WO1998012182A1 - 1-sulfonyl-3-phenylpyrazole und ihre verwendung als herbizide und zur desikkation/defoliation von pflanzen - Google Patents

1-sulfonyl-3-phenylpyrazole und ihre verwendung als herbizide und zur desikkation/defoliation von pflanzen Download PDF

Info

Publication number
WO1998012182A1
WO1998012182A1 PCT/EP1997/004911 EP9704911W WO9812182A1 WO 1998012182 A1 WO1998012182 A1 WO 1998012182A1 EP 9704911 W EP9704911 W EP 9704911W WO 9812182 A1 WO9812182 A1 WO 9812182A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
phenyl
haloalkyl
halogen
carbonyl
Prior art date
Application number
PCT/EP1997/004911
Other languages
English (en)
French (fr)
Inventor
Cyrill Zagar
Gerhard Hamprecht
Markus Menges
Olaf Menke
Peter Schäfer
Karl-Otto Westphalen
Ulf Misslitz
Helmut Walter
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US09/254,923 priority Critical patent/US6054413A/en
Priority to CA002266392A priority patent/CA2266392A1/en
Priority to AU43836/97A priority patent/AU4383697A/en
Priority to EP97942003A priority patent/EP0931072A1/de
Priority to JP51425298A priority patent/JP2001506581A/ja
Publication of WO1998012182A1 publication Critical patent/WO1998012182A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/18One oxygen or sulfur atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/18One oxygen or sulfur atom
    • C07D231/20One oxygen atom attached in position 3 or 5
    • C07D231/22One oxygen atom attached in position 3 or 5 with aryl radicals attached to ring nitrogen atoms
    • C07D231/24One oxygen atom attached in position 3 or 5 with aryl radicals attached to ring nitrogen atoms having sulfone or sulfonic acid radicals in the molecule

Definitions

  • the present invention relates to new l-sulfonyl-3-phenylpyrazoles of the formula I.
  • R 1 C ⁇ -C 4 alkyl or C ⁇ -C 4 -Halogenal yl; 20th
  • R 2 C ⁇ -C 4 alkyl or C ⁇ -C 4 haloalkyl
  • R 3 is hydrogen, cyano, halogen or -CC. 4 -Al yl;
  • R 4 is hydrogen or halogen
  • R 5 is hydrogen, cyano, nitro, halogen, C 1 -C 4 alkyl
  • 35 group consisting of cyano, carboxy, halogen, C ⁇ -C 4 -alkyl, C 4 haloalkyl, C ⁇ -C4 alkoxy, (C ⁇ . -C 4 alkoxy) carbonyl, di- (C ⁇ -C4-alkyl ) amino and phenyl;
  • R 6 is hydrogen, nitro, cyano, halogen, halosulfonyl, -OYR 8 , 40 -O-CO-YR 8 , -N (YR 8 ) (ZR 9 ), -N (YR 8 ) -S0 2 -ZR 9 ,
  • Y, Z independently of one another are a chemical bond or a methylene or ethylene chain, which may be unsubstituted or bear one or two substituents, each selected from the group consisting of carboxy, C 1 -C 4 -alkyl, C 4 -C 4 -Halogenalkyl, (C ⁇ ⁇ C 4 alkoxy) carbonyl and phenyl;
  • R 8 , R 9 independently of one another are hydrogen, C ⁇ -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl, C 2 -C 6 haloalki: nyl, -CH (Rü) (R 12 ), (R 12 ) -N0 2 , -C (R H ) (R 12 ) -CN, -C (R 1: 1 ) (R 12 ) -halogen, (R 1 ) -0R 13 , -CtR 11 ) (R 12 ) -N (R l3 ) R 14 ,
  • C 3 -C 8 cycloalkyl which is a carbonyl or thiocarbonyl Ring member may contain phenyl or 3- to 7-membered heterocyclic, which may contain a carbonyl or thiocarbonyl ring member, wherein each cycloalkyl, the phenyl and each heterocyclyl ring may be unsubstituted or carry one to four substituents , each selected from the group consisting of cyano, nitro, amino, hydroxy, carboxy, halogen, C 1 -C 4 -alkyl, C ⁇ -C4-haloalkyl, C ⁇ -C 4 -alkoxy, C 4 haloalkoxy, C ⁇ -C4-alkylthio, C ⁇ -C4-haloalkylthio, C ⁇ -C onyl -Alkylsul 4, C ⁇ -C 4 haloalkylsulfonyl
  • R, R 14 independently of one another
  • R 15 is hydrogen, Ci-Cß-alkyl, C ⁇ -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl, C 2 -C 6 haloalkynyl, C 3 -C 8 cycloalkyl, phenyl or phenyl-C ⁇ -C 4 alkyl;
  • the invention also relates to the use of compounds I as herbicides and / or for the desiccation and / or defoliation of plants, herbicidal agents and agents for the desiccation and / or defoliation of plants which contain the compounds I as active substances,
  • the present invention was based on new 3-phenyl-pyrazoles as tasks with which undesired plants can be controlled more effectively than before.
  • the task also extended to the provision of new desiccant / defoliant connections.
  • herbicidal compositions which contain the compounds I and have a very good herbicidal action.
  • processes for the preparation of these compositions and processes for controlling unwanted vegetation using the compounds I have been found.
  • the compounds I are also suitable for the desiccation / defoliation of parts of plants, for which crop plants such as cotton, potatoes, rapeseed, sunflower, soybeans or field beans, in particular cotton, are suitable.
  • agents for the desiccation and / or defoliation of plants methods for producing these agents and methods for the desiccation and / or defoliation of plants with the compounds I have been found.
  • the compounds of the formula I can contain one or more centers of chirality and are then present as mixtures of enantiomers or diastereomers. The invention relates both to the pure enantiomers or diastereomers and to their mixtures.
  • All carbon chains that is to say all alkyl, haloalkyl, phenylalkyl, cycloalkylalkyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl -, haloalkylsulfonyl, alkenyl, haloalkenyl,
  • Alkynyl and haloalkynyl parts can be straight-chain or branched.
  • Halogenated substituents preferably carry one to five identical or different halogen atoms.
  • Halogen is fluorine, chlorine, bromine or iodine.
  • C ⁇ -C 4 alkyl for: CH 3 , CH B , n-propyl, CH (CH 3 ) 2 , n-butyl, CH (CH 3 ) -C 2 H 5 , CH 2 -CH (CH 3 ) 2 and C ⁇ CH 3 ) 3 ;
  • C ⁇ -C 4 haloalkyl for: a C ⁇ -C 4 alkyl radical as mentioned above which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example CH 2 F, CHF2, CF3, CH 2 CI, Dichloromethyl, trichloromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 2-fluoroethyl,
  • C ⁇ -C 6 alkyl for: C ⁇ -C 4 alkyl as mentioned above, and for example n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 1, 1-dimethylpropyl, 1, 2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1, 1-dimethylbutyl, 1, 2-dimethylbutyl, 1, 3-dimethylbuty1, 2, 2-dimethylbutyl, 2,3-dimethylbutyl, 3, 3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1, 1,2-trimethylpropyl, 1, 2, 2-trimethylpropyl, 1-ethyl-l-methylpropyl or l-ethyl- 2-methylpropyl, preferably methyl, ethyl, n-
  • C ⁇ -C 6 -haloalkyl for: a C ⁇ -C 6 -alkyl radical as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example one of the radicals mentioned under C ⁇ -C 4 -haloalkyl and for 5-fluoro-1-pentyl, 5-chloro-1-pentyl, 5-bromo-1-pentyl, 5-iodo-1-pentyl, 5, 5, 5-trichloro-1-penyl, undecafluoropentyl, 6-fluorine -l-hexyl, 6-chloro-l-hexyl, 6-bromo-l-hexyl, 6-iodo-l-hexyl, 6,6,6-trichloro-1-hexyl or dodecafluorohexyl;
  • Phenyl-C ⁇ -C 4 -alkyl for: benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylprop-l-yl, 2-phenylprop-l-yl, 3-phenylprop-l-yl, 1-phenylbut-l- yl, 2-phenylbut-l-yl, 3-phenylbut-l-yl, 4-phenylbut-l-yl, l-phenylbut-2-yl, 2-phenylbut-2-yl, 3-phenylbut-2-yl, 3-phenylbut-2-yl, 4-phenylbut-2-yl,
  • C 3 -C 8 cycloalkyl-C ⁇ -C 4 -alkyl for: cyclopropylmethyl, 1-cyclopropyl-ethyl, 2-cyclopropyl-ethyl, 1-cyclopropyl-prop-l-yl, 2-cyclopropyl-prop-l- yl, 3-cyclopropy1-prop-l-yl, 1-cyclopropyl-but-1-yl, 2-cyclopropyl-but-l-yl, 3-cyclopropyl-but-l-yl, 4-cyclopropyl-but- l-yl, l-cyclopropyl-but-2-yl, 2-cyclopropyl-but-2-yl, 3-cyclopropyl-but-2-yl, 3-cyclopropyl-but-2-yl, 4-cyclopropyl- but-2-yl, 1- (cyclopropylmethyl) -eth-l-yl, 1- (cyclopropylmethyl) -1-
  • Cyclopentylmethyl 1-cyclopentyl-ethyl, 2-cyclopentyl-ethyl, 1-cyclopentyl-prop-l-yl, 2-cyclopentyl-prop-l-yl, 3-cyclopentyl-prop-1-yl, 1-cyclopentyl but-l-yl, 2-cyclopent-1-but-l-yl, 3-cyclopentyl-but-l-yl, 4-cyclopentyl-but-l-yl, l-cyclopentyl-but-2-yl, 2-cyclopentyl -but-2-yl, 3-cyclopentyl-but-2-yl, 3-cyclopentyl-but-2-yl, 4-cyclopentyl-but-2-yl, 1- (cyclopentylmethyl) -eth-l-yl , 1- (cyclopentylmethyl) -1- (CH 3 ) -eth-l-yl, l- (cyclopentylmethyl) prop-
  • C 3 -C 8 cycloalkyl-C 4 -C 4 -alkyl which contains a carbonyl or thiocarbonyl ring member for: for example cyclobutanon-2-ylmethyl, cyclobutanon-3-ylmethyl, cyclopentanon-2-ylmethyl, cyclo- pen anon-3-ylmethyl, cyclohexanon-2-ylmethyl, cyclohexanon-4-ylmethyl, cycloheptanon-2-ylmethyl, cycloctanon-2-ylmethyl, cyclobutanthion-2-ylmethyl, cyclobutanethion-3-ylmethyl, cyclopentanthione -2-ylmethyl, cyclopentanethion-3-ylmethyl, cyclohexanthion-2-ylmethyl, cyclohexanethion-4-ylmethyl, cycloheptanthion-2-ylmethyl, cyclooctanethion
  • Heterocyclyl-C ⁇ -C 4 -alkyl for: heterocyclylmethyl, 1-heterocyclic-ethyl, 2-heterocyclyl-ethyl, 1-heterocyclyl-prop-l-yl, 2-heterocyclyl-prop-l-yl, 3-heterocyclyl- prop-l-yl, 1-heterocyclic-but-1-yl, 2-heterocyclyl-but-l-yl, 3-heterocyclyl-but-l-yl, 4-heterocyclyl-but-l-yl, l- Heterocyclyl-but-2-yl, 2-heterocyclyl-but-2-yl, 3-heterocyclyl-but-2-yl, 3-heterocyclic-but-2-yl, 4-heterocyclyl-but-2-yl, 1- (heterocyclylmethyl) -eth-l-yl, 1- (heterocyclylmeth
  • C ⁇ -C 4 alkoxy for: OCH 3 , OC 2 H 5 , n-propoxy, 0CH (CH 3 ) 2 , n-butoxy, 0CH (CH 3 ) -C 2 H 5 , OCH 2 -CH (CH 3 ) 2 or 0C (CH 3 ) 3 , preferably for OCH3, OC2H5 or 0CH (CH 3 ) 2;
  • C ⁇ -C 4 haloalkoxy for: a C ⁇ -C 4 alkoxy radical as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example OCH 2 F, OCHF 2 , OCF3, OCH 2 Cl , OCH (CD 2 , 0C (C1) 3 , chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2, 2, 2- Trifluoroethoxy, 2-chloro-2-fluoroethoxy,
  • 2,2, 2-trichloroethoxy, OC 2 F 5 2-fluoropropoxy, 3-fluoropropoxy, 2,2-difluoropropoxy, 2, 3-difluoropropoxy, 2-chloropropoxy, 3-chloropropoxy, 2, 3-dichloropropoxy, 2-bromopropoxy, 3-bromopropoxy, 3, 3, 3-trifluoropropoxy, 3, 3, 3- Trichloropropoxy, 2,2,3,3,3-pentafluoropropoxy, OCF 2 -C 2 F 5 , 1- (CH 2 F) -2-fluoroethoxy, 1- (CH 2 C1) -2-chloroethoxy, 1- (CH 2 Br) -2-bromethoxy,
  • C ⁇ -C 4 -haloalkylthio for: a C ⁇ -C 4 alkylthio radical as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example SCH 2 F, SCHF 2 , SCHC1, SCH (Cl) 2 , SC (C1) 3 , SCF 3 , chlorofluoromethylthio, dichlorofluoromethylthio, chlorodifluoromethylthio, 2-fluoroethylthio, 2-chloroethylthio, 2-bromoethylthio, 2-iodoethylthio, 2,2-difluoroethylthio, 2, 2, 2- Trifluoroethylthio,
  • 2-chloro-2-fluoroethylthio 2-chloro-2, 2-difluoroethylthio, 2, 2-dichloro-2-fluoroethylthio, 2,2, 2-trichloroethylthio, SC 2 F 5 , 2-fluoropropylthio, 3-fluoropropylthio, 2 , 2-difluoropropylthio, 2, 3-difluoropropylthio, 2-chloropropylthio, 3-chloropropylthio, 2,3-dichloropropylthio, 2-bromopropylthio, 3-bromopropylthio,
  • C ⁇ -C 4 -alkoxy-C ⁇ -C 4 -alkyl for: C ⁇ -C 4 -alkoxy - as mentioned above - substituted C ⁇ -C 4 -alkyl, for example for CH 2 -OCH 3 , CH 2 -OC 2 H5, n-propoxymethyl, CH 2 -OCH (CH 3 ) 2 , n-butoxymethyl, (1-methylpropoxy) ethyl, (2-methylpropoxy) methyl, CH2-OC (CH 3 ) 3- 2- (methoxy) ethyl, 2- (ethoxy) ethyl, 2- (n-propoxy) ethyl, 2- (1-methylethoxy) ethyl, 2- (n-butoxy) ethyl, 2- (1-methylpropoxy) ethyl, 2- ( 2-methylpropoxy) ethyl, 2- (1, 1-dimethylethoxy) ethyl, 2- (methoxy) propyl,
  • C 1 -C 4 -alkylthio-C ⁇ -C 4 -alkyl for: C 1 -C 4 -alkylthio - as mentioned above - substituted C substitu-C 4 -alkyl, for example for CH 2 -SCH 3 , CH 2 -SC 2 H 5 , n-propylthiomethyl, CH 2 -SCH (CH 3 ) 2, n-butylthiomethyl, (1-methylpropylthio) methyl, (2-methylpropylthio) methyl, CH 2 -SC (CH 3 ), 2- (methylthio) ethyl, 2- (ethylthio) ethyl, 2- (n-propylthio) ethyl, 2- (1-methylethylthio) ethyl, 2- (n-butylthio) ethyl, 2- (1-methylpropylthio) ethyl, 2 - (2-methylpropylthio) ethyl
  • (C ⁇ -C 4 -alkyl) carbonyl for: CO-CH 3 , CO-C 2 H 5 , CO-CH 2 -C 2 H 5 , CO-CH (CH 3 ) 2 , n-butylcarbonyl, CO-CH ( CH3) -C 2 H 5 , CO-CH 2 -CH (CH3) 2 or CO-C (CH 3 ) 3 , preferably for CO-CH 3 or CO-C 2 H 5 ;
  • (C ⁇ -C 4 -haloalkyl) carbonyl for: a (C ⁇ -C4-alkyl) carbonyl radical - as mentioned above - which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example CO-CH 2 F, CO-CHF 2 , CO-CF3, CO-CH2CI, CO-CH (Cl) 2 , CO-C (Cl) 3 , chlorofluoromethylcarbonyl, dichlorofluoromethylcarbonyl,
  • (C ⁇ -C 4 -alkyl) carbonyloxy for: O-CO-CH 3 , 0-CO-C 2 H 5 , O-CO-CH2-C 2 H5, 0-CO-CH (CH 3 ) 2 , O- CO-CH2-CH2-C2H5, 0-CO-CH (CH 3 ) -C 2 H 5 , 0-CO-CH 2 -CH (CH 3 ) 2 or O-CO-C (CH 3 ) 3, preferably for O-CO-CH 3 or O-CO-C 2 H 5 ;
  • (C ⁇ -C 4 -haloalkyl) carbonyloxy for: a (C ⁇ -C 4 -alkyl) carbonyl radical - as mentioned above - which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example ⁇ -CO-CH 2 F, O-CO-CHF 2 , O-CO-CF 3 , 0-CO-CH 2 Cl, 0-CO-CH (Cl) 2 , 0-CO-C (Cl) 3 , chlorofluoromethylcarbonyloxy , Dichlorofluoromethylcarbonyloxy, chlorodifluoromethylcarbonyloxy, 2-fluoroethylcarbonyloxy, 2-chloroethylcarbonyloxy, 2-bromoethylcarbonyloxy, 2-iodoethylcarbonyloxy, 2,2-difluoroethylcarbonyloxy, 2, 2, 2-trifluoroethylcarbonyloxy,
  • CO-OCH 3 CO-OC 2 H 5 , n-propoxycarbonyl, CO-OCH (CH 3 ) 2 .
  • n-butoxycarbonyl CO-OCH (CH 3 ) -C 2 H5, CO-OCH 2 -CH (CH 3 ) 2 or CO-OC (CH 3 ) 3 , preferably for CO-OCH3 or CO-OC2H 5 ;
  • -C-C 4 alkylsulfinyl for: SO-CH 3 , SO-C2H5, SO-CH2-C2H5, SO-CH (CH 3 ) 2 , n-butylsulfinyl, SO-CH (CH 3 ) -C 2 H 5 , SO -CH-CH (CH 3 ) 2 or SO-C (CH 3 ) 3 , preferably for SO-CH 3 or SO-C 2 H 5 ;
  • N (CC 4 alkyl) amino for: N (CH 3 ) 2 , N (C 2 H 5 ) 2 , N, N-dipropylamino, N [CH (CH 3 ) 2 ) 2.
  • C 2 -C 6 alkenyl for: vinyl, prop-1-en-l-yl, allyl, 1-methylethenyl, 1-buten-l-yl, l-buten-2-yl, l-buten-3 -yl, 2-butene-1-yl, 1-methyl-prop-1-en-1-yl, 2-methyl-prop-1-en-1-yl, 1-methyl-prop-2-en-1 -yl, 2-methyl-prop-2-en-l-yl, n-penten-1-yl, n-penten-2-yl, n-penten-3-yl, n-penten-4-yl, 1 -Methyl-but-l-en-l-yl, 2-methyl-but-l-en-l-yl, 3-methyl-but-1-en-l-yl, l-methyl-but-2-ene -l-yl, 2-methyl-but-2-en-1-yl, 3-methyl-but-2-en-l-yl,
  • C 2 -C 6 haloalkenyl for: C 2 -C 6 alkenyl as mentioned above, which is partially or completely substituted by fluorine, chlorine and / or bromine, for example 2-chlorovinyl, 2-chloroallyl, 3-chloroallyl, 2 , 3-dichlorallyl, 3,3-dichloro-allyl, 2,3,3-trichlorallyl, 2,3-dichlorobut-2-enyl, 2-bromo-allyl, 3-bromoallyl, 2,3-dibromoallyl, 3,3 -Dibromallyl, 2, 3, 3-tribromallyl and 2, 3-dibromobut-2-enyl, preferably for C 3 - or C-haloalkenyl;
  • C 2 -C 6 alkynyl for: ethynyl and C3-C 6 alkynyl such as prop-1-in-l-yl, prop-2-in-l-yl, n-but-1-in-l-yl, n-but-l-in-3-yl, n-but-l-in-4-yl, n-but-2-in-l-yl, n-pent-1-in-l-yl, n- Pent-l-in-3-yl, n-pent-l-in-4-yl, n-pent-l-in-5-yl, n-pent-2-in-l-yl, n-pent 2-in-4-yl, n-pent-2-in-5-yl, 3-methyl-but-l-in-3-yl, 3-methyl-but-l-in-4-yl, n- Hex-1-in-l-yl, n-hex-l-in-3-yl,
  • C 2 -C 6 haloalkynyl for: C 2 -C 6 alkynyl as mentioned above, which is partially or completely substituted by fluorine, chlorine and / or bromine, for example 1,1-difluoroprop-2-yne-l -yl, 1, 1-difluorobut-2-in-l-yl, 4-fluorobut-2-in 1-yl, 4-chlorobut-2-in-1-yl, 5-fluoropent-3-in-1-yl or 6-fluorohex-4-in-1-yl, preferably C 3 - or C 4 -haloalkynyl;
  • C 3 -C 8 cycloalkyl for: cyclopropy1, cyclobuty1, cyclopentyl, cyclohexyl, cyclohepty1 or cyclooctyl;
  • C 3 -C ⁇ -Cycloalkyl which contains a carbonyl or thiocarbonyl ring member, for example for cyclobutanon-2-yl, cyclobutanon-3-yl, cyclopentanon-2-yl, cyclopentanon-3-yl, cyclohexanon-2-yl , Cyclohexanon-4-yl, Cycloheptanon-2-yl, Cyclooctanon-2-yl, Cyclobutanthion-2-yl, Cyclobutanthion-3-yl, Cyclopentanthion-2-yl, Cyclopentanthion-3-yl, Cyclohexanthion-2-yl , Cyclohexanthion-4-yl, Cycloheptanthion-2-yl or Cyclooctanethion-2-yl, preferably for Cyclopentanon-2-yl or Cyclohexanon-2-yl;
  • C 3 -C 8 cycloalkyl-C ⁇ -C 4 -alkyl for: cyclopropylmethyl, 1-cyclopropyl-ethyl, 2-cyclopropyl-ethyl, 1-cyclopropyl-prop-l-yl, 2-cyclopropyl-prop-l- yl, 3-cyclopropyl-prop-l-yl, 1-cyclopropyl-but-1-yl, 2-cyclopropyl-but-l-yl, 3-cyclopropyl-but-1-yl, 4-cyclopropyl-but- l-yl, l-cyclopropyl-but-2-yl, 2-cyclopropyl-but-2-yl, 3-cyclopropyl-but-2-yl, 3-cyclopropyl-but-2-yl, 4-cyclopropyl- but-2-yl, 1- (cyclopropy1-methyl) -eth-l-yl, 1- (cyclopropylmethyl) -1-
  • C 3 -C 8 cycloalkyl-C ⁇ -C 4 alkyl which contains a carbonyl or thiocarbonyl ring member, for example for cyclobutanon-2-ylmethyl, Cyc1obutanon-3-ylmethyl, cyclopentanon-2-ylmethyl, cyclopentanone -3-ylmethyl, cyclohexanon-2-ylmethyl, cyclohexanone-4-ylmethyl, cycloheptanon-2-ylmethyl, cyclooctanon-2-ylmethyl, cyclobutanthion-2-ylmethyl, cyclobutanthion-3-ylmethyl, cyclopentanthion-2-ylmethyl , Cyclopentanthion-3-ylmethyl, Cyclohexanthion-2-ylmethyl, Cyclohexanthion-4-ylmethyl, Cycloheptanthion-2-ylmethyl, Cyclooctanthion-2-ylmethyl, 1- (C
  • 3- to 7-membered heterocyclyl includes both saturated, partially or completely unsaturated and aromatic heterocycles having one to three heteroatoms, selected from a group consisting of one to three nitrogen atoms, one or two oxygen atoms and one or two sulfur atoms understand.
  • saturated heterocycles which can contain a carbonyl or thiocarbonyl ring member are:
  • unsaturated heterocycles which can contain a carbonyl or thiocarbonyl ring member are: dihydrofuran-2-yl, 1,2-oxazolin-3-yl, 1,2-oxazolin-5-yl, 1,3-oxazolin 2-yl.
  • the 5- and 6-membered ones are preferred, e.g. Furyl such as 2-furyl and 3-furyl, thienyl such as 2-thienyl and 3-thienyl, pyrrolyl such as 2-pyrrolyl and 3-pyrrolyl, isoxazolyl such as 3-isoxazolyl, 4-isoxazolyl and 5-isoxazolyl, isothiazolyl such as 3-isothiazolyl, 4-isothiazolyl and 5-isothiazolyl, pyrazolyl such as 3-pyrazolyl, 4-pyrazolyl and 5-pyrazolyl, oxazolyl such as 2-oxazolyl, 4-oxazolyl and 5-0xazolyl, thiazolyl such as 2-thiazolyl, 4-thiazolyl and 5-thiazolyl, Imidazolyl such as 2-imidazolyl and 4-imidazolyl, oxadiazolyl such as 1,2,4-o
  • R 1 is methyl, ethyl or C ⁇ -C 2 haloalkyl, especially methyl
  • R 2 is methyl, ethyl or C ⁇ -C 2 haloalkyl, especially methyl
  • R 3 is hydrogen or halogen, in particular halogen, particularly preferably chlorine;
  • R 4 is hydrogen, fluorine or chlorine, in particular fluorine or chlorine, particularly preferably fluorine;
  • X is a chemical bond or a methylene, ethene-l, 2-diyl or via the hetero atom to the phenyl ring bound oxy-methylene or thiaethylene chain, the chains being unsubstituted or a cyano, halogen, C ⁇ -C 4 alkyl or (C ⁇ -C 4 alkoxy) carbonyl substituents can carry, in particular a chemical bond or methylene;
  • -PO (0-YR 8) 2 in particular hydrogen, -OYR 8 , -N (YR 8 ) -S0 2 -ZR 9 , -SYR 8 or -CO-OYR 8 , particularly preferably hydrogen or -OYR 8 ;
  • R 7 is hydrogen
  • Y, Z independently of one another are a chemical bond or methylene
  • C 3 -C 8 cycloalkyl which may contain a carbonyl or thiocarbonyl ring member, phenyl or 3- to 7-membered heterocyclyl with one or two nitrogen atoms and / or an oxygen or sulfur atom as hetero atom and, if desired, a carbonyl or thiocarbonyl ring member, where each cycloalkyl, phenyl and heterocyclyl ring can be unsubstituted or carry one or two substituents, each selected from the group consisting of cyano, nitro, halogen, C ⁇ -C 4 alkyl, C ⁇ - C 4 alkoxy, C ⁇ -C 4 alkyl sulfonyl, (C ⁇ -C 4 alkyl) carbonyl, (C ⁇ -C 4 alkyl) carbonyloxy and (C ⁇ -C 4 alkoxy) carbonyl;
  • R 11 is hydrogen or C ⁇ -C 4 alkyl
  • R 12 is hydrogen
  • R 13 , R 14 independently of one another are hydrogen or C ⁇ -C 6 -alkyl
  • R 15 CC 6 alkyl are particularly preferred.
  • Ia.515 -CH C (Cl) -CO-NH- (nC 4 H 9 )
  • Ia.518 -CH C (Cl) -CO-N (CH 3 ) -CH 2 -CO-OCH 3
  • Ia.523 -CH C (Cl) -CO-NH-CH (CH 3 ) -CO-OCH 3
  • Ia.524 -CH C (Cl) -CO-N (CH 3 ) -CH (CH 3 ) -CO-OCH 3
  • Ia.525 -CH C (Cl) -CO-NH-CH (CH 3 ) -CO-OCH 5
  • Ia.526 -CH C (Cl) -CO-N (CH 3 ) -CH (CH 3 ) -CO-OC 2 H 5
  • Ia.528 -CH C (Cl) -CO- (piperidin-l-y1)
  • l-sulfonyl-3-phenylpyrazoles of the formulas Ib to Ii are particularly preferred, in particular
  • the l-sulfonyl-3-phenylpyrazoles of the formula I can be obtained in various ways, in particular by one of the following processes:
  • Suitable halogenating agents are, for example, fluorine, DAST (diethylsulfur trifluoride), chlorine, N-chlorosuccinimide, sulfuryl chloride, thionyl chloride, phosgene, phosphorus trichloride, phosphorus oxychloride, bromine, N-bromosuccinimide, phosphorus tribromide and phosphorus oxybromide.
  • an inert solvent / diluent e.g. in a hydrocarbon such as n-hexane and toluene, a halogenated hydrocarbon such as carbon tetrachloride and chloroform, an ether such as methyl tert-butyl ether, an alcohol such as methanol and ethanol, a carboxylic acid such as acetic acid or in an aprotic solvent such as acetonitrile.
  • the reaction temperature is normally between the melting point and the boiling point of the reaction mixture, preferably at 0 to 100 ° C.
  • the halogenating agent is used in about a molar amount or in excess, up to about five times the molar amount, based on the amount of starting compound.
  • L stands for a common leaving group such as halide or -0-S0 2 -R '.
  • the circle in the pyrazole ring represents two double bonds.
  • an inert solvent / thinning agent e.g. in a hydrocarbon such as n-hexane and toluene, a halogenated hydrocarbon such as carbon tetrachloride and chloroform, an ether such as methyl tert. -butyl ether or in a conventional aprotic solvent such as acetonitrile, dimethylformamide and dimethyl sulfoxide.
  • a hydrocarbon such as n-hexane and toluene
  • a halogenated hydrocarbon such as carbon tetrachloride and chloroform
  • an ether such as methyl tert. -butyl ether
  • a conventional aprotic solvent such as acetonitrile, dimethylformamide and dimethyl sulfoxide.
  • Both inorganic bases e.g. Alkali metal carbonates such as sodium and potassium carbonate, alkali metal hydroxides such as sodium and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide or alkali metal hydrides such as sodium hydride, as well as organic bases, e.g. Tertiary A ine such as triethylamine, Grignard or alkyl lithium compounds such as methyl magnesium chloride and butyllithium into consideration.
  • inorganic bases e.g. Alkali metal carbonates such as sodium and potassium carbonate, alkali metal hydroxides such as sodium and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide or alkali metal hydrides such as sodium hydride, as well as organic bases, e.g. Tertiary A ine such as triethylamine, Grignard or alkyl lithium compounds such as methyl magnesium chloride and butyllithium into consideration.
  • the reaction temperature is usually between the melting point and the boiling point of the reaction mixture, preferably from 0 to 100 ° C.
  • base and sulfonic acid derivative III are used in approximately equimolar amounts, based on the amount of II. However, in order to achieve a higher yield of product of value, it may also be advantageous to use base and / or III in excess, up to about five times the molar amount. based on the amount of II.
  • the phenylpyrazoles II are e.g. accessible by reaction of diketones V with hydrazine, hydrazine hydrate (for example an aqueous hydrazine solution), or with a salt of hydrazine such as hydrazine sulfate, in a manner known per se:
  • Hydrocarbon such as n-hexane and toluene, a halogenated hydrocarbon such as carbon tetrachloride and chloroform, an ether such as methyl tert. -butyl ether, an alcohol such as methanol and ethanol, a carboxylic acid such as acetic acid, or an aprotic solvent such as acetonitrile.
  • the reaction temperature is usually between the melting and boiling point of the reaction mixture, preferably at 0 to 100 ° C.
  • Suitable nitration reagents are, for example, nitric acid in different concentrations, also concentrated and fuming nitric acid, mixtures of sulfuric acid and nitric acid, acetyl nitrates and alkyl nitrates.
  • the reaction can be carried out either solvent-free in an excess of the nitrating reagent or in an inert solvent or diluent, e.g. Water, mineral acids, organic acids, halogenated hydrocarbons such as methylene chloride, anhydrides such as acetic anhydride and mixtures of these solvents are suitable.
  • an inert solvent or diluent e.g. Water, mineral acids, organic acids, halogenated hydrocarbons such as methylene chloride, anhydrides such as acetic anhydride and mixtures of these solvents are suitable.
  • Starting compound I ⁇ XR 6 H
  • nitrating reagent are expediently used in approximately equimolar amounts; However, in order to optimize the conversion of the starting compound, it may be advantageous to use the nitrating reagent in excess, up to about a 10-fold molar amount. When carrying out the reaction without a solvent in the nitrating reagent, this is present in an even greater excess.
  • the reaction temperature is normally (-100) to 200 ° C, preferably (-30) to 50 ° C.
  • the reductin can be carried out with a metal such as iron, zinc or tin under acidic reaction conditions or with a complex hydride such as lithium aluminum hydride and sodium borohydride, the solvent being - depending on ability of the chosen reducing agent - for example water, alcohols such as methanol, ethanol and isopropanol or ethers such as diethyl ether, methyl 1-tert-butyl ether, dioxane, tetrahydrofuran and ethylene glycol dimethyl ether.
  • a metal such as iron, zinc or tin under acidic reaction conditions or with a complex hydride such as lithium aluminum hydride and sodium borohydride
  • the solvent being - depending on ability of the chosen reducing agent - for example water, alcohols such as methanol, ethanol and isopropanol or ethers such as diethyl ether, methyl 1-tert-butyl ether, dioxane, tetrahydrofuran and
  • the process is preferably carried out in a solvent-free manner in an inorganic acid, in particular in concentrated or dilute hydrochloric acid, or in an organic acid such as acetic acid.
  • an inert solvent to the acid, e.g. to mix one of the above.
  • the amount of acid is not critical. In order to reduce the starting compound as completely as possible, it is expedient to use at least an equivalent amount of acid.
  • the reaction temperature is generally from (-30) to 200 ° C., preferably from 0 to 80 ° C.
  • reaction mixture is usually diluted with water and the product by filtration,
  • Suitable catalysts for this purpose are, for example, Raney nickel, palladium on carbon, palladium oxide, platinum and platinum oxide, a quantity of catalyst of 0.05 to 10.0 mol%, based on the compound to be reduced, generally being sufficient.
  • the procedure is either solvent-free or in an inert solvent or diluent, for example in acetic acid, a mixture of acetic acid and water, ethyl acetate, ethanol or in toluene.
  • reaction solution can be worked up to the product in the customary manner.
  • the hydrogenation can be carried out at normal pressure or under elevated pressure.
  • XR 6 cyano or halogen ⁇ for the Sandmeyer reaction cf. for example Houben-Weyl, Methods of Organic Chemistry, Georg Thieme Verlag Stuttgart, Vol. 5/4, 4th edition 1960, p. 438ff. ⁇ ,
  • a nitrite such as sodium nitrite and potassium nitrite.
  • a copper (I) salt such as copper (I) cyanide, chloride, bromide and iodide, or with an alkali metal salt solution.
  • an aqueous acid preferably sulfuric acid.
  • a copper (II) salt such as copper (II) sulfate can have an advantageous effect on the course of the reaction.
  • Meerwein arylation is usually the reaction of the diazonium salts with alkenes or alkynes.
  • the alkene or alkyne is preferably used in excess, up to about 3000 mol%, based on the amount of the diazonium salt.
  • the reactions of the diazonium salt described above can e.g. in water, in aqueous hydrochloric acid or hydrobromic acid, in a ketone such as acetone, diethyl ketone and methyl ethyl ketone, in a nitrile such as acetonitrile, in an ether such as dioxane and tetrahydrofuran or in an alcohol such as methanol and ethanol.
  • reaction temperatures are normally from (-30) to 50 ° C. All reactants are preferably used in approximately stoichiometric amounts, but an excess of one or the other component, up to approximately 3000 mol%, can also be advantageous.
  • Useful reducing agents are e.g. Transition metals such as iron, zinc and tin (see, for example, "The Chemistry of the Thiol Group", John Wiley, 1974, p. 216).
  • Halosulfonation can be carried out without solvent in excess sulfonating reagent or in an inert solvent / diluent, e.g. in a halogenated hydrocarbon, an ether, an alkyl nitrile or a mineral acid.
  • Chlorosulfonic acid is both the preferred reagent and solvent.
  • the reaction temperature is usually between 0 ° C and the boiling point of the reaction mixture.
  • the reaction mixture is mixed with water, for example, after which the product can be isolated as usual.
  • Suitable solvents are organic acids, inorganic acids, aliphatic or aromatic hydrocarbons, which can be halogenated, and ethers, sulfides, sulfoxides and sulfones.
  • halogenating agents are chlorine, bromine, N-bromosuccinimide, N-chlorosuccinimide or sulfuryl chloride.
  • a radical initiator for example an organic peroxide such as dibenzoyl peroxide or an azo compound such as azobisisobutyronitrile, or irradiation with light can have an advantageous effect on the course of the reaction.
  • the reaction temperature is normally from (-100) to 200 ° C, especially at 10 to 100 ° C or the boiling point of the reaction mixture.
  • the nucleophile used is either the corresponding alcohols, thiols, carboxylic acids or amines, in which case the reaction is preferably carried out in the presence of a base (for example an alkali metal or alkaline earth metal hydroxide or an alkali metal or alkaline earth metal carbonate), or the reaction is carried out by reacting the alcohols, thiols, carboxylic acids or Amines with a base (for example an alkali metal hydride) obtained alkali metal salts of these compounds.
  • a base for example an alkali metal or alkaline earth metal hydroxide or an alkali metal or alkaline earth metal carbonate
  • a base for example an alkali metal hydride
  • Aprotic organic solvents e.g. Tetrahydrofuran, dimethylformamide, dimethyl sulfoxide, or hydrocarbons such as toluene and n-hexane.
  • the reaction is carried out at a temperature between the melting point and the boiling point of the reaction mixture, preferably at 0 to 100 ° C.
  • the reaction temperature is usually 0 to 120 ° C.
  • Dimethyl sulfoxide for example, is suitable as a solvent.
  • the olefination is preferably carried out by the method of Wit ig or one of its modifications, phosphoryls, phosphonium salts and phosphonates being suitable as reactants, or by aldol condensation.
  • a phosphonium salt or a phosphonate it is advisable to work in the presence of a base, alkali metal alkyls such as n-butyllithium, alkali metal hydrides and alcoholates such as sodium hydride, sodium ethanolate and potassium tert-butoxide, and
  • Alkali metal and alkaline earth metal hydroxides such as calcium hydroxide are particularly suitable.
  • reaction temperature is (-40) to 150 ° C.
  • Phosphonates or phosphorylides are known or can be prepared in a manner known per se ⁇ cf. for this e.g. Houben-Weyl, Methods of Organic Chemistry, Vol. El, pp. 636ff. and Vol. E2, pp. 345ff., Georg Thieme Verlag Stuttgart 1982; Chem. Ber. £ 5_, 3993 (1962)).
  • I ⁇ XR 6 -CO-YR 8 ⁇
  • reaction mixtures are generally worked up in a manner known per se. Unless stated otherwise in the processes described above, the valuable products are obtained e.g. after dilution of the reaction solution with water by filtration, crystallization or solvent extraction, or by removing the solvent, distributing the residue in a mixture of water and a suitable organic solvent and working up the organic phase onto the product.
  • the l-sulfonyl-3-phenylpyrazoles I can be obtained in the preparation as isomer mixtures, which, however, can, if desired, be separated into the largely pure isomers by the customary methods such as crystallization or chromatography, including on an optically active adsorbate. Pure optically active isomers can advantageously be prepared from corresponding optically active starting products.
  • Agricultural salts of the compounds I can be formed by reaction with a base of the corresponding cation, preferably an alkali metal hydroxide or hydride, or by reaction with an acid of the corresponding anion, preferably hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.
  • Salts of I, the metal ion of which is not an alkali metal ion can also be prepared in a customary manner by salting the corresponding alkali metal salt, as can ammonium, phosphonium, sulfonium and sulfoxonium salts using ammonia, phosphonium, sulfonium or sulfoxonium hydroxides.
  • the compounds I and their agriculturally useful salts are suitable - both as isomer mixtures and in the form of the pure isomers - as herbicides.
  • the herbicidal compositions containing I control vegetation very well on non-cultivated areas, particularly when high amounts are applied. In crops such as wheat, rice, maize, soybeans and cotton, they act against weeds and grass weeds without significantly damaging the crop plants. This effect occurs especially at low application rates.
  • the compounds I or herbicidal compositions comprising them can also be used in a further number of crop plants for eliminating undesired plants.
  • the following crops can be considered, for example:
  • the compounds I can also be used in crops which are tolerant to the action of herbicides by breeding, including genetic engineering methods.
  • the 1-sulfonyl-3-phenylpyrazoles I are also suitable for the desiccation and / or defoliation of plants.
  • desiccants are particularly suitable for drying out the above-ground parts of crops such as potatoes, rapeseed, sunflower and soybeans. This enables a fully mechanical harvesting of these important crops.
  • the compounds I or the herbicidal compositions comprising them can be sprayed, atomized, for example in the form of directly sprayable aqueous solutions, powders, suspensions, including high-strength aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, sprinkling agents or granules , Dusting, scattering or pouring.
  • directly sprayable aqueous solutions, powders, suspensions including high-strength aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, sprinkling agents or granules , Dusting, scattering or pouring.
  • the application forms depend on the purposes; in any case, they should ensure the finest possible distribution of the active compounds according to the invention.
  • mineral oil fractions of medium to high boiling point such as kerosene and diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. Paraffins, tetrahydronaphthalene, alkylated naphthalenes and their derivatives, alkylated benzenes and their derivatives, alcohols such as methanol, ethanol, propanol, butanol and cyclohexanol, ketones such as cyclohexanone, strongly polar solvents, e.g. Amines such as N-methylpyrrolidone and water.
  • mineral oil fractions of medium to high boiling point such as kerosene and diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. Paraffins, tetrahydronaphthalene, alkylated naphthalenes and their derivatives,
  • Aqueous use forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules by adding water.
  • the substrates as such or dissolved in a oil or solvent, can be homogenized in water using wetting agents, adhesives, dispersants or emulsifiers.
  • wetting agents adhesives, dispersants or emulsifiers.
  • concentrates consisting of an active substance, wetting agent, tackifier, dispersant or emulsifier and possibly solvent or oil, which are suitable for dilution with water.
  • alkali, alkaline earth, ammonium salts of aromatic sulfonic acids e.g. Lignin, phenol, naphthalene and dibutylnaphthalenesulfonic acid, as well as of fatty acids, alkyl and alkylarylsulfonates, alkyl, lauryl ether and fatty alcohol sulfates, and salts of sulfated hexa-, hepta- and octadecanols as well as of fatty alcohol glycol ethers, condensation products of sulfonated naphthalene and its derivatives Formaldehyde, condensation products of naphthalene or naphthalenesulfonic acids with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctyl, octyl or nonylphenol, alkylphenyl, tributylphenyl poly
  • Powders, materials for broadcasting and dusts can be prepared by mixing or grinding the active substances together with a solid carrier.
  • Granules e.g. Coated granules, impregnation granules and homogeneous granules can be produced by binding the active ingredients to solid carriers.
  • Solid carriers are mineral soils such as silicas, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bolus, loess, clay, dolomite and diatomaceous earth, calcium and magnesium sulfate, magnesium oxide, ground plastics, fertilizers such as ammonium lfate, ammonium phosphate and ammonium nitrate, Urea and vegetable products such as flour, tree bark, wood and nutshell flour, cellulose powder or other solid carriers.
  • the concentrations of the active ingredients I in the ready-to-use preparations can be varied over a wide range.
  • the formulations contain about 0.001 to 98% by weight, preferably 0.01 to 95% by weight, of at least one active ingredient I.
  • the active ingredients are in a purity of 90% to 100%, preferably 95% to 100% (according to the NMR spectrum).
  • the following formulation examples illustrate the preparation of such preparations:
  • the active ingredients I or the herbicidal compositions can be applied pre- or post-emergence. If the active ingredients are less compatible with certain crop plants, application techniques can be used in which the herbicidal compositions are sprayed with the aid of sprayers in such a way that the leaves of the sensitive crop plants are not hit as far as possible, while the active ingredients are applied to the leaves of undesirable plants growing below them or the uncovered floor area (post-directed, lay-by).
  • the application rates of active ingredient I are 0.001 to 3.0, preferably 0.01 to 1.0 kg / ha of active substance (a.S.) depending on the control target, the season, the target plants and the growth stage.
  • the 1-sulfonyl-3-phenylpyrazoles I can be mixed with numerous representatives of other herbicidal or growth-regulating active compound groups and applied together become.
  • Precursor 5.5 4- (5-allyloxy-4-chloro-2-fluorophenyl) butane-2, -dione
  • Precursor 5.6 3 (5) - (5-allyloxy-4-chloro-2-fluorophenyl) -5 (3) methyl-1H-pyrazole 5 22.5 g (83 mmol) of 4 - (5-allyloxy-4-chloro-2-fluorophenyl) butane-2, -dione and 4.3 g (85 mmol) of hydrazine hydrate were reacted analogously to the process described in precursor 3.2 .
  • Example 7 4-chloro-3- (4-chloro-2-fluorophenyl) -5-methyl-1-methyl-sulfonyl-1H-pyrazole (No. Ie.001) Using 0.8 g (3.3 mmol) of 4-chloro-3 (5) - (4-chloro-2-fluoropheny1-5 (3) -methyl-1H-pyrazole, 83 mg (3.4 mmol) Sodium hydride and 0.37 g (3.3 mmol) of methanesulfonyl chloride were obtained analogously to the process described in Example 1, 0.4 g of the desired product of value;
  • Plastic flower pots with loamy sand with about 3.0% humus as substrate served as culture vessels.
  • the seeds of the test plants were sown separately according to species.
  • the active ingredients suspended or emulsified in water were applied directly after sowing using finely distributing nozzles.
  • the tubes were lightly sprinkled to promote germination and growth, and then covered with clear plastic hoods until the plants had grown. This cover causes the test plants to germinate evenly, provided that this has not been impaired by the active ingredients.
  • test plants For the purpose of post-emergence treatment, the test plants, depending on the growth habit, were first grown to a height of 3 to 15 cm and only then treated with the active ingredients suspended or emulsified in water. For this purpose, the test plants were either sown directly and grown in the same containers or they were first grown separately as seedlings and transplanted into the test containers a few days before the treatment.
  • the application rate for post-emergence treatment was 0.5 kg / ha aS (active substance).
  • the plants were kept at temperatures of 10 - 25 ° C or 20 - 35 ° C depending on the species. The trial period lasted 2 to 4 weeks. During this time, the plants were cared for and their response to the individual treatments was evaluated.
  • Evaluation was carried out on a scale from 0 to 100. 100 means no emergence of the plants or complete destruction of at least the aerial parts and 0 means no damage or normal growth.
  • the plants used in the greenhouse experiments are composed of the following types:
  • the young cotton plants were dripping wet with aqueous preparations of the active ingredients (with the addition of 0.15% by weight of the active ingredients).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

1-Sulfonyl-3-phenylpyrazole der Formel (I) und deren Salze, wobei R1 = C1-C4-Alkyl, C1-C4-Halogenalkyl; R2 = C1-C4-Alkyl, C1-C4-Halogenalkyl; R3 = H, CN, Halogen, C¿1?-C4-Alkyl; R?4¿ = H, Halogen; R5 = H, CN, NO¿2?, Halogen, C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy; X = chemische Bindung, geg. subst. Methylen-, Ethylen-, Propan-1,3-diyl-, Ethen-1,2-diyl- oder über das Heteroatom an den Phenylring gebundene Oxymethylen- oder Thiamethylen-Kette; R?6¿ = H, NO¿2?, CN, Halogen, SO2-Halogen, -O-Y-R?8¿, -O-CO-Y-R8, -N(Y-R8)(Z-R9), -N(Y-R8)-SO2-Z-R9, -N(SO¿2?-Y-R?8)(SO¿2-Z-R9), -N(Y-R8)-CO-Z-R9, -N(Y-R?8)(O-Z-R9¿), -S-Y-R8, -SO-Z-R8, -SO2-Y-R8, -SO2-O-Y-R8, -SO2-N(Y-R8)(Z-R9), -CO-Y-R8, -C(=NOR?10)-Y-R8¿, -(=NOR?10)-O-Y-R8¿, -CO-O-Y-R8, -CO-S-Y-R8, -CO-N(Y-R8)(Z-R9), -CO-N(Y-R?8)(O-Z-R9¿), -PO(O-Y-R8)2; R7 = H, oder R5 + XR6 oder XR6 + R7 zusammen mit den sie verbindenden C-Atomen des Phenylrings = annellierter, geg. subst. carbocyclischer oder 5-/6-gliedriger heterocyclischer Ring mit 1-3 Heteroatomen, wobei der Cyclus auch 1 oder 2 CO-, CS- oder SO¿2?-Ringglieder enthalten kann; Verwendung: als Herbizide; zur Desikkation/Defoliation von Pflanzen.

Description

l -SULFONYL-3-PHENYLPYRAZOLE UND IHRE VERWENDUNG ALS HERBIZIDE UND ZUR DESIKKATION/DEFOLIATION VON PFLANZEN
Beschreibung 5
Die vorliegende Erfindung betrifft neue l-Sulfonyl-3-phenyl- pyrazole der Formel I
Figure imgf000003_0001
in der die Variablen folgende Bedeutungen haben:
R1 Cι-C4-Alkyl oder Cι-C4-Halogenal yl; 20
R2 Cι-C4-Alkyl oder Cι-C4-Halogenalkyl;
R3 Wasserstoff, Cyano, Halogen oder Cι-C.4-Al yl;
25 R4 Wasserstoff oder Halogen;
R5 Wasserstoff, Cyano, Nitro, Halogen, C1-C4-Alkyl,
C1-C4-Halogenalkyl, Cι-C4-Alkoxy oder Cι-C4-Halogenalkoxy;
30 X eine chemische Bindung oder eine Methylen-, Ethylen-,
Propan-1, 3-diyl-, Ethen-1, 2-diyl- oder über das Heteroatom an den Phenylring gebundene Oxy ethylen- oder Thiamethylen- Kette, wobei alle Ketten unsubstituiert sein oder einen oder zwei Substituenten tragen können, jeweils ausgewählt aus der
35 Gruppe bestehend aus Cyano, Carboxy, Halogen, Cι-C4-Alkyl, Cι-C4-Halogenalkyl, Cχ-C4-Alkoxy, (Cι.-C4-Alkoxy) carbonyl , Di-(Cι-C4-Alkyl)amino und Phenyl;
R6 Wasserstoff, Nitro, Cyano, Halogen, Halogensulfonyl, -O-Y-R8, 40 -O-CO-Y-R8, -N(Y-R8) (Z-R9) , -N(Y-R8) -S02-Z-R9 ,
-N(S02-Y-R8) (SC-2-Z-R9) , -N(Y-R8)-CO-Z-R9, -N(Y-R8) (O-Z-R9) , -S-Y-R8, -SO-Z-R8, -S02-Y-R8, -SO2-O-Y-R8, -S02-N{Y-R8) (Z-R9) , -CO-Y-R8, -C(=NOR10)-Y-R8, -C (=NOR10) -O-Y-R8 , -CO-O-Y-R8, -CO-S-Y-R8, -CO-N(Y-R8) (Z-R9) , -CO- (Y-R8) (O-Z-R9) oder -P0(O- 5 Y-R8) 2; R7 Wasserstoff,
oder R5 und XR6 oder XR6 und R7 zusammen mit den sie verbindenden C-Atomen des Phenylrings einen annellierten carbocyclisehen oder 5- oder 6-gliedrigen heteroeyclischen Ring mit 1 bis 3 Heteroatomen, ausgewählt aus einer Gruppe bestehend aus ein bis drei Stickstoff-, ein oder zwei Sauerstoff- und ein oder zwei Schwefelatomen, wobei der annellierte Ring unsubstituiert sein oder seiner- seits einen oder zwei Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Ci-Cj-Alkyl, Cι-C4-Halo- genalkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl , C2-C6-Alkinyl, Cι-C -Alkoxy, Cι-C4-Halogenalkoxy, Cι-C -Alkylthio, Cι-C4-Halo- genalkylthio, Cχ-C4-Alkylsulfinyl, Cι-C4-Halogenalkylsulfinyl, Cα-C-Alkylsulfonyl, Cι-C-Halogenalkylsulfonyl, (Cι-C4-Alk- oxy) carbonyl , (Cχ-C4-Alkoxy) carbonyl-Cι-C4-alkyl, Phenyl oder Phenyl-Cι-C4-alkyl , wobei der annellierte Cyclus auch ein oder zwei nicht benachbarte Carbonyl-, Thiocarbonyl- oder Sulfonyl-Ringglieder ent- halten kann;
Y, Z unabhängig voneinander eine chemische Bindung oder eine Methylen- oder Ethylen- Kette, die unsubstituiert sein oder einen oder zwei Substi- tuenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Carboxy, Cι-C4-Alkyl, Cχ-C4-Halogenalkyl, (Cι~C4-Alkoxy) carbonyl und Phenyl;
R8, R9 unabhängig voneinander Wasserstoff, Cχ-C6-Halogenalkyl , C2-C6-Alkenyl , C2-C6-Halogen- alkenyl, C2-C6-Alkinyl, C2-C6-Halogenalki:nyl, -CH (Rü) (R12) , (R12)-N02, -C(RH) (R12)-CN, -C(R1:l) (R12) -Halogen, (R1 )-0R13, -CtR11) (R12)-N(Rl3)R14,
(Rl2)-N(R13)-0R14, -CJR11) (R12)-SR13, -C (R11) (R12) -SO-R13 , (Rl2)-S02-R13, -C(R11) (R12)-S02-0R13,
(R12)-S02-N(R13)R14, -C(RU) (R12)-C0-R13, (R12)_C(=NORl5)_R13( -C(Rll) (Rl2)-CO-OR13, (Rl )-CO-SR13, -C(R11) (Rl2)-CO-N(Rl:')R14,
Figure imgf000004_0001
(Rl2)-CO-N(R13)-OR14, -C(Rl!) (R12) -PO(OR13)2, C3-C8-Cycloalkyl, das ein Carbonyl- oder Thiocarbonyl-Ring- glied enthalten kann, Phenyl oder 3- bis 7gliedriges Hetero- cyclyl, das ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten kann, wobei jeder Cycloalkyl-, der Phenyl- und jeder Heterocyclyl- Ring unsubsti uiert sein oder ein bis vier Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Cyano, Nitro, Amino, Hydroxy, Carboxy, Halogen, Cι-C4-Alkyl, Cι-C4-Halogenalkyl, Cχ-C4-Alkoxy, Cι-C4-Halogenalkoxy, Cχ-C4-Alkylthio, Cχ-C4-Halogenalkylthio, Cχ-C4-Alkylsul onyl, Cχ-C4-Halogenalkylsulfonyl, (Cχ-C4-Alkyl ) carbonyl, (Cχ-C4-Ha- logenalkyl) carbonyl, (Cχ-C4-Alkyl) carbonyloxy, (Cχ-C4~Halogen- alkyl) carbonyloxy, (Cχ-C4-Alkoxy) carbonyl und Di- (Cχ-C4-Al- kyl) amino;
Rio Wasserstoff, Cχ-C6-Alkyl, Ci-Cβ-Halogenalkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, C2-C6-Halogenalkinyl, C3-C8-Cycloalkyl, Phenyl oder Phenyl-Cχ-C4-alkyl;
R11, R12 unabhängig voneinander
Wasserstoff, Cι-C4-Alkyl, Cχ-C4-Alkoxy-Cχ-C4-alkyl , C1-C4-AI- kylthio-Cχ-C4-alkyl, (Cχ-C4-Alkoxy) carbonyl-Cχ-C4-alkyl oder Phenyl-C1-C4-alkyl, wobei der Phenylring unsubstituiert sein oder ein bis drei Substituenten tragen, jeweils ausgewählt aus der Gruppe bestehend aus Cyano, Nitro, Carboxy, Halogen, Cχ-C4-Alkyl, Cι-C4-Halogenalkyl und (Cι-C4-Alkoxy) carbonyl ;
R , R14 unabhängig voneinander
Wasserstoff, Cι-C6-Alkyl, Cχ-Cg-Halogenalkyl, C2~C6-Al enyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, C2-Cg-Halogenalkinyl, C3-C8-Cycloalkyl, C3-CB-Cycloalkyl-Cχ-C4-alkyl, Phenyl, Phe- nyl-Cχ-C4-alkyl, 3- bis 7-gliedriges Heterocyclyl oder Hetero- cyclyl-Cχ-C4-alkyl, wobei jeder Cycloalkyl- und jeder Hetero- cyclyl-Ring ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten kann, und wobei jeder Cycloalkyl-, der Phenyl- und jeder Hetero- cyclyl-Ring unsubstituiert sein oder ein bis vier Substituen- ten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Cyano, Nitro, Amino, Hydroxy, Carboxy, Halogen, C1-C4-AI- kyl, Cχ-C4-Halogenalkyl, Cχ-C4-Alkoxy, Cχ-C4-Halogenalkoxy, Cχ-C4-Alkylthio, Cχ-C4-Halogenalkylthio, Cι-C4-Alkylsul onyl, Cχ-C4-Halogenalkylsulfonyl, (Cι-C4~Alkyl) carbonyl, (Cχ-C4-Ha- logenalkyl) carbonyl, (Cχ-C4-Alkyl) carbonyloxy, (Cι-C4-Halogen- alkyl ) carbonyloxy , (Cχ-C4-Alkoxy) carbonyl und Di- (Cχ-C4-Al- kyl) amino;
R15 Wasserstoff, Ci-Cß-Alkyl, Cχ-C6-Halogenalkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, C2-C6-Halogenalkinyl, C3-C8-Cycloalkyl, Phenyl oder Phenyl-Cχ-C4-alkyl;
sowie die landwirtschaftlich brauchbaren Salze von I.
Außerdem betrifft die Erfindung die Verwendung von Verbindungen I als Herbizide und/oder zur Desikkation und/oder Defoliation von Pflanzen, herbizide Mittel und Mittel zur Desikkation und/oder Defoliation von Pflanzen, welche die Verbindungen I als wirksame Substanzen enthalten,
Verfahren zur Herstellung der Verbindungen I und von herbiziden Mitteln und Mitteln zur Desikkation und/oder
Defoliation von Pflanzen unter Verwendung der Verbindungen I, sowie
Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs und zur Desikkation und/oder Defoliation von Pflanzen mit den Verbindungen I.
Diejenigen Verbindungen I, bei denen R1 und R2 jeweils für einen Cι-C4-Alkyl-Rest stehen und R , R5, R6 und R7 alle Wasserstoff sowie X eine chemische Bindung bedeuten, fallen formal unter die allgemeine Formel von in der EP-A 009 998 beschriebenen Persauerstoff-Aktivatoren.
Aus der U.S. 5,510,320 sind herbizide Triazolylsulfonylpyrazole bekannt. In der WO 92/02509 werden herbizide Phenyl (alkylsulfo- nyDpyrazole gelehrt.
Da die herbiziden Eigenschaften der bisher bekannten Pyrazole bezüglich der Schadpflanzen nicht immer völlig befriedigend sind, lagen der vorliegenden Erfindung neue 3-Phenyl-pyrazole als Auf- gäbe zugrunde, mit denen sich unerwünschte Pflanzen besser als bisher gezielt bekämpfen lassen. Die Aufgabe erstreckte sich auch auf die Bereitstellung neuer desikkant/defoliant wirksamer Verbindungen.
Demgemäß wurden die vorliegenden l-Sulfonyl-3-phenylpyrazole der Formel I gefunden.
Ferner wurden herbizide Mittel gefunden, die die Verbindungen I enthalten und eine sehr gute herbizide Wirkung besitzen. Außerdem wurden Verfahren zur Herstellung dieser Mittel und Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs mit den Verbindungen I gefunden .
Des weiteren wurde gefunden, daß die Verbindungen I auch zur Desikkation/Defoliation von Pflanzenteilen geeignet sind, wofür Kulturpflanzen wie Baumwolle, Kartoffel, Raps, Sonnenblume, Sojabohne oder Ackerbohnen, insbesondere Baumwolle, in Betracht kommen. Diesbezüglich wurden Mittel zur Desikkation und/oder Defoliation von Pflanzen, Verfahren zur Herstellung dieser Mittel und Verfahren zur Desikkation und/oder Defoliation von Pflanzen mit den Verbindungen I gefunden. Die Verbindungen der Formel I können je nach Substitutionsmuster ein oder mehrere Chiralitätszentren enthalten und liegen dann als Enantiomeren- oder Diastereomerengemische vor. Gegenstand der Erfindung sind sowohl die reinen Enantiomeren oder Diastereomeren als auch deren Gemische.
Die bei der Definition der Substituenten R1, R2, R5, R8 bis R15 oder als Reste an Cycloalkyl-, Phenyl- oder heterocyclischen Ringen oder an X, Y und Z genannten organischen Molekülteile stellen - wie die Bedeutung Halogen - Sammelbegriffe für individuelle Aufzählungen der einzelnen Gruppenmitglieder dar. Samtliche Kohlenstoffketten, also alle Alkyl-, Halogenalkyl- , Phenylalkyl-, Cycloalkyl-alkyl-, Alkoxy-, Halogenalkoxy-, Alkylthio-, Halogen- alkylthio-, Alkylsulfinyl-, Halogenalkylsulfinyl-, Alkylsul- fonyl-, Halogenalkylsulfonyl-, Alkenyl-, Halogenalkenyl-,
Alkinyl- und Halogenalkinyl-Teile können geradkettig oder verzweigt sein. Halogenierte Substituenten tragen vorzugsweise ein bis fünf gleiche oder verschiedene Halogenatome. Die Bedeutung Halogen steht jeweils für Fluor, Chlor, Brom oder lod.
Ferner stehen beispielsweise:
Cχ-C4-Alkyl für: CH3, C HB, n-Propyl, CH(CH3)2, n-Butyl, CH(CH3)-C2H5, CH2-CH(CH3)2 und C{CH3)3;
Cχ-C4-Halogenalkyl für: einen Cχ-C4-Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, also z.B. CH2F, CHF2 , CF3, CH2CI, Dichlormethyl, Trichlormethyl , Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 2-Fluorethyl,
2-Chlorethyl, 2-Bromethyl, 2-Iodethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl , 2-Chlor-2 , 2-di- fluorethyl, 2 , 2-Dichlor-2-fluorethyl, 2 ,2 , 2-Trichlorethyl, C2F5, 2-Fluorpropyl, 3-Fluorpropyl, 2 ,2-Difluorpropyl, 2,3-Di- fluorpropyl, 2-Chlorpropyl, 3-Chlorpropyl, 2 , 3-Dichlorpropyl , 2-Brompropyl, 3-Brompropyl , 3 , 3 , 3-Trifluorpropyl, 3,3,3-Tri- chlorpropyl, 2,2, 3, 3, 3-Pentafluorpropyl, Heptafluorpropyl, 1- (Fluormethyl )-2-fluorethyl, 1- (Chlormethyl) -2-chlorethyl, 1- (Brommethyl) -2-bromethyl, 4-Fluorbutyl, 4-Chlorbutyl, 4-Brombutyl oder Nonafluorbutyl;
Cχ-C6-Alkyl für: Cχ-C4-Alkyl wie vorstehend genannt, sowie z.B. n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1, 1-Dimethyl- propyl, 1, 2-Dimethylpropyl , 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1, 1-Dimethylbutyl, 1 , 2-Dimethylbutyl , 1 , 3-Dimethylbuty1 , 2 , 2-Dimethylbutyl , 2,3-Dimethylbutyl, 3 , 3-Dimethylbutyl , 1-Ethylbutyl, 2-Ethyl- butyl, 1, 1,2-Trimethylpropyl, 1, 2 , 2-Trimethylpropyl, 1-Ethyl-l-methylpropyl oder l-Ethyl-2-methylpropyl, vorzugsweise Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1, 1-Dimethylethyl, n-Pentyl oder n-Hexyl;
Cχ-C6-Halogenalkyl für: einen Cχ-C6-Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, also z.B. einen der unter Cχ-C4-Halogenalkyl genannten Reste sowie f r 5-Fluor-l-pentyl, 5-Chlor-l-pentyl, 5-Brom-l-pentyl, 5-Iod-l-pentyl, 5, 5, 5-Trichlor-l-penyl, Undecafluorpentyl, 6-Fluor-l-hexyl, 6-Chlor-l-hexyl, 6-Brom-l-hexyl, 6-Iod-l-hexyl, 6,6,6-Tri- chlor-1-hexyl oder Dodecafluorhexyl;
Phenyl-Cχ-C4-alkyl für: Benzyl, 1-Phenylethyl, 2-Phenylethyl , 1-Phenylprop-l-yl, 2-Phenylprop-l-yl, 3-Phenylprop-l-yl, 1-Phenylbut-l-yl, 2-Phenylbut-l-yl, 3-Phenylbut-l-yl , 4-Phenylbut-l-yl, l-Phenylbut-2-yl, 2-Phenylbut-2-yl, 3-Phenylbut-2-yl, 3-Phenylbut-2-yl, 4-Phenylbut-2-yl ,
1- (Phenylmethy1 ) -eth-l-y1 , 1- ( Phenylmethyl ) -1- (methyl ) -eth- 1-yl oder 1- (Phenylmethyl)-prop-l-yl, vorzugsweise Benzyl oder 2-Phenylethyl;
C3-C8-Cycloalkyl-Cχ-C4-alkyl für: Cyclopropylmethyl, 1-Cyclo- propyl-ethyl, 2-Cyclopropyl-ethyl , 1-Cyclopropyl-prop-l-yl, 2-Cyclopropyl-prop-l-yl, 3-Cyclopropy1-prop-l-yl , 1-Cyclopro- pyl-but-1-yl, 2-Cyclopropyl-but-l-yl , 3-Cyclopropyl-but-l-yl, 4-Cyclopropyl-but-l-yl, l-Cyclopropyl-but-2-yl, 2-Cyclopro- pyl-but-2-yl, 3-Cyclopropyl-but-2-yl , 3-Cyclopropyl-but-2-yl, 4-Cyclopropyl-but-2-yl , 1- (Cyclopropylmethyl ) -eth-l-yl , 1- (Cyclopropylmethyl ) -1- (CH3) -eth-l-yl , 1- (Cyclopropyl- methyl)-prop-l-yl, Cyclobutylmethyl, 1-Cyclobutyl-ethyl, 2-Cyclobutyl-ethyl, 1-Cyclobutyl-prop-l-yl, 2-Cyclobuty1- prop-1-yl, 3-Cyclobutyl-prop-l-yl, 1-Cyclobutyl-but-l-yl ,
2-Cyclobutyl-but-l-yl, 3-Cyclobutyl-but-l-yl, 4-Cyclobutyl- but-l-yl, l-Cyclobutyl-but-2-yl, 2-Cyclobutyl-but-2-yl , 3-Cyclobutyl-but-2-yl, 3-Cyclobutyl-but-2-yl, 4-Cyclobuty1- but-2-yl, 1- (Cyclobutylmethyl) -eth-l-yl, 1- (Cyclobuty1- methyl ) -1- (CH3) -eth-l-yl, 1- (Cyclobutylmethyl ) -prop-1-yl,
Cyclopentylmethyl, 1-Cyclopentyl-ethyl , 2-Cyclopentyl-ethyl, 1-Cyclopentyl-prop-l-yl, 2-Cyclopentyl-prop-l-yl, 3-Cyclo- pentyl-prop-1-yl, 1-Cyclopentyl-but-l-yl, 2-Cyclopent 1- but-l-yl, 3-Cyclopentyl-but-l-yl, 4-Cyclopentyl-but-l-yl, l-Cyclopentyl-but-2-yl, 2-Cyclopentyl-but-2-yl, 3-Cyclopen- tyl-but-2-yl, 3-Cyclopentyl-but-2-yl , 4-Cyclopentyl-but-2-yl , 1- (Cyclopentylmethyl ) -eth-l-yl , 1- (Cyclopentylmethyl) -1- (CH3) -eth-l-yl, l-(Cyclopentylmethyl )-prop-l-yl, Cyclohexyl- methyl, 1-Cyclohexyl-ethyl, 2-Cyclohexyl-ethyl, 1-Cyclohexyl- prop-1-yl, 2-Cyclohexyl-prop-l-yl , 3-Cyclohexyl-prop-l-yl , 1-Cyclohexyl-but-l-yl, 2-Cyclohexyl-but-l-yl, 3-Cyclohexyl- but-l-yl, 4-Cyclohexyl-but-l-yl, l-Cyclohexyl-but-2-yl ,
2-Cyclohexyl-but-2-yl, 3-Cyclohexyl-but-2-yl, 3-Cyclohexyl- but-2-yl, 4-Cyclohexyl-but-2-yl, 1- (Cyclohexyl- methyl) -eth-l-yl, 1- (Cyclohexylmethyl) -1- (CH3) -eth-l-yl, l-(Cyclohexylmethyl)-prop-l-yl, Cycloheptylmethyl , 1-Cyclo- heptyl-ethyl, 2-Cycloheptyl-ethyl, 1-Cycloheptyl-prop-l-yl,
2-Cycloheptyl-prop-l-yl, 3-Cycloheptyl-prop-l-yl, 1-Cyclohep- tyl-but-1-yl, 2-Cycloheptyl-but-l-yl, 3-Cycloheptyl-but-l-yl , 4-Cycloheptyl-but-l-yl, l-Cycloheptyl-but-2-yl, 2-Cyclohep- tyl-but-2-yl, 3-Cycloheptyl-but-2-yl, 3-Cycloheptyl-but-2-yl, 4-Cycloheptyl-but-2-yl, 1- (Cycloheptylmethyl) -eth-l-yl , 1- (Cycloheptylmethyl)-l- (CH3) -eth-l-yl, 1- (Cyclohepty1- methyl)-prop-l-yl, Cyclooctylmethyl , 1-Cyclooctyl-ethyl , 2-Cyclooctyl-ethyl, 1-Cyclooctyl-prop-l-yl, 2-Cyclooctyl- prop-1-yl, 3-Cyclooctyl-prop-l-yl, 1-Cyclooctyl-but-l-yl, 2-Cyclooctyl-but-l-yl, 3-Cyclooctyl-but-l-yl, 4-Cyclooctyl- but-l-yl, l-Cyclooctyl-but-2-yl, 2-Cyclooctyl-but-2-yl , 3-Cyclooctyl-but-2-yl, 3-Cyclooctyl-but-2-yl, 4-Cyclooctyl- but-2-yl, 1- (Cyclooctylmethyl) -eth-l-yl, 1- (Cyclooctylmethyl )-l- (CH3 ) -eth-l-yl oder 1- (Cyclooctylmethyl )-prop-l-yl;
C3-C8-Cycloalkyl-Cι-C4-alkyl, das ein Carbonyl- oder Thiocar- bonyl-Ringglied enthält, für: z.B. Cyclobutanon-2-ylmethyl, Cyclobutanon-3-ylmethyl, Cyclopentanon-2-ylmethyl, Cyclo- pen anon-3-ylmethyl, Cyclohexanon-2-ylmethyl, Cyclo- hexanon-4-ylmethyl, Cycloheptanon-2-ylmethyl, Cyclo- octanon-2-ylmethyl, Cyclobutanthion-2-ylmethyl, Cyclobutan- thion-3-ylmethyl, Cyclopentanthion-2-ylmethyl , Cyclopentan- thion-3-ylmethyl , Cyclohexanthion-2-ylmethyl, Cyclohexan- thion-4-ylmethyl, Cycloheptanthion-2-ylmethyl, Cyclooctan- thion-2-ylmethyl, 1- (Cyclobutanon-2-yl) ethyl, l-(Cyclo- butanon-3-yl)ethyl, 1- (Cyclopentanon-2-yl) ethyl, l-(Cyclo- pentanon-3-yl) ethyl, l-(Cyclohexanon-2-yl) ethyl, l-(Cyclo- hexanon-4-yl) ethyl, 1- (Cycloheptanon-2-yl) ethyl, l-(Cyclo- octanon-2-yl) ethyl, 1- (Cyclobutanthion-2-yl) ethyl , 1- (Cyclo- butanthion-3-yl) ethyl, 1- (Cyclopentanthion-2-yl) ethyl, 1- (Cyclopentanthion-3-yl) ethyl, 1- (Cyclohexanthion- 2-yl)ethyl, 1- (Cyclohexanthion-4-yl) ethyl, 1- (Cycloheptan- thion-2-yl) ethyl, l-(Cyclooctanthion-2-yl) ethyl, 2-(Cyclo- butanon-2-yl) ethyl, 2- (Cyclobutanon-3-yl) ethyl, 2-(Cyclo- pentanon-2-yl) ethyl, 2- (Cyclopentanon-3-yl) ethyl, 2-(Cyclo- hexanon-2-yl) ethyl, 2- (Cyclohexanon-4-yl) ethyl, 2-(Cyclo- heptanon-2-yl) ethyl, 2- (Cyclooctanon-2-yl) ethyl, 2-(Cyclo- butanthion-2-yl) ethyl , 2- (Cyclobutanthion-3-yl ) ethyl , 2- (Cyclopentanthion-2-yl) ethyl, 2- (Cyclopentan- thion-3-yl) ethyl, 2- (Cyclohexanthion-2-yl) ethyl, 2-(Cyclo- hexanthion-4-yl) ethyl , 2- (Cycloheptanthion-2-yl) ethyl , 2- (Cyclooctanthion-2-yl) ethyl, 3- (Cyclobutanon-2-yl)propyl, 3- (Cyclobutanon-3-yl)propyl, 3- (Cyclopentanon-2-yl)propyl , 3-(Cyclopentanon-3-yl)propyl, 3- (Cyclohexanon-2-yl)propyl, 3- (Cyclohexanon-4-yl)propyl, 3- (Cycloheptanon-2-yl)propyl, 3- (Cyclooctanon-2-yl)propyl, 3- (Cyclobutanthion-2-yl)propyl, 3- (Cyclobutanthion-3-yl)propyl, 3- (Cyclopentan- thion-2-yl)propyl, 3- (Cyclopentanthion-3-yl)propyl, 3- (Cyclo- hexanthion-2-yl)propyl, 3- (Cyclohexanthion-4-yl)propyl, 3- (Cycloheptanthion-2-yl)propyl, 3- (Cyclooctan- thion-2-yl)propyl, 4- (Cyclobutanon-2-yl)butyl, 4-(Cyclo- butanon-3-yl)butyl, 4- (Cyclopentanon-2-yl )butyl , 4-(Cyclo- pentanon-3-yl)butyl, 4- (Cyclohexanon-2-yl)butyl, 4- (Cyclo- hexanon-4-yl)butyl, 4- (Cycloheptanon-2-yl)butyl, 4-(Cyclo- octanon-2-yl)butyl, 4- (Cyclobutanthion-2-yl)butyl , 4- (Cyclo- butanthion-3-y1) buty1 , 4- (Cyclopentanthion-2-y1) buty1 , 4- (Cyclopentanthion-3-yl)butyl, 4- (Cyclohexan- thion-2-yl)butyl, 4- (Cyclohexanthion-4-yl)butyl, 4- (Cyclo- heptanthion-2-yl)butyl oder 4- (Cyclooctanthion-2-yl)butyl;
Heterocyclyl-Cχ-C4-alkyl für: Heterocyclylmethyl, 1-Hetero- cyclyl-ethyl, 2-Heterocyclyl-ethyl, 1-Heterocyclyl-prop-l-yl, 2-Heterocyclyl-prop-l-yl, 3-Heterocyclyl-prop-l-yl, 1-Hetero- cyclyl-but-1-yl, 2-Heterocyclyl-but-l-yl , 3-Heterocyclyl- but-l-yl, 4-Heterocyclyl-but-l-yl , l-Heterocyclyl-but-2-yl, 2-Heterocyclyl-but-2-yl, 3-Heterocyclyl-but-2-yl, 3-Hetero- cyclyl-but-2-yl, 4-Heterocyclyl-but-2-yl, 1- (Heterocyclyl- methyl) -eth-l-yl , 1- (Heterocyclylmethy1) -1- (methyl) -eth-l-yl oder 1- (Heterocyclylmethyl) -prop-1-yl, vorzugsweise Heterocyclylmethyl oder 2-Heterocyclyl-ethyl;
Cχ-C4-Alkoxy für: OCH3, OC2H5, n-Propoxy, 0CH(CH3)2, n-Butoxy, 0CH(CH3)-C2H5, OCH2-CH(CH3)2 oder 0C(CH3)3, vorzugsweise für OCH3, OC2H5 oder 0CH(CH3)2;
Cχ-C4-Halogenalkoxy für: einen Cχ-C4-Alkoxyrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, also z.B. OCH2F, OCHF2, OCF3, OCH2Cl, OCH (CD 2, 0C(C1)3, Chlorfluormethoxy, Dichlor- fluormethoxy , Chlordifluormethoxy , 2-Fluorethoxy, 2-Chlor- ethoxy, 2-Bromethoxy, 2-Iodethoxy, 2,2-Difluorethoxy , 2, 2, 2-Trifluorethoxy, 2-Chlor-2-fluorethoxy ,
2-Chlor-2,2-difluorethoxy , 2 , 2-Dichlor-2-fluorethoxy,
2,2, 2-Trichlorethoxy, OC2F5, 2-Fluorpropoxy, 3-Fluorpropoxy, 2,2-Difluorpropoxy , 2 , 3-Difluorpropoxy, 2-Chlorpropoxy, 3-Chlorpropoxy, 2 , 3-Dichlorpropoxy, 2-Brompropoxy, 3-Brom- propoxy, 3 , 3 , 3-Trifluorpropoxy, 3, 3 , 3-Trichlorpropoxy, 2,2, 3, 3, 3-Pentafluorpropoxy, OCF2-C2F5, 1- (CH2F) -2-fluor- ethoxy, 1- (CH2C1) -2-chlorethoxy, 1- (CH2Br) -2-bromethoxy,
4-Fluorbutoxy, 4-Chlorbutoxy, 4-Brombutoxy oder Nonafluorbut- oxy, vorzugsweise für OCHF2, OCF3, Dichlorfluormethoxy, Chlor- difluormethoxy oder 2 , 2, 2-Trifluorethoxy;
- Cχ-C6-Alkylthio für: SCH3 , SC2H5, n-Propylthio, SCH(CH3)2, n-Butylthio, SCH (CH ) -C2H5, SCH2-CH (CH3) 2 oder SC(CH3)3- vor¬ zugsweise für SCH oder SC2H5;
Cχ-C4-Halogenalkylthio für: einen Cι-C4-Alkylthiorest wie vor- stehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, also z.B. SCH2F, SCHF2, SCHC1, SCH (Cl) 2, SC(C1)3, SCF3, Chlorfluormethylthio, Dichlorfluormethylthio, Chlordifluormethylthio, 2-Fluor- ethylthio, 2-Chlorethylthio, 2-Bromethylthio, 2-Iodethylthio, 2,2-Difluorethylthio, 2 , 2 ,2-Trifluorethylthio,
2-Chlor-2-fluorethylthio, 2-Chlor-2 ,2-difluorethylthio, 2, 2-Dichlor-2-fluorethylthio, 2,2 ,2-Trichlorethylthio, SC2F5, 2-Fluorpropylthio, 3-Fluorpropylthio, 2, 2-Difluorpropylthio, 2, 3-Difluorpropylthio, 2-Chlorpropylthio, 3-Chlorpropylthio, 2,3-Dichlorpropylthio, 2-Brompropylthio, 3-Brompropylthio,
3, 3, 3-Trifluorpropylthio, 3 , 3 , 3-Trichlorpropylthio, SCH2-C2F5, SCF2-C2F5, 1-(CH2F) -2-fluorethylthio, 1- (CH2C1) -2-chlorethyl- thio, 1- (CH2Br) -2-bromethylthio, 4-Fluorbutylthio, 4-Chlor- butylthio, 4-Brombutylthio oder SCF2-CF2-C2F5, vorzugsweise für SCHF2, SCF3, Dichlorfluormethylthio, Chlordifluormethylthio oder 2, 2, 2-Trifluorethylthio;
- Cχ-C4-Alkoxy-Cχ-C4-alkyl für: durch Cχ-C4-Alkoxy - wie vorstehend genannt - substituiertes Cχ-C4-Alkyl, also z.B. für CH2-OCH3, CH2-OC2H5, n-Propoxymethyl , CH2-OCH(CH3) 2, n-Butoxy- methyl, (1-Methylpropoxy) ethyl, (2-Methylpropoxy)methyl, CH2-OC(CH3)3- 2-(Methoxy)ethyl, 2- (Ethoxy) ethyl, 2-(n-Proρ- oxy)ethyl, 2- (1-Methylethoxy) ethyl, 2- (n-Butoxy) ethyl, 2- (1-Methylpropoxy) ethyl, 2- (2-Methylpropoxy) ethyl, 2- (1, 1-Dimethylethoxy) ethyl, 2- (Methoxy)propyl,
2- (Ethoxy)propyl, 2- (n-Propoxy)propyl, 2-(l-Methyl- ethoxy)propyl, 2- (n-Butoxy)propyl, 2- (l-Methylpropoxy)propyl, 2- (2-Methylpropoxy)propyl, 2- (1, l-Dimethylethoxy)propyl , 3-(Methoxy)propyl, 3- (Ethoxy) propyl, 3- (n-Propoxy)propyl, 3- (1-Methylethoxy) ropyl, 3- (n-Butoxy)propyl, 3-(l-Methyl- propoxy)propyl, 3- (2-Methylpropoxy)propyl, 3- (1, 1-Dimethyl- ethoxy)propyl, 2- (Methoxy)butyl, 2- (Ethoxy) butyl, 2-(n-Prop- oxy)butyl, 2- (l-Methylethoxy)butyl, 2- (n-Butoxy) buty1, 2- (l-Methylpropoxy)butyl, 2- (2-Methylpropoxy)butyl, 2- ( 1 , 1-Dimethylethoxy) uty1 , 3- (Methoxy) butyl , 3- (Ethoxy) butyl, 3-(n-Propoxy)butyl, 3- (1-Me hylethoxy)butyl, 3- (n-Butoxy) utyl, 3- (1-Methylpropoxy ) butyl, 3-(2-Methyl- propoxy)butyl, 3- (1, 1-Dimethylethoxy)butyl , 4- (Methoxy)butyl , 4- (Ethoxy) butyl, 4- (n-Propoxy) butyl, 4- (1-Methylethoxy) butyl , 4- (n-Butoxy) utyl, 4- (1-Methylpropoxy) butyl , 4-(2-Methyl- propoxy)butyl oder 4- (1, 1-Dimethylethoxy) butyl , vorzugsweise für CH2-OCH3, CH2-OC2H5, 2-Methoxyethyl oder 2-Ethoxyethyl;
Cι-C4-Alkylthio-Cχ-C4-alkyl für: durch Cι-C4-Alkylthio - wie vorstehend genannt - substituiertes Cχ-C4-Alkyl, also z.B. für CH2-SCH3, CH2-SC2H5, n-Propylthiomethyl, CH2-SCH (CH3 ) 2 , n-Butylthiomethyl, (1-Methylpropylthio)methyl , (2-Methyl- propylthio)methyl, CH2-SC (CH3) , 2- (Methylthio) ethyl, 2-(Ethylthio)ethyl, 2- (n-Propylthio) ethyl, 2- (1-Methylethyl- thio) ethyl, 2- (n-Butylthio) ethyl, 2- (1-Methylpropyl- thio) ethyl, 2- (2-Methylpropylthio) ethyl , 2- (1, 1-Dimethy1- ethylthio) ethyl, 2- (Methylthio)propyl, 2- (Ethylthio)propyl,
2- (n-Propylthio)propyl, 2- (1-Methylethylthio) propyl, 2- (n-Bu- tylthio)propyl, 2- (l-Methylpropylthio)propyl , 2-(2-Methyl- propylthio)propy1 , 2- ( 1 , 1-Dimethylethylthio) propyl , 3- (Methylthio)propyl, 3- (Ethylthio)propyl , 3-(n-Propyl- thio)propyl, 3- (1-Methylethylthio)propyl, 3-(n-Butyl- thio)propyl, 3-(l-Methylpropylthio)propyl, 3- (2-Methylpropyl- thio)propyl, 3- (1, 1-Dimethylethylthio)propyl, 2- (Methyl- thio)butyl, 2- (Ethylthio) butyl, 2- (n-Propylthio) butyl, 2-(l-Methylethylthio)butyl, 2-(n-Butylthio)butyl, 2- (l-Methylpropylthio)butyl, 2- (2-Methylpropylthio)butyl, 2- (1 , 1-Dimethylethylthio)butyl , 3- (Methylthio) utyl , 3-(Ethylthio)butyl, 3- (n-Propylthio) utyl, 3- ( 1-Methylethyl- thiolbutyl, 3- (n-Butylthio)butyl, 3- (1-Methylpropyl- thio)butyl, 3- (2-Methylpropylthio) butyl , 3- (1 , 1-Dimethyl- ethylthio) butyl, 4- (Methylthio) butyl, 4- (Ethylthio) butyl,
4- (n-Propylthio) butyl, 4- (1-Methylethylthio) butyl , 4- (n-Butylthio) butyl, 4-(l-Methylpropylthio)butyl, 4-(2-Methyl- propylthio) utyl oder 4- (1, 1-Dimethylethylthio)butyl, vorzugsweise CH2-SCH3, CH2-SC2H5, 2-Methylthioethyl oder 2-Ethyl- thioethyl;
(Cχ-C4-Alkyl) carbonyl für: CO-CH3 , CO-C2H5, CO-CH2-C2H5, CO-CH(CH3)2, n-Butylcarbonyl, CO-CH (CH3)-C2H5, CO-CH2-CH (CH3) 2 oder CO-C(CH3)3, vorzugsweise für CO-CH3 oder CO-C2H5; (Cχ-C4-Halogenalkyl) carbonyl für: einen (Cχ-C4-Alkyl)carbonyl- rest - wie vorstehend genannt - der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, also z.B. CO-CH2F, CO-CHF2, CO-CF3, CO-CH2CI, CO-CH(Cl)2, CO-C(Cl)3, Chlorfluormethylcarbonyl, Dichlorfluormethylcar- bonyl, Chlordifluormethylcarbonyl, 2-Fluorethylcarbonyl, 2-Chlorethylcarbonyl, 2-Bromethylcarbonyl , 2-Iodethylcar- bonyl, 2 , 2-Difluorethylcarbonyl, 2 ,2 ,2-Trifluorethylcarbonyl, 2-Chlor-2-fluorethylcarbonyl , 2-Chlor-2 , 2-difluorethylcar- bonyl, 2 , 2-Dichlor-2-fluorethylcarbonyl, 2 , 2,2-Trichlorethyl- carbonyl, CO-C2F5, 2-Fluorpropylcarbonyl, 3-Fluorpropylcar- bonyl, 2 ,2-Difluorpropylcarbonyl, 2 , 3-Difluorpropylcarbonyl, 2-Chlorpropylcarbonyl, 3-Chlorpropylcarbonyl, 2,3-Dichlor- propylcarbonyl , 2-Brompropylcarbonyl, 3-Brompropylcarbonyl, 3, 3, 3-Trifluorpropylcarbonyl, 3 , 3 , 3-Trichlorpropylcarbonyl, 2,2,3, 3, 3-Pentafluorpropylcarbonyl, CO-CF2-C2F5, l-(CH2F)-2- fluorethylcarbonyl , 1- (CH2CI ) -2-chlorethylcarbonyl , 1- (CH2Br)-2-bromethylcarbonyl, 4-Fluorbutylcarbonyl, 4-Chlor- butylcarbonyl, 4-Brombutylcarbonyl oder Nonafluorbutylcar- bonyl, vorzugsweise für CO-CF3, C0-CH2C1, oder 2 ,2 ,2-Trifluorethylcarbonyl;
(Cχ-C4-Alkyl) carbonyloxy für: O-CO-CH3, 0-CO-C2H5, O-CO-CH2-C2H5, 0-CO-CH(CH3)2, O-CO-CH2-CH2-C2H5, 0-CO-CH(CH3)-C2H5, 0-CO-CH2-CH (CH3 ) 2 oder O-CO-C (CH3) 3 , vorzugsweise für O-CO-CH3 oder O-CO-C2H5;
(Cχ-C4-Halogenalkyl) carbonyloxy für: einen (Cχ-C4-Alkyl) car- bonylrest - wie vorstehend genannt - der partiell oder voll- ständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, also z.B. θ-CO-CH2F, O-CO-CHF2, O-CO-CF3, 0-C0-CH2Cl, 0-CO-CH(Cl)2, 0-CO-C(Cl)3, Chlorfluormethylcarbonyloxy, Dichlorfluormethylcarbonyloxy , Chlordifluormethylcarbonyloxy, 2-Fluorethylcarbonyloxy, 2-Chlorethylcarbonyloxy, 2-Brom- ethylcarbonyloxy, 2-Iodethylcarbonyloxy, 2,2-Difluorethylcar- bonyloxy, 2 ,2 ,2-Trifluorethylcarbonyloxy, 2-Chlor-2-fluor- ethylcarbonyloxy, 2-Chlor-2 , 2-difluorethylcarbonyloxy, 2 , 2-Dichlor-2-fluorethylcarbonyloxy, 2,2, 2-Trichlorethylcar- bonyloxy, O-CO-C2F5, 2-Fluorpropylcarbonyloxy, 3-Fluorpropyl- carbonyloxy, 2, 2-Difluorpropylcarbonyloxy, 2, 3-Difluorpropyl- carbonyloxy, 2-Chlorpropylcarbonyloxy, 3-Chlorpropylcarbonyl- oxy, 2,3-Dichlorpropylcarbonyloxy, 2-Brompropylcarbonyloxy, 3-Brompropylcarbonyloxy, 3,3, 3-Trifluorpropylcarbonyloxy, 3,3, 3-Trichlorpropylcarbonyloxy, 2,2,3,3, 3-Pentafluorpropyl- carbonyloxy, Heptafluorpropylcarbonyloxy , 1- (CH2F) -2-fluorethylcarbonyloxy, l-(CH2CD-2-chlorethylcarbonyloxy, 1- (CH2Br)-2-bromethylcarbonyloxy , 4-Fluorbutylcarbonyloxy, 4-Chlorbutylcarbonyloxy, 4-Brombutylcarbonyloxy oder Nona- fluorbutylcarbonyloxy, vorzugsweise für O-CO-CF3, O-CO-CH2CI oder 2, 2, 2-Trifluorethylcarbonyloxy;
- (Cχ-C4-Alkoxy) carbonyl für: CO-OCH3, CO-OC2H5, n-Propoxycarbonyl, CO-OCH(CH3)2. n-Butoxycarbonyl, CO-OCH (CH3) -C2H5, CO-OCH2-CH(CH3)2 oder CO-OC(CH3)3, vorzugsweise für CO-OCH3 oder CO-OC2H5;
- (C-C4-Alkoxy)carbonyl-Cχ-C4-alkyl für: durch (Cχ-C4~Alk- oxy) carbonyl - wie vorstehend genannt - substituiertes Cχ-C4-Alkyl, also z.B. für Methoxycarbonyl-methyl, Ethoxy- carbonyl-methyl, n-Propoxycarbonyl-methyl , (1-Methylethoxy- carbonyl)methyl, n-Butoxycarbonylmethyl , (1-Methylpropoxy- carbonyl)methyl, (2-Methylpropoxycarbonyl)methyl, (1, 1-Dimethylethoxycarbonyl )methyl , 1- (Methoxycarbonyl ) ethyl , 1- (Ethoxycarbonyl) ethyl, 1- (n-Propoxycarbonyl) ethyl, 1- (1-Methylethoxycarbonyl) ethyl, 1- (n-Butoxycarbonyl) ethyl, 2- (Methoxycarbonyl) ethyl, 2- (Ethoxycarbonyl) ethyl, 2- (n-Propoxycarbonyl) ethyl, 2- (1-Methylethoxycarbonyl) ethyl, 2- (n-Butoxycarbony1 ) ethyl , 2- ( 1-Methylpropoxycarbonyl ) ethyl , 2- (2-Methylpropoxycarbonyl) ethyl, 2- (1, 1-Dimethylethoxycarbonyl ) ethyl , 2- (Methoxycarbonyl) propyl, 2- (Ethoxycarbonyl)propyl, 2- (n-Propoxycarbonyl) ropyl, 2-(l-Methyl- ethoxycarbonyl) ropyl, 2- (n-Butoxycarbony1)propyl,
2- (1-Methylpropoxycarbonyl)propyl, 2- (2-Methylpropoxy- carbonyl)propyl, 2-(l, 1-Dimethylethoxycarbonyl)propyl, 3- (Methoxycarbonyl) propyl, 3- (Ethoxycarbonyl)propyl, 3- (n-Propoxycarbonyl)propyl, 3- (1-Methylethoxycarbonyl) - propyl, 3- (n-Butoxycarbonyl)propyl, 3- ( 1-Methylpropoxy- carbonyl)propyl, 3- (2-Methylpropoxycarbonyl) ropyl , 3- (1, 1-Dimethylethoxycarbonyl)propyl, 2- (Methoxycarbonyl) - butyl, 2- (Ethoxycarbonyl)butyl, 2- (n-Propoxycarbonyl) butyl, 2- (1-Methylethoxycarbonyl) butyl, 2- (n-Butoxycarbony1) butyl, 2- (1-Methylpropoxycarbonyl)butyl, 2- (2-Methylpropoxy- carbonyl) butyl, 2- (1, 1-Dimethylethoxycarbonyl) butyl, 3- (Methoxycarbonyl) butyl, 3- (Ethoxycarbonyl)butyl, 3- (n-Propoxycarbonyl) butyl, 3- (1-Methylethoxycarbonyl) utyl, 3- (n-Butoxycarbony1)butyl, 3- { 1-Methylpropoxycarbony1) butyl, 3- (2-Methylpropoxycarbonyl)butyl , 3- (1, 1-Dimethylethoxycarbonyl)butyl , 4- (Methoxycarbonyl) utyl, 4- (Ethoxycarbonyl)butyl, 4- (n-Propoxycarbonyl) butyl, 4-(l-Methyl- ethoxycarbonyl)butyl, 4- (n-Butoxycarbonyl) butyl, 4-(l-Methyl- propoxycarbonyl) utyl, 4- (2-Methylpropoxycarbony1) utyl oder 4- (1 , 1-Dimethylethoxycarbonyl) butyl, vorzugsweise für Meth- oxycarbonylmethyl, Ethoxycarbonylmethyl, 1- (Methoxycarbonyl ) ethyl oder 1- (Ethoxycarbonyl ) ethyl ;
Cι-C4-Alkylsulfinyl für: SO-CH3, SO-C2H5, SO-CH2-C2H5, SO-CH(CH3)2, n-Butylsulfinyl, SO-CH (CH3)-C2H5, SO-CH-CH (CH3) 2 oder SO-C(CH3)3, vorzugsweise für SO-CH3 oder SO-C2H5;
Cχ-C4-Halogenalkylsulfinyl für: einen Cχ-C4-Alkylsulfinylrest
- wie vorstehend genannt - der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, also z.B. SO-CH2F, SO-CHF2, SO-CF3, S0-CH2C1, SO-CH (CD 2, SO-C(Cl)3, Chlorfluormethylsulfinyl, Dichlorfluormethyl- sulfinyl, Chlordifluormethylsulfinyl, 2-Fluorethylsulfinyl, 2-Chlorethylsulfinyl , 2-Bromethylsulfinyl , 2-Iodethylsul- finyl, 2 ,2-Difluorethylsulfinyl, 2 ,2 ,2-Trifluorethylsulfinyl, 2-Chlor-2-fluorethylsulfinyl, 2-Chlor-2 , 2-difluorethylsul- finyl, 2, 2-Dichlor-2-fluorethylsulfinyl, 2, 2 ,2-Trichlorethyl- sulfinyl, SO-C2F5, 2-Fluorpropylsulfinyl , 3-Fluorpropylsul- finyl, 2 ,2-Difluorpropylsulfinyl, 2 , 3-Difluorpropylsulfinyl , 2-Chlorpropylsulfinyl, 3-Chlorpropylsulfinyl, 2,3-Dichlor- propylsulfinyl, 2-Brompropylsulfinyl, 3-Brompropylsulfinyl, 3,3, 3-Trifluorpropylsulfinyl , 3,3 , 3-Trichlorpropylsulfinyl , SO-CH2-C2F5, SO-CF2-C2F5, 1- (Fluormethyl )-2-fluorethylsulfinyl, 1- (Chlormethyl) -2-chlorethylsulfinyl, l-(Brom- methyl )-2-bromethylsulfinyl, 4-Fluorbutylsulfinyl, 4-Chlorbu- tylsulfinyl, 4-Brombutylsulfinyl oder Nonafluorbutylsulfinyl, vorzugsweise für SO-CF3 , SO-CH2CI oder 2 ,2 ,2-Trifluorethylsulfinyl;
- Cχ-C4-Alkylsulfonyl für: S02-CH3, S02-CH5, Sθ2-CH2-C2H5, S0-CH(CH3)2, n-Butylsulfonyl, S02-CH(CH3) -C2H5, S02-CH2-CH(CH3)2 oder Sθ2-C(CH3)3, vorzugsweise für S02-CH3 oder S02-C2Hς;
- Cχ-C4-Halogenalkylsulfonyl für: einen Cχ-C4-Alkylsulfonylrest
- wie vorstehend genannt - der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, also z.B. S02-CH2F, S02-CHF2, SO2-CF3, S02-CH2C1, S02-CH(Cl)2r S02-C(C1)3, Chlorfluormethylsulfonyl, Dichlorfluormethyl- sulfonyl, Chlordifluormethylsulfonyl, 2-Fluorethylsulfonyl, 2-Chlorethylsulfonyl, 2-Bromethylsulfonyl, 2-Iodethylsulfonyl, 2, 2-Difluorethylsulfonyl, 2 ,2 ,2-Trifluorethylsulfonyl, 2-Chlor-2-fluorethylsulfonyl, 2-Chlor-2 , 2-difluorethylsul- fonyl, 2, 2-Dichlor-2-fluorethylsulfonyl, 2,2,2-Trichlorethyl- sulfonyl, SO2-C2F5, 2-Fluorpropylsulfonyl , 3-Fluorpropylsul- fonyl, 2, 2-Difluorpropylsulfonyl, 2, 3-Difluorpropylsulfonyl, 2-Chlorpropylsulfonyl, 3-Chlorpropylsulfonyl, 2 , 3-Dichlorpro- pylsul onyl, 2-Brompropylsulfonyl , 3-Brompropylsulfonyl, 3, 3, 3-Trifluorpropylsulfonyl, 3 ,3 , 3-Trichlorpropylsulfonyl, SO2-CH2-C2F5, SO2-CF2-C2F5, 1- (Fluormethyl )-2-fluorethylsul- fonyl, 1- (Chlormethyl) -2-chlorethylsulfonyl, l-(Brom- methyl) -2-bromethylsulfonyl, 4-Fluorbutylsulfonyl , 4-Chlorbu- tylsulfonyl, 4-Brombutylsulfonyl oder Nonafluorbutylsulfonyl , vorzugsweise für SO2-CF3, SO2-CH2CI oder 2, 2, 2-Trifluorethylsulfonyl;
Di-(C-C4-Alkyl)amino für: N(CH3)2, N(C2H5)2, N,N-Dipropyl- amino, N[CH(CH3) 2)2. N,N-Dibutylamino, N,N-Di-(l-methyl- propyl) amino, N,N-Di- (2-methylpropyl) amino, N[C(CH3)3l2, N-Ethyl-N-methylamino, N-Methyl-N-propylamino, N-Methyl-N- (1-methylethyl) amino, N-Butyl-N-methylamino, N-Methyl-N- (1-methylpropyl) amino, N-Methyl-N- (2-methyl- propyDamino, N- (1, 1-Dimethylethyl )-N-methylamino, N-Ethyl-N- propylamino, N-Ethyl-N- (1-methylethyl) amino, N-Butyl-N-ethyl- amino, N-Ethyl-N- (1-methylpropyl) amino, N-Ethyl-N- (2-methyl- propyl) amino, N-Ethyl-N- (1, 1-dimethylethyl) amino, N- (1-Methylethyl )-N-propylamino, N-Butyl-N-propylamino,
N- (1-Methylpropyl) -N-propylamino, N- (2-Methylpropyl) -N-pro- pylamino, N- (1, 1-Dimethylethyl) -N-propylamino, N-Butyl-N- (1-methylethyl) amino, N- (1-Methyl- ethy1) -N- ( 1-methylpropyl ) amino, N- (1-Methy1- ethyl)-N-(2-methylpropyl) amino, N- (1, 1-Dimethylethyl) -
N- (1-methylethyl) amino, N-Butyl-N- (1-methylpropyl) amino, N-Butyl-N- (2-methylpropyl) amino, N-Butyl-N- (1, 1-dimethy1- ethyl) amino, N- (1-Methylpropyl) -N- (2-methylpropyl) amino, N- ( 1 , 1-Dimethylethyl ) -N- ( 1-methyIpropy1 ) amino oder N- (1, 1-Dimethylethyl) -N- (2-methylpropyl) amino, vorzugsweise für N(CH3)2 oder N(C2H5);
C2-C6-Alkenyl für: Vinyl, Prop-1-en-l-yl, Allyl, 1-Methyl- ethenyl, 1-Buten-l-yl, l-Buten-2-yl, l-Buten-3-yl, 2-Buten-l-yl, 1-Methyl-prop-l-en-l-yl , 2-Methyl-prop-l-en- 1-yl, l-Methyl-prop-2-en-l-yl, 2-Methyl-prop-2-en-l-yl, n-Penten-1-yl, n-Penten-2-yl , n-Penten-3-yl , n-Penten-4-yl, 1-Methyl-but-l-en-l-yl, 2-Methyl-but-l-en-l-yl, 3-Methyl- but-1-en-l-yl, l-Methyl-but-2-en-l-yl , 2-Methyl-but-2-en- 1-yl, 3-Methyl-but-2-en-l-yl, l-Methyl-but-3-en-l-yl,
2-Methyl-but-3-en-l-yl, 3-Methyl-but-3-en-l-yl, 1, 1-Dimethyl- prop-2-en-l-yl, 1,2-Dimethyl-prop-l-en-l-yl , 1, 2-Dimethyl- prop-2-en-l-yl, l-Ethyl-prop-l-en-2-yl, l-Ethyl-prop-2-en- 1-yl, n-Hex-1-en-l-yl, n-Hex-2-en-l-yl, n-Hex-3-en-l-yl , n-Hex-4-en-l-yl, n-Hex-5-en-l-yl, 1-Methyl-pent-l-en-l-yl, 2-Methyl-pent-l-en-l-yl, 3-Methyl-pent-l-en-l-yl, 4-Methyl- pent-1-en-l-yl, l-Methyl-pent-2-en-l-yl, 2-Methyl-pent-2-en- 1-yl, 3-Methyl-pent-2-en-l-yl, 4-Methyl-pent-2-en-l-yl, l-Methyl-pent-3-en-l-yl, 2-Methyl-pent-3-en-l-yl, 3-Methyl- pent-3-en-l-yl, 4-Methyl-pent-3-en-l-yl, l-Methyl-pent-4-en- 1-yl, 2-Methyl-pent-4-en-l-yl, 3-Methyl-pent-4-en-l-yl, 4-Methyl-pent-4-en-l-yl, 1, 1-Dimethyl-but-2-en-l-yl, 1,1-Di- methyl-but-3-en-l-yl, 1, 2-Dimethyl-but-l-en-l-yl, 1,2-Di- methyl-but-2-en-l-yl, 1, 2-Dimethyl-but-3-en-l-yl, 1,3-Di- methyl-but-1-en-l-yl, 1, 3-Dimethyl-but-2-en-l-yl, 1,3-Di- methyl-but-3-en-l-yl, 2,2-Dimethyl-but-3-en-l-yl, 2,3-Di- methyl-but-1-en-l-yl, 2,3-Dimethyl-but-2-en-l-yl, 2,3-Di- methyl-but-3-en-l-yl, 3 , 3-Dimethyl-but-l-en-l-yl, 3,3-Di- methyl-but-2-en-l-yl, 1-Ethyl-but-l-en-l-yl, l-Ethyl-but-2- en-l-yl, l-Ethyl-but-3-en-l-yl, 2-Ethyl-but-l-en-l-yl, 2-Ethyl-but-2-en-l-yl, 2-Ethyl-but-3-en-l-yl, 1,1,2-Tri- methyl-prop-2-en-l-yl, l-Ethyl-l-methyl-prop-2-en-l-yl , l-Ethyl-2-methyl-prop-l-en-l-yl oder l-Ethyl-2-methyl- prop-2-en-l-yl;
C2-C6-Halogenalkenyl für: C2-C6-Alkenyl wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor und/oder Brom substituiert ist, also z.B. 2-Chlorvinyl , 2-Chlorallyl, 3-Chlorallyl, 2 , 3-Dichlorallyl , 3,3-Dichlor- allyl, 2,3,3-Trichlorallyl, 2, 3-Dichlorbut-2-enyl, 2-Brom- allyl, 3-Bromallyl, 2 , 3-Dibromallyl , 3 ,3-Dibromallyl, 2, 3, 3-Tribromallyl und 2, 3-Dibrombut-2-enyl, vorzugsweise für C3- oder C-Halogenalkenyl;
C2-C6-Alkinyl für: Ethinyl und C3-C6-Alkinyl wie Prop-1-in-l-yl, Prop-2-in-l-yl , n-But-1-in-l-yl, n-But-l-in-3-yl, n-But-l-in-4-yl, n-But-2-in-l-yl, n-Pent-1-in-l-yl, n-Pent-l-in-3-yl, n-Pent-l-in-4-yl, n-Pent-l-in-5-yl, n-Pent-2-in-l-yl, n-Pent-2-in-4-yl, n-Pent-2-in-5-yl, 3-Methyl-but-l-in-3-yl, 3-Methyl- but-l-in-4-yl, n-Hex-1-in-l-yl , n-Hex-l-in-3-yl, n-Hex-l-in-4-yl, n-Hex-l-in-5-yl, n-Hex-l-in-6-yl, n-Hex-2-in-l-yl , n-Hex-2-in-4-yl, n-Hex-2-in-5-yl, n-Hex-2-in-6-yl, n-Hex-3-in-l-yl, n-Hex-3-in-2-yl, 3-Methyl-pent-l-in-l-yl, 3-Methyl-pent-l-in-3-yl, 3-Methyl-pent-l-in-4-yl, 3-Methyl-pent-l-in-5-yl, 4-Methyl-pent-l-in-l-yl, 4-Methyl-pent-2-in-4-yl oder
4-Methyl-pent-2-in-5-yl, vorzugsweise für Prop-2-in-l-yl;
C2-C6-Halogenalkinyl für: C2-C6-Alkinyl wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor und/oder Brom substituiert ist, also z.B. 1,1-Difluor- prop-2-in-l-yl, 1, 1-Difluorbut-2-in-l-yl, 4-Fluorbut-2-in- 1-yl, 4-Chlorbut-2-in-l-yl, 5-Fluorpent-3-in-l-yl oder 6-Fluorhex-4-in-l-yl, vorzugsweise C3- oder C4-Halogenalkinyl;
C3-C8-Cycloalkyl für: Cyclopropy1, Cyclobuty1, Cyclopentyl, Cyclohexyl, Cyclohepty1 oder Cyclooctyl;
C3-Cβ-Cycloalkyl, das ein Carbonyl- oder Thiocarbonyl-Ring- glied enthält, z.B. für Cyclobutanon-2-yl , Cyclobutanon-3-yl, Cyclopentanon-2-yl, Cyclopentanon-3-yl, Cyclohexanon-2-yl, Cyclohexanon-4-yl, Cycloheptanon-2-yl, Cyclooctanon-2-yl, Cyclobutanthion-2-yl, Cyclobutanthion-3-yl, Cyclopentan- thion-2-yl, Cyclopentanthion-3-yl , Cyclohexanthion-2-yl, Cyclohexanthion-4-yl, Cycloheptanthion-2-yl oder Cyclooctan- thion-2-yl, vorzugsweise für Cyclopentanon-2-yl oder Cyclo- hexanon-2-yl;
C3-C8-Cycloalkyl-Cχ-C4-alkyl für: Cyclopropylmethyl, 1-Cyclo- propyl-ethyl, 2-Cyclopropy1-ethyl , 1-Cyclopropyl-prop-l-yl, 2-Cyclopropyl-prop-l-yl, 3-Cyclopropyl-prop-l-yl, 1-Cyclo- propyl-but-1-yl, 2-Cyclopropyl-but-l-yl , 3-Cyclopropyl-but- 1-yl, 4-Cyclopropyl-but-l-yl, l-Cyclopropyl-but-2-yl , 2-Cyclopropyl-but-2-yl, 3-Cyclopropyl-but-2-yl, 3-Cyclo- propyl-but-2-yl, 4-Cyclopropyl-but-2-yl , 1- (Cyclopropy1- methyl) -eth-l-yl , 1- (Cyclopropylmethyl) -1- (methyl ) -eth-l-yl , 1- (Cyclopropylmethyl )-prop-l-yl, Cyclobutylmethyl, 1-Cyclo- buty1-ethyl, 2-Cyclobutyl-ethyl , 1-Cyclobutyl-prop-l-yl , 2-Cyclobutyl-prop-l-yl, 3-Cyclobutyl-prop-l-yl, 1-Cyclobutyl- but-l-yl, 2-Cyclobutyl-but-l-yl, 3-Cyclobutyl-but-l-yl, 4-Cyclobutyl-but-l-yl, l-Cyclobutyl-but-2-yl, 2-Cyclobuty1- but-2-yl, 3-Cyclobutyl-but-2-yl, 3-Cyclobutyl-but-2-yl , 4-Cyclobutyl-but-2-y1 , 1- (Cyclobutylmethyl ) -eth-l-yl , 1- (Cyclobutylmethyl) -1- (methyl) -eth-l-yl , 1- (Cyclobutyl- methyl)-prop-l-yl, Cyclopentylmethyl , 1-Cyclopentyl-ethyl, 2-Cyclopenty1-ethyl, 1-Cyclopentyl-prop-l-yl, 2-Cyclopenty1- prop-1-yl, 3-Cyclopentyl-prop-l-yl, 1-Cyclopentyl-but-l-yl, 2-Cyclopentyl-but-l-yl, 3-Cyclopentyl-but-l-yl, 4-Cyclo- pentyl-but-1-yl, l-Cyclopentyl-but-2-yl , 2-Cyclopenty1- but-2-yl, 3-Cyclopentyl-but-2-yl, 3-Cyclopentyl-but-2-yl, 4-Cyclopentyl-but-2-yl, 1- (Cyclopentylmethyl) -eth-l-yl, 1- (Cyclopentylmethyl )-l- (methyl) -eth-l-yl, 1- (Cyclopentylmethyl )-prop-l-yl, Cyclohexylmethyl, 1-Cyclohexyl-ethyl, 2-Cyclohexyl-ethyl, 1-Cyclohexyl-prop-l-yl, 2-Cyclohexy1- prop-1-yl, 3-Cyclohexyl-prop-l-yl, 1-Cyclohexyl-but-l-yl, 2-Cyclohexyl-but-l-yl, 3-Cyclohexyl-but-l-yl, 4-Cyclohexyl- but-l-yl, l-Cyclohexyl-but-2-yl, 2-Cyclohexyl-but-2-yl,
3-Cyclohexyl-but-2-yl, 3-Cyclohexyl-but-2-yl, 4-Cyclohexyl- but-2-yl, 1- (Cyclohexylmethyl) -eth-l-yl, 1- (Cyclohexyl- methyl ) -1- (methyl ) -eth-l-yl , 1- (Cyclohexylmethy1) -prop-1-yl , Cycloheptylmethyl, 1-Cycloheptyl-ethyl, 2-Cycloheptyl-ethyl, 1-Cycloheptyl-prop-l-yl, 2-Cycloheptyl-prop-l-yl, 3-Cyclo- heptyl-prop-1-yl, 1-Cycloheptyl-but-l-yl , 2-Cycloheptyl- but-l-yl, 3-Cycloheptyl-but-l-yl, 4-Cycloheptyl-but-l-yl, l-Cycloheptyl-but-2-yl, 2-Cycloheptyl-but-2-yl, 3-Cyclo- heptyl-but-2-yl, 3-Cycloheptyl-but-2-yl, 4-Cycloheptyl- but-2-yl, l-(Cycloheptylmethyl) -eth-l-yl, 1- (Cyclohepty1- methyD-l- (methyl) -eth-l-yl, 1- (Cycloheptylmethyl ) -prop-1-yl , Cyclooctylmethyl, 1-Cyclooctyl-ethyl, 2-Cycloocty1-ethyl,
1-Cyclooctyl-prop-l-yl, 2-Cyclooctyl-prop-l-yl , 3-Cyclooctyl- prop-1-yl, 1-Cyclooctyl-but-l-yl, 2-Cyclooctyl-but-l-yl , 3-Cyclooctyl-but-l-yl, 4-Cyclooctyl-but-l-yl, 1-Cyclooctyl- but-2-yl, 2-Cyclooctyl-but-2-yl, 3-Cyclooctyl-but-2-yl, 3-Cyclooctyl-but-2-yl, 4-Cyclooctyl-but-2-yl, 1- (Cyclooctylmethyl) -eth-l-yl, 1- (Cyclooctylmethyl) -1- (methyl) -eth-l-yl oder 1- (Cyclooctylmethyl) -prop-1-yl, vorzugsweise für Cyclopropylmethyl , Cyclobutylmethyl, Cyclopentylmethyl oder Cyclohexylmethyl ;
C3-C8-Cycloalkyl-Cχ-C4-alkyl, das ein Carbonyl- oder Thio- carbonyl-Ringglied enthält, z.B. für Cyclobutanon-2-ylmethyl, Cyc1obutanon-3-ylmethyl, Cyclopentanon-2-ylmethyl, Cyclo- pentanon-3-ylmethyl, Cyclohexanon-2-ylmethyl, Cyclohexanon- 4-ylmethyl, Cycloheptanon-2-ylmethyl, Cyclooctanon-2-yl- methyl, Cyclobutanthion-2-ylmethyl, Cyclobutanthion-3-yl- methyl, Cyclopentanthion-2-ylmethyl , Cyclopentanthion-3-yl- methyl, Cyclohexanthion-2-ylmethyl, Cyclohexanthion-4-yl- methyl, Cycloheptanthion-2-ylmethyl, Cyclooctanthion-2-yl- methyl, 1- (Cyclobutanon-2-yl) ethyl, 1- (Cyclobutanon-3-yl) - ethyl, 1- (Cyclopentanon-2-yl) ethyl, 1- (Cyclopentanon-3-yl) - ethyl, l-(Cyclohexanon-2-yl) ethyl, 1- (Cyclohexanon-4-yl) - ethyl, 1- (Cycloheptanon-2-yl) ethyl, 1- (Cyclooctanon-2-yl) - ethyl, 1- (Cyclobutanthion-2-yl) ethyl, 1- (Cyclobutanthion-3- yl) ethyl, 1- (Cyclopentanthion-2-yl) ethyl, 1- (Cyclopentan- thion-3-yl) ethyl, 1- (Cyclohexanthion-2-yl) ethyl, l-(Cyclo- hexanthion-4-yl) ethyl, l-(Cycloheptanthion-2-yl) ethyl, 1- (Cyclooctanthion-2-y1 ) ethyl, 2- (Cyclobutanon-2-yl ) ethyl , 2- (Cyclobutanon-3-yl) ethyl, 2- (Cyclopentanon-2-yl) ethyl, 2- (Cyclopentanon-3-yl) ethyl, 2- (Cyclohexanon-2-yl) ethyl, 2- (Cyclohexanon-4-yl ) ethyl , 2- (Cycloheptanon-2-yl ) ethyl , 2- (Cyclooctanon-2-yl ) ethyl , 2- (Cyclobutanthion-2-yl ) ethyl , 2- (Cyclobutanthion-3-yl) ethyl , 2- (Cyclopentanthion-2-yl ) - ethyl , 2- (Cyclopentanthion-3-yl ) ethyl , 2- (Cyclohexanthion- 2-yl) ethyl, 2- (Cyclohexanthion-4-yl) ethyl, 2- (Cycloheptan- thion-2-yl) ethyl, 2- (Cyclooctanthion-2-yl) ethyl, 3-(Cyclo- butanon-2-yl)propyl, 3- (Cyclobutanon-3-yl)propyl, 3-(Cyclo- lθ pentanon-2-yl) propyl , 3- (Cyclopentanon-3-yl) propyl, 3-(Cyclo- hexanon-2-yl)propyl, 3- (Cyclohexanon-4-yl )propyl, 3-(Cyclo- heptanon-2-yl)propyl, 3- (Cyclooctanon-2-yl)propyl , 3- (Cyclo- butanthion-2-yl) propyl, 3- (Cyclobutanthion-3-yl) ropyl , 3- (Cyclopentanthion-2-yl lpropyl, 3- (Cyclopentanthion-3-yl) - propyl, 3- (Cyclohexanthion-2-yl)propyl , 3- (Cyclohexanthion- 4-yl)propyl, 3- (Cycloheptanthion-2-yl)propyl, 3- (Cyclooctan- thion-2-yl lpropyl, 4- (Cyclobutanon-2-yl)butyl , 4-(Cyclo- butanon-3-yl) butyl, 4- (Cyclopentanon-2-yl )butyl , 4-(Cyclo- pentanon-3-yl) utyl, 4- (Cyclohexanon-2-yl)butyl, 4- (Cyclo- hexanon-4-yl)butyl, 4- (Cycloheptanon-2-yl)butyl, 4-(Cyclo- octanon-2-yl)butyl, 4- (Cyclobutanthion-2-yl )butyl, 4- (Cyclo- butanthion-3-yl) utyl, 4- (Cyclopentanthion-2-yl)butyl, 4- (Cyclopentanthion-3-yl) butyl, 4- (Cyclohexanthion-2-yl ) - butyl, 4- (Cyclohexanthion-4-yl) butyl, 4- (Cycloheptanthion- 2-yl) butyl oder 4- (Cyclooctanthion-2-yl) butyl, vorzugsweise für Cyc1opentanon-2-ylmethyl, Cyclohexanon-2-ylmethyl, 2- (Cyclopentanon-2-yl)ethyl oder 2- (Cyclohexanon-2-yl) ethyl .
Unter 3- bis 7-gliedrigem Heterocyclyl sind sowohl gesattigte, partiell oder vollständig ungesättigte als auch aromatische Heterocyclen mit ein bis drei Heteroatomen, ausgewählt aus einer Gruppe bestehend aus ein bis drei Stickstoffatomen, - einem oder zwei Sauerstoff- und einem oder zwei Schwefelatomen, zu verstehen.
Beispiele für gesättigte Heterocyclen, die ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten können, sind:
Oxiranyl, Thiiranyl, Aziridin-1-yl, Aziridin-2-yl , Di- aziridin-1-yl, Diaziridin-3-yl, Oxetan-2-yl, Oxetan-3-yl, Thietan-2-yl, Thietan-3-yl, Azetidin-1-yl, Azetidin-2-yl, Azetidin-3-yl, Tetrahydrofuran-2-yl, Tetrahydrofuran-3-yl, Tetra- hydrothiophen-2-yl, Tetrahydrothiophen-3-yl , Pyrrolidin-1-yl, Pyrrolidin-2-yl, Pyrrolidin-3-yl , 1, 3-Dioxolan-2-yl, 1,3-Di- oxolan-4-yl, 1, 3-Oxathiolan-2-yl , 1 , 3-Oxathiolan-4-yl, 1,3-Oxa- thiolan-5-yl, 1, 3-Oxazolidin-2-yl, 1, 3-Oxazolidin-3-yl, 1,3-Ox- azolidin-4-yl, 1, 3-Oxazolidin-5-yl, 1, 2-Oxazolidin-2-yl, 1,2-Ox- azolidin-3-yl, l,2-Oxazolidin-4-yl, l,2-Oxazolidin-5-yl, 1,3-Di- thiolan-2-yl, 1, 3-Dithiolan-4-yl, Pyrrolidin-1-yl , Pyr- rolidin-2-yl, Pyrrolidin-5-yl, Tetrahydropyrazol-1-yl, Tetra- hydropyrazol-3-yl, Tetrahydropyrazol-4-yl, Tetrahydropyran-2-yl, Tetrahydropyran-3-yl, Tetrahydropyran-4-yl, Tetrahydrothio- pyran-2-yl, Tetrahydrothiopyran-3-yl, Tetrahydropyran-4-yl,
Piperidin-1-yl, Piperidin-2-yl, Piperidin-3-yl, Piperidin-4-yl, 1, 3-Dioxan-2-yl, 1 , 3-Dioxan-4-yl , 1 , 3-Dioxan-5-yl, 1,4-Dioxan- 2-yl, l,3-Oxathian-2-yl, 1 , 3-Oxathian-4-yl, 1, 3-Oxathian-5-yl, l,3-Oxathian-6-yl, 1, 4-Oxathian-2-yl, 1 , 4-Oxathian-3-yl, Morpholin-2-yl, Morpholin-3-yl, Morpholin-4-yl, Hexahydro- pyridazin-1-yl, Hexahydropyridazin-3-yl, Hexahydropyridazin-4-yl, Hexahydropyrimidin-1-yl, Hexahydropyrimidin-2-yl , Hexahydro- pyrimidin-4-yl, Hexahydropyrimidin-5-yl, Piperazin-1-yl, Piperazin-2-yl, Piperazin-3-yl, Hexahydro-1, 3, 5-triazin-l-yl, Hexahydro-1, 3, 5-triazin-2-yl, Oxepan-2-yl, Oxepan-3-yl, Oxepan-4-yl, Thiepan-2-yl , Thiepan-3-yl, Thiepan-4-yl, 1,3-Di- oxepan-2-yl, 1 , 3-Dioxepan-4-yl, 1, 3-Dioxepan-5-yl, 1,3-Di- oxepan-6-yl, 1 , 3-Dithiepan-2-yl, l,3-Dithiepan-2-yl, 1,3-Dithi- epan-2-yl, 1, 3-Dithiepan-2-yl, 1, 4-Dioxepan-2-yl, 1,4-Diox- epan-7-yl, Hexahydroazepin-1-yl, Hexahydroazepin-2-yl, Hexahydro- azepin-3-yl, Hexahydroazepin-4-yl, Hexahydro-1 , 3-diazepin-l-yl , Hexahydro-1, 3-diazepin-2-yl , Hexahydro-1 , 3-diazepin-4-yl , Hexa- hydro-1, 4-diazepin-l-yl und Hexahydro-1 , 4-diazepin-2-yl .
Beispiele für ungesättigte Heterocyclen, die ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten können, sind: Dihydrofuran-2-yl, 1, 2-Oxazolin-3-yl, l,2-Oxazolin-5-yl, 1, 3-Oxazolin-2-yl.
Unter den Heteroaromaten sind die 5- und 6-gliedrigen bevorzugt, also z.B. Furyl wie 2-Furyl und 3-Furyl, Thienyl wie 2-Thienyl und 3-Thienyl, Pyrrolyl wie 2-Pyrrolyl und 3-Pyrrolyl, Isoxazolyl wie 3-Isoxazolyl, 4-Isoxazolyl und 5-Isoxazolyl , Isothiazolyl wie 3-Isothiazolyl, 4-Isothiazolyl und 5-Isothiazolyl, Pyrazolyl wie 3-Pyrazolyl, 4-Pyrazolyl und 5-Pyrazolyl, Oxazolyl wie 2-Oxazolyl, 4-Oxazolyl und 5-0xazolyl, Thiazolyl wie 2-Thiazolyl, 4-Thiazolyl und 5-Thiazolyl, Imidazolyl wie 2-Imidazolyl und 4-Imidazolyl, Oxadiazolyl wie 1,2 , 4-Oxadiazol-3-yl, 1,2, 4-Oxadiazol-5-yl und 1, 3 , 4-Oxadiazol-2-yl, Thiadiazolyl wie 1,2 ,4-Thiadiazol-3-yl, 1, 2, 4-Thiadiazol-5-yl und 1,3, 4-Thiadiazol-2-yl, Triazolyl wie 1,2, 4-Triazol-l-yl, 1,2, 4-Triazol-3-yl und 1, 2, 4-Triazol-4-yl, Pyridinyl wie 2-Pyridinyl, 3-Pyridinyl und 4-Pyridinyl, Pyridazinyl wie 3-Pyridazinyl und 4-Pyridazinyl, Pyrimidinyl wie 2-Pyrimidinyl , 4-Pyrimidinyl und 5-Pyrimidinyl, des weiteren 2-Pyrazinyl, 1, 3, 5-Triazin-2-yl und 1,2 ,4-Triazin-3-yl , insbesondere Pyridyl, Pyrimidyl, Furanyl und Thienyl.
Alle Phenyl-, carbocyclisehen und heteroeyclischen Ringe sind vorzugsweise unsubstituiert oder tragen einen Substituenten. Im Hinblick auf die Verwendung der l-Sulfonyl-3-phenylpyrazole I als Herbizide oder Desikkantien/Defoliantien sind diejenigen Verbindungen I bevorzugt, bei denen die Variablen folgende Bedeutungen haben, und zwar jeweils für sich allein oder in Kombination:
R1 Methyl, Ethyl oder Cχ-C2-Halogenalkyl , insbesondere Methyl;
R2 Methyl, Ethyl oder Cχ-C2-Halogenalkyl, insbesondere Methyl;
R3 Wasserstoff oder Halogen, insbesondere Halogen, besonders bevorzugt Chlor;
R4 Wasserstoff, Fluor oder Chlor, insbesondere Fluor oder Chlor, besonders bevorzugt Fluor;
X eine chemische Bindung oder eine Methylen-, Ethen-l,2-diyl- oder über das Heteroatom an den Phenylring gebundene Oxy- methylen- oder Thia ethylen-Kette, wobei die Ketten jeweils unsubstituiert sein oder einen Cyano-, Halogen-, Cχ-C4-Alkyl- oder (Cχ-C4-Alkoxy) carbonyl-Substituenten tragen können, insbesondere eine chemische Bindung oder Methylen;
R6 Wasserstoff, -O-Y-R8, -O-CO-Y-R8, -N(Y-RB) -S02-Z-R9, -N(S02-Y-R8) (S02-Z-R9) , -S-Y-R8, -S02-N(Y-R8) (Z-R9) , -C(=NOR10) -O-Y-R8, -CO-O-Y-R8, -CO-N(Y-R8) (Z-R9) oder
-PO(0-Y-R8) 2, insbesondere Wasserstoff, -O-Y-R8, -N(Y-R8) -S02-Z-R9, -S-Y-R8 oder -CO-O-Y-R8, besonders bevorzugt Wasserstoff oder -O-Y-R8;
R7 Wasserstoff;
oder R5 und XR6 oder XR5 und R7 zusammen mit den sie verbindenden C-Atomen des Phenylrings einen annellierten heterocyclisehen Ring, ausgewählt aus der Gruppe bestehend aus Furan, Dihydro- furan, Thiophen, Dihydrothiophen, Pyrrol, Dihydropyrrol , 1, 3-Dioxolan, 1, 3-Dioxolan-2-on, Isoxazol, Oxazol, Ox- azolinon, Isothiazol, Thiazol, Pyrazol, Pyrazolin, Imidazol, Imidazolinon, Dihydroimidazol, 1,2, 3-Triazol, 1,1-Dioxodi- hydroisothiazol, Dihydro-1, 4-dioxin, Pyridon, Dihydro-1 ,4-ox- azin, Dihydro-1 , 4-oxazin-2-on, Dihydro-1, 4-oxazin-3-on, Di- hydro-1, 3-oxazin und Dihydro-1, 3-oxazin-2-on, wobei der annellierte Ring unsubstituiert sein oder seinerseits einen oder zwei Substituenten tragen kann, jeweils aus- gewählt aus der Gruppe bestehend aus Cι-C4-Alkyl, Cχ-C4-Halo- genalkyl, C3-C4-Alkenyl, C3-C4-Halogenalkenyl , C3-C4-Alkinyl und Cχ-C4-Alkoxy;
Y, Z unabhängig voneinander eine chemische Bindung oder Methylen;
R8, R9 unabhängig voneinander
Wasserstoff, Cχ-C6-Halogenalkyl, C2-Ce-Alkenyl, C2-C6~Halogen- alkenyl, C -C6-Alkinyl, -CH (R11 ) (R12) , -C(R ) (R12) -N02, -C(R ) (R12)-CN, -C(Rn) (R12) -Halogen, -C (R111 (R12) -OR13, -C(Rn) (R12)-N(R13)R14, -C(Rn) (R12)-N (R13) -OR14 ,
-CtR11) (R12)-SRl3, -CfRl1) (R12)-SO-R", -C (R1 ) (R12) -S02-R13 , -C(Rn) (R1 )-S02-OR13, -CtR11) (R12)-S02-N(R13)R14, -C(Rn) (R12)-CO-R13, -C(R ) (R12)-C(=N0R15)-R13, -C(Rn) (R12)-CO-OR13, -C(R ) (R12)-CO-SR13, -C(Rn) (R12)-CO-N(R13)R14, -C (R11) (R12) -CO-N(R13 ) -OR14 ,
C3-C8-Cycloalkyl, das ein Carbonyl- oder Thiocarbonyl-Ring- glied enthalten kann, Phenyl oder 3- bis 7gliedriges Heterocyclyl mit ein oder zwei Stickstoffatomen und/oder einem Sauerstoff- oder Schwefelatom als Heteroatom und gewünschten- falls einem Carbonyl- oder Thiocarbonyl-Ringglied, wobei jeder Cycloalkyl-, der Phenyl- und jeder Heterocyclyl- Ring unsubstituiert sein oder einen oder zwei Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Cyano, Nitro, Halogen, Cχ-C4-Alkyl, Cχ-C4-Alkoxy, Cχ-C4-Alkyl- sulfonyl, (Cχ-C4-Alkyl) carbonyl , (Cχ-C4-Alkyl) carbonyloxy und (Cχ-C4-Alkoxy) carbonyl;
insbesondere Wasserstoff, Ci-Cö-Alkyl, Ci-Cδ-Halogenalkyl, C2-C5-Alkenyl, C -C6-Alkinyl, -CH (R11) (R12) , -C(Rn) (R12)-CO-OR13, -CfR11) (R12)-CO-N(R13)R14 Oder C3-C8-Cycloalkyl, besonders bevorzugt Wasserstoff, Cχ-C6-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, -C(R ) (R12) -CO-OR13 oder C3-Cβ-Cycloalkyl;
R10 Cι-C6-Alkyl;
R11 Wasserstoff oder Cχ-C4-Alkyl;
R12 Wasserstoff;
R13, R14 unabhängig voneinander Wasserstoff oder Cχ-C6-Alkyl;
R15 C-C6-Alkyl. Besonders bevorzugt sind ferner diejenigen 1-Sulfonyl-3-pheny1- pyrazole I, bei denen X eine chemische Bindung oder Methylen bedeutet und R7 für Wasserstoff steht.
Ganz besonders bevorzugt sind die in der folgenden Tabelle 1 aufgeführten Verbindungen Ia (- I mit R1 und R2 = Methyl; R3 , R4 und R7 = Wasserstoff; R5 = Chlor):
Tabelle 1
Figure imgf000024_0001
Figure imgf000024_0002
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000033_0001
Figure imgf000034_0001
Figure imgf000035_0001
Nr. -XR6 la.494 -CH2-CH (CN) -CO-NH-CH2-CO-OCH3 la.495 -CH2-CH (CN) -CO-N (CH3 ) -CH2-CO-OCH3 la.496 -CH2-CH (CN) -CO-NH-CH2-CO-OC2H5 la.497 -CH -CH (CN) -CO-N (CH3 ) -CH2-CO-OC2H5 la.498 -CH2-CH(CN)-CO-NH-CH2-CO-N(CH3)2 la.499 -CH2-CH (CN) -CO-N (CH3 ) -CH2-CO-N (CH3 ) 2
Ia.500 -CH2-CH (CN) -CO-NH-CH (CH3 ) -CO-OCH3 la.501 -CH2-CH (CN) -CO-N (CH3 ) -CH (CH3 ) -CO-OCH3 la.502 -CH2-CH (CN) -CO-NH-CH (CH3 ) -CO-OC2H5 la.503 -CH2-CH (CN) -CO-N (CH3 ) -CH (CH3 ) -CO-OC2H5 la.504 -CH2-CH (CN) -CO- ( Pyrrolidin-l-yl ) la.505 -CH2-CH (CN) -CO- ( Piper idin-l-y 1 ) la.506 -CH2-CH (CN) -CO- (2-Methoxycarbonylpyrrolidin-l-yl) la.507 -CH2-CH (CN) -CO- (2-Methoxycarbonylpiperidin-l-yl : la.508 -CH=C(Cl)-CO-NH2 la.509 -CH=C (Cl ) -CO-NH-CH3 la.510 -CH=C (Cl) -CO-N(CH3 ) 2 la.511 -CH=C (Cl) -CO-NH-C2H5 la.512 -CH=C(C1)-C0-N(C2H5)2 la.513 -CH=C (Cl ) -CO-NH- (n-C3H7 ) la.514 -CH=C (Cl) -CO- (n-C3H7 ) 2
Ia.515 -CH=C (Cl ) -CO-NH- (n-C4H9 )
Ia.516 -CH=C (Cl ) -CO-N (n-C4H9) 2 la.517 -CH=C (Cl) -CO-NH-CH2-CO-OCH3
Ia.518 -CH=C (Cl) -CO-N (CH3 ) -CH2-CO-OCH3
Ia.519 -CH=C (Cl) -CO-NH-CH2-CO-OC2H5
Ia.520 -CH=C (Cl) -CO-N (CH3 ) -CH2-CO-OC2H5
Ia.521 -CH=C (Cl ) -CO-NH-CH2-CO-N (CH3 ) 2 la.522 -CH=C (Cl) -CO-N (CH3 ) -CH2-CO-N (CH3 ) 2
Ia.523 -CH=C (Cl) -CO-NH-CH (CH3) -CO-OCH3
Ia.524 -CH=C (Cl) -CO-N (CH3 ) -CH (CH3) -CO-OCH3
Ia.525 -CH=C (Cl) -CO-NH-CH (CH3 ) -CO-OCH5
Ia.526 -CH=C (Cl) -CO-N(CH3 ) -CH (CH3) -CO-OC2H5
Ia.527 -CH=C (Cl)-CO- (Pyrrolidin-l-yl)
Ia.528 -CH=C (Cl ) -CO- (Piperidin-l-y1 )
Ia.529 -CH=C (CD-CO- (2-Methoxycarbonylpyrrolidin-l-y1) la.530 -CH=C (CD-CO- (2-Methoxycarbonylpiperidin-1-yl) la.531 -CH=C(Br)-CO-NH2
Ia.532 -CH=C (Br) -CO-NH-CH3
Figure imgf000038_0001
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0003
Des weiteren sind die l-Sulfonyl-3-phenylpyrazole der Formeln Ib bis Ii besonders bevorzugt, insbesondere
die Verbindungen Ib.001 - Ib.705, die sich von den entsprechenden Verbindungen la.001 - la.705 lediglich dadurch unterscheiden, daß R3 für Chlor steht:
Figure imgf000042_0001
die Verbindungen Ic.001 - Ic.705, die sich von den entsprechenden Verbindungen la.001 - la.705 lediglich dadurch unterscheiden, daß R3 für Brom steht:
Figure imgf000042_0002
die Verbindungen Id.001 - Id.705, die sich von den entsprechenden Verbindungen la.001 - la.705 lediglich dadurch unterscheiden, daß R4 für Fluor steht:
Figure imgf000043_0001
die Verbindungen Ie.001 - Ie.705, die sich von den entsprechenden Verbindungen la.001 - la.705 lediglich dadurch unterscheiden, daß R3 für Chlor und R4 für Fluor stehen:
Figure imgf000043_0002
die Verbindungen If.001 - lf.705, die sich von den entsprechenden Verbindungen la.001 - la.705 lediglich dadurch unterscheiden, daß R3 für Brom und R4 für Fluor stehen:
Figure imgf000043_0003
die Verbindungen Ig.001 - Ig.705, die sich von den entsprechenden Verbindungen la.001 - la.705 lediglich dadurch unterscheiden, daß R4 für Chlor steht:
Figure imgf000043_0004
die Verbindungen Ih.001 - Ih.705, die sich von den entsprechenden Verbindungen la.001 - la.705 lediglich dadurch unterscheiden, daß R3 und R4 für Chlor stehen:
Figure imgf000044_0001
die Verbindungen Ii.001 - Ii.705, die sich von den entspre- chenden Verbindungen la.001 - la.705 lediglich dadurch unterscheiden, daß R3 für Brom und R4 für Chlor stehen:
Figure imgf000044_0002
Die l-Sulfonyl-3-phenylpyrazole der Formel I sind auf verschiedene Weise erhältlich, insbesondere nach einem der folgenden Verfahren :
A) Halogenierung von l-Sulfonyl-3-phenylpyrazolen I, bei de- nen R3 Wasserstoff bedeutet:
Halogenierung I {R3 = H} = - !*• I {R3 = Halogen}
Geeignete Halogenierungsmittel sind beispielsweise Fluor, DAST (Diethyla inoschwefeltrifluorid) , Chlor, N-Chlorsuc- cinimid, Sulfurylchlorid, Thionylchlorid, Phosgen, Phos- phortrichlorid, Phosphoroxychlorid, Brom, N-Bromsuccini- mid, Phosphortribromid und Phosphoroxybromid.
Üblicherweise arbeitet man in einem inerten Lösungs-/Ver- dünnungsmittel, z.B. in einem Kohlenwasserstoff wie n- Hexan und Toluol, einem halogenierten Kohlenwasserstoff wie Tetrachlormethan und Chloroform, einem Ether wie Methyl-tert .-butylether, einem Alkohol wie Methanol und Ethanol, einer Carbonsäure wie Essigsäure oder in einem aprotischen Solvens wie Acetonitril.
Die Reaktionstemperatur liegt normalerweise zwischen Schmelz- und Siedepunkt des Reaktionsgemisches, vorzugs- weise bei 0 bis 100°C. Um eine möglichst hohe Ausbeute an Wertprodukt zu erzielen verwendet man das Halogenierungsmittel in etwa a ui- molarer Menge oder im Überschuß, bis etwa zur fünffachen molaren Menge, bezogen auf die Menge an Ausgangsverbindung.
Umsetzung eines Phenylpyrazols der Formel II mit einem Sulfonsäurederivat III in Gegenwart einer Base:
Figure imgf000045_0001
L steht für eine übliche Abgangsgruppe wie Halogenid oder -0-S02-R' . Bei Verbindung II steht der Kreis im Pyrazol- ring für zwei Doppelbindungen.
Bei dem Sulfonsäurederivat III handelt es sich vorzugsweise um ein Sulfonsäurechlorid (L = Cl) oder das Anhydrid der zugrundeliegenden Sulfonsaure (L = 0-S02-R1).
Allgemein arbeitet man in einem inerten Lόsungs-/Ver- dunnungsmittel, z.B. in einem Kohlenwasserstoff wie n- Hexan und Toluol, einem halogenierten Kohlenwasserstoff wie Tetrachchlormethan und Chloroform, einem Ether wie Methyl-tert . -butylether oder in einem üblichen aproti- schen Solvens wie Acetonitril, Dimethylformamid und Di- methylsulfoxid.
Als Basen kommen sowohl anorganische Basen, z.B. Alkalimetallcarbonate wie Natrium- und Kaliumcarbonat , Alkalimetallhydroxide wie Natrium- und Kaliumhydroxid, Erd- alkalimetallhydroxide wie Calciu hydroxid oder Alkalimetallhydride wie Natriumhydrid, als auch organische Basen, z.B. tertiäre A ine wie Triethylamin, Grignard- oder Alkyllithiumverbindungen wie Methylmagnesiumchlorid und Butyllithium in Betracht.
Die Reaktionstemperatur liegt in der Regel zwischen Schmelz- und Siedepunkt des Reaktionsgemisches, vorzugsweise bei 0 bis 100°C. Im allgemeinen verwendet man Base und Sulfonsäurederivat III in etwa äquimolaren Mengen, bezogen auf die Menge an II. Um eine höhere Ausbeute an Wertprodukt zu erzielen kann es aber auch vorteilhaft sein, Base und/oder III im Überschuß, bis etwa zur fünffachen molaren Menge, bezogen auf die Menge an II, einzusetzen.
Neben den Wertprodukten I können als Nebenprodukte auch deren Regioisomere IV entstehen; letztere sind auf übliche Weise abtrennbar.
Die Phenylpyrazole II sind z.B. durch Umsetzung von Diketonen V mit Hydrazin, Hydrazinhydrat (also beispielsweise einer wäßrigen Hydrazinlösung) , oder mit einem Salz des Hydrazins wie Hydrazin- sulfat, auf an sich bekannte Weise zugänglich:
Figure imgf000046_0001
Normalerweise arbeitet man in Wasser oder in einem iner- ten organischen ösungs-/Verdünnungsmittel , z.B. einem
Kohlenwasserstoff wie n-Hexan und Toluol, einem halo- genierten Kohlenwasserstoff wie Tetrachlormethan und Chloroform, einem Ether wie Methyl-tert . -butylether, einem Alkohol wie Methanol und Ethanol, einer Carbonsäure wie Essigsäure, oder einem aprotischen Solvens wie Aceto- nitril.
Die Reaktionstemperatur liegt in der Regel zwischen Schmelz- und Siedepunkt des Reaktionsgemisches, vorzugs- weise bei 0 bis 100°C.
Im allgemeinen verwendet man etwa äquimolare Mengen an Hydrazin und Diketon V. Zur Optimierung der Ausbeute an II kann es jedoch empfehlenswert sein, Hydrazin im Über- schuß, bis etwa zur fünffachen molaren Menge, bezogen auf die Menge an V, einzusetzen.
Phenylpyrazole der Formel II, bei denen R3 Halogen bedeutet, sind ferner z.B. durch Halogenierung der entsprechenden Verbindungen II mit R3 = Wasserstoff zugänglich, wie dies unter A) für die l-Sulfonyl-3-phenylpyrazole I beschrieben wurde. C) Reaktionen am Phenylring
Cl) Nitrierung von 1-Sulfonyl-3-phenylpyrazolen I, bei denen XR6 für Wasserstoff steht, und Umsetzung der Verfahrens- Produkte zu weiteren Verbindungen der Formel I:
Figure imgf000047_0001
I {XR6 = H} I {XR6 = N02)
Als Nitrierungs-Reagenzien kommen beispielsweise Sal- petersäure in unterschiedlicher Konzentration, auch konzentrierte und rauchende Salpetersäure, Mischungen von Schwefelsäure und Salpetersäure, Acetylnitrate und Alkyl- nitrate in Betracht.
Die Reaktion kann entweder lösungsmittelfrei in einem Überschuß des Nitrier-Reagenzes oder in einem inerten Lösungs- oder Verdünnungsmittel durchgeführt werden, wobei z.B. Wasser, Mineralsäuren, organische Säuren, Halogenkohlenwasserstoffe wie Methylenchlorid, Anhydride wie Essigsäureanhydrid und Mischungen dieser Solventien geeignet sind.
Ausgangsverbindung I {XR6 = H) und Nitrier-Reagenz werden zweckmäßigerweise in etwa äquimolaren Mengen eingesetzt; zur Optimierung des Umsatzes an AusgansVerbindung kann es jedoch vorteilhaft sein, das Nitrier-Reagenz im Überschuß zu verwenden, bis etwa zur lOfachen molaren Menge. Bei der Reaktionsführung ohne Lösungsmittel im Nitrier-Reagenz liegt dieses in einem noch größeren Überschuß vor.
Die Reaktionstemperatur liegt normalerweise bei (-100) bis 200°C, bevorzugt bei (-30) bis 50°C.
Die Verfahrensprodukte mit XR6 = NO2 können dann zu Ver- bindungen I mit XR6 = Amino oder -NHOH reduziert werden:
Reduktipn I {XR6 = N02} ^ I {XR6 = NH2, NHOH}
Die Reduktipn kann mit einem Metall wie Eisen, Zink pder Zinn unter sauren Reaktipnsbedingungen oder mit einem komplexen Hydrid wie Lithiumaluminiumhydrid und Natriumborhydrid erfolgen, wobei als Lösungsmittel - in Abhän- gigkeit vom gewählten Reduktionsmittel - z.B. Wasser, Alkohole wie Methanol, Ethanol und Isopropanol oder Ether wie Diethylether , Methy1-tert .-butylether, Dioxan, Tetra- hydrofuran und Ethylenglykoldimethylether, in Betracht kommen.
Bei der Reduktion mit einem Metall arbeitet man vorzugsweise lösungsmittelfrei in einer anorganischen Säure, insbesondere in konzentrierter oder verdünnter Salzsäure, oder in einer organischen Säure wie Essigsäure. Es ist aber auch möglich, der Säure ein inertes Lösungsmittel, z.B. eines der vorstehend genannten, zuzumischen.
Die Ausgangsverbindung I {XR6 = NO2} und das Reduktions- mittel werden zweckmäßigerweise in etwa äquimolaren Mengen eingesetzt; zur Optimierung des Reaktionsverlaufes kann es jedoch vorteilhaft sein, eine der beiden Komponenten im Überschuß zu verwenden, bis etwa zur lOfachen molaren Menge.
Die Menge an Säure ist nicht kritisch. Um die Ausgangsverbindung möglichst vollständig zu reduzieren verwendet man zweckmäßigerweise mindestens eine äquivalente Menge an Säure.
Die Reaktionstemperatur liegt im allgemeinen bei (-30) bis 200°C, bevorzugt bei 0 bis 80°C.
Zur Aufarbeitung wird die Reaktionsmischung üblicherweise mit Wasser verdünnt und das Produkt durch Filtration,
Kristallisation oder Extraktion mit einem Lösungsmittel, das mit Wasser weitgehend unmischbar ist, z.B. mit Essig- säureethylester , Diethylether oder Methylenchlorid, isoliert. Gewünschtenfalls kann das Produkt anschließend wie üblich gereinigt werden.
Die Nitrogruppe der Verbindungen I mit XR6 = Nitro kann auch katalytisch mittels Wasserstoff hydriert werden. Hierfür geeignete Katalysatoren sind beispielsweise Ra- ney-Nickel, Palladium auf Kohle, Palladiumoxid, Platin und Platinoxid, wobei im allgemeinen eine Katalysatormenge von 0,05 bis 10,0 mol-%, bezogen auf die zu reduzierende Verbindung, ausreichend ist. Man arbeitet entweder lösungsmittelfrei oder in einem inerten Lösungs- oder Verdünnungsmittel, z.B. in Essigsäure, einem Gemisch aus Essigsäure und Wasser, Essig- säureethylester, Ethanol oder in Toluol.
Nach Abtrennen des Katalysators kann die Reaktionslösung wie üblich auf das Produkt hin aufgearbeitet werden.
Die Hydrierung kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden.
Die Aminogruppe kann anschließend in üblicher Weise diazo- tiert werden. Aus den Diazoniumsalzen sind dann Verbindungen I zugänglich mit
XR6 = Cyano oder Halogen {zur Sandmeyer-Reaktion vgl. beispielsweise Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag Stuttgart, Bd. 5/4, 4. Auflage 1960, S. 438ff .},
XR6 = Hydroxy {zur Phenolverkochung vgl. beispielsweise Org. Synth. Coll. Vol. 3 (1955), S. 130}, XR6 = Mercapto oder Ci-Cß-Alkylthio {vgl. hierzu beispielsweise Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag Stuttgart, Bd. Eil 1984, S. 43 und 176},
XR6 = Halogensulfonyl {vgl. hierzu beispielsweise Houben- Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag Stuttgart, Bd. Eil 1984, S. 1069f.},
XR6 = z.B. -CH2-CH (Halogen) -CO-O-Y-R8, -CH=C (Halogen) -CO- O-Y-R8 {allgemein handelt es sich hierbei um Produkte einer Meerwein-Arylierung; vgl. hierzu beispielsweise CS. Rondestredt, Org. React. 11, 189 (1960) und H.P. Doyle et al., J. Org. Chem. 12., 2431 (1977)}:
,
Figure imgf000049_0001
Im allgemeinen erhält man das Diazoniumsalz auf an sich bekannte Weise durch Umsetzung von I mit XR6 = Amino in einer wäßrigen Säurelösung, z.B. in Salzsäure, Bromwasserstoffsäure oder Schwefelsäure, mit einem Nitrit wie Natriumnitrit und Kaliumnitrit. Es besteht aber auch die Möglichkeit, wasserfrei, z.B. in Chlorwasserstoff haltigem Eisessig, in absolutem Alkohol, in Dioxan oder Tetrahydrofuran, in Acetonitril oder in Aceton zu arbeiten und hierbei die Ausgangsverbindung (I mit XR6 = NH ) mit einem Salpetrigsäureester wie tert .-Butylnitrit und Isopentylnitrit zu behandeln.
Die Überführung des so erhaltenen Diazoniumsalzes in die entsprechende Verbindung I mit XR6 = Cyano, Chlor, Brom oder lod erfolgt besonders bevorzugt durch Behandeln mit einer Lösung oder Suspension eines Kupfer (I) salzes wie Kupfer (I) cyanid, -Chlorid, -bromid und iodid, oder mit einer Alkalimetallsalz-Lόsung.
Die Überführung des so erhaltenen Diazoniumsalzes in die entsprechende Verbindung I mit XR6 = Hydroxyl erfolgt zweckmäßigerweise durch Behandeln mit einer wässrigen Saure, bevorzugt Schwefelsäure. Hierbei kann sich der Zusatz eines Kupfer (II) salzes wie Kupfer (II) sulfat vor- teilhaft auf den Reaktionsverlauf auswirken.
Im allgemeinen arbeitet man bei 0 bis 100°C, vorzugsweise bei der Siedetemperatur des Reaktionsgemisches.
Verbindungen I mit XR6 = Mercapto, Cx-Cß-Alkylthio oder Halogensulfonyl erhält man normalerweise durch Umsetzung des Diazoniumsalzes mit Schwefelwasserstoff, einem Alkalimetallsulfid, einem Dialkyldisulfid wie Dimethyldisul- fid, oder mit Schwefeldioxid.
Bei der Meerwein-Arylierung handelt es sich üblicherweise um die Umetzung der Diazoniumsalze mit Alkenen oder Alkinen. Das Alken oder Alkin wird dabei vorzugsweise im Überschuß, bis etwa 3000 mol-%, bezogen auf die Menge des Diazoniumsalzes, eingesetzt.
Die vorstehend beschriebenen Umsetzungen des Diazoniumsalzes können z.B. in Wasser, in wässriger Salzsäure oder Bromwasserstoffsäure, in einem Keton wie Aceton, Diethyl- keton und Methylethylketon, in einem Nitril wie Acetonitril, in einem Ether wie Dioxan und Tetrahydrofuran oder in einem Alkohol wie Methanol und Ethanol erfolgen.
Sofern nicht bei den einzelnen Umsetzungen anders angege- ben liegen die Reaktionstemperaturen normalerweise bei (-30) bis 50°C. Bevorzugt werden alle Reaktionspartner in etwa stόchio- metrischen Mengen eingesetzt, jedoch kann auch ein Überschuß der einen oder anderen Komponente, bis etwa 3000 mol-%, von Vorteil sein.
Die Verbindungen I mit XR6 = Mercapto sind auch durch Reduktion der entsprechenden Verbindungen I mit XR6 = Halogen- sulfonyl erhältlich:
Figure imgf000051_0001
Ha ogen
I {XR6 = -S02-Halogen) {X 6 = SH}
Brauchbare Reduktionsmittel sind z.B. Übergangsmetalle wie Eisen, Zink und Zinn (vgl. hierzu beispielsweise "The Chemistry of the Thiol Group", John Wiley, 1974, S. 216).
C.2) Halosulfonierung von l-Sulfonyl-3-phenylpyrazolen I, bei denen XR6 für Wasserstoff steht:
I {XR6 = H} I {XR6 = -S02-Halogen}
Die Halosulfonierung kann ohne Lösungsmittel in einem Überschuß an Sulfonierungsreagenz oder in einem inerten Losungs-/Verdünnungsmittel, z.B. in einem halogenierten Kohlenwasserstoff, einem Ether, einem Alkylnitril oder einer Mineralsäure durchgeführt werden.
Chlorsulfonsaure stellt sowohl des bevorzugte Reagenz als auch Lösungsmittel dar.
Das Sulfonierungsreagenz wird normalerweise in einem leichten Unterschuß (bis etwa 95 mol-%) oder in einem Überschuß von der 1- bis Stachen molaren Menge, bezogen auf die Ausgangsverbindung I (mit XR6 = H) eingesetzt. Arbeitet man ohne inertes Lösungsmittel, so kann auch ein noch größerer Überschuß zweckmäßig sein.
Die Reaktionstemperatur liegt normalerweise zwischen 0°C und dem Siedepunkt des Reaktionsgemisches. Zur Aufarbeitung wird die Reaktionsmischung z.B. mit Wasser versetzt, wonach sich das Produkt wie üblich isolieren läßt.
C.3) Halogenierung von l-Sulfonyl-3-phenylpyrazolen I, bei denen XR6 für Methyl steht, und Umsetzung der Verfahrensprodukte zu weiteren Verbindungen der Formel I:
Figure imgf000052_0001
Figure imgf000052_0002
I {XR6 = CH (Halogen) }
Beispiele für geeignete Lösungsmittel sind organische Säuren, anorganische Säuren, aliphatische oder aromatische Kohlenwasserstoffe, die halogeniert sein können, sowie Ether, Sulfide, Sulfoxide und Sulfone.
Als Halogenierungsmittel kommen beispielsweise Chlor, Brom, N-Bromsuccinimide, N-Chlorsuccinimide oder Sulfurylchlorid in Betracht. Je nach Ausgangsverbindung und Halogenierungsmittel kann der Zusatz eines Radikalstarters, beispielsweise eines organischen Peroxides wie Dibenzoylperoxid oder einer Azoverbindung wie Azobisiso- butyronitril, oder Bestrahlung mit Licht vorteilhaft auf den Reaktionsverlauf wirken.
Die Menge an Halogenierungsmittel ist nicht kritisch. Sowohl unterstöchiometrische Mengen als auch große Überschüsse an Halogenierungsmittel, bezogen auf die zu halo- genierende Verbindung I (mit XR6 = Methyl) , sind möglich. Bei Verwendung eines Radikalstarters ist üblicherweise eine katalytische Menge davon ausreichend.
Die Reaktionsternperatur liegt normalerweise bei (-100) bis 200°C, vornehmlich bei 10 bis 100°C oder dem Siedepunkt des Reaktionsgemisches.
Diejenigen Halogenierungsprodukte I mit XR6 = -CH2-Halogen lassen sich in einer nucleophilen Substitutionsreaktion in ihre entsprechenden Ether, Thioether, Ester, Amine oder Hydroxylamine überführen:
Figure imgf000053_0001
I {X = CH2; R6 = -O-Y-R8, 6 HΛ ι n pn ϊ -O-CO-Y-R8, -N(Y-R8)(Z-R9), {XR* - CH2-Halogen} -N(Y-R)(-0-Z-R9 ), -S-Y-R8}
Als Nucleophil werwendet man entweder die entsprechenden Alkohole, Thiole, Carbonsäuren oder Amine, wobei dann vorzugsweise in Gegenwart einer Base (z.B. eines Alkalioder Erdalkalimetallhydroxids oder eines Alkali- oder Erdalkalimetallcarbonats) gearbeitet wird, oder man verwendet die durch Reaktion der Alkohole, Thiole, Carbonsäuren oder Amine mit einer Base (z.B. einem Alkalimetallhydrid) erhaltenen Alkalimetallsalze dieser Verbindungen.
Als Lösungsmittel kommen vor allem aprotische organische Solvent ien, z.B. Tetrahydrofuran, Dimethylformamid, Dimethylsulfoxid, oder Kohlenwasserstoffe wie Toluol und n-Hexan, in Betracht.
Die Reaktionsführung erfolgt bei einer Temperatur zwischen dem Schmelz- und dem Siedepunkt des Reaktions- gemisches, vorzugsweise bei 0 bis 100°C.
Diejenigen Halogenierungsprodukte I mit XR6 = -CH (Halogen) 2 können zu den entsprechenden Aldehyden (I mit XR6 = CHO) hydrolysiert werden. Letztere wiederum sind dann zu Verbindungen I mit XR6 = COOH oxidierbar:
Figure imgf000054_0001
I { XR6 = CH (Halogen) 21 Oxidation
I {XR6 = COOH}
Die Hydrolyse der Verbindungen I mit XR6 = Dihalogen- methyl erfolgt vorzugsweise unter sauren Bedingungen, insbesondere lösungsmittelfrei in Salzsäure, Essigsäure, Ameisensäure oder Schwefelsäure, oder auch in einer wäßrigen Lösung einer der genannten Säuren, z.B. in einer Mischung aus Essigsäure und Wasser (beispielsweise 3:1).
Die Reaktionstemperatur liegt normalerweise bei 0 bis 120°C.
Die Oxidation der Hydrolyseprodukte I mit XR6 = Formyl zu den entsprechenden Carbonsäuren kann auf an sich bekannte Weise erfolgen, z.B. nach Kornblum (siehe hierzu insbesondere die Seiten 179 bis 181 des Bandes "Methods for the Oxidation of Organic Compounds" von A.H. Haines, Academic Press 1988, in der Serie "Best Synthetic Methods") .
Als Lösungsmittel ist beispielsweise Dimethylsulfoxid geeigne .
Die Verbindungen I mit XR6 = Formyl lassen sich auch auf an sich bekannte Weise zu Verbindungen I mit X = unsubsti- tuiertes oder substituiertes Ethen-l,2-diyl olefinieren:
I {XR6 = CHO} Qlefinierung {X = (un) substituiertes Ethen-l,2-diyl}
Die Olefinierung erfolgt vorzugsweise nach der Methode von Wit ig oder einer ihrer Modifikationen, wobei als Reaktionspartner Phosphoryli e, Phosphoniu salze und Phosphonate in Betracht kommen, oder durch Aldolkonden- sation. Bei Verwendung eines Phosphoniumsalzes oder eines Phosphonats empfiehlt es sich, in Gegenwart einer Base zu arbeiten, wobei Alkalimetallalkyle wie n-Butyllithium, Alkalimetallhydride und -alkoholate wie Natriumhydrid, Natriumethanolat und Kalium-tert .-butanolat, sowie
Alkalimetall- und Erdalkalimetallhydroxide wie Calcium- hydroxid, besonders gut geeignet sind.
Für eine vollständige Umsetzung werden alle Reaktions- partner in etwa stöchiometrischem Verhältnis eingesetzt; bevorzugt verwendet man jedoch einen Überschuß an Phosphorverbindung und/oder Base bis etwa 10 mol-%, bezogen auf die Ausgangsverbindung (I mit XR6 = Formyl) .
Im allgemeinen liegt die Reaktionstemperatur bei (-40) bis 150°C.
Die 1-Sulfony1-3-phenylpyrazole I mit XR6 = Formyl können auf an sich bekannte Weise in Verbindungen I mit XR6 = -CO-Y-R8 übergeführt werden, beispielsweise durch Umsetzung mit einer geeigneten OrganometallVerbindung Me-Y-R8 - wobei Me vorzugsweise für Lithium oder Magnesium steht - und anschließender Oxidation der hierbei erhaltenen Alkohole (vgl. z.B. J. March, Advanced Organic Che istry, 3rd ed., John Wiley, New York 1985, S. 816ff. und 1057ff.).
Die Verbindungen I mit XR6 = -CO-Y-R8 können ihrerseits in einer Reaktion nach Wittig weiter umgesetzt werden.
Die als Reaktionspartner benötigten Phosphoniumsalze,
Phosphonate oder Phosphorylide sind bekannt oder lassen sich auf an sich bekannte Weise darstellen {vgl. hierzu z.B. Houben-Weyl, Methoden der Organischen Chemie, Bd. El, S. 636ff. und Bd. E2 , S. 345ff., Georg Thieme Verlag Stuttgart 1982; Chem. Ber. £5_, 3993 (1962)).
Weitere Möglichkeiten zur Darstellung anderer 1-Sulfo- nyl-3-phenylpyrazole I aus Verbindungen I mit XR6 = Formyl schließen die an sich bekannte Aldolkondensation ein, sowie Kondensations-Reaktionen nach Knoevenagel oder Perkin. Geeignete Bedingungen für diese Verfahren sind beispielsweise in Nielson, Org. React. 1£, lff (1968) {Aldolkondensation} Org. React. 15., 204ff . (1967) {Kondensation nach Knoevenagel} und Johnson, Org. React. 1, 210ff. (1942) {Kondensation nach Perkin} zu entnehmen. Allgemein können die Verbindungen I mit XR6 = -CO-Y-R8 auch auf an sich bekannte Weise in ihre entsprechenden Oxime übergeführt werden {vgl. hierzu beispielsweise Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag Stuttgart, Bd. 10/4, 4. Auflage 1968, S. 55ff. und S. 73ff.}:
Figure imgf000056_0001
I {XR6 = -CO-Y-R8} I {XR6 = -C(=NOR10)-Y-R8}
C.4) Synthese von Ethern, Thioethern, Aminen, Estern, Amiden, Sulfonamiden, Thioestern, Hydroximsäureestern, Hydroxyl- aminen, Sulfonsäurederivaten, Oximen oder Carbonsäurederivaten:
l-Sulfonyl-3-phenylpyrazole I, bei denen R6 Hydroxy, Amino, -NH-Y-R8, Hydroxylamino, - (Y-R8) -OH, -NH-O-Y-R8, Mercapto, Halogensulfonyl, -C (=NOH) -Y-R8, Carboxy oder -CO-NH-O-Z-R9 bedeutet, können auf an sich bekannte Weise mittels
Alkylierung, Acylierung, Sulfonierung, Veresterung oder Amidierung in die entsprechenden Ether {I mit R6 = -O-Y-R8}, Ester {I mit R6 = -O-CO-Y-R8}, Amine {I mit R6 = -N(Y-R8) (Z-R9) }, Amide {I mit R6 = -N(Y-R8) -CO-Z-R9} , Sulfon- amide {I mit R6 = -N(Y-R8)-S02-Z-R9 oder
-N(S02-Y-R8) (S02-Z-R9) }, Hydroxylamine {I mit R6 = -N(Y-R8) (0- Z-R9)}, Thioether {I mit R6 = -S-Y-R8}, Sulfonsäurederivate {I mit R6 = -SO2-Y-R8, -S02-0-Y-R8 oder -S02-N(Y-R8) (Z-R9) } , Oxime (I mit R6 = -C(=NOR10)-Y-R8} , Carbonsäurederivate {I mit R6 = -CO-O-Y-R8, -CO-S-Y-R8, -CO-N (Y-R8) (Z-R9) , -CO-N {Y-R8) (O-
Z-R9)} oder Hydroximsäureester {I mit R6 = -C (=NOR10) -O-Y-R8} übergeführt werden.
Derartige Umsetzungen werden beispielsweise in Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme Verlag Stuttgart (Bd. E16d, S. 1241ff.; Bd. 6/la, 4. Auflage 1980, S. 262ff.; Bd. 8, 4. Auflage 1952, S. 471ff., 516ff., 655ff. und S. 686ff.; Bd. 6/3, 4. Auflage 1965, S. 10ff.; Bd. 9,
4. Auflage 1955, S. 103ff., 227ff., 343ff., 530ff., 659ff., 745ff. und S. 753ff.; Bd. E5, S. 934ff., 941ff. und
5. 1148ff.) beschrieben. Entsprechende Reaktionen können auch mit den Phenylpyrazolen der Formel II
Figure imgf000057_0001
wobei R6 Hydroxy1, Amino, -NH-Y-R8, Hydroxylamino, -N (Y-R8) -OH, -NH-O-Z-R9, Mercapto, -C (=NOH) -Y-R8, Carboxy, -CO-NH-O-Z-R9 oder Halogensulfonyl bedeutet, durchgeführt werden .
Sofern nicht anders angegeben werden alle vorstehend beschriebenen Verfahren zweckmäßigerweise bei Atmospharendruck oder unter dem Eigendruck des jeweiligen Reaktionsgemisches vorgenommen.
Die Aufarbeitung der Reaktionsgemische erfolgt in der Regel auf an sich bekannte Weise. Sofern nicht bei den vorstehend beschriebenen Verfahren etwas anderes angegeben ist erhält man die Wertprodukte z.B. nach Verdünnen der Reaktionslösung mit Wasser durch Filtration, Kristallisation oder Losungsmittelextraktion, oder durch Entfernen des Losungsmittels, Verteilen des Rückstandes in einem Gemisch aus Wasser und einem geeigneten organischen Losungsmittel und Aufarbeiten der organischen Phase auf das Produkt hin.
Die l-Sulfonyl-3-phenylpyrazole I können bei der Herstellung als Isomerengemische anfallen, die jedoch gewünschtenfalls nach den hierf r üblichen Methoden wie Kristallisation oder Chromatographie, auch an einem optisch aktiven Adsorbat , in die weitgehend reinen Isomeren getrennt werden können. Reine optisch aktive Isomere lassen sich vorteilhaft aus entsprechenden optisch aktiven Ausgangsprodukten herstellen.
Landwirtschaftlich brauchbare Salze der Verbindungen I können durch Reaktion mit einer Base des entprechenden Kations, vorzugsweise einem Alkalimetallhydroxid oder -hydrid, oder durch Reaktion mit einer Säure des entprechenden Anions, vorzugsweise der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsaure, Phosphorsäure oder Salpetersäure, gebildet werden. Salze von I, deren Metallion kein Alkalimetallion ist, können auch durch Umsalzen des entsprechenden Alkalimetallsalzes in üblicher Weise hergestellt werden, ebenso Ammonium-, Phosphonium-, Sulfonium- und Sulfoxoniumsalze mittels Ammoniak, Phosphonium-, Sulfonium- oder Sulfoxoniu hydroxiden.
Die Verbindungen I und deren landwirtschaftlich brauchbaren Salze eignen sich - sowohl als Isomerengemische als auch in Form der reinen Isomeren - als Herbizide. Die I enthaltenden herbiziden Mittel bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Aufwandmengen. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schad- graser, ohne die Kulturpflanzen nennenswert zu schädigen. Dieser Effekt tritt vor allem bei niedrigen Aufwandmengen auf.
Unter Berücksichtigung der Vielseitigkeit der Applikationsmethoden können die Verbindungen I bzw. sie enthaltenden herbiziden Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kom- men beispielsweise folgende Kulturen:
Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec . altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica) , Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium) , Helianthus annuus, Hevea brasiliensis, Hordeum vulgäre, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec, Manihot esculenta, Medicago sativa, Musa spec, Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa , Phaseolus lunatus, Phaseolus vulgaris, Picea abies , Pinus spec, Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharu officinarum, Seeale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgäre), Theobroma cacao, Tri- folium pratense, Triticum aestivum, Triticum duru , Vicia faba, Vitis vinifera und Zea mays.
Darüber hinaus können die Verbindungen I auch in Kulturen, die durch Züchtung einschließlich gentechnischer Methoden gegen die Wirkung von Herbiziden tolerant sind, verwendet werden. Des weiteren eignen sich die 1-Sulfonyl-3-phenylpyrazole I auch zur Desikkation und/oder Defoliation von Pflanzen.
Als Desikkantien eignen sie sich insbesondere zur Austrocknung der oberirdischen Teile von Kulturpflanzen wie Kartoffel, Raps, Sonnenblume und Sojabohne. Damit wird ein vollständig mechanisches Beernten dieser wichtigen Kulturpflanzen ermöglicht.
Von wirtschaftlichem Interesse ist ferner die Ernteerleichterung, die durch das zeitlich konzentrierte Abfallen oder Vermindern der Haftfestigkeit am Baum bei Zitrusfrüchten, Oliven oder bei anderen Arten und Sorten von Kern-, Stein- und Schalenobst ermöglicht wird. Derselbe Mechanismus, das heißt die Förderung der Ausbildung von Trenngewebe zwischen Frucht- oder Blatt- und Sproßteil der Pflanzen ist auch für ein gut kontrollierbares Entblättern von Nutzpflanzen, insbesondere Baumwolle, wesentlich.
Außerdem führt die Verkürzung des Zeitintervalls, in dem die einzelnen Baumwollpflanzen reif werden, zu einer erhöhten Faser- qualität nach der Ernte.
Die Verbindungen I bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt verspruhbaren wäßrigen Losungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.
Als inerte Hilfsstoffe kommen im wesentlichen in Betracht: Mineralölfraktionen von mittlerem bis hohem Siedepunkt wie Kero- sin und Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Paraffine, Tetrahydronaphthalin, alkylierte Naphthaline und deren Derivate, alkylierte Benzole und deren Derivate, Alkohole wie Methanol, Ethanol, Propanol, Butanol und Cyclohexanol, Ketone wie Cyclohexanon, stark polare Lösungsmittel, z.B. Amine wie N-Methylpyrrolidon und Wasser.
Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Suspensionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substrate als solche oder in einem 01 oder Losungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.
Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfonierte Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxy- ethylenoctylphenolether , ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenyl-, Tributylphenylpolyglykolether , Alkyl - arylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylen- oxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylen- oder Polyoxypropylenalkylether, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betrach .
Pulver-, Streu- und Stäubemittel können durch Mischen oder ge- meinsames Vermählen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.
Granulate, z.B. Umhüllungs-, I prägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe herge- stellt werden. Feste Trägerstoffe sind Mineralerden wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit und Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel wie Ammoniums lfat, Ammoniumphosphat und Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.
Die Konzentrationen der Wirkstoffe I in den anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Im allgemeinen enthalten die Formulierungen etwa 0,001 bis 98 Gew. -%, vorzugsweise 0,01 bis 95 Gew.-%, mindestens eines Wirkstoffs I. Die Wirkstoffe werden dabei in einer Reinheit von 90 % bis 100 %, vorzugsweise 95 % bis 100 % (nach NMR-Spektrum) einge- setzt. Die folgenden Formulierungsbeispiele verdeutlichen die Herstellung solcher Zubereitungen:
I. 20 Gewichtsteile der Verbindung Nr. Ia.001 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N- onoethanola id, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlage - rungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew. -% des Wirkstoffs enthält.
II. 20 Gewichtsteile der Verbindung Nr. Ib.001 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclo- hexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungspro- duktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht.
Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
III. 20 Gewichtsteile des Wirkstoffs Nr. Id.002 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclo- hexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew. -% des Wirkstoffs enthält.
IV. 20 Gewichtsteile des Wirkstoffs Nr. Ie.001 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutyl- naphthalin-α-sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermählen. Durch feines Verteilen der Mischung in 20000 Gewichtsteilen Wasser enthält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält. V. 3 Gewichtsteile des Wirkstoffs Nr. Ie.002 werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew. -% des Wirkstoffs enthält.
VI. 20 Gewichtsteile des Wirkstoffs Nr. Ie.021 werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglykolether ,
2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff- Formaldehyd-Kondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.
VII. 1 Gewichtsteil der Verbindung Nr. Ie.029 wird in einer Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon,
20 Gewichtsteilen ethoxyliertem Isooctylphenol und 10 Gewichtsteilen ethoxyliertem Ricinusöl besteht. Anschließend kann die Mischung mit Wasser auf die gewünschte Wirkstoffkonzentration verdünnt werden. Man erhält ein stabiles Emulsionskonzentrat.
VIII. 1 Gewichtsteil der Verbindung Nr. Ib.001 wird in einer Mischung gelöst, die aus 80 Gewichtsteilen Cyclohexanon und 20 Gewichtsteilen Wettol® EM 31 (= nichtionischer Emulgator auf der Basis von ethoxyliertem Rizinusöl; BASF AG) besteht. Danach kann mit Wasser auf die gewünschte Wirkstoffkonzentration verdünnt werden. Man erhält ein stabiles Emulsionskonzentrat.
Die Applikation der Wirkstoffe I bzw. der herbiziden Mittel kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by) .
Die Aufwandmengen an Wirkstoff I betragen je nach Bekämpfungs- ziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 3,0, vorzugsweise 0,01 bis 1,0 kg/ha aktive Substanz (a.S.).
Zur Verbreiterung des Wirkungsspektrums und zur Erzielung syner- gistischer Effekte können die 1-Sulfonyl-3-phenylpyrazole I mit zahlreichen Vertretern anderer herbizider oder Wachstums- regulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner 1,2,4-Thia- diazole, 1,3,4-Thiadiazole, Amide, Aminophosphorsäure und deren Derivate, Aminotriazole, Anilide, Aryloxy-/Heteroaryloxyalkan- säuren und deren Derivate, Benzoesäure und deren Derivate, Benzo- thiadiazinone, 2- (Hetaroyl/Aroyl) -1, 3-cycϊohexandione, Hetero- aryl-Aryl-Ketone, Benzylisoxazolidinone, meta-CF3~Phenylderivate, Carbamate, Chinolincarbonsäure und deren Derivate, Chloracet- anilide, Cyclohexan-1, 3-dionderivate, Diazine, Dichlorpropion- säure und deren Derivate, Dihydrobenzofurane, Dihydrofuran-3-one, Dinitroaniline, Dinitrophenole, Diphenylether, Dipyridyle, Halogencarbonsäuren und deren Derivate, Harnstoffe, 3-Phenyl- uracile, Imidazole, Imidazolinone, N-Phenyl-3, 4, 5, 6-tetrahydro- phthalimide, Oxadiazole, Oxirane, Phenole, Aryloxy- und Hetero- aryloxyphenoxypropionsäureester, Phenylessigsäure und deren Derivate, 2-Phenylpropionsäure und deren Derivate, Pyrazole, Phenylpyrazole, Pyridazine, Pyridincarbonsäure und deren Derivate, Pyrimidylether , Sulfonamide, Sulfonylharnstoffe, Triazine, Triazinone, Triazolinone, Triazolcarboxamide und Uracile in Betracht.
Außerdem kann es von Nutzen sein, die Verbindungen I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.
Herstellungsbeispiele
(Die chemische Verschiebung [in ppm] der Kernresonanzspektren wurde gemessen gegen Tetramethylsilan)
Beispiel 1 3- (4-Chlorphenyl)-5-methyl-l-methylsulfonyl-lH-pyrazol (Nr. la.001)
Zu einer Lösung von 2 g (10 mmol) 3 (5) -(4-Chlorphenyl)-5 (3)-me- thyl-lH-pyrazol in 50 ml Tetrahydrofuran wurden 0,27 g (11 mmol) Natriumhydrid gegeben. Nach 10 Minuten rühren versetzte man die Mischung mit 1,4 g (11 mmol) Me hansulfonsäurechlorid. Anschließend wurde 16 Std. gerührt. Dann engte man das Reaktionsgemisch ein. Der Rückstand wurde mit 20 ml Wasser und 20 ml Ethylacetat versetzt. Die organische Phase wurde abgetrennt, mit Wasser und ges. wässriger Natriumchlorid-Lösung gewaschen, über Magnesium- sulfat getrocknet und schließlich eingeengt. Die Reinigung des Rohprodukts erfolgte mittels Kieselgelchromatographie (Eluent: Hexan/Ethylacetat = 4:1). Ausbeute 1,4 g; Smp.: 96-97°C. *H-NMR (400 MHz; in CDC13): δ [pp ] = 2,59 (s,3H), 3,38 (s,3H), 5 6,44 (s,lH), 7,38 (d,2H), 7,76 (d,2H) .
Vorstufe: 3(5)- (4-Chlorphenyl) -5 (3 ) -methy1-lH-pyrazol
79 g (0,6 mol) Kalium-tert. -butylat wurden in 200 ml Ethylacetat 0 suspendiert. Unter starker Erwärmung bildete sich eine Lösung. Bei etwa 70°C wurde dann eine Losung von 50 g (0,32 mol) 4-Chlor- acetophenon in 200 ml Ethylacetat zugetropft, wonach man 3 Std. bei 60°C rührte. Anschließend wurde die Reaktionsmischung auf 1 1 10 %ige Schwefelsäure gegossen. Dann extrahierte man das Produkt _ zweimal mit je 200 ml Ethylacetat. Die vereinigten organischen Phasen wurden zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet und schließlich eingeengt. Ausbeute an l-(4-Chlor- phenyl)butan-l,3-dion-Rohprodukt: 103 g.
Hiervon wurden 72 g in 300 ml Essigsäure gelost und mit 18 g 0 (0,36 mol) Hydrazin unter exothermer Reaktion umgesetzt. Nachdem sich das Gemisch wieder auf Raumtemperatur abgekühlt hatte, goß man es auf 2 1 Eiswasser. Das ausgefällte Rohprodukt wurde abfiltriert und durch zweimalige Umkristallisation aus Hexan/Ethylacetat (2:1) gereinigt. Ausbeute: 15 g; Smp. 124-130°C. iH-NMR (400 MHz; in CDC13): δ [pp ] = 2,36 (s,3H), 5,50 (s,lH), 5 6,35 (S,1H), 7,36 (d,2H), 7,68 (d,2H).
Beispiel 2
4-Chlor-3- (4-chlorphenyl)-5-methyl-l-methylsulfonyl-lH-pyrazol
(Nr. Ib.001) 0
Zu einer Lösung von 1,4 g (4,6 mmol) 3- (4-Chlorphenyl)-5-me- thyl-1-methylsulfonyl-lH-pyrazol in 50 ml Tetrachlormethan wurden 0,7 g (5,1 mmol) Sulfurylchlorid gegeben. Nach 2 Std. Rühren gab man 100 ml Wasser in die Reaktionsmischung. Anschließend wurde 5 die organische Phase abgetrennt, über Magnesiumsulfat getrocknet und schließlich eingeengt. Die Reinigung des Rohprodukts erfolgte mittels Kieselgelchromatographie (Eluent: Hexan/Ethylacetat = 6:1). Ausbeute: 0,7 g; Smp.: 100-102°C. !H-NMR (400 MHz; in CDC13): δ [ppm] = 2,58 (s,3H), 3,39 (S,3H), 0 7,43 (d,2H) , 7,89 (d,2H) .
Beispiel 3
3- (4-Chlor-2-fluor-5-methylphenyl) -5-methyl-1-methy1sul onyl-1H- pyrazol (Nr. Id.002) 5 Unter Verwendung von 1,6 g (7,1 mmol) 3 (5) - (4-Chlor-2-fluor-5-me- thylphenyl) -5 (3) -methyl- lH-pyrazol, 0,18 g {7,5 mmol) Natriumhydrid und 0,81 g (7,1 mmol) Methansulfonylchlorid erhielt man analog zu dem in Beispiel 1 beschriebenen Verfahren 1 g des o.g. Wertproduktes.
!H-NMR (360 MHz; in CDC13): δ [ppm] = 2,36 <S,3H), 2,58 (s,3H), 3,38 (s,3H), 6,56 (d,lH), 7,14 (d,lH), 7,90 (d, 1H) .
Vorstufe 3.1: 4 - (3 -Chlor- 2 - fluor - 5 -methylphenyl) butan- 2 , 4 - dion
Eine Lösung von 5 g (24 mmol) 4 -Chlor-2 -fluor- 5-methylbenzoyl - Chlorid und 6,3 g (24 mmol) Kupfer (II) acetylacetonat in 150 ml Dichlormethan wurde 16 Std. gerührt. Dann leitete man in das Reaktionsgemisch Schwefelwasserstoff ein, bis kein Kupfersulfid mehr ausfiel (ca. 1 Std.). Nach anschließendem Abfiltrieren der ungelösten Bestandteile wurde die organische Phase noch über Magnesiumsulfat getrocknet und eingeengt. Den Rückstand versetzte man mit 200 ml einer konzentrierten wäßrigen Ammoniak-Lösung, bevor 4 Std. auf Rückflußtemperatur erhitzt wurde. Nach dem Abkühlen extrahierte man mit Dichlormethan. Die organische Phase wurde noch über Magnesiumsulfat getrocknet und schließlich eingeengt. Die Reinigung des Rohproduktes erfolgte mittels Kieselgel - Chromatographie (Eluens : Hexan/Ethylacetat = 2:1) Ausbeute: 2,2 g; iH-NMR (250 MHz, in CDC13) : δ [ppm] = 2,07 (s,3H), 2,35 (s,3H), 5,68 (S,1H), 7,10 (d,lH), 7,67 (d,lH), 10,20 (s, 1H) .
Vorstufe: 3.2: 3 (5) - (4 -Chlor- 2 -fluor- 5-methyl - phenyl) -5(3) -methyl -lH-pyrazol
Eine Lösung von 2,2 g (9,6 mmol) 4 - (3-Chlor-2 -fluor- 5-methyl - phenyl) -butan-2, 4 -dion in 30 ml Eisessig wurde mit 0,48 g (10 mmol) Hydrazinhydrat versetzt, wonach man 3 Stunden auf Rückflußtemperatur erhitzte. Anschließend wurde das Reaktionsgemisch auf 1 1 Wasser gegossen. Aus der erhaltenen Mischung extrahierte man das Wertprodukt mit 100 ml Ethylacetat. Der Extrakt wurde noch über Magnesiumsulfat getrocknet und schließlich eingeengt. Ausbeute: 1,6 g; iH-NMR (270 MHz, in CDCI3) : δ [ppm] = 2,32 (s,3H), 2,34 (s,3H), 6,44 (d,lH), 7,14 (d,lH), 7,66 (d,lH).
Beispiel 4
4-Chlor-3- (4-chlor-2-fluor-5 -methylphenyl) -5 -methyl -1-methyl- sulfonyl-lH-pyrazol (Nr. Ie.002) 0,8 g (2,7 mmol) 3- (4-Chlor-2-fluor-5-methylphenyl) -5-methyl-l- methylsulfonyl-lH-pyrazol und 0,4 g (3,0 mmol) Sulfurylchlorid wurden in 50 ml Tetrachlormethan analog zu Beispiel 2 umgesetzt. Ausbeute: 0,1 g; iH-NMR (270 MHz, in CDC13): δ [ppm] = 2,37 (s,3H), 2,59 (s,3H), 3,39 (s,3H), 7,22 (d,lH), 7,42 (d,lH).
Beispiel 5
4-Chlor-3- (4-chlor-2-fluor-5-propargyloxy- phenyl) -5-methyl-l-methylsulfonyl-lH-pyrazol (Nr. Ie.021)
Unter Verwendung von 0,4 g (1,3 mmol) 4-Chlor-3 (5) - (4-chlor- 2-fluor-5-propargyloxyphenyl) -5 (3) -methyl-lH-pyrazol , 35 mg (1,4 mmol) Natriumhydrid und 0,14 g (1,3 mmol) Methansulfonyl- chlorid erhielt man analog zu dem in Beispiel 1 beschriebenen Verfahren 0,3 g des o.g. Wertproduktes.
!H-NMR (400 MHz, in CDCI3): δ [ppm] = 2,57 (t,lH), 2,59 (s,3H), 3,41 (S,3H), 4,78 (d,2H), 7,26 (m,2H).
Vorstufe 5.1: 5-Brom-2-chlor-4-fluorphenol
Zu einer Lösung von 129 g (0,46 mol) Methyl- ( 5-brom-2-chlor-4- fluorphenyDcarbonat in 920 ml Methanol wurden 72,8 g (0,91 mol) einer 50 %igen Natronlauge gegeben. Dann rührte man 30 Minuten, wonach die Mischung mit 0,4 1 Wasser versetzt wurde. Anschließend konzentrierte man auf 600 ml. Unter Eiskühlung wurde mit 4 %ιger
Salzsäure angesäuert. Danach extrahierte man das entstandene
Wertprodukt mit Dichlormethan. Die organische Phase wurde noch über Magnesiumsulfat getrocknet und schließlich eingeengt.
Ausbeute: 78,7 g. XH-NMR (250 MHz, in CDCI3): δ [ppm] = 5,38 (s,lH), 7,13 (d,lH),
7,25 (d,lH),
Vorstufe 5.2: l-Allyloxy-5-brom-2-chlor-4-fluorbenzol
Zu einer Lösung von 78,7 g (0,35 mol) 5-Brom-2-chlor-4-fluorphenol in 350 ml Dimethylformamid wurden 96,5 g (0,7 mol) Kalium- carbonat und 54,9 g (0,45 mol) Allylbromid gegeben. Anschließend rührte man 1 Std., wonach das Reaktionsgemisch in 2,5 1 Wasser eingerührt wurde. Dann extrahierte man dreimal mit Dichlormethan. Die vereinigten organischen Phasen wurden noch dreimal mit Wasser und einmal mit gesättigter wäßriger Kochsalz-Lösung gewaschen, über Magnesiumsulfat getrocknet und schließlich eingeengt. Die Reinigung des Rohproduktes erfolgte mittels Destillation; Sdp. : 106°C (0,8 mbar) ; Ausbeute: 85 g; iH-NMR (270 MHz, in CDC13): δ [ppm] = 4,57 (s,2H), 5,34 (d,lH) 5,46 (d,lH), 6,04 (m,lH), 7,08 (d,lH), 7,19 (d,lH).
5 Vorstufe 5.3: 5 -Allyloxy-4 -chlor -2 -fluorbenzoesäure
Zu einer Lösung von 85 g (0,32 mol) l-Allyloxy-5 -brom-2 -chlor-4- fluorbenzol in 200 ml Tetrahydrofuran wurden bei 20-25°C innerhalb von 30 Minuten 200 ml (0,4 mol) einer 2 M Lösung von Isopropyl-
10 magnesiumchlorid in Tetrahydrofuran gegeben. Dann rührte man
30 Minuten, wonach unter Eiskühlung 50 g (1,1 mol) Trockeneis zugegeben wurden. Anschließend rührte man zunächst 16 Std. , bevor unter Eiskühlung 250 ml 10 %iger Salzsäure zugegeben wurden. Man trennte die wäßrige Phase ab und extrahierte mit Methyl- tert-bu-
,c tylether. Die vereinigten organischen Phasen wurden noch mit gesättigter wäßriger Kochsalz -Lösung gewaschen, über Magnesiumsulfat getrocknet und schließlich eingeengt. Die Reinigung des Rohproduktes erfolgte durch Verreiben mit wenig n-Hexan, wonach das ausgefällte Westprodukt abfiltriert wurde. Ausbeute: 59,7 g; !H-NMR (250 MHz, in CDCI3) : δ [ppm] = 4,66 (d,2H), 5,35 (d,lH),
20 5,49 (d,lH), 6,08 (m,lH), 7,26 (d,lH), 7,52 (d,lH).
Vorstufe 5.4: 5 -Allyloxy-4 -chlor-2 -fluorbenzoylchlorid
Zu einer Lösung von 59,7 g (0,26 mol) 5-Allyloxy-4 -chlor-2 -fluor
25 benzoesäure in 0,5 1 Toluol wurden nacheinander unter Eiskühlung 1 Tropfen Dimethylformamid und 49,2 g (0,38 mol) Oxalylchlorid gegeben. Nach beendeter Gasentwicklung engte man auf etwa das halbe Volumen ein. Die Produktlösung wurde in dieser Form in die nächste Stufe eingesetzt.
30
Vorstufe 5.5: 4- (5 -Allyloxy- 4 -chlor- 2 - fluorphenyl)butan-2 , -dion
Unter Verwendung der in Vorstufe 5.4 hergestellten Säurechlorid- Lösung und 68 g (0,26 mol) Kupfer (II) acetylacetonat erhielt man
" auf die in Vorstufe 3.1 beschriebene Weise ein Triketon, das anschließend mit 0,3 1 konzentrierter wäßriger Ammoniak -Lösung umgesetzt wurde. Ausbeute: 22,5 g;
1H-NMR (270 MHz, in CDCI3) : δ [ppm] = 2,07 (s,3H), 2,65 (d, 1H) , 5,32 (d,lH), 5,47 (d,lH), 5,72 (d,lH), 6,06 (m,lH), 7,14 (d, 1H) , 0 7,42 (d,lH), 10,22 (s,lH) .
Vorstufe 5.6: 3 (5) - (5-Allyloxy-4-chlor-2-fluorphenyl) -5 (3) -methyl -lH-pyrazol 5 22,5 g (83 mmol) 4 - (5-Allyloxy-4 -chlor- 2 - fluorphenyl) - butan- 2, -dion und 4,3 g (85 mmol) Hydrazinhydrat wurden analog zu dem in Vorstufe 3.2 beschriebenen Verfahren umgesetzt. Ausbeute: 20,2 g; 1H-NMR (270 MHz, in CDC13): δ [ppm] = 2,32 (d,3H), 4,53 (d,lH), 5,28 (d,lH), 5,41 (d,lH), 6,03 (m, 1H) , 6,47 (d,lH), 7,18 (d,lH), 7,38 (d,lH).
Vorstufe 5.7: 3 (5) - [4 -Chlor-2-fluor-5 - (1 -propen-1 -yl- oxy) phenyl] -5 (3) -methyl -lH-pyrazol
Zu einer Lösung von 13 g (49 mmol) 3 (5) - (5 -Allyl- oxy-4-chlor-2-fluorphenyl) -5 (3) -methyl -lH-pyrazol in 50 ml Dimethylsulfoxid wurden 11,2 g (0,1 mol) Kalium- ter . -butylat ge- geben. Nach 16 Std. Rühren versetzte man die Reaktionsmischung mit gesättigter wässriger Ammoniumchlorid-Lösung. Anschließend wurde das entstandene feste Wertprodukt abgetrennt. Ausbeute: quantitativ;
!H-NMR (200 MHz, in CDCI3): δ [ppm] = 1,73 (dd,3H), 2,34 (d,3H), 4,80 (S,1H), 4,95 (dq,lH), 6,30 (dq,lH), 6,46 (dd,lH), 7,21 (d,lH) , 7,49 (d,lH) .
Vorstufe 5.8: 2 -Chlor -4 -fluor - 5 - [5 (3) -methyl - lH-pyr- azol-3 (5) -yl] phenol
Zu einer Lösung von 13 g (49 mmol) 3 (5) - [4 -Chlor - 2-fluor-5- (1-propen-l-yloxy) phenyl] -5(3) -methyl- lH-pyrazol in 150 ml Ethanol wurden 27 ml konz . Salzsäure gegeben. Nach 1,5 Std. Rühren bei Rückflußtemperatur engte man die Reaktionsmischung ein. Der Rückstand wurde mit 50 ml Wasser versetzt. Anschließend extrahierte man viermal mit Ethylacetat. Die vereinigten organischen Phasen wurden noch über Magnesiumsulfat getrocknet und schließlich eingeengt. Ausbeute: 10,4 g; iH-NMR (250 MHz, in d6-Dimethylsulfoxid) : δ [ppm] = 2,27 (s,3H), 5,50 (s,2H), 6,35 (d,lH), 7,34 (d,lH), 7,52 (d,lH).
Vorstufe 5.9: 2 -Chlor-4 - fluor-5- (4 -chlor- 5 (3) -methyl- lH-pyr- azol -3 (5) -yl) phenol
Zu einer Suspension von 1,8 g (7,9 mmol) 2 -Chlor -4 -fluor- 5- (5 (3) -methyl-lH-pyrazol-3 (5) -yDphenol in 100 ml 1,2-Dichlor- ethan wurden 1,2 g (8,7 mmol) Sulfurylchlorid gegeben, wonach man 5 Std. auf Rückflußtemperatur erhitzte. Anschließend wurde die Reaktionsmischung eingeengt. Die Reinigung des Rohproduktes erfolgte mittels Kieselgelchromatographie (Eluens: Ethylacetat/He- xan = 4:1). Ausbeute: 0,6 g; iH-NMR (270 MHz, in CDC13) : δ [ppm] = 2,33 (s,3H), 7,21 (d,lH), 7,50 (d,lH) .
Vorstufe 5.10: -Chlor-3 (5) - (4 -chlor-2 - luor - 5 -propargyloxy- phenyl) -5 (3) -methyl-lH-pyrazol
Zu einer Lösung von 0,6 g (2,3 mmol) 2 -Chlor-4 -fluor-5- (4 -chlor - 5 (3) -methyl-lH-pyrazol-3 (5) -yDphenol in 50 ml Dimethylformamid wurden 0,63 g (46 mmol) Kaliumcarbonat, 0,27 g (2,3 mmol) Propar- gylbromid und eine Spatelspitze Natriumiodid gegeben. Anschließend rührte man 3 Std. bei 80°C, wonach die Reaktionsmischung auf 100 ml Wasser gegossen wurde. Dann extrahierte man dreimal mit Ethylacetat. Die vereinigten Extrakte wurden dreimal mit Wasser gewaschen, noch über Magnesiumsulfat getrocknet und schließlich eingeengt. Die Reinigung des Rohproduktes erfolgte mittels Kieselgelchromatographie (Eluens: Hexan/Ethylacetat = 4:1). Ausbeute: 0,4 g; iH-NMR (250 MHz, in CDCI3) : δ [ppm] = 2,34 (s,3H), 2,55 (t,lH), 4,80 (d,2H), 7,28 (d,lH), 7,65 (d,lH).
Beispiel 6: 2 -Chlor-4 -fluor-5- ( -chlor- 5 -methyl -1 -methyl- sulfonyl - lH-pyrazol -3 -yl) phenoxyessigsäuremethylester (Nr. Ie.029)
Unter Verwendung von 0,2 g (0,62 mmol) 2 -Chlor-4-fluor- 5- (4 -chlor -5 (3) -methyl -lH-pyrazol -3(5) -yl) phenoxyessigsäuremethylester, 16 mg (0,65 mmol) Natriumhydrid und 71 mg (0,62 mmol) Methansulfonsäurechlorid erhielt man analog Beispiel 1 0,2 g des gewünschten Wertproduktes.
XH-NMR {250 MHz, in CDCI3): δ [ppm] = 2,59 (s,3H), 3,40 (s,3H), 3,81 (s,3H), 4,74 (s,2H), 7,06 (d, 1H) , 7,28 (d,lH).
Vorstufe: 2 -Chlor -4 - luor-5- (4 -chlor -5 (3) -methyl -lH-pyr- azol-3 (5) -yl) henoxyessigsäuremethylester
Unter Verwendung von 2,3 g (8,8 mmol) 2 -Chlor-4 -fluor-5 - (4-chlor-5 (3) -methyl -lH-pyrazol- 3 (5) -yDphenol, 2,4 g (17,6 mmol) Kaliumcarbonat, 1,35 g (8,8 mmol) Bromessigsäuremethylester und einer Spatelspitze Natriumiodid erhielt man analog Vorstufe 5.10 0,2 g des gewünschten Wertproduktes;
XH-NMR (400 MHz, in d6-Dimethylsulfoxid) : δ (ppm) = 2,28 (s,3H), 3,72 (s,3H), 5,00 (s,2H), 7,16 (m, 1H) , 7,59 (m,lH), 13,25 (s,lH).
Beispiel 7: 4-Chlor-3- (4 -chlor- 2- fluorphenyl) -5 -methyl- 1 -methyl- sulfonyl-lH-pyrazol (Nr. Ie.001) Unter Verwendung von 0,8 g (3,3 mmol) 4-Chlor-3 (5) - (4-chlor-2- fluorpheny1-5 (3) -methyl-lH-pyrazol , 83 mg (3,4 mmol) Natriumhydrid und 0,37 g (3,3 mmol) Methansulfonsäurechlorid erhielt man analog zu dem in Beispiel 1 beschriebenen Verfahren 0,4 g des ge- wünschten Wertproduktes;
*H-NMR (250 MHz, in CDCI3): δ [ppm] = 2,59 (s,3H), 3,40 (s,3H), 7,20 (m,2H), 7,51 (t,lH).
Vorstufe: 4-Chlor-3 (5) - (4-chlor-2-fluorphenyl) -5 (3) -methyl-lH- pyrazol
Eine Lösung von 1,8 g (8,6 mmol) 3 (5) - (4-Chlor-2-fluorphenyl) -5 (3) -methy1-lH-pyrazol und 1,3 g (9,5 mmol) Sulfurylchlorid in 40 ml Tetrachlormethan wurde zunächst 30 Minuten im Ultraschallbad gerührt und dann eingeengt. Ausbeute: 2 g des gewünschten Vorproduktes; iH-NMR (250 MHz, in CDCI3): δ [ppm] = 2,42 (s,3H), 7,20 (m,2H), 7,66 (t,lH) .
Anwendungsbeispiele (herbizide Wirksamkeit)
Die herbizide Wirkung der l-Sulfonyl-3-phenylpyrazole I ließ sich durch die folgenden Gewächshausversuche zeigen:
Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.
Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern, und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Test- pflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.
Zum Zweck der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm ange- zogen und erst dann mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Testpflanzen wurden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie wurden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 0,5 kg/ha a.S. (aktive Substanz) . Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 - 25°C bzw. 20 - 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewer- tet.
Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachs- tumsverlauf.
Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:
Figure imgf000071_0001
Bei einer Aufwandmenge von 0,5 kg/ha a.S. zeigte die Verbindung Nr. Ib.001 im Nachauflaufverfahren eine sehr gute herbizide Wirkung gegen die o.g. unerwünschten Pflanzen.
Anwendungsbeispiele (desikkative/defoliante Wirksamkeit)
Als Testpflanzen dienten junge, 4-blättrige (ohne Keimblätter) Baumwollpflanzen, die unter Gewächshausbedingungen angezogen wurden (rel. Luftfeuchtigkeit 50 bis 70 %; Tag-/Nachttemperatur 27/20°C) .
Die jungen Baumwollpflanzen wurden tropfnaß mit wässrigen Auf- bereitungen der Wirkstoffe (unter Zusatz von 0,15 Gew.-% des
Fettalkoholalkoxylats Plurafac LF 700 J> , bezogen auf die Spritzbrühe) blattbehandelt. Die ausgebrachte Wassermenge betrug umgerechnet 1000 1/ha. Nach 13 Tagen wurde die Anzahl der abgeworfenen Blätter und der Grad der Entblätterung in % bestimmt.
Bei den unbehandelten Kontrollpflanzen trat kein Blattfall auf.
1) ein schaumarmes, nichtionisches Tensid der BASF AG

Claims

Patentansprüche
1. 1-Sulfonyl-3-phenylpyrazole der Formel I
Figure imgf000072_0001
in der die Variablen folgende Bedeutungen haben:
R1 Cι-C4-Alkyl oder Cι-C4-Halogenalkyl;
R2 Cι-C4-Alkyl oder Cι-C4-Halogenalkyl;
R3 Wasserstoff, Cyano, Halogen oder Ci-C4-Alkyl;
R4 Wasserstoff oder Halogen;
R5 Wasserstoff, Cyano, Nitro, Halogen, Cι-C4-Alkyl,
Cι-C4-Halogenalkyl, Cι-C4-Alkoxy oder Cι-C4-Halogenalkoxy;
X eine chemische Bindung oder eine Methylen-, Ethylen-, Propan-1, 3-diyl-, Ethen-l,2-diyl- oder über das Heteroatom an den Phenylring gebundene Oxymethylen- oder Thia- methylen-Kette, wobei alle Ketten unsubstituiert sein oder einen oder zwei Substituenten tragen können, jeweils ausgewählt aus der Gruppe bestehend aus Cyano, Carboxy, Halogen, Cι-C4-Alkyl, C1-C4-Halogenalkyl, Cι-C4-Alkoxy , (Cι-C4-Alkoxy) carbonyl, Di- (Cι-C4-Alkyl) amino und Phenyl;
R6 Wasserstoff, Nitro, Cyano, Halogen, Halogensulfonyl,
-O-Y-R8, -O-CO-Y-R8, -N (Y-R8) (Z-R9) , -N (Y-R8 ) -S02-Z-R9 , -N(Ξ02-Y-R8) (SO2-Z-R9) , -N(Y-R8)-C0-Z-R9, -N(Y-R8)(0- Z-R9), -S-Y-R8, -SO-Z-R8, -S02-Y-R8, -S02-0-Y-R8, -S02-N(Y-R8) (Z-R9) , -CO-Y-R8, -C (=NOR10) -Y-R8, -C(=NOR10) -O-Y-R8, -CO-O-Y-R8, -CO-S-Y-R8,
-CO-N (Y-R8) (Z-R9) , -CO-N (Y-R8) (O-Z-R9) oder -PO (O-Y-R8) 2;
R7 Wasserstoff,
oder R5 und XR6 oder XR6 und R7 zusammen mit den sie verbindenden C-Atomen des Phenylrings einen anneliierten carbo- cyclischen oder 5- oder 6-gliedrigen heterocyclischen Ring mit 1 bis 3 Heteroatomen, ausgewählt aus einer Gruppe bestehend aus ein bis drei Stickstoff-, ein oder zwei Sauerstoff- und ein oder zwei Schwefelatomen, wobei der annellierte Ring unsubstituiert sein oder seinerseits einen oder zwei Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Cι-C-Alkyl, Cι-C4-Halogenalkyl, C2-C6-Alkenyl , C2-C6-Halogenalkenyl, C2-C6-Alkinyl , Cι-C4-Alkoxy, Cι-C-Halogenalkoxy, Cι-C4-Alkylthio, Cι-C4-Halogenalkyl- thio, Cι-C4-Alkylsulfinyl, Cι-C4-Halogenalkylsulfinyl, Cι-C4-Alkylsulfonyl , Cι-C4-Halogenalkylsulfonyl , (Cι-C4-Alkoxy) carbonyl, (Cι-C4-Alkoxy) carbonyl-Cι~C -al- kyl, Phenyl oder Phenyl-C1-C4-alkyl, wobei der annellierte Cyclus auch ein oder zwei nicht be- nachbarte Carbonyl-, Thiocarbonyl- oder Sulfonyl-Ring- glieder enthalten kann;
Y, Z unabhängig voneinander eine chemische Bindung oder eine Methylen- oder Ethylen- Kette, die unsubstituiert sein oder einen oder zwei Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Carboxy, Cι-C4-Alkyl, C1-C4-Halogenalkyl , (Cι-C4-Alkoxy) carbonyl und Phenyl;
R8, R9 unabhängig voneinander
Wasserstoff, Cι-C6-Halogenalkyl, C2-C6-Alkenyl , C2-C6-Halogenalkenyl, C2-C6-Alkinyl, C2-C6-Halogenalkinyl, )(R12), -CfR11) (R12)-N02, -C(Rn) (R12)-CN, ) (R12) -Halogen, -C(Rn) (R12)-OR13, ) (R1 )-N(Rl3)Rl4, -C (R11 ) (R12) -N (R13 ) -OR14 , ) (R12)-SR", -C(Rn) (R12)-SO-Rl3, -C (R11 ) (R12) -S02-R13 , ) (R1 )-SO2-0R13, -C(Rn) (R12)-S02-N(R13)R14, ) (R12)-CO-R13, -C(RH) (R12)-C(=NOR15)-R13, ) (R12)-CO-OR13, -CfR1) (R12)-CO-SR13, ) (R12)-CO-N(R13)R14, -C (RU ) (R12) -CO-N(R13 ) -OR14,
Figure imgf000073_0001
(R12)-PO(OR13)2, C3-Cθ-Cycloalkyl, das ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten kann, Phenyl oder 3- bis 7gliedriges Heterocyclyl, das ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten kann, wobei jeder Cycloalkyl-, der Phenyl- und jeder Hetero- cyclyl-Ring unsubstituiert sein oder ein bis vier Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Cyano, Nitro, Amino, Hydroxy, Carboxy, Halogen, Cι-C4-Alkyl, Cι-C4-Halogenalkyl , Cι-C4-Alkoxy, C1-C4-Halogenalkoxy, Cι-C4-Alkylthio, Cι-C4-Halogenalkyl- thio, Cι-C4-Alkylsulfonyl, Cι-C4-Halogenalkylsulfonyl, (Cι-C4-Alkyl) carbonyl, (C1-C4-Halogenalkyl) carbonyl, (Cι-C4-Alkyl) carbonyloxy, (Cι-C4-Halogenalkyl) carbonyloxy, (Cι.-C4-Alkoxy) carbonyl und Di- (C1-C4-Alkyl) amino;
R10 Wasserstoff, Ci-Cε-Alkyl, Ci-Ce-Halogenalkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl , C2-C6-Alkinyl, C2-C6-Halogenalkinyl, C3-C8-Cycloalkyl , Phenyl oder Phenyl-C1-C4-alkyl;
R11, R12 unabhängig voneinander Wasserstoff, Cι-C4-Alkyl, Cι-C4-Alkoxy-Cι-C4-alkyl, Cι-C4-Alkylthio-Cι-C4-alkyl, (Cι-C4-Alkoxy) carbonyl- C!-C4-alkyl oder Phenyl-C1-C4-alkyl, wobei der Phenylring unsubstituiert sein oder ein bis drei Substituenten tragen, jeweils ausgewählt aus der Gruppe bestehend aus Cyano, Nitro, Carboxy, Halogen, Cι-C4-Alkyl, Cι-C4-Halo- genalkyl und (Cι-C4-Alkoxy) carbonyl;
R13, R14 unabhängig voneinander
Wasserstoff, Ci-Cδ-Alkyl, Ci-Cε-Halogenalkyl, C2-C6-Alke- nyl, C2-C6~Halogenalkenyl, C2-C6-Alkinyl, C2-C6-Halogen- alkinyl, C3-Cθ-Cycloalkyl, C3-Cβ-Cycloalkyl-Cι-C4-alkyl, Phenyl, Phenyl-Cι-C4-alkyl, 3- bis 7-gliedriges Heterocyclyl oder Heterocyclyl-C1-C4-alkyl, wobei jeder Cycloalkyl- und jeder Heterocyclyl-Ring ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten kann, und wobei jeder Cycloalkyl-, der Phenyl- und jeder Heterocyclyl-Ring unsubstituiert sein oder ein bis vier Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Cyano, Nitro, Amino, Hydroxy, Carb- oxy, Halogen,
Figure imgf000074_0001
Cι-C4-Halogenalkyl, Cι-C4-Alk- oxy, Cι-C4-Halogenalkoxy , Cι-C4-Alkylthio, Cι-C4-Halogen- alkylthio, Cι-C4-Alkylsulfonyl, C1-C4-Halogenalkylsulfo- nyl, (Cι-C4-Alkyl) carbonyl, (Cι-C4-Halogenalkyl) carbonyl, (Cι-C4-Alkyl) carbonyloxy, (Cι-C4-Halogenalkyl) carbonyloxy, (Cι-C4-Alkoxy) carbonyl und Di- (Cι-C4-Alkyl) amino;
R15 Wasserstoff, Cι-C6-Alkyl, Ci-Ce-Halogenalkyl, C2-C6-AI- kenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, C2~C6-Halogen- alkinyl, C3-C8-Cycloalkyl, Phenyl oder Phenyl-Cι-C4~alkyl;
sowie die landwirtschaftlich brauchbaren Salze von I,
2. Verwendung von 1-Sulfonyl-3-phenylpyrazolen I und deren landwirtschaftlich brauchbaren Salzen, gemäß Anspruch 1, als Herbizide oder zur Desikkation/Defoliation von Pflanzen.
3. Herbizides Mittel, enthaltend eine herbizid wirksame Menge mindestens eines l-Sulfonyl-3-phenylpyrazols der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, und mindestens einen inerten flussigen und/oder festen Tragerstoff sowie gewünschtenfalls mindestens einen oberflächenaktiven Stoff.
4. Mittel zur Desikkation und/oder Defoliation von Pflanzen, enthaltend eine desikkant und/oder defoliant wirksame Menge mindestens eines 1-Sulfonyl-3-phenylpyrazols der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, und mindestens einen inerten flussigen und/oder festen Tragerstoff sowie gewünschtenfalls mindestens einen oberflächenaktiven Stoff.
5. Verfahren zur Herstellung von herbizid wirksamen Mitteln, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines 1-Sulfony1-3-phenylpyrazols der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, und mindestens einen inerten flussigen und/oder festen Tragerstoff sowie gewünschtenfalls mindestens einen oberflächenaktiven Stoff mischt.
6. Verfahren zur Herstellung von desikkant und/oder defoliant wirksamen Mitteln, dadurch gekennzeichnet, daß man eine desikkant und/oder defoliant wirksame Menge mindestens eines l-Sulfonyl-3-phenylpyrazols der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, und mindestens einen inerten flussigen und/oder festen Trager- stoff sowie gewünschtenfalls mindestens einen oberflächenaktiven Stoff mischt.
7. Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines l-Sulfonyl-3-phenylpyrazols der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, auf Pflanzen, deren Lebensraum oder auf Saatgut einwirken läßt .
8. Verfahren zur Desikkation und/oder Defoliation von Pflanzen, dadurch gekennzeichnet, daß man eine desikkant und/oder defoliant wirksame Menge mindestens eines l-Sulfonyl-3-phe- nylpyrazols der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, auf Pflanzen ein- wirken läßt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß man Baumwolle behandelt.
10. Verfahren zur Herstellung von 1-Sulfonyl-3-phenyIpyrazolen 5 der Formel I, gemäß Anspruch 1, bei denen R3 Halogen bedeutet, dadurch gekennzeichnet, daß man die entsprechenden 1- Sulfonyl-3-phenylpyrazole I mit R3 = Wasserstoff halogeniert.
11. Verfahren zur Herstellung von l-Sulfonyl-3-phenylpyrazolen 10 der Formel I, gemäß Anspruch 1, dadurch gekennzeichnet, daß man ein Phenylpyrazol der Formel II
Figure imgf000076_0001
20 wobei der Kreis im Pyrazolring für zwei Doppelbindungen steht, in Gegenwart einer Base mit einem Sulfonsäurederivat
L-SO2-R1 (Formel III), wobei L für eine übliche Abgangsgruppe steht, umsetzt.
25 12. Verfahren zur Herstellung von PhenyIpyrazolen der Formel II gemäß Anspruch 11, bei denen R3 für Halogen steht, dadurch gekennzeichnet, daß man die entsprechenden Verbindungen II mit R3 = Wasserstoff halogeniert.
30
35
40
45 1-Sulfonyl-3-phenylpyrazole
Zusammenfassung
l-Sulfonyl-3-phenylpyrazole der Formel I und deren Salze
Figure imgf000077_0001
wobei
R1 = C1-C4 -Alkyl, Cι-C4-Halogenalkyl;
R2 = Cι-C4-Alkyl, Cι-C4-Halogenalkyl;
R3 = H, CN, Halogen, Cι-C4-Alkyl; R4 = H, Halogen;
R5 = H, CN, NO2, Halogen, Cι-C4-Alkyl, Cι-C4-Halogenalkyl,
Cι~C4-Alkoxy, Cι-C4-Halogenalkoxy;
X = chemische Bindung, geg. subst. Methylen-, Ethylen-,
Propan-1, 3-diyl-, Ethen-l,2-diyl- oder über das Heteroatom an den Phenylring gebundene Oxymethylen- oder Thia- methylen-Kette;
R6 = H, N02, CN, Halogen, S02-Halogen, -O-Y-R8, -O-CO-Y-R8,
-N(Y-R8) (Z-R9) , -N(Y-R8)-S02-Z-R9, -N(S02-Y-R8) (S02-Z-R9) , -N(Y-R8)-CO-Z-R9, -N (Y-R8) (O-Z-R9) , -S-Y-R8, -SO-Z-R8, -SO2-Y-R8, -SO2-O-Y-R8, -S02-N(Y-R8) (Z-R9) , -CO-Y-R8, -C(=NOR10)-Y-R8, -(=NOR10) -O-Y-R8, -CO-O-Y-R8,
-CO-S-Y-R8, -CO-N (Y-R8) (Z-R9) , -CO-N (Y-R8) (O-Z-R9) , -PO (O-Y-R8) 2;
R7 = H,
oder R5 + XR6 oder XR6 + R7 zusammen mit den sie verbindenden C-
Ato en des Phenylrings = anneliierter, geg. subst. carbo- cyclischer oder 5-/6gliedriger heterocyclischer Ring mit 1 - 3 Heteroatomen, wobei der Cyclus auch 1 oder 2 CO- , CS- oder S02-Ringglieder enthalten kann; Y, Z = chemische Bindung, geg. subst. Methylen- oder Ethylen- Kette;
R8,R9 = H, Ci-Cε-Halogenalkyl, C2-C6-Alkenyl , C2-C6-Halogenalke- nyl, C2-C6-Alkinyl, C2-C6-Halogenalkinyl, -CH (R11 ) (R12) , -C(R ) (R2)-N02, -C(R ) (R12)-CN, -C (R11 ) (R12 ) -Halogen, -C(RU) (R12)-0R13, -C(R ) (R12)-N(R13)R14, -C(R ) (R12)-N(R13)-0R14, -C(RU) (R12)-SR13, -C(R ) (R12)-S0-R13, -CfR11) (R12)-S02-R13, -C(R1J) (R12)-S02-0R13, -C(Rn) (R12)-S02-N(R3)R14,
-C(R ) (R1 )-CO-R13, -C(Rll) (R2)-C(=NOR15)-R13, -CfR11) (R12)-CO-OR13, -CtR11) (R12)-CO-SR13, -C(Rn) (R1 )-CO-N(R13)R14, -CtR11) (R12) -CO-N(R13 ) -OR14 , -C(Rn) (R12)-PO(OR13)2, geg. subst. C3-C8-Cycloalkyl, das ein CO- oder CS-Ringglied enthalten kann, Phenyl oder 3- bis 7gliedriges Heterocyclyl, das ein CO- oder CS-Ringglied enthalten kann;
R10 = H, Cι-C6-Alkyl, Cι-C6-Halogenalkyl , C2-C6-Alkenyl , C2-C6-Halogenalkenyl, C2-Ce-Alkinyl, C2-Cg-Halogenalkinyl, C3-C8-Cycloalkyl, Phenyl, Phenyl-Cι-C4-alkyl;
Rn,R12 = H, Cι-C4-Alkyl, Ci^-Alkoxy-^^-alkyl , Cι-C4-Alkyl- thio-Cι-C4-alkyl, (Cι-C4-Alkoxy)carbonyl-Cι-C4-alkyl oder geg. subst. Phenyl-Cι~C-alkyl;
R13,R14 =H, Ci-Ce-Alkyl, Cι-C6-Halogenalkyl, C2-C6-Alkenyl,
C2 _C6-Halogenalkenyl, C2-Ce-Alkinyl, C2-C6-Halogenalkinyl, geg. subst. C3-Ce-Cycloalkyl, C3-C8-Cycloalkyl-Cι-C4-al- kyl, Phenyl, Phenyl-Cι-C4-alkyl, 3- bis 7-gliedriges
Heterocyclyl oder Heterocyclyl-Cι-C4-alkyl, wobei jeder Cycloalkyl-/Heterocyclyl-Ring ein CO- oder CS-Ringglied enthalten kann,
R15 = H, Ci-Ce-Alkyl, Cι-C6-Halogenalkyl, C2-C6-Alkenyl,
C2-C6-Halogenalkenyl, C2-C6-Alkinyl, C2-C6-Halogenalkinyl, C3-C8-Cycloalkyl, Phenyl, Phenyl-Cι-C4-alkyl.
Verwendung: als Herbizide; zur Desikkation/Defoliation von Pflanzen.
PCT/EP1997/004911 1996-09-19 1997-09-09 1-sulfonyl-3-phenylpyrazole und ihre verwendung als herbizide und zur desikkation/defoliation von pflanzen WO1998012182A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/254,923 US6054413A (en) 1996-09-19 1997-09-09 1-sulfonyl-3-phenylpyrazoles and their use as herbicides and for desiccating or defoliating plants
CA002266392A CA2266392A1 (en) 1996-09-19 1997-09-09 1-sulfonyl-3-phenylpyrazoles and their use as herbicides and for desiccating or defoliating plants
AU43836/97A AU4383697A (en) 1996-09-19 1997-09-09 1-sulfonyl-3-phenylpyrazoles and their use as herbicides and for desiccating or defoliating plants
EP97942003A EP0931072A1 (de) 1996-09-19 1997-09-09 1-sulfonyl-3-phenylpyrazole und ihre verwendung als herbizide und zur desikkation/defoliation von pflanzen
JP51425298A JP2001506581A (ja) 1996-09-19 1997-09-09 1―スルホニル―3―フェニルピラゾール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19638234 1996-09-19
DE19638234.3 1996-09-19

Publications (1)

Publication Number Publication Date
WO1998012182A1 true WO1998012182A1 (de) 1998-03-26

Family

ID=7806127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/004911 WO1998012182A1 (de) 1996-09-19 1997-09-09 1-sulfonyl-3-phenylpyrazole und ihre verwendung als herbizide und zur desikkation/defoliation von pflanzen

Country Status (8)

Country Link
US (1) US6054413A (de)
EP (1) EP0931072A1 (de)
JP (1) JP2001506581A (de)
AR (1) AR008466A1 (de)
AU (1) AU4383697A (de)
CA (1) CA2266392A1 (de)
WO (1) WO1998012182A1 (de)
ZA (1) ZA978397B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059990A1 (en) * 1998-05-20 1999-11-25 Novartis Ag Pyridyl-pyrazole derivatives, process for their preparation, and their use as herbicides
CN106715401A (zh) * 2014-07-24 2017-05-24 拜耳作物科学股份公司 杀真菌的吡唑衍生物
EP3868193A4 (de) * 2018-10-18 2022-07-13 Sumitomo Chemical Company, Limited Phenylpyrazolverbindung und verfahren zur bekämpfung von pflanzenkrankheiten
CN115484825A (zh) * 2020-04-22 2022-12-16 住友化学株式会社 苯基化合物及植物病害防除方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923012A (zh) * 2014-04-29 2014-07-16 南京工业大学 一种4-氯吡唑衍生物的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0230110A1 (de) * 1985-11-30 1987-07-29 FISONS plc Pharmakologisch aktive Pyrrol- und Pyrazolderivate
EP0362606A1 (de) * 1988-10-01 1990-04-11 Bayer Ag Substituierte Phenoxyphenylsulfonylazole, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Herbizide und Pflanzenwuchsregulatoren
WO1992002509A1 (en) * 1990-08-06 1992-02-20 Monsanto Company Herbicidal substituted aryl alkylsulfonyl pyrazoles
US5281571A (en) * 1990-10-18 1994-01-25 Monsanto Company Herbicidal benzoxazinone- and benzothiazinone-substituted pyrazoles
WO1996002515A1 (en) * 1994-07-20 1996-02-01 Monsanto Company Heterocyclic- and carbocyclic-substituted benzoic acids and synthesis thereof
US5510320A (en) * 1991-10-29 1996-04-23 E. I. Du Pont De Nemours And Company Herbicidal triazolecarboxamides

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207070A (en) * 1978-10-10 1980-06-10 Fmc Corporation Peroxygen bleaching and compositions therefor
FR2682379B1 (fr) * 1991-10-09 1994-02-11 Rhone Poulenc Agrochimie Nouveaux phenylpyrazoles fongicides.
CA2233214A1 (en) * 1995-10-26 1997-05-01 Basf Aktiengesellschaft Substituted 4,5-di(trifluoromethyl)pyrazoles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0230110A1 (de) * 1985-11-30 1987-07-29 FISONS plc Pharmakologisch aktive Pyrrol- und Pyrazolderivate
EP0362606A1 (de) * 1988-10-01 1990-04-11 Bayer Ag Substituierte Phenoxyphenylsulfonylazole, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Herbizide und Pflanzenwuchsregulatoren
WO1992002509A1 (en) * 1990-08-06 1992-02-20 Monsanto Company Herbicidal substituted aryl alkylsulfonyl pyrazoles
US5281571A (en) * 1990-10-18 1994-01-25 Monsanto Company Herbicidal benzoxazinone- and benzothiazinone-substituted pyrazoles
US5510320A (en) * 1991-10-29 1996-04-23 E. I. Du Pont De Nemours And Company Herbicidal triazolecarboxamides
WO1996002515A1 (en) * 1994-07-20 1996-02-01 Monsanto Company Heterocyclic- and carbocyclic-substituted benzoic acids and synthesis thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BARLUENGA J ET AL: "Synthesis of Halogenated Hydrazone Derivatives and Their Applicability in the Preparation of 4-Chloropyrazoles", JOURNAL OF HETEROCYCLIC CHEMISTRY., vol. 23, no. 2, 1986, PROVO US, pages 459 - 461, XP002049312 *
PEGLION J-L ET AL: "Réactivité comparée des F-alkylpyrazoles et de leurs homologues hydrocarbonés. I. Bromation et nitration", BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE. 2 PARTIE - CHIMIE ORGANIQUE, BIOCHIMIE., no. 3-4, 1982, PARIS FR, pages 89 - 94, XP002049311 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059990A1 (en) * 1998-05-20 1999-11-25 Novartis Ag Pyridyl-pyrazole derivatives, process for their preparation, and their use as herbicides
CN106715401A (zh) * 2014-07-24 2017-05-24 拜耳作物科学股份公司 杀真菌的吡唑衍生物
EP3868193A4 (de) * 2018-10-18 2022-07-13 Sumitomo Chemical Company, Limited Phenylpyrazolverbindung und verfahren zur bekämpfung von pflanzenkrankheiten
CN115484825A (zh) * 2020-04-22 2022-12-16 住友化学株式会社 苯基化合物及植物病害防除方法

Also Published As

Publication number Publication date
AU4383697A (en) 1998-04-14
AR008466A1 (es) 2000-01-19
JP2001506581A (ja) 2001-05-22
US6054413A (en) 2000-04-25
CA2266392A1 (en) 1998-03-26
ZA978397B (en) 1999-03-16
EP0931072A1 (de) 1999-07-28

Similar Documents

Publication Publication Date Title
EP1556346A1 (de) 1-phenylpyrrolidin-2-on-3-carboxamide
EP1335903A1 (de) 2-aryl-5-trifluormethylpyridine
EP1047693A1 (de) Herbizide 3-(benzazol-4-yl)pyrimidindion-derivate
EP0944623B1 (de) Substituierte pyrazol-3-ylbenzazole
WO1996021646A1 (de) Substituierte 2-phenylpyridine als herbizide
WO1998012182A1 (de) 1-sulfonyl-3-phenylpyrazole und ihre verwendung als herbizide und zur desikkation/defoliation von pflanzen
WO2001068644A1 (de) Verfahren zur herstellung von 7-(pyrazol-3-yl)benzoxazolen
EP1076660B1 (de) Substituierte (4-brompyrazol-3-yl)benzazole
EP0915853B1 (de) Substituierte 3-phenylpyrazole
WO2002006233A1 (de) 1-aryl-4-halogenalkyl-2(1h)-pyridone und ihre verwendung als herbizide
WO1997015559A1 (de) Substituierte 4,5-di(trifluormethyl)pyrazole und ihre verwendung als herbizide und zur desikkation/defoliation von pflanzen
WO1999007702A1 (de) Substituierte herbizide tetrazolinoncarbonsäureamide
EP0836593B1 (de) 5-pyrazolylbenzosäure-derivate als herbizide
EP0879239A1 (de) Substituierte aromatische phosphonsäurederivate
EP0998472A1 (de) Substituierte 2-(benzaryl)pyridine
DE19645313A1 (de) Substituierte 3-Benzylpyrazole
EP0880531B1 (de) Substituierte 2-phenylpyridine
WO2001087863A1 (de) 3-arylisothiazole und ihre verwendung als herbizide
WO2001049668A2 (de) 4-aryl-1-difluormethoxyimidazole und deren verwendung als herbizide
MXPA99005530A (en) Substituted pyrazole-3-yl benzazoles
WO2001019820A1 (de) Substituierte pyrazol-3-ylbenzoxazinone

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BG BR BY CA CN CZ GE HU IL JP KE KR KZ LT LV MX NO NZ PL RO RU SG SI SK TR UA US UZ VN AM AZ BY KG KZ MD RU TJ TM GH

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997942003

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2266392

Country of ref document: CA

Ref country code: CA

Ref document number: 2266392

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09254923

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 514252

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997942003

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997942003

Country of ref document: EP