Colonies are picked and inoculated into LB plus appropriate antibiotic (100 ug/mL ampicillin or 75 ug/mL spectinomycin) and are grown at 37°C while shaking.
  • Method I Creation of genes with new N-terminus/C- terminus which contain a linker region (L 2 ) .
  • the first primer set (“new start” and “linker start”) is used to create and amplify, from the original gene sequence, the DNA fragment (“Fragment Start”) that contains the sequence encoding the new N-terminal portion of the new protein followed by the linker (L 2 ) that connects the C-terminal and N-terminal ends of the original protein.
  • the second primer set (“new stop” and “linker stop”) is used to create and amplify, from the original gene sequence, the DNA fragment (“Fragment Stop”) that encodes the same linker as used above, followed by the new C-terminal portion of the new protein.
  • the "new start” and “new stop” primers are designed to include the appropriate restriction sites which allow cloning of the new gene into expression plasmids.
  • Typical PCR conditions are one cycle 95°C melting for two minutes; 25 cycles 94°C denaturation for one minute, 50°C annealing for one minute and 72°C extension for one minute; plus one cycle 72 °C extension for seven minutes .
  • a Perkin Elmer GeneAmp PCR Core Reagents kit is used. A 100 ul reaction contains 100 pmole of each primer and one ug of template DNA; and lx
  • PCR buffer 200 uM dGTP, 200 uM dATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM MgCl2.
  • PCR reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT) .
  • primers "new start” and “new stop” are added to the annealed fragments to create and amplify the full-length new N-terminus/C-terminus gene.
  • Typical PCR conditions are one cycle 95°C melting for two minutes; 25 cycles 94°C denaturation for one minute, 60°C annealing for one minute and 72°C extension for one minute; plus one cycle 72°C extension for seven minutes.
  • a Perkin Elmer GeneAmp PCR Core Reagents kit is used.
  • a 100 ul reaction contains 100 pmole of each primer and approximately 0.5 ug of DNA; and lx PCR buffer, 200 uM dGTP, 200 uM dATP, 200 uM dTTP, 200 uM dCTP, 2.5 units
  • PCR reactions are purified using a Wizard PCR Preps kit (Promega) .
  • New N-terminus/C-terminus genes without a linker joining the original N-terminus and C-terminus can be made using two steps of PCR amplification and a blunt end ligation. The steps are illustrated in Figure 3.
  • the primer set (“new start” and “P-bl start”) is used to create and amplify, from the original gene sequence, the DNA fragment (“Fragment Start”) that contains the sequence encoding the new N-terminal portion of the new protein.
  • the primer set (“new stop” and “P-bl stop”) is used to create and amplify, from gene sequence, the DNA fragment (“Fragment Stop”) that contains the sequence encoding the new C-terminal portion of the new protein.
  • the “new start” and “new stop” primers are designed to include appropriate restriction sites which allow cloning of the new gene into expression vectors.
  • Typical PCR conditions are one cycle 95°C melting for two minutes; 25 cycles 94°C denaturation for one minute, 50°C annealing for 45 seconds and 72 °C extension for 45 seconds. Deep Vent polymerase (New England Biolabs) is used to reduce the occurrence of overhangs in conditions recommended by the manufacturer.
  • the "P-bl start” and “P-bl stop” primers are phosphorylated at the 5 ' end to aid in the subsequent blunt end ligation of "Fragment Start” and "Fragment Stop” to each other.
  • a 100 ul reaction contained 150 pmole of each primer and one ug of template DNA; and lx Vent buffer (New England Biolabs) , 300 uM dGTP, 300 uM dATP, 300 uM dTTP, 300 uM dCTP, and 1 unit Deep Vent polymerase.
  • PCR reactions are performed in a Model 480 DNA thermal cycler (Perkin
  • PCR reaction products are purified using a Wizard PCR Preps kit (Promega) .
  • the primers are designed to include appropriate restriction sites which allow for the cloning of the new gene into expression vectors.
  • “Fragment Start” is designed to create Ncol restriction site
  • “Fragment Stop” is designed to create a Hindlll restriction site. Restriction digest reactions are purified using a Magic DNA Clean-up System kit
  • Fragments Start and Stop are resolved on a 1% TAE gel, stained with ethidium bromide and isolated using a Qiaex Gel Extraction kit (Qiagen) . These fragments are combined with and annealed to the ends of the ⁇ 3800 base pair Ncol/Hindlll vector fragment of pMON3934 by heating at 50°C for ten minutes and allowed to slow cool. The three fragments are ligated together using T4 DNA ligase (Boehringer Mannheim) . The result is a plasmid containing the full-length new N-terminus/C- terminus gene. A portion of the ligation reaction is used to transform E. coli strain DH5 ⁇ cells (Life Technologies, Gaithersburg, MD) . Plasmid DNA is purified and sequence confirmed as below.
  • New N-terminus/C-terminus genes can be made based on the method described in R. A. Horlick, et al Protein Eng. 5:427-431, 1992). Polymerase chain reaction (PCR) amplification of the new N-terminus/C-terminus genes is performed using a tandemly duplicated template DNA. The steps are illustrated in Figure 3.
  • PCR Polymerase chain reaction
  • the tandemly-duplicated template DNA is created by cloning and contains two copies of the gene separated by DNA sequence encoding a linker connecting the original C- and N-terminal ends of the two copies of the gene.
  • Specific primer sets are used to create and amplify a full-length new N terminus/C-terminus gene from the tandemly-duplicated template DNA. These primers are designed to include appropriate restriction sites which allow for the cloning of the new gene into expression vectors. Typical PCR conditions are one cycle 95°C melting for two minutes; 25 cycles 94°C denaturation for one minute, 50°C annealing for one minute and 72°C extension for one minute; plus one cycle 72 °C extension for seven minutes.
  • Reagents kit (Perkin Elmer Corporation, Norwalk, CT) is used.
  • a 100 ul reaction contains 100 pmole of each primer and one ug of template DNA; and lx PCR buffer, 200 uM dGTP, 200 uM dATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM MgCl 2 .
  • PCR reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT) .
  • PCR reactions are purified using a Wizard PCR Preps kit (Promega) .
  • the new N-terminus/C-terminus gene is digested with restriction endonucleases to create ends that are compatible to insertion into an expression vector containing another colony stimulating factor gene.
  • This expression vector is likewise digested with restriction endonucleases to form compatible ends.
  • the gene and the vector DNAs are combined and ligated using T4 DNA ligase. A portion of the ligation reaction is used to transform E. coli. Plasmid DNA is purified and sequenced to confirm the correct insert. The correct clones are grown for protein expression.
  • Plasmid DNA can be isolated by a number of different methods and using commercially available kits known to those skilled in the art. A few such methods are shown herein. Plasmid DNA is isolated using the Promega WizardTM Miniprep kit (Madison, WI) , the Qiagen QIAwe11 Plasmid isolation kits (Chatsworth, CA) or Qiagen Plasmid Midi kit. These kits follow the same general procedure for plasmid DNA isolation. Briefly, cells are pelleted by centrifugation (5000 x g) , plasmid DNA released with sequential NaOH/acid treatment, and cellular debris is removed by centrifugation (10000 x g) .
  • the supernatant (containing the plasmid DNA) is loaded onto a column containing a DNA-binding resin, the column is washed, and plasmid DNA eluted with TE. After screening for the colonies with the plasmid of interest, the E. coli cells are inoculated into 50-100 mLs of LB plus appropriate antibiotic for overnight growth at 37°C in an air incubator while shaking.
  • the purified plasmid DNA is used for DNA sequencing, further restriction enzyme digestion, additional subcloning of DNA fragments and transfection into mammalian, E. coli or other cells.
  • Purified plasmid DNA is resuspended in dH 2 0 and quantitated by measuring the absorbance at 260/280 nm in a Bausch and Lomb Spectronic 601 UV spectrometer.
  • DNA samples are sequenced using ABI PRISMTM DyeDeoxyTM terminator sequencing chemistry (Applied Biosystems Division of Perkin Elmer Corporation, Lincoln City, CA) kits (Part Number 401388 or 402078) according to the manufacturers suggested protocol usually modified by the addition of 5% DMSO to the sequencing mixture. Sequencing reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT) following the recommended amplification conditions.
  • Samples are purified to remove excess dye terminators with Centri-SepTM spin columns (Princeton Separations, Adelphia, NJ) and lyophilized. Fluorescent dye labeled sequencing reactions are resuspended in deionized formamide, and sequenced on denaturing 4.75% polyacrylamide-8M urea gels using an ABI Model 373A automated DNA sequencer . Overlapping DNA sequence fragments are analyzed and assembled into master DNA contigs using Sequencher DNA analysis software (Gene Codes Corporation, Ann Arbor, MI) . %
  • BHK growth media This formulation is designated BHK growth media.
  • Selective media is BHK growth media supplemented with 453 units/mL hygromycin B (Calbiochem, San Diego, CA) .
  • the BHK-21 cell line was previously stably transfected with the HSV transactivating protein VP16, which transactivates the IE110 promoter found on the plasmid pMON3359 (See Hippenmeyer et al . , Bio /Technology, pp.1037-1041, 1993).
  • the VP16 protein drives expression of genes inserted behind the IE110 promoter.
  • BHK-21 cells expressing the transactivating protein VP16 are designated BHK-VP16.
  • the plasmid pMONlll ⁇ (See Highkin et al., Poul try Sci . , 70: 970-981, 1991) expresses the hygromycin resistance gene from the SV40 promoter.
  • a similar plasmid is available from ATCC, pSV2-hph.
  • BHK-VP16 cells are seeded into a 60 millimeter (mm) tissue culture dish at 3 X 10 cells per dish 24 hours prior to transfection. Cells are transfected for 16 hours in 3 mL of "OPTIMEM”TM (Gibco-BRL, Gaithersburg, MD) containing 10 ug of plasmid DNA containing the gene of interest, 3 ug hygromycin resistance plasmid,
  • One mL aliquots of the culture are removed for analysis of protein content by boiling the pelleted cells, treating them with reducing buffer and electrophoresis via SDS-PAGE (see Maniatis et al . Molecular Cloning: A Laboratory Manual, 1982) .
  • the culture is centrifuged (5000 x g) to pellet the cells.
  • Inclusion Body preparation Extraction, Refolding, Dialysis, DEAE Chromatography, and Characterization of the multi-functional chimeric hematopoietic receptor 18 agonists which accumulate as inclusion bodies in E. coli .
  • the cell pellet from a 330 mL E. coli culture is resuspended in 15 mL of sonication buffer (10 mM 2- amino-2- (hydroxymethyl) 1, 3-propanediol hydrochloride (Tris-HCl), pH 8.0 + 1 mM ethylenediaminetetraacetic acid (EDTA) .
  • sonication buffer 10 mM 2- amino-2- (hydroxymethyl) 1, 3-propanediol hydrochloride (Tris-HCl), pH 8.0 + 1 mM ethylenediaminetetraacetic acid (EDTA) .
  • Tris-HCl 2- amino-2- (hydroxymethyl) 1, 3-propanediol hydrochloride
  • EDTA ethylenediaminetetraacetic acid
  • These resuspended cells are sonicated using the microtip probe of a Sonicator Cell Disruptor (Model W-375, Heat Systems-Ultrasonics , Inc., Farmingdale, New York
  • the extraction solution is transferred to a beaker containing 70 mL of 5 mM Tris-HCl, pH 9.5 and 2.3 M urea and gently stirred while exposed to air at 4°C for 18 to 48 hours to allow the proteins to refold.
  • Refolding is monitored by analysis on a Vydac (Hesperia, Ca.) C18 reversed phase high pressure liquid chromatography (RP- HPLC) column (0.46x25 cm).
  • RP- HPLC reversed phase high pressure liquid chromatography
  • TFA TAA
  • Denatured proteins generally elute later in the gradient than the refolded proteins.
  • contaminating E. coli proteins are removed by acid precipitation.
  • the pH of the refold solution is titrated to between pH 5.0 and pH 5.2 using 15% (v/v) acetic acid (HOAc) . This solution is stirred at 4°C for 2 hours and then centrifuged for 20 minutes at 12,000 x g to pellet any insoluble protein.
  • HOAc acetic acid
  • the supernatant from the acid precipitation step is dialyzed using a Spectra/Por 3 membrane with a molecular weight cut off (MWCO) of 3,500 daltons.
  • the dialysis is against 2 changes of 4 liters (a 50-fold excess) of 10 mM Tris-HCl, pH 8.0 for a total of 18 hours. Dialysis lowers the sample conductivity and removes urea prior to DEAE chromatography.
  • the sample is then centrifuged (20 minutes at 12,000 x g) to pellet any insoluble protein following dialysis.
  • a Bio-Rad Bio-Scale DEAE2 column (7 x 52 mm) is used for ion exchange chromatography.
  • the column is equilibrated in a buffer containing 10 mM Tris-HCl, pH 8.0, and a 0-to-500 mM sodium chloride (NaCl) gradient, in equilibration buffer, over 45 column volumes is used to elute the protein.
  • a flow rate of 1.0 mL per minute is used throughout the run.
  • Column fractions (2.0 mL per fraction) are collected across the gradient and analyzed by RP HPLC on a Vydac (Hesperia, Ca.) C18 column (0.46 x 25 cm) .
  • the sample is sterile filtered using a 0.22 ⁇ m syringe filter ( ⁇ Star LB syringe filter, Costar, Cambridge, Ma.), and stored at 4°C.
  • the folded proteins can be affinity purified using affinity reagents such as mAbs or receptor subunits attached to a suitable matrix.
  • affinity reagents such as mAbs or receptor subunits attached to a suitable matrix.
  • purification can be accomplished using any of a variety of chromatographic methods such as: ion exchange, gel filtration or hydrophobic chromatography or reversed phase HPLC.
  • the purified protein is analyzed by RP-HPLC, electrospray mass spectrometry, and SDS-PAGE.
  • the protein quantitation is done by amino acid composition, RP-HPLC, and Bradford protein determination. In some cases tryptic peptide mapping is performed in conjunction with electrospray mass spectrometry to confirm the identity of the protein.
  • the factor-dependent cell line AML 193 was obtained from the American Type Culture Collection (ATCC,
  • This cell line established from a patient with acute myelogenous leukemia, is a growth factor dependent cell line which displayed enhanced growth in GM-CSF supplemented medium (Lange, B., et al . , Blood 70: 192, 1987; Valtieri, M. , et al . , J. Immunol . 138:4042, 1987).
  • the ability of AML 193 cells to proliferate in the presence of human IL-3 has also been documented. (Santoli, D. , et al . , J “ . Immunol . 139: 348, 1987) .
  • a cell line variant was used, AML 193 1.3, which was adapted for long term growth in IL-3 by washing out the growth factors and starving the cytokine dependent AML 193 cells for growth factors for 24 hours. The cells are then replated at 1x10 cells/well in a 24 well plate in media containing 100 U/mL IL-3. It took approximately 2 months for the cells to grow rapidly in IL-3. These cells are maintained as AML 193 1.3 thereafter by supplementing tissue culture medium (see below) with human IL-3.
  • AML 193 1.3 cells are washed 6 times in cold Hanks balanced salt solution (HBSS, Gibco, Grand Island, NY) by centrifuging cell suspensions at 250 x g for 10 minutes followed by decantation of the supernatant. Pelleted cells are resuspended in HBSS and the procedure is repeated until six wash cycles are completed. Cells washed six times by this procedure are resuspended in tissue culture medium at a density ranging from 2 x 10
  • This medium is prepared by supplementing Iscove's modified Dulbecco ' s Medium (IMDM,
  • Bovine albumin (Boehringer- Mannheim, Indianapolis, IN) is added at 500 ⁇ g/mL; human transferrin (Boehringer-Mannheim, Indianapolis, IN) is added at 100 ⁇ g/mL; soybean lipid (Boehringer-Mannheim, Indianapolis, IN) is added at 50 ⁇ g/mL; and 2- mercaptoethanol (Sigma, St. Louis, MO) is added at 5 x
  • Cellular DNA is harvested onto glass filter mats (Pharmacia LKB, Gaithersburg, MD) using a TOMTEC cell harvester (TOMTEC, Orange, CT) which utilized a water wash cycle followed by a 70% ethanol wash cycle. Filter mats are allowed to air dry and then placed into sample bags to which scintillation fluid (Scintiverse II, Fisher Scientific, St. Louis, MO or BetaPlate Scintillation Fluid, Pharmacia LKB, Gaithersburg, MD) is added.
  • scintillation fluid Scintiverse II, Fisher Scientific, St. Louis, MO or BetaPlate Scintillation Fluid, Pharmacia LKB, Gaithersburg, MD
  • Beta emissions of samples from individual tissue culture wells are counted in a LKB BetaPlate model 1205 scintillation counter (Pharmacia LKB, Gaithersburg, MD) and data is expressed as counts per minute of 3 H-thymidine incorporated into cells from each tissue culture well.
  • Activity of each human interleukin-3 preparation or multi-functional chimeric hematopoietic receptor agonist protein preparation is quantitated by measuring cell proliferation ( 3 H-thymidine incorporation) induced by graded concentrations of interleukin-3 or multifunctional chimeric hematopoietic receptor agonist.
  • concentration ranges from 0.05 pM - 10 pM are quantitated in these assays.
  • This EC 50 value is also equivalent to 1 unit of bioactivity. Every assay is performed with native interleukin-3 as a reference standard so that relative activity levels could be assigned.
  • the multi-functional chimeric hematopoietic receptor agonist proteins were tested in a concentration range of 2000 pM to 0.06 pM titrated in serial 2 fold dilutions.
  • the proliferation assay was performed with the multi-functional chimeric hematopoietic receptor agonist plus and minus neutralizing monoclonal antibodies to the hIL-3 receptor agonist portion.
  • a fusion molecule with the factor Xa cleavage site was cleaved then purified and the halves of the molecule were assayed for proliferative activity.
  • the c-mpl ligand proliferative activity can be assayed using a subclone of the pluripotential human cell line TFl (Kitamura et al . , J. Cell Physiol 140:323- 334. [1989]). TFl cells are maintained in h-IL3 (100 U/mL) . To establish a sub-clone responsive to c-mpl ligand, cells are maintained in passage media containing 10% supernatant from BHK cells transfected with the gene expressing the 1-153 form of c-mpl ligand (pMON26448). Most of the cells die, but a subset of cells survive. After dilution cloning, a c-mpl ligand responsive clone is selected, and these cells are split into passage
  • Passage media for these cells is the following: RPMI 1640 (Gibco) , 10% FBS (Harlan, Lot #91206) , 10% c-mpl ligand supernatant from transfected BHK cells, 1 mM sodium pyruvate (Gibco), 2 mM glutamine (Gibco) , and 100 ug/mL penicillin-streptomycin (Gibco) .
  • RPMI 1640 Gibco
  • FBS Hard, Lot #91206
  • c-mpl ligand supernatant from transfected BHK cells 1 mM sodium pyruvate (Gibco), 2 mM glutamine (Gibco) , and 100 ug/mL penicillin-streptomycin (Gibco) .
  • ATL medium consists of the following: IMDM (Gibco) , 500 ug/mL of bovine serum albumin, 100 ug/mL of human transferrin, 50 ug/mL soybean lipids, 4 x 10-8M beta-mercaptoethanol and 2 mL of A9909 (Sigma, antibiotic solution) per 1000 mL of ATL.
  • conditioned media from transfected clones are added at a volume of 50 ul as duplicate samples at a final concentration of 50% and diluted three-fold to a final dilution of 1.8%.
  • the plate is pulsed with 0.5 Ci of 3H/well (NEN) in a volume of 20 ul/well and allowed to incubate at 5% C0 2 and 37° C for four hours.
  • the plate is harvested and counted on a Betaplate counter.
  • a cell line such as MUTZ-2 which is a human myeloid leukemia cell line (German Collection of Microorganisms and Cell Cultures, DSM ACC 271), can be used to determine the cell proliferative activity of flt3 receptor agonists.
  • MUTZ-2 cultures are maintained with recombinant native flt3 ligand (20-100ng/mL) in the growth medium.
  • MUTZ-2 cells Eighteen hours prior to assay set-up, MUTZ-2 cells are washed in IMDM medium (Gibco) three times and are resuspended in IMDM medium alone at a concentration of 0.5-0.7 x 10E6 cells/mL and incubated at 37°C and 5%C0 2 to starve the cells of flt3 ligand.
  • in vitro cell based proliferation assays Other in vitro cell based assays, known to those skilled in the art, may also be useful to determine the activity of the multi-functional chimeric hematopoietic receptor agonists depending on the factors that comprise the molecule in a similar manner as described in the AML 193.1.3 cell proliferation assay. The following are examples of other useful assays .
  • TFl proliferation assay TFl is a pluripotential human cell line (Kitamura et al . , J. Cell Physiol 140:323-334. [1989]) that responds to hIL-3.
  • 32D proliferation assay 32D is a murine IL-3 dependent cell line which does not respond to human IL-3 but does respond to human G-CSF which is not species restricted.
  • Baf/3 proliferation assay Baf/3 is a murine IL-3 dependent cell line which does not respond to human IL-3 or human c-mpl ligand but does respond to human G-CSF which is not species restricted.
  • T1165 proliferation assay T1165 cells are a IL-6 dependent murine cell line (Nordan et al . , 1986) which respond to IL-6 and IL-11.
  • Human Plasma Clot meg-CSF Assay Used to assay megakaryocyte colony formation activity (Mazur et al . , 1981) .
  • Cell lines such as the murine Baf/3 cell line can be transfected with a colony stimulating factor receptor, such as the human G-CSF receptor or human c- mpl receptor, which the cell line does not have. These transfected cell lines can be used to determine the activity of the ligand for which the receptor has been transfected into the cell line.
  • a colony stimulating factor receptor such as the human G-CSF receptor or human c- mpl receptor
  • One such transfected Baf/3 cell line was made by cloning the cDNA encoding c-mpl from a library made from a c-mpl responsive cell line and cloned into the multiple cloning site of the plasmid pcDNA3 (Invitrogen, San Diego Ca.). Baf/3 cells were transfected with the plasmid via electroporation.
  • the cells were grown under G418 selection in the presence of mouse IL-3 in Wehi conditioned media. Clones were established through limited dilution. In a similar manner the human G-CSF receptor can be transfected into the Baf/3 cell line and used to determine the bioactivity of the multi-functional chimeric hematopoietic receptor agonists .
  • Bone marrow aspirates (15-20 mL) were obtained from normal allogeneic marrow donors after informed consent. Cells were diluted 1:3 in phosphate buffered saline (PBS, Gibco-BRL) , 30 mL were layered over 15 mL
  • PBS phosphate buffered saline
  • CD34+ cells were enriched from the mononuclear cell preparation using an affinity column per manufacturers instructions (CellPro, Inc., Bothell WA) . After enrichment, the purity of CD34+ cells was 70% on average as determined by using flow cytometric analysis using anti-CD34 monoclonal antibody conjugated to fluorescein and anti-CD38 conjugated to phycoerythrin (Becton Dickinson, San Jose CA) .
  • Conditioned media from BHK cells transfected with plasmid encoding c-mpl ligand or multi- functional chimeric hematopoietic receptor agonists were tested by addition of 100 ⁇ l of supernatant added to 1 mL cultures (approximately a 10% dilution) . Cells were incubated at 37°C for 8-14 days at 5% C0 2 in a 37°C humidified incubator.
  • MK buffer 13.6 mM sodium citrate, 1 mM theophylline, 2.2 ⁇ m PGE1, 11 mM glucose, 3% w/v BSA, in PBS, pH 7.4,
  • MK buffer 13.6 mM sodium citrate, 1 mM theophylline, 2.2 ⁇ m PGE1, 11 mM glucose, 3% w/v BSA, in PBS, pH 7.4,
  • CD41a-FITC Green fluorescence
  • PI red fluorescence
  • CD34+ enriched population were isolated as described above.
  • Cells were suspended at 25,000 cells/mL with or without cytokine(s) in a media consisting of a base Iscoves IMDM media supplemented with 0.3% BSA, 0.4mg/mL apo-transferrin, 6.67 ⁇ M FeCl 2 , 25 ⁇ g/mL CaCl 2 , 25 ⁇ g/mL L- asparagine, 500 ⁇ g/mL e-amino-n-caproic acid and penicillin/streptomycin.
  • thrombin Prior to plating into 35mm plates, thrombin was added (0.25 Units/mL) to initiate clot formation.
  • Cells were incubated at 37°C for 13 days at 5% C0 2 in a 37°C humidified incubator.
  • This assay reflects the ability of colony stimulating factors to stimulate normal bone marrow cells to produce different types of hematopoietic colonies in vi tro (Bradley et al . , Aust . Exp Biol . Sci . 44:287-300, 1966), Pluznik et al . , J. Cell Comp . Physio 66:319-324, 1965) . ⁇
  • samples are diluted 1:5 with a IX PBS (#14040.059 Life Technologies, Gaithersburg, MD.) solution in a 50 mL conical tube (#25339-50 Corning, Corning MD) .
  • Ficoll Histopaque 1077 Sigma H-8889 is layered under the diluted sample and centrifuged, 300 x g for 30 min. The mononuclear cell band is removed and washed two times in IX PBS and once with 1% BSA PBS (CellPro Co., Bothel, WA) .
  • CD34+ cells are counted and CD34+ cells are selected using the Ceprate LC (CD34) Kit (CellPro Co., Bothel, WA) column. This fractionation is performed since all stem and progenitor cells within the bone marrow display CD34 surface antigen.
  • Cultures are set up in triplicate with a final volume of 1.0 mL in a 35 X 10 mm petri dish (Nunc#174926) .
  • Culture medium is purchased from Terry Fox Labs. (HCC- 4230 medium (Terry Fox Labs, Vancouver, B.C., Canada) and erythropoietin (Amgen, Thousand Oaks, CA. ) is added to the culture media.
  • 3,000-10,000 CD34+ cells are added per dish.
  • Recombinant IL-3 purified from mammalian cells or E. coli , and multi-functional chimeric hematopoietic receptor agonist proteins, in conditioned media from transfected mammalian cells or purified from conditioned media from transfected mammalian cells or E. coli , are added to give final concentrations ranging from .001 nM to 10 nM.
  • G-CSF Neurogen
  • Amgen Thousand Oaks Calf.
  • Control baseline response cultures received no colony stimulating factors.
  • Positive control cultures received conditioned media (PHA stimulated human cells: Terry Fox $ ⁇
  • Hematopoietic colonies which are defined as greater than 50 cells are counted on the day of peak response (days 10-11) using a Nikon inverted phase microscope with a 40x objective combination. Groups of cells containing fewer than 50 cells are referred to as clusters. Alternatively colonies can be identified by spreading the colonies on a slide and stained or they can be picked, resuspended and spun onto cytospin slides for staining.
  • Bone marrow cells are traditionally used for in vitro assays of hematopoietic colony stimulating factor (CSF) activity.
  • CSF colony stimulating factor
  • human bone marrow is not always available, and there is considerable variability between donors.
  • Umbilical cord blood is comparable to bone marrow as a source of hematopoietic stem cells and progenitors (Broxmeyer et al . , PNAS USA 89:4109-113, 1992; Mayani et al . , Blood 81:3252-3258, 1993). In contrast to bone marrow, cord blood is more readily available on a regular basis.
  • There is also a potential to reduce assay variability by pooling cells obtained fresh from several donors, or to create a bank of cryopreserved cells for this purpose.
  • CFU- GM granulocyte / macrophage colonies
  • HPP-CFC high proliferative potential colony forming cell
  • Mononuclear cells are isolated from cord blood within 24 hr . of collection, using a standard density gradient (1.077 g/mL Histopaque) .
  • Cord blood MNC have been further enriched for stem cells and progenitors by several procedures, including immunomagnetic selection for CD14-, CD34+ cells; panning for SBA- , CD34+ fraction using coated flasks from Applied Immune Science (Santa Clara, CA) ; and CD34+ selection using a CellPro (Bothell, WA) avidin column. Either freshly isolated or cryopreserved CD34+ cell enriched fractions are used for the assay. Duplicate cultures for each serial dilution of sample (concentration range from 1 pM to 1204 pM) are
  • Methocult H4230 from Stem Cell Technologies, Vancouver, BC .
  • Methocult H4330 containing erythropoietin (EPO) was used instead of Methocult
  • H4230 H4230, or Stem Cell Factor (SCF) , 50 ng/mL (Biosource International, Camarillo, CA) was added. After culturing for 7-9 days, colonies containing >30 cells are counted. In order to rule out subjective bias in scoring, assays are scored blind.
  • SCF Stem Cell Factor
  • GLYXA2 CCGGGGAGCC TCCACCGCCC TCTAC SEQ ID NO: 379 lGGGSfor TTCTACGCCA CCTTGCGCAG CCCGGCGGCG GCTCTGACAT GTCTACACCA TTG SEQ ID NO: 380 lGGGSrev CAATGGTGTA GACATGTCAG AGCCGCCGCC GGGCTGCGCA AGGTGGCGTA GAA SEQ ID NO: 381
  • N-term TAGTCCATGGCCACCCAGGACTGCTCC SEQ ID NO: 840 134. rev GCATTACGTAGGGCTGACACTGCAGCTCCAG SEQ ID NO: 841 %
  • 29SMB1 GCAGGTTACGTATTGAAGCAGGTAGTCAGACAGCTC SEQ ID NO: 411
  • 34SNAB1 GCAGGTTACGTACACGGTGACTGGGTAATCTTGAAG SEQ ID NO: 412
  • XBAFOR1 GCTACGTCTAGATCTCCTGACCTCGACCCAGGACTGCTCCTTCCAAC SEQ ID NO: 447
  • XBAREV1 GCTAGTTCTAGACCATCCTGGCTGACACGGTGAAACACCGTCTCTACG GGCTGACACTGCAGCTCCAG SEQ ID NO: 448
  • LNK1REV GTCAGTACTAGTCCGCCATCTCCGACACCATTAGGCCCTGCCAGC
  • LNK2REV GTCAGTTCCGGATACTCATACCAGCCCGCCATCCCCGGGTTCTA ATCTGCAAGATGAAGAGCTG SEQ ID NO: 452
  • GPFOR1 GTCAGTCCATGGCTACTCAAGGTGCTATGC SEQ ID NO: 462
  • GPREV2 GTAGCATACGTAGGGCTGCAGGGCAGGGGCC SEQ ID NO: 463
  • AAAGAATCTC ATAAATCTCC AAACATGGCT ACCCAGGGTG CCATGCCGGC 501 CTTCGCCTCT GCTTTCCAGC GCCGGGCAGG AGGGGTCCTG GTTGCTAGCC

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Toxicology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
PCT/US1997/020037 1996-10-25 1997-10-23 Multi-functional chimeric hematopoietic receptor agonists WO1998017810A2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
NZ335382A NZ335382A (en) 1996-10-25 1997-10-23 Multi-functional chimeric hematopoietic polypeptides of IL-3, GCSF, Flt3L, EPO, stem cell factor, cmpl link with or without linker group consisting of Alanine, Glycine and/or Serine for treating autoimmune and tumour related diseases
EP97946495A EP0935663A2 (en) 1996-10-25 1997-10-23 Multi-functional chimeric hematopoietic receptor agonists
JP51975498A JP2001504689A (ja) 1996-10-25 1997-10-23 多機能性キメラ造血レセプターアゴニスト
RO99-00480A RO120919B1 (ro) 1996-10-25 1997-10-23 Proteină hematopoietină, moleculă de acid nucleiccare o codifică, compoziţie farmaceutică şi utilizarea proteinei
AU51652/98A AU725547B2 (en) 1996-10-25 1997-10-23 Multi-functional chimeric hematopoietic receptor agonists
IL12956597A IL129565A0 (en) 1996-10-25 1997-10-23 Multi-functional chimeric hematopoietic receptor agonists
BR9713668-9A BR9713668A (pt) 1996-10-25 1997-10-23 Agonistas de receptores hematopoiéticos quiméricos multifuncionais
CA002268742A CA2268742A1 (en) 1996-10-25 1997-10-23 Multi-functional chimeric hematopoietic receptor agonists
NO991948A NO991948L (no) 1996-10-25 1999-04-23 Multifunksjonelle kimere hematopoetiske reseptoragonister

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2962996P 1996-10-25 1996-10-25
US60/029,629 1996-10-25

Publications (2)

Publication Number Publication Date
WO1998017810A2 true WO1998017810A2 (en) 1998-04-30
WO1998017810A3 WO1998017810A3 (en) 1998-10-15

Family

ID=21850035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/020037 WO1998017810A2 (en) 1996-10-25 1997-10-23 Multi-functional chimeric hematopoietic receptor agonists

Country Status (17)

Country Link
EP (1) EP0935663A2 (pt)
JP (1) JP2001504689A (pt)
KR (1) KR100497423B1 (pt)
AR (1) AR010041A1 (pt)
AU (1) AU725547B2 (pt)
BR (1) BR9713668A (pt)
CA (1) CA2268742A1 (pt)
CZ (1) CZ295843B6 (pt)
IL (1) IL129565A0 (pt)
NO (1) NO991948L (pt)
NZ (1) NZ335382A (pt)
PL (1) PL333023A1 (pt)
RO (1) RO120919B1 (pt)
RU (2) RU2245887C2 (pt)
TW (2) TW591035B (pt)
WO (1) WO1998017810A2 (pt)
ZA (1) ZA979607B (pt)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046750A1 (en) * 1997-04-11 1998-10-22 G.D. Searle & Co. flt3 LIGAND CHIMERIC PROTEINS
US6261550B1 (en) 1993-01-28 2001-07-17 Amgen Inc. G-CSF hybrid molecules and pharmaceutical compositions
WO2002101047A1 (en) * 2001-06-12 2002-12-19 Smithkline Beecham Corporation Method of identifying compounds that modulate epo primary response gene 1, eprg1, activities
EP1124984A4 (en) * 1998-11-06 2005-05-04 Sterrenbeld Biotechnologie North America Inc HOST CELLS EXPRESSING RECOMBINANT HUMANESE ERYTHROPOIETIN
WO2007098548A1 (en) * 2006-03-01 2007-09-07 Apollo Life Sciences Limited A molecule and chimeric molecules thereof
US7279551B2 (en) * 1998-10-07 2007-10-09 Genentech, Inc. Pro1556 Polypeptide
US7655766B2 (en) 2005-06-01 2010-02-02 Carsten Germansen Compositions comprising positional isomers of PEGylated G-CSF
US7696153B2 (en) 2000-01-10 2010-04-13 Maxygen, Inc. G-CSF conjugates
US8293685B2 (en) * 2007-07-26 2012-10-23 The Regents Of The University Of California Methods for enhancing bacterial cell display of proteins and peptides
US8361933B2 (en) 2003-08-18 2013-01-29 The Regents Of The University Of California Polypeptide display libraries and methods of making and using thereof
US9121828B2 (en) 2005-08-31 2015-09-01 The Regents Of The University Of California Cellular libraries of peptide sequences (CLiPS) and methods of using the same
US10071109B2 (en) 2013-11-06 2018-09-11 Molecular Templates, Inc. Predictive biomarker for hypoxia-activated prodrug therapy
CN113645988A (zh) * 2019-03-28 2021-11-12 奥里尼斯生物科学股份有限公司 基于fms样酪氨酸激酶3配体(flt3l)的嵌合蛋白

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7550433B2 (en) * 2005-06-03 2009-06-23 Affymax, Inc. Erythropoietin receptor peptide formulations and uses

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992006116A1 (en) * 1990-09-28 1992-04-16 Ortho Pharmaceutical Corporation Hybrid growth factors
US5376367A (en) * 1991-11-22 1994-12-27 Immunex Corporation Fusion proteins comprising MGF and IL-3
WO1995021197A1 (en) * 1994-02-04 1995-08-10 G.D. Searle & Co. Il-3 variant hematopoiesis fusion protein
WO1995021254A1 (en) * 1994-02-04 1995-08-10 G. D. Searle & Co. Multivariant il-3 hematopoiesis fusion protein
WO1995027732A2 (en) * 1994-04-08 1995-10-19 The Government Of The United States Of America, Represented By The Secretary Of The Department Of Health And Human Services Circularly permuted ligands and circularly permuted chimeric molecules

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992006116A1 (en) * 1990-09-28 1992-04-16 Ortho Pharmaceutical Corporation Hybrid growth factors
US5376367A (en) * 1991-11-22 1994-12-27 Immunex Corporation Fusion proteins comprising MGF and IL-3
WO1995021197A1 (en) * 1994-02-04 1995-08-10 G.D. Searle & Co. Il-3 variant hematopoiesis fusion protein
WO1995021254A1 (en) * 1994-02-04 1995-08-10 G. D. Searle & Co. Multivariant il-3 hematopoiesis fusion protein
WO1995027732A2 (en) * 1994-04-08 1995-10-19 The Government Of The United States Of America, Represented By The Secretary Of The Department Of Health And Human Services Circularly permuted ligands and circularly permuted chimeric molecules

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HORLICK, R.A. ET AL.: "Permuteins of interleukin 1beta ..." PROTEIN ENGINEERING, vol. 5, no. 5, 1992, pages 427-431, XP002022097 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261550B1 (en) 1993-01-28 2001-07-17 Amgen Inc. G-CSF hybrid molecules and pharmaceutical compositions
US6632426B2 (en) 1993-01-28 2003-10-14 Amgen Inc. G-CSF analog compositions and methods
US8058398B2 (en) 1993-01-28 2011-11-15 Amgen Inc. Modified G-CSF polypeptide
US7381804B2 (en) 1993-01-28 2008-06-03 Amgen Inc. G-CSF analog compositions and methods
WO1998046750A1 (en) * 1997-04-11 1998-10-22 G.D. Searle & Co. flt3 LIGAND CHIMERIC PROTEINS
US7309777B2 (en) * 1998-10-07 2007-12-18 Genentech, Inc. Antibodies against the PRO1556 polypeptide
US7279551B2 (en) * 1998-10-07 2007-10-09 Genentech, Inc. Pro1556 Polypeptide
EP1124984A4 (en) * 1998-11-06 2005-05-04 Sterrenbeld Biotechnologie North America Inc HOST CELLS EXPRESSING RECOMBINANT HUMANESE ERYTHROPOIETIN
US7696153B2 (en) 2000-01-10 2010-04-13 Maxygen, Inc. G-CSF conjugates
WO2002101047A1 (en) * 2001-06-12 2002-12-19 Smithkline Beecham Corporation Method of identifying compounds that modulate epo primary response gene 1, eprg1, activities
US10041063B2 (en) 2003-08-18 2018-08-07 The Regents Of The University Of California Polypeptide display libraries and methods of making and using thereof
US9134309B2 (en) 2003-08-18 2015-09-15 The Regents Of The University Of California Polypeptide display libraries and methods of making and using thereof
US11078479B2 (en) 2003-08-18 2021-08-03 The Regents Of The University Of California Polypeptide display libraries and methods of making and using thereof
US8361933B2 (en) 2003-08-18 2013-01-29 The Regents Of The University Of California Polypeptide display libraries and methods of making and using thereof
US10544410B2 (en) 2003-08-18 2020-01-28 The Regents Of The University Of California Polypeptide display libraries and methods of making and using thereof
US7655766B2 (en) 2005-06-01 2010-02-02 Carsten Germansen Compositions comprising positional isomers of PEGylated G-CSF
US9121828B2 (en) 2005-08-31 2015-09-01 The Regents Of The University Of California Cellular libraries of peptide sequences (CLiPS) and methods of using the same
US9234847B2 (en) 2005-08-31 2016-01-12 The Regents Of The University Of California Cellular libraries of peptide sequences (CLiPS) and methods of using the same
US11001832B2 (en) 2005-08-31 2021-05-11 The Regents Of The University Of California Cellular libraries of peptide sequences (CLiPS) and methods of using the same
US10017757B2 (en) 2005-08-31 2018-07-10 The Regents Of The University Of California Cellular libraries of peptide sequences (CLiPS) and methods of using the same
WO2007098548A1 (en) * 2006-03-01 2007-09-07 Apollo Life Sciences Limited A molecule and chimeric molecules thereof
US9062107B2 (en) 2007-07-26 2015-06-23 The Regents Of The University Of California Methods for enhancing bacterial cell display of proteins and peptides
US10640762B2 (en) 2007-07-26 2020-05-05 The Regents Of The University Of California Methods for enhancing bacterial cell display of proteins and peptides
US9695415B2 (en) 2007-07-26 2017-07-04 The Regents Of The University Of California Methods for enhancing bacterial cell display of proteins and peptides
US8293685B2 (en) * 2007-07-26 2012-10-23 The Regents Of The University Of California Methods for enhancing bacterial cell display of proteins and peptides
US10071109B2 (en) 2013-11-06 2018-09-11 Molecular Templates, Inc. Predictive biomarker for hypoxia-activated prodrug therapy
CN113645988A (zh) * 2019-03-28 2021-11-12 奥里尼斯生物科学股份有限公司 基于fms样酪氨酸激酶3配体(flt3l)的嵌合蛋白
EP3946409A4 (en) * 2019-03-28 2023-06-21 Orionis Biosciences, Inc. CHEMICAL PROTEINS BASED ON FMS-LIKE TYROSINE KINASE-3 LIGAND (FLT3L)

Also Published As

Publication number Publication date
NO991948D0 (no) 1999-04-23
TW591035B (en) 2004-06-11
RO120919B1 (ro) 2006-09-29
RU2245887C2 (ru) 2005-02-10
KR100497423B1 (ko) 2005-07-07
BR9713668A (pt) 2000-03-08
CZ295843B6 (cs) 2005-11-16
EP0935663A2 (en) 1999-08-18
NO991948L (no) 1999-06-23
RU2005105360A (ru) 2006-08-10
AR010041A1 (es) 2000-05-17
CA2268742A1 (en) 1998-04-30
AU725547B2 (en) 2000-10-12
IL129565A0 (en) 2000-02-29
KR20000052812A (ko) 2000-08-25
JP2001504689A (ja) 2001-04-10
ZA979607B (en) 1999-04-28
WO1998017810A3 (en) 1998-10-15
CZ132399A3 (cs) 1999-12-15
PL333023A1 (en) 1999-11-08
TW200413407A (en) 2004-08-01
NZ335382A (en) 2001-03-30
AU5165298A (en) 1998-05-15

Similar Documents

Publication Publication Date Title
US6730303B1 (en) Fused G-CSF and IL-3 proteins and uses thereof
AU725547B2 (en) Multi-functional chimeric hematopoietic receptor agonists
AU705083B2 (en) Multi-functional hematopoietic receptor agonists
US20040127410A1 (en) Circular permuteins of flt3 ligand
AU717733B2 (en) Novel G-CSF receptor agonists
US6358505B1 (en) G-CSF receptor agonists
WO1997012985A9 (en) Multi-functional hematopoietic receptor agonists
US20070081979A1 (en) Multi-functional chimeric hematopoietic receptor agonists
AU722759B2 (en) Novel C-MPL receptor agonists
MXPA99003877A (en) Multi-functional chimeric hematopoietic receptor agonists
AU7390396A (en) Interleuken-3 (il-3) receptor agonists
CZ346799A3 (cs) Chimérické proteiny jako flt3 ligandy

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97180892.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 51652/98

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: PV1999-1323

Country of ref document: CZ

ENP Entry into the national phase

Ref document number: 2268742

Country of ref document: CA

Ref document number: 2268742

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1997946495

Country of ref document: EP

Ref document number: 335382

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 1998 519754

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/003877

Country of ref document: MX

Ref document number: 1019997003635

Country of ref document: KR

Ref document number: 99-00480

Country of ref document: RO

WWP Wipo information: published in national office

Ref document number: 1997946495

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: PV1999-1323

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1019997003635

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 51652/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1019997003635

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: PV1999-1323

Country of ref document: CZ

WWW Wipo information: withdrawn in national office

Ref document number: 1997946495

Country of ref document: EP