WO1998008536A2 - Methode de reduction de la gravite d'une reaction de l'hote contre le greffon par regulation negative de l'autoimmunite vis-a-vis de hsp60 - Google Patents

Methode de reduction de la gravite d'une reaction de l'hote contre le greffon par regulation negative de l'autoimmunite vis-a-vis de hsp60 Download PDF

Info

Publication number
WO1998008536A2
WO1998008536A2 PCT/US1997/015294 US9715294W WO9808536A2 WO 1998008536 A2 WO1998008536 A2 WO 1998008536A2 US 9715294 W US9715294 W US 9715294W WO 9808536 A2 WO9808536 A2 WO 9808536A2
Authority
WO
WIPO (PCT)
Prior art keywords
hsp60
residues
seq
peptides
autoimmunity
Prior art date
Application number
PCT/US1997/015294
Other languages
English (en)
Other versions
WO1998008536A9 (fr
WO1998008536A3 (fr
Inventor
Irun R. Cohen
Ohad Birk
Original Assignee
Yeda Research And Development Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP51198498A priority Critical patent/JP4256474B2/ja
Priority to DK97940708T priority patent/DK0921810T3/da
Priority to AT97940708T priority patent/ATE237344T1/de
Priority to DE69721007T priority patent/DE69721007T2/de
Priority to EP97940708A priority patent/EP0921810B1/fr
Priority to IL12872897A priority patent/IL128728A0/xx
Application filed by Yeda Research And Development Co. Ltd. filed Critical Yeda Research And Development Co. Ltd.
Priority to AU42426/97A priority patent/AU722576B2/en
Priority to CA002263816A priority patent/CA2263816C/fr
Publication of WO1998008536A2 publication Critical patent/WO1998008536A2/fr
Publication of WO1998008536A3 publication Critical patent/WO1998008536A3/fr
Publication of WO1998008536A9 publication Critical patent/WO1998008536A9/fr
Priority to IL128728A priority patent/IL128728A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • G01N33/505Cells of the immune system involving T-cells

Definitions

  • the present invention relates to a method of reducing the severity of host vs graft reaction (HVGR) by down- regulating autoimmunity to heat shock protein hsp60.
  • HVGR host vs graft reaction
  • the present invention relates to the use of hsp60 protein or hsp60 epitope peptides to suppress graft rejection by down- regulating hsp60 autoimmunity.
  • Autoimmune disorders e.g., insulin-dependent diabetes mellitus (IDDM or type I diabetes) , multiple sclerosis, rheumatoid arthritis and thyroiditis, are characterized by reactivity of the immune system to an endogenous antigen, with consequent injury to tissues. These immune responses to self -antigens are maintained by the persistent activation of self -reactive T lymphocytes.
  • IDDM insulin-dependent diabetes mellitus
  • multiple sclerosis rheumatoid arthritis
  • thyroiditis characterized by reactivity of the immune system to an endogenous antigen, with consequent injury to tissues.
  • These immune responses to self -antigens are maintained by the persistent activation of self -reactive T lymphocytes.
  • the 60 kDa heat shock protein (hsp60) is a stress protein expressible in all of the cells of the body. Nevertheless, healthy individuals manifest a high frequency of autoimmune T cells specific for hsp60 self -epitopes .
  • Normal healthy mice and human beings have been shown to have T cells targeted at their self hsp60 antigen (Kaufmann, 1990; Kaufmann et al., 1994; Young, 1989; Cohen, 1992b).
  • these autoimmune T cells are also involved in T cell mediated autoimmune diseases: a high concentration of T cells targeted at self hsp60 antigen have been found in the autoimmune lesions of human chronic arthritis (Cohen, 1991; Res et al . , 1989; van Eden et al .
  • Anti-hsp60 T- cells have also been shown to play a role in diabetes mellitus in the non- obese diabetic (NOD) mouse model (Elias et al . , 1990; Elias et al . , 1991; Elias et al . , 1994; Elias et al . , 1995; Birk et al . , 1996a; Birk et al . , 1993; Cohen, 1991) .
  • NOD non- obese diabetic
  • NOD mice spontaneously develop type I diabetes caused by autoimmune T cells that attack the insulin-producing ⁇ cells of the islets.
  • the autoimmune attack is associated with T-cell reactivity to a variety of self -antigens including a peptide of the 60kDa heat shock protein (hsp60) and peptides of glutamic acid decarboxylase (GAD) .
  • hsp60 60kDa heat shock protein
  • GAD glutamic acid decarboxylase
  • spontaneous diabetes developing in the NOD/ t strain of mice could be treated with hsp60 (U.S. patent 5,114,844) or with antigenic fragments thereof, such as the peptide designated p277 corresponding to positions 437-460 of the human hsp60 sequence (PCT Patent Publication No.
  • variants of the p277 peptide in which one or both cysteine residues at positions 6 and/or 11 have been replaced by valine and/or the Thr residue at position 16 is replaced by Lys see PCT Publication 096/19236) ; or various other peptides such as those designated pl2 and p32, corresponding to positions 166-185 and 466-485, respectively, of the human hsp60 sequence (see PCT application PCT/US96/11375) .
  • the hsp60 protein was formerly designated hsp65 but is now designated hsp60 in view of more accurate molecular weight information; by either designation the proteins are the same.
  • Immunization to hsp60 or peptide p277 in an appropriate adjuvant is known to induce IDDM (WO90/10449) when the immunization triggers a TH1 response.
  • vaccination with hsp60 or peptide p277 without an effective adjuvant, and preferably with a tolerogenic carrier or, more preferably, with a TH2- inducing active carrier can produce a resistance to the autoimmune process of IDDM.
  • Subcutaneous administration of p277 in incomplete Freund adjuvant (IFA; mineral oil) led to the arrest of disease progression in young NOD mice (Elias et al . , 1991) or in 12-17 week old NOD mice with advanced insulitis (Elias et al .
  • mice transgenic for the mouse hsp60 gene on an MHC class II promoter showed down- regulation of their spontaneous T-cell proliferative response to p277 and a significant proportion of the mice were spared the development of diabetes (Birk et al . , 1996b) .
  • TH2- inducing active carriers for use in the administration of such hsp60 fragments are certain fat emulsions, such as Intralipid or ipofundin (see PCT/US96/11373) .
  • T cells reactive to hsp60 and other hsp molecules have been isolated from cardiac allografts (Moliterno et al . , 1995) as well as from other inflammatory lesions (Selmaj et al . , 1991; Mor et al . , 1992).
  • anti- hsp60 autoimmune T cells accumulate at sites of inflammation.
  • Donor- specific alloreactive T lymphocytes exhibiting such characteristics as cytolytic activity and lymphokine production are believed to mediate transplant rejection where hsp- reactive T cells may play a role in the immune cascade of the inflammatory process in transplant rejection (Moliterno et al. , 1995) .
  • T cells of the CD4 "helper" type have been divided into two groups, TH1 and TH2 , by the characteristic cytokines they secrete when activated (Mosmann et al , 1989).
  • TH1 cells secrete IL-2, which induces T cell proliferation, and cytokines such as IFN- ⁇ , which mediate tissue inflammation.
  • TH2 cells secrete IL-4 and IL-10.
  • IL-4 helps T cells secrete antibodies of certain IgG isotypes and suppresses the production of THl inflammatory cytokines (Abas et al . , 1994).
  • IL-10 indirectly inhibits THl activation by affecting antigen-presentation and inflammatory cytokine production by macrophages (Moore et al . , 1993). It is the THl cells which contribute to the pathogenesis of organ- specific autoimmune diseases. THl-type responses also appear to be involved in other T cell mediated diseases or conditions, such as contact dermatitis (Romagnani, 1994) .
  • a disease with a spectrum of autoreactivities can be turned off with a single peptide capable of inducing a T cell cytokine shift.
  • HVGR host vs graft rejection
  • Nonspecific immunosuppressive therapy in an adult patient is usually through cyclosporin, started intravenously at the time of transplantation, and given orally once feeding is tolerated. Typically, methylprednisone is started also at the time of transplantation, then reduced to a maintenance dose. Azathioprine is also often used in conjunction with prednisone to achieve adequate immunosuppression. Whereas the objective of immunosuppression is to protect the transplant, general or excessive immunosuppression may lead to undesirable complications, e.g., opportunistic infections and potential malignancies. The toxicity of the immunosuppressive drugs is dose-dependent .
  • the present invention relates to the discovery that when the heat shock protein hsp60, or peptides and analogs thereof, are administered in a recipient subject before transplantation of organ or tissue, autoimmunity to hsp60 is down- regulated, resulting in the prevention or suppression of graft rejection of the transplanted organ or tissue.
  • mice In experiments on whether hsp60 autoimmunity, observed in autoimmune disease, was involved in transplant rejection, the laboratory of the present inventors demonstrated that expression of hsp60 is up- regulated in donor skin during rejection.
  • the rejection of foreign skin grafts in mice was further investigated and it was observed that transgenic skin grafts hyper- expressing self-hsp60 underwent accelerated rejection by normal mice when the grafts also bore either major or minor foreign histocompatibility antigens.
  • recipient mice constitutively hyper- express self-hsp60 they not only showed depressed hsp60 autoimmunity but also showed delayed rejection of foreign skin grafts.
  • Transplant recipients can be made to tolerate foreign grafts when their hsp60 autoimmunity is reduced by prior administration of hsp60 or hsp60 peptides and peptide analogs.
  • the present inventors have made the surprising discovery that autoimmunity can regulate foreign immunity.
  • hsp60 autoimmunity is enhanced, foreign immunity and graft rejection is also enhanced; when hsp60 autoimmunity is reduced or down- regulated, foreign immunity and graft rejection is suppressed or prevented.
  • the present invention involves a method of suppressing or preventing graft rejection by treating a transplant recipient subject so as to cause a down- regulation of hsp60 autoimmunity in the transplant recipient either prior to the transplantation of organ or tissue, simultaneous therewith or shortly thereafter, preferably immediately prior thereto.
  • the hsp60 autoimmunity can be down- regulated in any known manner and preferably by the means already known for the down- regulation of hsp60 autoimmunity in the treatment of IDDM.
  • the down- regulation can be accomplished by administering a pharmaceutical composition which includes a compound capable of down- regulating hsp60 autoimmunity such as hsp60 or a peptide fragment of hsp60 or an analog salt or functional derivative thereof.
  • a pharmaceutical composition which includes a compound capable of down- regulating hsp60 autoimmunity such as hsp60 or a peptide fragment of hsp60 or an analog salt or functional derivative thereof.
  • Examples of such compounds are human hsp60 (SEQ ID NO:l) and the following amino acid residues from SEQ ID N0:1: residues 31-50, residues 136-155, residues 151-170, residues 166-185, residues 195-214, residues 255-274, residues 286-305, residues 346-365; residues 421-440, residues 436-455, residues 437-460, residues 466-485, residues 511-530, residues 343-366, and residues 458-474.
  • Examples of analogs which may be used include the peptides of SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO : 4 , SEQ ID NO : 5 , SEQ ID NO: 6, SEQ ID NO: 7 and SEQ ID NO: 8.
  • the compound is preferably administered in a tolerogenic carrier such as incomplete Freund's adjuvant or in a biologically active carrier which helps to induce a TH1 ⁇ TH2 shift, such as a fat emulsion comprising 10% -20% triglycerides of plant and/or animal origin; 1.2% -2.4% phospholipids of plant and/or animal origin; 2.25%-4.5% osmo- regulator; 0%-0.05% antioxidant; and sterile water.
  • a tolerogenic carrier such as incomplete Freund's adjuvant or in a biologically active carrier which helps to induce a TH1 ⁇ TH2 shift
  • a fat emulsion comprising 10% -20% triglycerides of plant and/or animal origin; 1.2%
  • the present invention further relates to a means for selecting an optimum hsp60 peptide or analog for down- regulating hsp60 autoimmunity in the specific individual to be treated.
  • Antigen-presenting cells of peripheral blood lymphocytes isolated from the blood of the individual may be contacted with a panel of individual peptides.
  • the peptide having the optimum effect on hsp60 immunity as a result of this screen would be selected as the optimum antigen for the vaccine to be used with this particular individual to prevent graft rejection.
  • Hsp60, hsp60 peptides, and analogs, salts and functional derivatives thereof may be used for the preparation of a pharmaceutical composition for down- regulating hsp60 autoimmunity in a host and for down- regulating the severity of host vs graft reaction in organ transplantation.
  • BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows the expression of hsp60 in mouse skin. Lanes 1-4 each show hsp60 expression during rejection of BALB/c (H-2 d ) skin removed 10 days after transplantation to allogeneic NOD (H-2 g7 ) mice.
  • Lanes 5-8 show the expression of hsp60 in BALB/c skin transplanted 10 days earlier to syngeneic BALB/c mice.
  • Lane 9 shows the spontaneous expression of hsp60 in untransplanted E ⁇ -hsp60 transgenic NOD skin.
  • Lane 10 shows the expression of hsp60 in untransplanted wild type NOD skin.
  • Figures 2A-F show that the expression of hsp60 affects allogeneic skin rejection as measured by graft survival over time. Statistical analysis of skin graft survival was done using the Wilcoxon test.
  • Fig. 2A shows that E ⁇ ;-hsp60 transgenic skin is not rejected when transplanted to wild type NOD mice and Fig.
  • FIG. 2B shows that E ⁇ -hsp60 transgenic mice do not reject wild type skin.
  • Fig. 2C shows the accelerated rejection (p ⁇ 0.0001) of E ⁇ ;-hsp60 transgenic NOD skin (diamonds) compared to wild type NOD skin transplanted to BALB/c mice (squares) .
  • Fig. 2D shows the accelerated rejection (p ⁇ 0.038) of E ⁇ -hsp60 transgenic male NOD skin transplanted to HY incompatible, wild- type female NOD mice.
  • Figures 3A-B show that treatment with hsp60 or hsp60 peptides induces delayed rejection of skin allografts as measured by graft survival over time.
  • Figures 3A and 3B show the effects of treating C57BL6 (H-2 b ) mice (Fig. 3A) or wild-type NOD (H-2 g7 ) mice (Fig. 3B) with hsp60 (50 ⁇ g in incomplete Freunds adjuvant; Sigma) administered subcutaneously in the back 2 weeks before transplantation of BALB/c (H-2 d ) skin (Elias et al., 1994; Elias et al . , 1995).
  • Recombinant human hsp60 was prepared as described (Elias et al . , 1990). Control mice were untreated (open squares) or treated with incomplete Freund's adjuvant containing 50 ⁇ g of recombinant glutathione transferase (open diamonds) . The differences in rejection between treatment with hsp60 (closed squares) , and the controls, as determined using the Wilcoxon test, were significant (p ⁇ 0.05 for Fig. 3A and p ⁇ 0.0001 for Fig. 3B) .
  • Figure 4 shows that treatment with hsp60 peptides induces delayed rejection of skin allografts.
  • Wild- type NOD (H-2 g7 ) mice were treated with various hsp60 peptides in incomplete Freund's adjuvant.
  • Peptides of the mouse hsp60 sequence were synthesized and purified as described (Elias et al 1991) .
  • sequence of peptide pll is Val-Ile-Ala-Glu-Leu- Lys- ys -Gin-Ser-Lys- Pro-Val -Thr-Thr- Pro-Glu-Glu-lie-Ala-Gin (SEQ ID NO: 11) and that of peptide pl2 is Glu-Glu- Ile-Ala-Gln- Val-Ala-Thr-Ile-Ser-Ala-Asn-Gly-Asp-Lys-Asp-Ile-Gly-Asn-Ile (SEQ ID NO: 9) .
  • Peptide p277 is the V- substituted human p277 peptide Val-Leu-Gly-Gly-Gly-Val-Ala-Leu-Leu-Arg-Val-Ile-Pro- Ala-Leu-Asp-Ser-Leu-Thr-Pro-Ala-Asn-Glu-Asp (SEQ ID NO: 7) previously described (Elias et al 1991) and shown to be cross- reactive with the mouse p277 homolog (Birk et al 1996a) . Control mice were untreated (open square) or were treated with incomplete Freund's adjuvant containing 50 ⁇ g of peptide pll, a control non- immunogenic hsp60 peptide (closed diamond).
  • the present invention is based on the discovery that hsp60 autoimmunity functions as an accelerator of foreign immunity and the further discovery that down- regulation of hsp60 autoimmunity suppresses or prevents the graft rejection reaction. Accordingly, the process in accordance with the present invention reduces the vigor of the host vs graft reaction (HVGR) and permits a reduction in the doses of immunosuppressive drugs, such as cyclosporin and prednisone, needed to maintain the graft.
  • the therapy of the present invention is preferably administered concomitantly with the immunosuppressive drug treatment, but the doses of the drugs will be much lower and cause fewer side effects.
  • hsp60 autoimmunity Down- regulation of hsp60 autoimmunity is already well known for other indications such as the prevention or treatment of IDDM or incipient IDDM.
  • Such techniques are known to include administration of hsp60, peptides of the hsp60 molecule or variants thereof with a tolerogenic carrier in order to create tolerance for hsp60 and thus down- regulate the hsp60 autoimmune attack or with a biologically active carrier which mediates a TH1-*TH2 shift.
  • hsp60 autoimmunity can be down- regulated whenever a shift is caused from hsp60 T cells which are predominantly of the THl type to hsp60 T cells which are predominantly of the TH2 type.
  • a biologically active carrier in such a vaccine which causes or mediates such a TH1 ⁇ TH2 shift is preferred for accomplishing such hsp60 autoimmunity down- regulation.
  • Another method known in the art for down- regulating hsp60 autoimmunity involves the activation of autologous T cells ex vivo against hsp60 or peptides or variants thereof and then re-administering them to the host so as to cause an immune response to be mounted against said T cells so as to quell autoimmune anti-hsp60 T cells and thereby down- regulate hsp60 autoimmunity. See allowed U.S. application no. 08/151,052, the entire contents of which are hereby incorporated by reference.
  • the present invention is not directed, per se, to such methods of down- regulating hsp60 autoimmunity.
  • the present invention is drawn to the discovery that such down- egulation, when administered to transplant recipients, will prevent or suppress graft rejection. Accordingly, any technique which causes hsp60 autoimmunity down- regulation, when used on transplant recipients, either immediately prior to, simultaneous with or shortly after transplantation, is intended to be encompassed by the present invention.
  • One preferred method of causing down- regulation of hsp60 autoimmunity is the administration of hsp60 protein or hsp60 peptides or variants as an immunological agent with a tolerogenic or biologically active carrier.
  • the human hsp60 protein sequence is SEQ ID NO:l, and Table 1 lists peptides and peptide analogs of hsp60 that will down- regulate hsp60 autoimmunity. These peptides and analogs have been shown to be useful in preventing or treating the autoimmune process of insulin-dependent diabetes mellitus (IDDM) (see
  • hsp60 protein and the hsp60 peptides identified in Table 1 are non- limiting examples of immunological agents that can be administered as part of a pharmaceutical composition to down- regulate hsp60 autoimmunity and graft rejection.
  • the selection of the protein or peptide immunological agent that may most optimally be used for an individual transplant recipient is discussed later in this section.
  • mouse pl2 and mouse p38 peptides are derived from the mouse hsp60 protein and correspond to residues 168-188 and 556-573, respectively, of mouse hsp60.
  • hsp60 protein or hsp60 peptides used as immunological agent in the pharmaceutical composition administered to prevent or suppress graft rejection are intended to encompass salts and functional derivatives thereof, as well as hsp60 peptide analogs, such as those exemplified for peptide p277 in Table 1, as long as the biological activity of the protein or peptide with respect to down- regulating hsp60 autoimmunity is maintained.
  • variants of hsp60 peptide p277 herein referred to as "peptide analogs", where the sole threonine residue was replaced by a lysine residue and/or one or both of the cysteine residues were replaced by valine residue (s), were previously found in the laboratory of the present inventors to be equally as active as p277 in down- regulating hsp60 autoimmunity as a treatment for IDDM. These same peptide analogs are expected to down- regulate hsp60 autoimmunity when administered to prevent or suppress graft rejection following organ or tissue transplant.
  • Salts of the hsp60 peptides of the invention contemplated by the invention are physiologically acceptable organic and inorganic salts.
  • “Functional derivatives" of the hsp60 peptides as used herein covers derivatives which may be prepared from the functional groups which occur as side chains on the residues or the N- or C- terminal groups, by means known in the art, and are included in the invention as long as they remain pharmaceutically acceptable, i.e., they do not destroy the activity of the peptide, do not confer toxic properties on compositions containing it and do not adversely affect the antigenic properties thereof.
  • These derivatives may, for example, include aliphatic esters of the carboxyl groups, amides of the carboxyl groups produced by reaction with ammonia or with primary or secondary amines, N-acyl derivatives of free amino groups of the amino acid residues formed by reaction with acyl moieties (e.g., alkanoyl or carbocyclic aroyl groups) or 0- acyl derivatives of free hydroxyl group (for examples that of seryl or threonyl residues) formed by reaction with acyl moieties .
  • acyl moieties e.g., alkanoyl or carbocyclic aroyl groups
  • 0- acyl derivatives of free hydroxyl group for examples that of seryl or threonyl residues formed by reaction with acyl moieties .
  • the hsp60 autoimmunity down- regulation treatment is preferably administered immediately prior to the transplant operation.
  • immediate prior is intended to comprehend a period of time during which the down- regulation of hsp60 autoimmunity accomplished by such treatment still remains in the host, preferably at a time such that the optimal down- egulation coincides with the time of the transplant.
  • the hsp60 autoimmunity down- regulation treatment may also be administered simultaneously with the transplant or shortly thereafter.
  • shortly thereafter is intended to include a time period such that the hsp60 autoimmune down- regulation occurs prior to the onset of substantial graft rejection.
  • administration of the pharmaceutical composition containing hsp60, hsp60 peptides, or analogs thereof, as immunologically active agents to down- regulate hsp60 autoimmunity in a recipient can be through various routes known in the art, such as orally, intranasally, intravenously, intramuscularly, or subcutaneously .
  • Preferred modes of administration are intravenously, which is known to induce tolerance, or orally or intranasally, which are known to induce a THl ⁇ TH2 shift. See Wraith et al . , 1995; Metzler et al., 1996; Metzler et al . , 1995; Tian et al .
  • the preferred dosage of the hsp60 protein, or peptides and analogs thereof is in the range of about 100 ⁇ g to 25-30 mg prior to transplantation of organ or tissue.
  • Optimum dosages and regimens can be determined by those of skill in the art by measuring for a shift from THl cytokine response to a TH2 cytokine response.
  • hsp60 immunological agents prior to transplantation, depending on the level of down- regulation of hsp60 autoimmunity, further administration of hsp60 protein, or peptides or analogs thereof, may be given after transplantation to further reduce or down- regulate the level of hsp60 autoimmunity.
  • vaccination with T cells specific to the hsp60 immunological agents and which have been activated in vi tro by contact with the hsp60 immunological agents can will also down- regulate hsp60 autoimmunity and suppress graft rejection after transplantation.
  • the administration of the hsp60 immunological agents is preferably concomitant with the administration of conventional immunosuppressive therapy, although the reduction in the severity of the HVGR will permit a reduction in the dose of the conventional immunosuppressive drugs, such as cyclosporin and prednisone.
  • hsp60 autoimmunity was found to be regulated by hsp60 autoimmunity and the suppression or prevention of hsp60 autoimmunity following organ or tissue transplantation is not associated with T cell tolerance or anergy, but rather is associated with a shift in the cytokines produced by autoimmune T cells reactive to hsp60 or hsp60 peptides from a THl- like profile (producing IL-2, IFN ⁇ ) to a TH2-like profile (IL-4, IL-10) .
  • hsp60 protein or hsp60 peptide administration with a switch in reactivity to these immunological agents from T-cell proliferation to antibodies indicates that the protective effect results from a shift in the predominant cytokines produced by the autoimmune T cells in the treated subject.
  • THl cells secrete IL-2, which induces T-cell proliferation, and cytokines such as IFN-7, which mediate tissue inflammation, thereby contributing to the inflammatory response against transplanted organs or tissues; TH2 cells, in contrast, secrete IL-4 and IL-10.
  • IL-4 helps B cells secrete antibodies of certain IgG isotypes and suppresses the production of THl inflammatory cytokines.
  • IL- 10 indirectly inhibits THl activation by affecting antigen- presentation and inflammatory cytokine production by macrophages .
  • TH2 cells suppress THl activity (see Liblau et al . , 1995).
  • the shift from THl to TH2-like behavior was supported by analysis of the isotypes of the antibodies produced before and after peptide p277 therapy in its use as a treatment for IDDM. Any concomitant treatment that augments this TH1 ⁇ TH2 shift may also be used in conjunction with the present invention.
  • the autologous peripheral blood lymphocytes of the intended recipient can be screened against a panel of hsp60 peptides to see which peptide has the optimum effect on the hsp60 autoimmunity.
  • class II MHC molecules bind to peptides 12-15 amino acid residues in length, with a minimum length perhaps as short as 9 amino acid residues, and that class I MHC molecules bind peptides of 7-9 amino acid residues.
  • peptides of hsp60 such as those presented in Table 1, can be readily screened to determine one or more optimal peptides that can be administered to a particular individual recipient, or to a recipient of a given HLA- ype, to shift to a TH2 cytokine response and thereby down- regulate his/her own hsp60 autoimmunity.
  • the optimum peptide should remain the same for different individuals of the same HLA- type .
  • Peripheral blood lymphocytes (PBL) of an individual human recipient can be isolated from whole blood by Ficoll- Hypaque density gradient centrifugation as is well-known in the art.
  • This sample of the recipient's lymphocytes can be tested for binding to the peptides to be screened in accordance with the method disclosed in Mozes et al . , U.S. patent 5,356,779, or can be tested for in vi tro T-cell proliferation and subsequent T-cell cytokine response as assays to determine an optimal or near optimal hsp60 peptide for a specific individual recipient.
  • patent 5,356,779 discloses direct binding of peptides, that are T cell epitopes, to human antigen-presenting cells (APC) in peripheral blood lymphocytes isolated from whole blood by Ficoll-Hypaque density gradient centrifugation. Detection of the bound T cell epitope is achieved by monitoring, for instance, a fluorescent probe, such as phycoerythrin and its analogs, that is covalently conjugated to the peptide epitope.
  • APC antigen-presenting cells
  • Another way to screen this panel of peptides is to test the recipient's lymphocytes for in vi tro proliferation in the presence of each of the peptides of the panel or to test for TH1 ⁇ TH2 shift caused by such peptides.
  • supernatants of T- cells cultured with test peptides at concentrations of 5- 50 ⁇ g/ml may be collected at different time points and tested for the activity of various cytokines, such as IFN ⁇ and IL-4 secreted into the culture medium, which can be quantitated by ELISA using standard ELISA protocols, or for the presence of antibodies of particular classes.
  • mice THl type T cells induce the production of antibodies of the IgG2a class
  • TH2 type antibodies induce the production of antibodies of the IgGl class.
  • human equivalents are not yet well defined, once the difference is established, assaying for the isotype of antibodies to the hsp60 immunological agent can be used to monitor the shift from a THl T cell response to a TH2 T cell response. It is known, for example, that in humans the IgE isotype is induced by TH2 cells.
  • THl cells secrete cytokines which induce T cell proliferation, and cytokines such as IFN7, which mediate tissue inflammation.
  • TH2 cells secrete IL-4, which helps ⁇ - cells secrete antibodies of the IgG and IgE class and suppress the production of THl inflammatory cytokines, as well as IL-10, which indirectly inhibits THl activation by affecting antigen presentation and inflammatory cytokine production by macrophages.
  • a measurement of the cytokine profile of the in vi tro proliferated T cells will also be an indication of a shift from a THl T cell response to a TH2 T cell response.
  • the THl ⁇ TH2 shift can serve as a marker for monitoring the in vi tro response of a recipient's T lymphocytes to various test peptides in determining optimal or near optimal peptides.
  • the carrier or adjuvant selected When the technique elected for hsp60 autoimmunity down- regulation is the administration of hsp60 or a peptide or a variant thereof the carrier or adjuvant selected must be one which creates tolerance to the peptide being administered or which actively induces a TH1 ⁇ TH2 shift. Otherwise, the autoimmune response could actually be up- regulated.
  • examples of such known tolerogenic carriers include mineral oil carriers such as incomplete Freund's adjuvant (IFA) . IFA is an emulsion of mineral oil. However, IFA is not allowed for human use because mineral oil is not metabolizable and cannot be degraded by the body. Biologically active carriers which augment the
  • TH1 ⁇ TH2 shift are particularly preferred in accordance with the present invention. It has recently been found that certain fat emulsions, which have been in use for many years for intravenous nutrition of human patients, can also act as a biologically active vehicle for peptide therapy using the peptides of the present invention. Two examples of such emulsions are the commercially available fat emulsions known as Intralipid and Lipofundin. "Intralipid” is a registered trademark of Kabi Pharmacia, Sweden, for a fat emulsion for intravenous nutrition, described in US patent no. 3,169,094. "Lipofundin” is a registered trademark of B. Braun Melsoder, Germany.
  • Egg- yolk phospholipids are used as emulsifiers in Intralipid (12 g/1 distilled water) and egg-yolk lecithin in Lipofundin (12 g/1 distilled water) .
  • Isotonicity results from the addition of glycerol (25 g/1) both in Intralipid and Lipofundin.
  • These fat emulsions are quite stable and have been used for intravenous nutrition of patients suffering from gastrointestinal or neurological disorders, which prevent them from receiving nutrition orally, and thus, they receive the calories needed to sustain life.
  • Usual daily doses for intravenous nutrition are up to 1 liter daily.
  • Intralipid and Lipofundin are preferred examples of biologically active carriers for the protein or peptide immunological agent administered as a treatment for suppressing or preventing graft rejection
  • any pharmaceutically acceptable carrier in particular lipid carriers, which causes a shift from THl response to TH2 response can be used in the pharmaceutical compositions of the present invention.
  • such biologically active lipid carriers comprise a fat emulsion containing 10-20% triglycerides of plant and/or animal origin, 1.2-2.4% phospholipids of plant and/or animal origin, 2.25-4.5% osmo- regulator, 0-0.05% anti-oxidant , and sterile water to 100%.
  • Intralipid and Lipofundin are the most preferred examples of this preferred fat emulsion.
  • the triglycerides and phospholipids of plant or animal origin may be derived from any suitable vegetable oil, such as soybean oil, cottonseed oil, coconut oil or olive oil, or from egg-yolk or bovine serum.
  • the triglycerides/phospholipids weight ratio is about 8:1.
  • Any suitable osmo- regulator may be added to the fat emulsion, preferably glycerol , xylitol or sorbitol .
  • the fat emulsion may optionally include an anti-oxidant, for example 0.05% tocopherol .
  • a preferred biologically active carrier which may be used with the present invention is a fat emulsion containing 10% soybean oil, 1.2% egg-yolk phospholipids, 2.5% glycerol and sterile water to complete 100 ml (Intralipid 10%) .
  • the vehicle is a fat emulsion containing 20% soybean oil, 2.4% egg-yolk phospholipids, 2.5% glycerol and sterile water to complete 100 ml.
  • the vehicle is a fat emulsion containing 5% soybean oil and another 5% triglycerides from animal origin, e.g., 5% medium chain triglycerides from butter, 1.2% egg-yolk lecithin, 2.5% glycerol and distilled water to complete 100 ml (Lipofundin
  • the fat emulsion as defined above is processed by centrifugation, e.g., at 10,000 g or higher, thus forming a small triglyceride-rich (about 90% triglycerides) layer on the top of a phospholipid-enriched aqueous dispersion containing about 1:1 triglycerides : phospholipids , and this latter aqueous dispersion is used as the lipid vehicle in the pharmaceutical compositions of the invention.
  • the fat emulsions which may be used in the present invention are preferably used when freshly prepared or after storage within a container which is not open to the atmosphere. Prolonged storage of Intralipid, for example, in the presence of atmospheric air, causes a decrease in pH and a corresponding decrease in biological activity.
  • the effectiveness of the hsp60 autoimmunity down- regulation may be monitored in the host by monitoring the TH1 ⁇ TH2 shift therein. This may be accomplished in the manner described in PCT/US96/11374 , the entire contents of which are hereby incorporated herein by reference.
  • mice To establish whether natural autoimmunity to hsp60 is merely compatible with health, or whether natural hsp60 autoimmunity actually contributes to the function of the immune system, the laboratory of the present inventors developed an hsp60 transgenic NOD mouse which hyper-expresses mouse hsp60 under the direction of the promoter of the major histocompatibility complex (MHC) class II Ec_ molecule (Birk et al., 1996b). These mice express high amounts of hsp60 in the thy us and in antigen-presenting cells (APC) throughout the body, resulting in a relative loss of their otherwise spontaneous hsp60 autoimmunity.
  • MHC major histocompatibility complex
  • FIG. 1 shows the expression of mouse hsp60 in wild type mouse skin transplanted to allogenic hosts and undergoing rejection (lanes 1-4), or transplanted to syngeneic hosts and tolerated (lanes 5-8).
  • Figure 1 also shows that the expression of hsp60 is constitutively augmented in Eo;-hsp60 transgenic NOD skin (lane 9) compared to that in wild type NOD skin (lane 10) , probably due to activation of the MHC class II promoter in skin dendritic cells (Kampgen et al, 1991).
  • Figure 2 shows that one cm 2 sections of skin were cut from the backs of sacrificed donor mice and washed in saline.
  • Figures 2A and 2B show that the E ⁇ r-hsp60 NOD transgenic skin is not rejected when transplanted to non- transgenic NOD recipient mice.
  • the hsp60 transgenic skin has not acquired a foreign histocompatibility antigen during insertion of the mouse hsp60 transgene; Ec_-hsp60 transgenic skin is still self.
  • Figures 2C and 2D show that the hyperexpressed Ec_-hsp60 transgene can markedly augment the allograft rejection in two different rejection systems.
  • FIG. 2C shows acceleration of skin rejection across the MHC barrier (NOD H2 7 skin transplanted to allogeneic BALB/c H-2 d mice), the median day of rejection being reduced from 20 to 12 days (p ⁇ 0.0001), while Fig. 2D shows acceleration of the rejection by female NOD recipients of male E ⁇ -hsp60 transgenic NOD skin compared to rejection of wild- type male skin, the median day of rejection being reduced from 55 to 30 days (p ⁇ 0.038) .
  • the rejection of male skin by syngeneic female mice is caused by a minor histocompatibility antigen encoded by the male Y chromosome (Scott et al . , 1995).
  • the constitutive hyper-expression of self-hsp60 in donor transgenic skin augments the rejection process directed to foreign transplantation antigens, either major or minor.
  • Figures 2E and 2F show the converse experiment where the recipient NOD mice are bearers of the E ⁇ -hsp60 transgene and thus have depressed hsp60 autoimmunity (Birk et al , 1996b) .
  • hsp60 autoimmunity can be modulated in wild type NOD mice (Elias et al . , 1990; Elias et al., 1991; Elias et al . , 1994; Elias et al . , 1995) and in other strains (Elias et al . , 1996) by therapeutically vaccinating the mice subcutaneously with whole hsp60 or hsp60 peptides emulsified in mineral oil (incomplete Freund's adjuvant; IFA).
  • Figures 3A-3B show that such vaccination of wild type NOD (H-2 g7 ) recipient mice or of C57BL/6 (H-2 ) mice two weeks before transplantation of BALB/c (H-2 d ) skin caused a delay in skin allograft rejection. It can be seen in Fig. 3A that C57BL/6 mice, a strain not known to suffer from spontaneous autoimmune diseases, manifested significantly prolonged survival of BALB/c skin grafts after vaccination with hsp60 (p ⁇ 0.01) . C57BL/6 mice that had been vaccinated with IFA alone or with the control recombinant antigen glutathione transferase did not manifest prolonged survival of the BALB/c skin.
  • the stress of the transplantation reaction can up- regulate hsp60 expression even in wild type, non- transgenic skin.
  • T cells reactive to hsp60 and other hsp molecules have been isolated from cardiac allografts (Moliterno et al . , 1995) as well as from other inflammatory lesions (Selmaj et al . , 1991; Mor et al . , 1992).
  • anti-hsp60 autoimmune T cells accumulate at sites of inflammation.
  • hsp60 autoimmune T cells that have been activated to produce anti- inflammatory cytokines of the TH2-type, such as IL-10, should serve to shut down the effector immune reaction by a form of by-stander suppression (Weiner et al .
  • mice were treated with hsp60 or with hsp60 peptide pl2.
  • Control mice were untreated or were treated with saline emulsified in IFA.
  • the mice were grafted with BALB/c skin grafts and twenty days later, just at the beginning of graft rejection in the control mice, groups of 5- 10 mice were sacrificed and their spleen cells assayed individually in a standard mixed lymphocyte reaction (MLR) with irradiated BALB/c spleen cells as stimulators (Lohse et al., 1990).
  • MLR mixed lymphocyte reaction
  • the MLR cultures were tested for T-cell proliferation by thymidine incorporation (Lohse et al . , 1990) and no significant differences were found between the treated and control groups. However, the MLR media were also tested for the presence of the THl cytokine IFN ⁇ and the TH2 cytokine IL-10. It was found that the control mouse T cells produced 9.25 ⁇ 1.7 ng/ml of IFN ⁇ , while the T cells from the hsp60 and pl2 treated mice produced only 3.13 ⁇ 1.4 ng/ml of IFN ⁇
  • prolongation of the survival of skin allografts induced by vaccination with hsp60 or hsp60 peptides was associated with decreased IFN ⁇ and increased IL-10 secreted during the MLR in vi tro .
  • the Eo-hsp60 transgenic NOD mice manifest a specific decrease in their IFN ⁇ (THl) response to hsp60.
  • hsp60 autoimmunity can have practical benefits.
  • the laboratory of the present inventors has shown elsewhere that natural hsp60 autoimmunity can be exploited to induce T-cell help for a response to poorly immunogenic bacterial antigens through the use of hsp60 peptide-bacterial sugar conjugates (Konen-Waisman et al, 1995).
  • up- regulating autoimmunity to hsp60 can help fight infection.
  • the present invention establishes that down- regulating natural hsp ⁇ O autoimmunity is useful in thwarting graft rejection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biotechnology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Food Science & Technology (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Transplantation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

Une méthode de réduction de la gravité de la réaction de l'hôte contre le greffon par le receveur de greffe d'un organe ou d'un tissu de donneur est basée sur la découverte que l'autoimmunité vis-à-vis de la protéine du choc thermique hsp60 peut fonctionner comme accélérateur d'immunité étrangère, et sur le fait que la régulation négative de l'autoimmunité vis-à-vis de hsp60 supprime ou empêche la réaction de rejet du greffon. L'administration de m'importe quelle composition provoquant la régulation négative de l'autoimmunité vis-à-vis de hsp60, telle que hsp60 ou le peptide p277 dans un excipient tolérogénique ou un excipient bioactif capable d'induire un déplacement TH1→TH2 réduit ainsi la gravité de la réaction de l'hôte contre le greffon.
PCT/US1997/015294 1996-08-30 1997-09-02 Methode de reduction de la gravite d'une reaction de l'hote contre le greffon par regulation negative de l'autoimmunite vis-a-vis de hsp60 WO1998008536A2 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DK97940708T DK0921810T3 (da) 1996-08-30 1997-09-02 Reduktionen af alvorligheden af vært versus transplantat reaktionen (HVGR) ved at nedregulere autoimmuniteten
AT97940708T ATE237344T1 (de) 1996-08-30 1997-09-02 Senkung der heftigkeit einer host-versus-graft- reaktion durch unterdrueckung der hsp60 autoimmunitaet
DE69721007T DE69721007T2 (de) 1996-08-30 1997-09-02 Senkung der heftigkeit einer host-versus-graft-reaktion durch unterdrueckung der hsp60 autoimmunitaet
EP97940708A EP0921810B1 (fr) 1996-08-30 1997-09-02 Reduction de la gravite d'une reaction de l'hote contre le greffon par regulation negative de l'autoimmunite vis-a-vis de hsp60
IL12872897A IL128728A0 (en) 1996-08-30 1997-09-02 Compositions for reducing host vs. graft reaction
JP51198498A JP4256474B2 (ja) 1996-08-30 1997-09-02 宿主vs移植片反応の重篤度をHSP60自己免疫性をダウンレギュレーションすることにより低下させる方法
AU42426/97A AU722576B2 (en) 1996-08-30 1997-09-02 Method of reducing the severity of host vs. graft reaction by down-regulating HSP60 autoimmunity
CA002263816A CA2263816C (fr) 1996-08-30 1997-09-02 Methode de reduction de la gravite d'une reaction de l'hote contre le greffon par regulation negative de l'autoimmunite vis-a-vis de hsp60
IL128728A IL128728A (en) 1996-08-30 1999-02-25 Compositions for reducing host vs. graft reaction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/706,209 1996-08-30
US08/706,209 US5993803A (en) 1996-08-30 1996-08-30 Method of reducing the severity of host vs graft reaction by down-regulating hsp60 autoimmunity

Publications (3)

Publication Number Publication Date
WO1998008536A2 true WO1998008536A2 (fr) 1998-03-05
WO1998008536A3 WO1998008536A3 (fr) 1998-05-07
WO1998008536A9 WO1998008536A9 (fr) 1998-06-04

Family

ID=24836651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/015294 WO1998008536A2 (fr) 1996-08-30 1997-09-02 Methode de reduction de la gravite d'une reaction de l'hote contre le greffon par regulation negative de l'autoimmunite vis-a-vis de hsp60

Country Status (11)

Country Link
US (1) US5993803A (fr)
EP (1) EP0921810B1 (fr)
JP (1) JP4256474B2 (fr)
AT (1) ATE237344T1 (fr)
AU (1) AU722576B2 (fr)
CA (1) CA2263816C (fr)
DE (1) DE69721007T2 (fr)
DK (1) DK0921810T3 (fr)
ES (1) ES2198594T3 (fr)
IL (2) IL128728A0 (fr)
WO (1) WO1998008536A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072023A2 (fr) * 1999-05-21 2000-11-30 Semmelweis University Of Medicine Diagnostic et traitement de l'atherosclerose et des coronaropathies
EP1237570A2 (fr) * 1999-12-15 2002-09-11 Peptor Ltd. Fragments et antagonistes de proteines de choc thermique 60
US7576177B2 (en) 2002-01-31 2009-08-18 Andromeda Biotech Ltd. Hsp peptides and analogs for modulation of immune responses via antigen presenting cells
WO2013128450A1 (fr) 2012-03-01 2013-09-06 Yeda Research And Development Co. Ltd. Peptides dérivés de hsp60 et analogues peptidiques destinés à la suppression et au traitement du diabète non auto-immun
WO2013128453A1 (fr) 2012-03-01 2013-09-06 Yeda Research And Development Co. Ltd. Régénération de cellules bêta des îlots de langerhans par des peptides dérivés de hsp60
US8828922B2 (en) 2004-01-28 2014-09-09 Andromeda Biotech Ltd. HSP therapy in conjunction with a low antigenicity diet

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL150113A0 (en) * 1999-12-15 2002-12-01 Peptor Ltd Fragments and antagonists of heat shock protein 60
AU2001249214A1 (en) * 2000-03-15 2001-09-24 The Brigham And Women's Hospital, Inc. Suppression of vascular disorders by mucosal administration of heat shock protein peptides
US6989146B2 (en) * 2000-08-09 2006-01-24 The Regents Of The University Of California Stress proteins and peptides and methods of use thereof
US7608683B2 (en) * 2000-08-09 2009-10-27 The Regents Of The University Of California Stress proteins and peptides and methods of use thereof
JP2005503320A (ja) * 2000-08-25 2005-02-03 イエダ・リサーチ・アンド・デベロツプメント・カンパニー・リミテツド CpG−含有ポリヌクレオチドで自己免疫疾患を処置または防止する方法
CA2427572A1 (fr) 2000-11-01 2002-05-10 The Regents Of The University Of California Peptides immunomodulateurs derives de proteines de choc thermique et leur utilisations
AU2003209623A1 (en) * 2002-02-19 2003-09-09 Yeda Research And Development Co. Ltd. Dual-effect ligands comprising anti-inflammatory hsp peptide epitopes for immunomodulation
ES2433915T3 (es) 2002-05-21 2013-12-13 Irun R. Cohen Vacunas de ADN que codifican proteínas de choque térmico
US7494812B2 (en) * 2003-04-01 2009-02-24 University Of Southern California Generation of human regulatory T cells by bacterial toxins for the treatment of inflammatory disorders
US20090202618A1 (en) * 2003-11-24 2009-08-13 Yeda Research & Development Co. Ltd Dna vaccines encoding hsp60 peptide fragments for treating autoimmune diseases
CU23504A1 (es) 2004-09-24 2010-04-13 Ct Ingenieria Genetica Biotech Péptidos y derivados tipo apl de la hsp60 y composiciones farmacéuticas
WO2006072946A2 (fr) 2005-01-04 2006-07-13 Yeda Research And Development Co. Ltd. At The Weizmann Institute Of Science Hsp60, peptides hsp60 et vaccins a base de lymphocytes t pour immunomodulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992004049A1 (fr) * 1990-09-06 1992-03-19 Rijksuniversiteit Te Utrecht Inhibiteurs de la reponse de lymphocytes et de maladies immunitaires
US5356779A (en) * 1989-12-10 1994-10-18 Yeda Research And Development Co. Ltd. Assay for direct binding of peptides that are T-cell epitopes to MHC gene products on intact antigen-presenting cells and the use thereof for screening susceptibility of autoimmune diseases
WO1997002016A1 (fr) * 1995-07-05 1997-01-23 Yeda Research And Development Co. Ltd. Preparations et procedes de traitments de maladies mediees par les lymphocytes t
WO1997001959A1 (fr) * 1995-06-30 1997-01-23 Yeda Research And Development Co. Ltd. Nouveaux peptides derives de la proteine humaine de choc thermique 60, destines au traitement du diabete, compositions, procedes et trousses connexes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356779A (en) * 1989-12-10 1994-10-18 Yeda Research And Development Co. Ltd. Assay for direct binding of peptides that are T-cell epitopes to MHC gene products on intact antigen-presenting cells and the use thereof for screening susceptibility of autoimmune diseases
WO1992004049A1 (fr) * 1990-09-06 1992-03-19 Rijksuniversiteit Te Utrecht Inhibiteurs de la reponse de lymphocytes et de maladies immunitaires
WO1997001959A1 (fr) * 1995-06-30 1997-01-23 Yeda Research And Development Co. Ltd. Nouveaux peptides derives de la proteine humaine de choc thermique 60, destines au traitement du diabete, compositions, procedes et trousses connexes
WO1997002016A1 (fr) * 1995-07-05 1997-01-23 Yeda Research And Development Co. Ltd. Preparations et procedes de traitments de maladies mediees par les lymphocytes t

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. MOLITERNO ET AL.: "HEAT SHOCK PROTEIN REACTIVITY OF LYMPHOCYTES ISOLATED FROM HETEROTOPIC RAT CARDIAC ALLOGRAFTS." TRANSPLANTATION, vol. 59, no. 4, 27 January 1995, BALTIMORE, MD, US, pages 598-604, XP002051693 cited in the application *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072023A2 (fr) * 1999-05-21 2000-11-30 Semmelweis University Of Medicine Diagnostic et traitement de l'atherosclerose et des coronaropathies
WO2000072023A3 (fr) * 1999-05-21 2001-04-05 Semmelweis University Of Medic Diagnostic et traitement de l'atherosclerose et des coronaropathies
EP1237570A2 (fr) * 1999-12-15 2002-09-11 Peptor Ltd. Fragments et antagonistes de proteines de choc thermique 60
EP1237570A4 (fr) * 1999-12-15 2005-01-05 Peptor Ltd Fragments et antagonistes de proteines de choc thermique 60
US7576177B2 (en) 2002-01-31 2009-08-18 Andromeda Biotech Ltd. Hsp peptides and analogs for modulation of immune responses via antigen presenting cells
EP2157101A1 (fr) 2002-01-31 2010-02-24 Andromeda Bio Tech Ltd. Peptides HSP et analogues pour la modulation de réponses immunes via des cellules présentant l'antigène
US8828922B2 (en) 2004-01-28 2014-09-09 Andromeda Biotech Ltd. HSP therapy in conjunction with a low antigenicity diet
WO2013128450A1 (fr) 2012-03-01 2013-09-06 Yeda Research And Development Co. Ltd. Peptides dérivés de hsp60 et analogues peptidiques destinés à la suppression et au traitement du diabète non auto-immun
WO2013128453A1 (fr) 2012-03-01 2013-09-06 Yeda Research And Development Co. Ltd. Régénération de cellules bêta des îlots de langerhans par des peptides dérivés de hsp60

Also Published As

Publication number Publication date
JP2001500488A (ja) 2001-01-16
AU4242697A (en) 1998-03-19
ES2198594T3 (es) 2004-02-01
CA2263816A1 (fr) 1998-03-05
JP4256474B2 (ja) 2009-04-22
ATE237344T1 (de) 2003-05-15
AU722576B2 (en) 2000-08-10
IL128728A (en) 2006-09-05
EP0921810B1 (fr) 2003-04-16
DE69721007T2 (de) 2004-02-12
US5993803A (en) 1999-11-30
IL128728A0 (en) 2000-01-31
EP0921810A2 (fr) 1999-06-16
DE69721007D1 (de) 2003-05-22
CA2263816C (fr) 2008-12-30
WO1998008536A3 (fr) 1998-05-07
DK0921810T3 (da) 2003-07-28

Similar Documents

Publication Publication Date Title
CA2263816C (fr) Methode de reduction de la gravite d'une reaction de l'hote contre le greffon par regulation negative de l'autoimmunite vis-a-vis de hsp60
WO1998008536A9 (fr) Methode de reduction de la gravite d'une reaction de l'hote contre le greffon par regulation negative de l'autoimmunite vis-a-vis de hsp60
AU720695B2 (en) Bystander suppression of autoimmune diseases
US6645504B1 (en) Bystander suppression of type I diabetes by oral administration of glucagon
EP0863155B1 (fr) Suppression de la prolifération des cellules T grâce à des fragments peptidiques de la protéine basique de la myéline
RO116777B1 (ro) Analog de peptida p277, compozitie farmaceutica si metoda pentru diagnosticarea diabetului mellitus insulino-dependent, cu acesta
Ramírez et al. Induction of resistance to active experimental allergic encephalomyelitis by myelin basic protein‐specific Th2 cell lines generated in the presence of glucocorticoids and IL‐4
KR20040108650A (ko) 미엘린 염기성 단백질 기원의 면역허용원 펩타이드
WO1991001333A1 (fr) Procedes de traitement ou de prevention de l'uveoretinite autoimmune chez les mammiferes
JPH09511745A (ja) 経口寛容および/またはタイプiインターフェロンを用いた自己免疫疾患の治療
CA2226013C (fr) Preparations et procedes de traitments de maladies mediees par les lymphocytes t
WO1997002016A9 (fr) Preparations et procedes de traitments de maladies mediees par les lymphocytes t
MXPA98000190A (en) Preparations and methods for the treatment of medium diseases by cellula
US20030190323A1 (en) Preparations and methods for the treatment of T cell mediated diseases
Jung et al. Therapeutic effect of transforming growth factor-beta 2 on actively induced EAN but not adoptive transfer EAN.
WO1994019470A1 (fr) Chaine alpha de receptor de lymphocytes t soluble, et derives utilises comme agents prophylactiques et therapeutiques de maladies auto-immunes
AU4851893A (en) Peptides tolerizing t-cells and compositions thereof
US20040115217A1 (en) Bystander suppression of autoimmune diseases

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL

AK Designated states

Kind code of ref document: A3

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
COP Corrected version of pamphlet

Free format text: PAGES 1/3-3/3, DRAWINGS, REPLACED BY NEW PAGES 1/4-4/4; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 511984

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref document number: 2263816

Country of ref document: CA

Ref country code: CA

Ref document number: 2263816

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997940708

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997940708

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1997940708

Country of ref document: EP