WO1998012613A1 - Solid-state high voltage linear regulator circuit - Google Patents

Solid-state high voltage linear regulator circuit Download PDF

Info

Publication number
WO1998012613A1
WO1998012613A1 PCT/US1996/015200 US9615200W WO9812613A1 WO 1998012613 A1 WO1998012613 A1 WO 1998012613A1 US 9615200 W US9615200 W US 9615200W WO 9812613 A1 WO9812613 A1 WO 9812613A1
Authority
WO
WIPO (PCT)
Prior art keywords
regulator circuit
voltage
high voltage
coupled
output
Prior art date
Application number
PCT/US1996/015200
Other languages
English (en)
French (fr)
Inventor
Mark Adams
James L. Cooper
Original Assignee
Eldec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eldec Corporation filed Critical Eldec Corporation
Priority to AU72432/96A priority Critical patent/AU7243296A/en
Priority to PCT/US1996/015200 priority patent/WO1998012613A1/en
Priority to EP96935908A priority patent/EP1018064B1/de
Priority to DE69634919T priority patent/DE69634919T2/de
Publication of WO1998012613A1 publication Critical patent/WO1998012613A1/en
Priority to US09/273,313 priority patent/US6066979A/en
Priority to US09/513,288 priority patent/US6175222B1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/613Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in parallel with the load as final control devices

Definitions

  • the present invention relates generally to high voltage regulators, and more particularly to solid-state circuits for high voltage regulation Background of the Invention
  • bipolar junction transistors In certain circumstances, the current necessary to drive the bipolar junction transistors can exceed the actual load current being regulated Moreover, bipolar junction transistors cannot tolerate overvoltages for an extended period Based on the perceived shortcomings of bipolar junction transistors in specific, and solid-state devices in general, current regulators have therefore typically been constructed using different technologies
  • the present invention provides a solid-state regulator circuit for regulating a high voltage in a controlled manner.
  • the regulator circuit consists of multiple MOSFET transistor stages connected in cascade
  • a blocking diode is connected in parallel with each stage
  • Each stage in the regulator circuit can be biased on or off. When biased on, the stage provides a conductive path When biased off, the stage acts as an open circuit up to the breakdown value of the blocking diode across each stage.
  • the first stage in the regulator circuit is a current regulation stage that includes a current sense resistor in the conductive path of the regulator circuit.
  • the stages coupled to the current regulation stage do not contain a sense resistor, and will hereinafter be referred to as the component stages .
  • the current regulation stage is connected to a feedback circuit.
  • the feedback circuit generates a signal that changes the bias point of a transistor in the current regulation stage. Changing the bias point of the transistor adjusts the amount of current that is flowing through the regulator circuit.
  • the regulator circuit may be connected to a high voltage generator in a shunt configuration.
  • the high voltage generator is connected to a load through a shunt resistor.
  • the last component stage and the feedback circuit are connected at a point between the shunt resistor and the load.
  • the current regulation stage is connected to ground. If the output from the high voltage generator exceeds a desired level, the feedback circuit adjusts the bias point of the current regulation stage to shunt additional current through the shunt resistor connected to the high voltage generator.
  • the additional current causes a greater voltage drop through the resistor, charging the output voltage applied to the load. In this manner, the voltage applied to the load is regulated by charging the current through the shunt resistor.
  • the regulator circuit may be connected to a high voltage generator in a series configuration.
  • the component stages and the current regulation stage are connected in series with one of the output terminals from the high voltage generator.
  • the regulator circuit may be connected between ground and a first terminal of the high voltage generator that is floating with respect to ground.
  • the feedback circuit is connected between a second terminal of the high voltage generator and the current regulation stage. Based on the monitored output voltage from the high voltage generator, the feedback circuit adjusts the amount of current flowing through the current regulation stage. In this manner, the output from the high voltage generator is maintained at a desired level.
  • the series of discrete blocking diodes across the regulator circuit will avalanche at a known voltage rating.
  • the blocking diodes provide a measure of overvoltage protection by entering into avalanche if a voltage across the regulator circuit exceeds the sum total of the avalanche ratings of the blocking diodes.
  • the number of component stages can be varied to change the voltage that is regulated.
  • Each component stage contributes to the regulation of a voltage roughly equivalent to the avalanche voltage rating of the blocking diode across the stage.
  • the number of component stages may therefore be selected depending on the voltage that is to be regulated, allowing the regulator circuit to be simply and easily configured to operate in different environments.
  • An advantage of the disclosed regulator circuit is that it allows high voltages to be regulated using MOSFET transistors. MOSFET transistors are readily available, relatively inexpensive, displace a very small volume, and are of minimal weight. Constructing the regulator circuit using MOSFET transistor stages coupled in cascade therefore creates a very economical and small high voltage regulator.
  • FIGURE 1 is a schematic of a solid-state regulator circuit of the present invention connected in a shunt configuration
  • FIGURE 2 is a schematic of a solid-state regulator circuit of the present invention connected in a series configuration.
  • FIGURE 1 depicts the preferred embodiment of a regulator circuit 10 in accordance with the present invention.
  • Regulator circuit 10 consists of a number of component stages 12a, 12b, and 12c connected in cascade with a current regulation stage 14.
  • the regulator circuit may operate in one of two states. In an "ofT state, the component stages 12a, 12b, and 12c and the current regulation stage 14 are initially biased off so that there is no conductive path provided through the regulator circuit. In an "on" state, the component stages and the current regulation stage are biased on so that a conductive path is provided through the regulator circuit.
  • the amount of current that flows through the regulator circuit is controlled by the current regulation stage 14 in a manner that will be described below.
  • the regulator circuit 10 is depicted in FIGURE 1 in a shunt configuration. One end of the regulator circuit 10 is connected between the output of a high voltage generator 16 and a load. The other end of the regulator circuit is connected to ground 18.
  • a feedback circuit comprised of a voltage divider 20 and an error amplifier 22 is connected between the load and the current regulation stage 14. The feedback circuit monitors the output voltage supplied to the load, and changes the amount of current that is shunted by the regulator circuit 10 in order to maintain the output voltage at a desired level, i.e., provide an essentially constant voltage to the load despite variations that otherwise would affect the output voltage at terminal V out .
  • the output voltage from the high voltage generator 16 is connected in series with a shunt resistor Rl.
  • the current flowing through shunt resistor Rl determines the output voltage at the load. That is, the voltage drop across the resistor is subtracted from the output voltage generated by the high voltage generator to determine the voltage applied to the load.
  • the regulator circuit 10 therefore adjusts the current flowing through the shunt resistor in order to maintain a desired output voltage at the load.
  • the voltage divider 20 consists of a resistive and capacitive network that steps down the output voltage at the load.
  • the voltage divider consists of a resistor R2 in series with a resistor R3 connected between line 24 and ground. Resistor R3 is preferably much smaller than resistor R2 so that the output voltage produced by the high voltage generator is greatly stepped down for use in the feedback circuit.
  • a line 26 is connected to the point where resistor R2 connects with resistor R3. Line 26 provides the stepped-down voltage from the voltage divider to the error amplifier 22.
  • the capacitive network includes capacitors C2, C3 and C4 connected in series between the output end of resistor Rl and ground, and an additional capacitor Cl connected between the junction of resistors R2 and R3 and the junction of capacitors C2 and C3.
  • a resistor R4 is connected in parallel with capacitor C3.
  • a resistor R5 and a Zener diode Zl are connected in parallel with capacitor C4.
  • the capacitive network provides instantaneous feedback information to the error amplifier.
  • the capacitive coupling associated with the capacitive network increases bandwidth of the voltage divider.
  • a provision which defeats the capacitive coupling allows capacitor C2 to charge upon initial circuit actuation is composed of components C3, Zl, C4, R4, R5.
  • Zener Zl performs the function of a switch providing a current shunt of smaller value capacitor C4 during the charging of C2.
  • the Zener voltage is set for approximately five volts.
  • the components of the voltage divider have the following values:
  • the error amplifier 22 compares the stepped down output at the load with a reference voltage and produces an error signal that is proportional to the difference in the two voltage levels.
  • the error amplifier consists of an operational amplifier Ul having the non-inverting input connected to line 26 through a resistor R7.
  • the inverting input of operational amplifier Ul is coupled to a voltage reference (V ref ) terminal 28 through a resistor R8.
  • the inverting input of the operational amplifier Ul is also connected to the output of the amplifier by a capacitor C5, and by the series connection of a resistor R9 and a capacitor C6.
  • the voltage reference terminal is maintained at a reference voltage level that corresponds to the desired output at the load.
  • the reference voltage is a stable DC voltage that does not fluctuate like the high voltage generator.
  • the reference voltage may be supplied by a number of circuits, such as from an LH0070-2 device.
  • the voltage applied to the load is compared by the error amplifier 22 with the desired voltage as represented by the reference voltage on the V re f terminal.
  • the error amplifier produces an error signal that is proportional to the difference between the desired voltage and the output voltage at the load.
  • the error signal is provided to the current regulation stage 14 on a line 30.
  • the slew rate of the error amplifier is slowed by the network consisting of capacitors C5, C6 and resistor R9, which filter any high frequency variations in the error signal.
  • the components of the error amplifier have the following values:
  • the output from the error amplifier 22 is connected to the current regulation stage 14 of the regulator circuit 10 through a resistor R10.
  • the current regulation stage is constructed around a pair of transistors TRA and TRB, preferably both MOSFETs.
  • a sense impedance preferably a sense resistor RS, is connected between the source of transistor TRA and ground 18.
  • the sense resistor RS is selected to have a peak power capability sufficient to conduct the desired current when the regulator circuit is turned on.
  • a diode DD and a capacitor CD are connected between the source of transistor TRA and the drain of transistor TRB.
  • a capacitor CF is also connected in parallel with the sense resistor RS.
  • Transistors TRA and TRB are both biased by the error signal produced by the error amplifier.
  • a resistor RG and a Zener diode ZG are connected in parallel between the gate and source of transistor TRB. Resistor RG and Zener diode ZG are selected to prevent the transistor from conducting due to leakage current during biased-off operation, to protect the transistor from gate-to-source stress during biased-on operation, and to allow the desired gate-to-source voltage to turn the transistor on when a conductive path is generated through the regulator circuit.
  • the gate of transistor TRA is connected in series with a diode DB and a resistor RB. Diode DB is selected to ensure that reverse current will not flow from the current regulation stage. Resistor RB is sized to limit the current flow into the transistor when the regulator circuit is turned on. In an actual embodiment of the regulator circuit, which is designed to regulate an approximate 10,000 volts output, the circuit elements for the current regulation stage are as follows:
  • each component stage 12a, 12b and 12c is constructed with the same circuit elements.
  • a generic component stage 12a will therefore be discussed as representative of all of the component stages.
  • Component stage 12a is constructed around a pair of transistors TR, which in the preferred embodiment of this circuit are a pair of MOSFETs connected in cascade.
  • Component stage 12a is similar to the current regulation stage, in that both stages are constructed around a pair of transistors. The component stages do not, however, contain a sense resistor in the conductive path.
  • a diode DD and a capacitor CD are connected across the transistors TR.
  • Diode DD and capacitor CD serve the same functions as the corresponding components in the current regulation stage, that is, they are selected to provide overvoltage protection for the circuit.
  • a Zener diode ZG and a resistor RG are also connected across the gate and source of each transistor. The Zener diode ZG and the resistor RG also serve the same roles as they do in the current regulation stage.
  • each transistor TR in the component stage is connected to a biasing voltage through a resistor RB and a diode string DB.
  • the diode string DB contains a different number of diodes for each transistor in the component stages. In order to ensure that only one component stage operates in a linear mode, the number of diodes within the diode string associated with a particular component stage
  • component stage 12a contains diode strings having two and three diodes
  • component stage 12b contains diode strings having four and five diodes
  • component stage 12c contains diode strings having six and seven diodes.
  • Diode string DS is a string of Zener diodes that allow the output voltage at the load to exceed the voltage level that may be shunted by the component stages and current regulation stage alone.
  • the diode string drops a fixed voltage providing a lower voltage at the component stages. The number of diodes within the diode string may therefore be changed rather than requiring the addition of component stages in certain applications.
  • each of the component stages Before the regulator circuit is turned on, all the component stages are nonconducting.
  • the biasing potential provided to each of the component stages is sufficient to raise the potential at the gates of the component stage transistors TR so that they will become biased on when the gate-to-source turn-on voltage for each transistor is exceeded by a voltage across resistor RG. That is, each transistor TR will become biased on when the current flow through the associated resistor RG causes a voltage drop across the resistor that exceeds the turn-on voltage of each transistor. When biased off, the resistance of each component stage exceeds one gigaoh .
  • the regulator circuit therefore acts as an open circuit.
  • the regulator circuit is turned on when the high voltage generator begins to generate an output voltage on line 24.
  • the high voltage at the load is stepped down by the voltage divider 20 and compared by the error amplifier 22 with the reference voltage level.
  • the error signal generated by the error amplifier is applied to the current regulation stage 14, biasing transistor TRA so that it begins to conduct current through the sense resistor RS.
  • transistor TRA is biased on, a cuirent path is provided tlirough diode DB, resistor RB, and resistor RG of the directly adjacent transistor TRB, and through the current regulation stage transistor TRA and the sense resistor RS to ground.
  • the transistor is biased on.
  • the turning-on process repeats for the transistors TR in the component stages.
  • the transistors TR in each component stage remain biased off, and non-conducting, until the transistors in the component stage that is located nearer to the current regulation stages enter into conduction.
  • the number of transistors TR that are biased on depends on the current through the current regulation stage 14. Depending on the current being shunted, some, but not necessarily all of the transistors in the component stages will be biased on.
  • One transistor TR will operate in a linear mode.
  • the transistors TR closer to the current regulation stage will operate in saturation.
  • the transistors TR higher in the component stack will remain biased off, however the current will flow through the blocking diodes DD around the biased off transistors.
  • the conductive path through the regulator circuit during operation therefore extends through the avalanching diodes DD, through the transistor TR operating in linear operation, through the transistors TR operating in saturation, and through the current regulation stage to ground 14.
  • the transistor operating in a linear mode will change depending on the current being shunted.
  • current is shunted through the regulator circuit 10 to maintain the output voltage at a desired level.
  • the amount of current that is shunted away from the load depends on the biasing point of the current regulation stage 14.
  • the biasing point of the current regulation stage is adjusted by the changing voltage applied to the current regulation stage by the error amplifier 22.
  • the reference voltage V re f is selected so that the output from the high voltage generator 16 is regulated at a desired level. In this manner, the amount of current through the current regulation stage is closely controlled.
  • each component stage contributes to regulating a voltage equal to the maximum avalanche voltage of the blocking diode for that stage.
  • the diode ratings of each component stage and the current regulation stage are therefore used to determine the number of component stages necessary to regulate a particular voltage. For example, if the regulator circuit were to regulate 6,000 volts, and if blocking diodes DD rated at 1,000 volts were used in the regulator circuit, a total of five component stages would be required in the regulator circuit.
  • the total avalanche voltage of the five blocking diodes in the component stages and the single blocking diode in the current regulation stage would add to a number approximating the required regulated voltage of 6,000 volts. It will be appreciated that a greater or lesser number of component stages could be used to select the regulated voltage of the regulator circuit. Moreover, diodes having different ratings may also be selected to change the regulated voltage capability. As noted above, the number of Zener diodes in the diode string DS may also be changed to reduce the number of required component stages.
  • the regulator circuit 10 disclosed in FIGURE 1 is advantageous in that it uses solid-state MOSFETs to regulate high voltages. Using MOSFETs reduces the cost of the regulator circuit, allows the regulator circuit to be incorporated into a very small package, and allows the regulator circuit to operate reliably in high voltage applications.
  • FIGURE 2 depicts an alternative embodiment of a regulator circuit 50 in a series configuration with a high voltage generator 52.
  • the high voltage generator 52 is in a floating configuration, wherein the generator is not grounded.
  • the construction and operation of the regulator circuit 50 is similar to the regulator circuit 10 depicted in FIGURE 1. The operation of the regulator circuit will therefore be broadly described, with the reader directed to the corresponding text of FIGURE 1 for additional details.
  • the high voltage generator 52 is connector to a load by a line 54, and to the regulator circuit 50 by a line 53.
  • the regulator circuit 55 shown in FIGURE 2 contains only a single current regulation stage 55.
  • the current regulation stage is constructed around a pair of transistors TRA and TRB, preferably both MOSFETs.
  • a sense impedance preferably a sense resistor RS, is connected between the source of transistor TRA and ground 66.
  • the sense resistor RS is selected to have a peak power capability sufficient to conduct the desired current when the regulator circuit is turned on.
  • a diode DD and a capacitor CD are connected between the source of transistor TRA and the drain of transistor TRB.
  • the current regulation stage 55 operates in the same manner as does the current regulation stage in the regulator circuit 10 depicted in FIGURE 1.
  • the current regulator stage is connected to a feedback circuit consisting of an error amplifier 62 and a voltage divider 56.
  • the voltage divider 56 is coupled to the output line 54 that extends from the high voltage generator to the load.
  • the voltage divider 56 generates a signal on a line 58 that is proportional to the output voltage produced by the high voltage generator.
  • the stepped-down signal is provided on line 58 to the error amplifier 62.
  • the error amplifier 62 compares the stepped-down voltage signal with a reference voltage V re f.
  • the error amplifier contains an operational amplifier U2 that acts as an inverting buffer.
  • the output from operational amplifier U2 is provided to operational amplifier U3, which operates as a comparator to compare the measured voltage level on the output line 54 with a voltage reference V ref .
  • An error signal is generated that is proportional to the difference between the measured voltage on the output line 54 and the reference voltage V ref , and provided to the current regulation stage 55 on a line 64.
  • the error signal changes the biasing point of transistor TRA, controlling the amount of current that is conducted through the current regulation stage.
  • the impedance of the current regulation stage varies with the current flow through the stage. Since the current regulation stage 55 is coupled in series with the high voltage generator 52, the voltage drop across the current regulation stage will be summed with the voltage generated by the high voltage generator. By changing the amount of current that flows through the current regulation stage, the output voltage provided to the load is also changed. In this manner, the output voltage applied to the load is closely regulated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
PCT/US1996/015200 1996-09-23 1996-09-23 Solid-state high voltage linear regulator circuit WO1998012613A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU72432/96A AU7243296A (en) 1996-09-23 1996-09-23 Solid-state high voltage linear regulator circuit
PCT/US1996/015200 WO1998012613A1 (en) 1996-09-23 1996-09-23 Solid-state high voltage linear regulator circuit
EP96935908A EP1018064B1 (de) 1996-09-23 1996-09-23 Lineare hochspannungshalbleiterreglerschaltung
DE69634919T DE69634919T2 (de) 1996-09-23 1996-09-23 Lineare hochspannungshalbleiterreglerschaltung
US09/273,313 US6066979A (en) 1996-09-23 1999-03-19 Solid-state high voltage linear regulator circuit
US09/513,288 US6175222B1 (en) 1996-09-23 2000-02-24 Solid-state high voltage linear regulator circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1996/015200 WO1998012613A1 (en) 1996-09-23 1996-09-23 Solid-state high voltage linear regulator circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/273,313 Continuation US6066979A (en) 1996-09-23 1999-03-19 Solid-state high voltage linear regulator circuit

Publications (1)

Publication Number Publication Date
WO1998012613A1 true WO1998012613A1 (en) 1998-03-26

Family

ID=22255840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/015200 WO1998012613A1 (en) 1996-09-23 1996-09-23 Solid-state high voltage linear regulator circuit

Country Status (4)

Country Link
EP (1) EP1018064B1 (de)
AU (1) AU7243296A (de)
DE (1) DE69634919T2 (de)
WO (1) WO1998012613A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107515640A (zh) * 2017-09-30 2017-12-26 上海厦泰生物科技有限公司 一种适用于流式细胞分析仪的稳压控制电路

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009035547A1 (de) * 2009-07-31 2011-02-03 Siemens Aktiengesellschaft Spannungsstellglied

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043598A (en) * 1988-09-20 1991-08-27 Tdk Corporation High voltage supply having a voltage stabilizer
US5570060A (en) * 1995-03-28 1996-10-29 Sgs-Thomson Microelectronics, Inc. Circuit for limiting the current in a power transistor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400660A (en) * 1981-09-23 1983-08-23 Sperry Corporation Wide bandwidth high voltage regulator and modulator
US4893070A (en) * 1989-02-28 1990-01-09 The United States Of America As Represented By The Secretary Of The Air Force Domino effect shunt voltage regulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043598A (en) * 1988-09-20 1991-08-27 Tdk Corporation High voltage supply having a voltage stabilizer
US5570060A (en) * 1995-03-28 1996-10-29 Sgs-Thomson Microelectronics, Inc. Circuit for limiting the current in a power transistor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1018064A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107515640A (zh) * 2017-09-30 2017-12-26 上海厦泰生物科技有限公司 一种适用于流式细胞分析仪的稳压控制电路
CN107515640B (zh) * 2017-09-30 2024-01-19 上海厦泰生物科技有限公司 一种适用于流式细胞分析仪的稳压控制电路

Also Published As

Publication number Publication date
EP1018064A1 (de) 2000-07-12
DE69634919D1 (de) 2005-08-11
AU7243296A (en) 1998-04-14
EP1018064A4 (de) 2000-07-12
EP1018064B1 (de) 2005-07-06
DE69634919T2 (de) 2006-05-18

Similar Documents

Publication Publication Date Title
US6066979A (en) Solid-state high voltage linear regulator circuit
US7602162B2 (en) Voltage regulator with over-current protection
KR101109308B1 (ko) 전압 레귤레이터
US7477046B2 (en) Voltage regulator output stage with low voltage MOS devices
US7859325B2 (en) CPU core voltage supply circuit
US6400203B1 (en) Hot swap current limit circuits and methods
US6320365B1 (en) Current-limited switch with fast transient response
GB2267003A (en) Current-limiting cicuit and constant voltage source therefor; current regulator
US7629783B2 (en) Ultra low dropout voltage regulator
US4644437A (en) Telephone subscriber loop overvoltage protection integrated circuit
KR102605124B1 (ko) 증폭기 회로 및 증폭기 회로 내의 출력 전압 오버슈트 감소 방법
US6465999B2 (en) Current-limited switch with fast transient response
CN103365332B (zh) 过电流保护电路及供电装置
US5539603A (en) Current protection method and apparatus and current protected low dropout voltage circuits
US6713991B1 (en) Bipolar shunt regulator
US8085006B2 (en) Shunt regulator
JPH08503357A (ja) スイッチング装置
EP1018064B1 (de) Lineare hochspannungshalbleiterreglerschaltung
US20110216461A1 (en) System and Method to Limit In-Rush Current
US20050041353A1 (en) Temperature dependent switching circuit
JPH0352081B2 (de)
US9256239B2 (en) Voltage controlling circuit
JP2522146B2 (ja) 電源保護回路
JP3774313B2 (ja) プシュプル型高速高圧電源装置
KR100834592B1 (ko) 과전압 및 역전압 보호 기능을 갖춘 저감압 레귤레이터회로 및 그 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG KE

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996935908

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09273313

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998514622

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1996935908

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996935908

Country of ref document: EP