WO1998003261A1 - Chirale nicht-partikuläre sorbentien - Google Patents

Chirale nicht-partikuläre sorbentien Download PDF

Info

Publication number
WO1998003261A1
WO1998003261A1 PCT/EP1997/003600 EP9703600W WO9803261A1 WO 1998003261 A1 WO1998003261 A1 WO 1998003261A1 EP 9703600 W EP9703600 W EP 9703600W WO 9803261 A1 WO9803261 A1 WO 9803261A1
Authority
WO
WIPO (PCT)
Prior art keywords
chiral
particulate
sorbents
separation
sorbent
Prior art date
Application number
PCT/EP1997/003600
Other languages
English (en)
French (fr)
Inventor
Egbert Müller
Dieter Lubda
Gerhard Wieland
Karin Cabrera
Kristina Czerny
Edith Dicks
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19629206A external-priority patent/DE19629206A1/de
Priority claimed from DE1997126152 external-priority patent/DE19726152A1/de
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to JP10506491A priority Critical patent/JP2000515627A/ja
Priority to EP97937469A priority patent/EP0912242A1/de
Publication of WO1998003261A1 publication Critical patent/WO1998003261A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/29Chiral phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1814Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
    • B01D15/1821Simulated moving beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • B01J20/28092Bimodal, polymodal, different types of pores or different pore size distributions in different parts of the sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/283Porous sorbents based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • B01J20/287Non-polar phases; Reversed phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • B01J20/3263Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such comprising a cyclic structure containing at least one of the heteroatoms nitrogen, oxygen or sulfur, e.g. an heterocyclic or heteroaromatic structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • C08G81/028Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyamide sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/80Aspects related to sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J2220/82Shaped bodies, e.g. monoliths, plugs, tubes, continuous beds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/52Physical parameters
    • G01N2030/524Physical parameters structural properties
    • G01N2030/528Monolithic sorbent material

Definitions

  • the invention relates to chiral non-particulate sorbents and their use for the separation of enantiomers.
  • Chiral separation materials for the separation of enantiomers are known in large numbers in the prior art. They are exclusively particulate separating materials.
  • the known chiral separation materials either consist of the chiral compound itself (for example cellulose triacetate) or a chiral separation effector is mounted on a support or chemically bound to a support. It is also possible to add chiral separation effectors that interact with a stationary phase to the eluent (dynamic assignment).
  • Chiral separation effectors are known in large numbers; the most important groups of known chiral separation effectors are: a) amino acids and their derivatives, for example L-phenylalanine or D-phenylalanine, esters or amides of amino acids or acylated amino acids or oligopeptides; b) natural and synthetic polymers with an asymmetry or asymmetry in the main chain; these include proteins (eg acidic ⁇ i-glycoprotein, bovine serum albumin, cellulase; see J. Chrom. 264, pages 63-68 (1983), J. Chrom.
  • proteins eg acidic ⁇ i-glycoprotein, bovine serum albumin, cellulase; see J. Chrom. 264, pages 63-68 (1983), J. Chrom.
  • Chiral separating materials of the prior art are particulate sorbents and are preferably used in column chromatography.
  • the column packs used in this case require a considerable operating pressure so that acceptable flow rates are achieved.
  • the mechanical stability of the particulate sorbent beds is also not very good
  • non-particulate sorbents can be used for the separation of enantiomers, it being possible to achieve high elution rates.
  • the task is solved by the provision of non-particulate sorbents which have chiral separation effectors.
  • Non-particulate sorbents are in particular sorbents based on monolithic basic bodies and also on the basis of porous membranes
  • the invention relates to a chiral non-particulate sorbent based on a porous shaped body, in particular based on a porous ceramic shaped body, which has interconnected macropores and mesopores in the walls of the macropores, the diameter of the macropores being greater than a median value 0.1 ⁇ m, and the diameter of the mesopores having a median value of 2 and 100 nm, or based on a porous molded body made of polyamide.
  • the invention relates to the use of a chiral non-particulate sorbent according to the invention for the chromatographic separation of enantiomers.
  • the invention also relates to processes for the chromatographic separation of enantiomers, a chiral non-particulate sorbent according to the invention being used.
  • FIGS. 1 to 3 show elution diagrams of various applications; the experimental details are described in application examples A - C.
  • non-particulate, in particular monolithic, sorbents when used, the H / u curves are flat. Furthermore, low separation step heights are found in non-particulate sorbents which cause a low pressure drop. As a result, preparative-chromatographic separation processes can be optimized much better using non-particulate sorbents than when using particulate sorbents; the efficiency of these processes can be significantly improved.
  • non-particulate sorbents used according to the invention is in contrast to known particulate sorbents characterized above, in which the sorbent bed consists of individual discrete particles. Both monolithic sorbents and membranes derivatized with separation effectors are covered by the term non-particulate sorbents.
  • Monolithic sorbents are generally known from the literature; this includes, above all, porous ceramic shaped bodies as disclosed in WO 94/19687 and in WO 95/03256. In the broader sense, the term monolithic sorbents also includes molded articles made of polymers, as described by F. Svec and J.M. Frechet (1992) Anal. Chem. 64, pages 820-822, and by S. Hjerten et al. (1989) J. Chromatogr. 473, pages 273-275.
  • porous ceramic shaped bodies disclosed in WO 95/03 256 which have interconnected macropores and mesopores in the walls of the macropores, the diameter of the macropores having a median value greater than 0.1 ⁇ m and the diameter of the mesopores being one Median of 2 and 100 nm, particularly preferred.
  • These basic carriers can be modified by processes known in principle, suitable sorbents being obtained for the enantiomer separation according to the invention. Suitable modification methods are known to the person skilled in the art and are described in manuals, for example in Unger, KK (ed) Porous Silica, Elsevier Scientific Publishing Company (1979) or in Unger, KK Packings and Stationary Phases in Chromatographie Techniques, Marcel Dekker (1990).
  • Adsorptive membranes derivatized with separation effectors are disclosed in WO 91/03 506, in DE 196 27 302.1 and in WO 96/22 316, as well as in PCT / EP97 / 02 768.
  • the use of the derivatized polyamide membranes which are open-hard in WO 96/22 316, in DE 196 27 302.1 and in PCT / EP97 / 02 768 is particularly preferred. Processes for producing these membranes are specified in these documents. These membranes can also be derivatized with chiral separation effectors.
  • Polyamides suitable as the base polymer, in particular for membranes are known to the person skilled in the art and are also commercially available. These include e.g. the polymers known under the trade name NYLON®, e.g. NYLON® 66 and NYLON® 6. The implementation of such membranes is preferred because under the reaction conditions as described in DE 195
  • Derivatization of polyamide can be carried out in the melt or in solution.
  • the modified polyamides disclosed in the abovementioned applications can in particular contain carboxyl, amino or hydroxyl groups. These groups allow chiral separation effectors to be bound to the polyamides by methods known per se.
  • Optically active monomers as disclosed, for example, in EP 0249 078, EP 0 282 770 and EP 0 448 823, can be polymerized onto the polymerizable modified polyamides disclosed in the abovementioned applications by methods known per se.
  • the adsorptive or chemical binding of the chiral separation effectors can be achieved, for example, by first introducing functional groups such as amino, carboxy, carbonyl, hydroxyl or epoxy groups or azlactone residues into the base support.
  • chiral separation effectors which contain amino groups (for example optically active amines, as are disclosed, for example, in EP 0249078, amino acids, amino acid esters and amides, oligopeptides, proteins, amino sugars), using water-releasing agents, such as, for example, carbodiimides, can also be used Carboxyl group-modified base carriers are bound. These chiral separation effectors can also be bound using base supports modified with azlactone or epoxy groups.
  • amino groups for example optically active amines, as are disclosed, for example, in EP 0249078, amino acids, amino acid esters and amides, oligopeptides, proteins, amino sugars
  • water-releasing agents such as, for example, carbodiimides
  • Chiral separation effectors which contain carboxyl groups can be bound to base carriers modified with amino or hydroxy groups using water-releasing agents such as carbodiimides.
  • Chiral separation effectors which contain hydroxyl groups eg polysaccharides and their derivatives, cyclodextrins and their derivatives
  • base carriers modified with carboxyl groups can be bound to base carriers modified with carboxyl groups using water-releasing agents such as carbodiimides.
  • chiral separation effectors can be bound to appropriately modified base supports by means of bifunctional reagents (eg diisocyanates).
  • Chiral sorbents, which contain chemically bound cyclodextrins as a chiral separation effector can be obtained from the preferred bases by the methods disclosed in EP 0 445 604.
  • chirally derivatized non-particulate sorbent or derivatized non-particulate shaped body means a non-particulate base carrier which contains a chiral separation effector.
  • the chiral separation effector can be chemically bound or adsorbed or dynamically occupied.
  • room temperature means a temperature between 15 and 30 ° C
  • Example 1 Preparation of a chiral sorbent to which ⁇ -cyclodextrin is chemically bound
  • a porous molded body, produced according to EP 0710219, is made analogously to the description of Example 2 from EP 0 445 604 with a reaction solution of ß-cyclodextrin, p-nitrophenyl chloroformate and 3- (2-amino-ethyl) aminopro ⁇ ylt ⁇ methoxysilane to form a chiral sorbent with chemical bound ß-cyclodextrin implemented
  • the reaction solution is pumped through the molded body.
  • a modified monolithic shaped body is obtained, to which ⁇ -cyclodextine is chemically bound
  • a porous molded body, produced according to EP 0 710 219, is chemically derivatized with methyl octadecyldichlorosilane; the reaction solution is pumped through the molded part
  • a modified monolithic shaped body is obtained which is derivatized with Ci ⁇ -alkyl groups and which is suitable as a stationary phase for the enantiomer separation with dynamically coated sorbent (see application examples B and C)
  • Example 3 Reaction of a polyamide hollow fiber membrane with vinyl dimethyl azlactone
  • DBU 1,8-diazab ⁇ cyclo [5,4,0] undec-7-ene
  • 32 ml of vinyldimethylazlactone are dissolved in 160 ml of dimethylformamide.
  • a polyamide hollow fiber bundle (polyamide 6, 64 threads; diameter of the single fiber; inside 0.2 mm, outside 0.5 mm, average pore size 0.5 ⁇ m) is placed in a 300 -
  • Example 4 Binding of ⁇ -globulin to a polyamide hollow fiber membrane activated with vinyl dimethyl azlactone
  • ⁇ -Globu n is a polymer that has chirality in the main chain.
  • the result is a hollow fiber module with a chirally modified polyamide membrane
  • bovine serum albumin for example, can be bound to a polyamide membrane activated with aziactone or epoxy groups.
  • a chiral sorbent is formed which is similar to that in J. Chrom. 264. Pages 63 68 (1983), is suitable for the separation of enantiomers.
  • Example A Separation of racemic cromakalim on a chiral sorbent which contains ß-cyclodextrin chemically bound.
  • a modified monolithic shaped body (83 x 7.2 mm) produced according to example 1 is used as sorbent and racemic cromakalim is separated under the following conditions: Sample: Cromakalim (0.2 mg / ml in ethanol)
  • Injection volume 5 ⁇ l eluent: methanol / water (20/80; v / v)
  • Example B Separation of racemic chlorothalidone with dynamic ⁇ -cyclodextrin coating
  • a modified monolithic shaped body (RP-18; 83 x 7.2 mm) produced in accordance with Example 2 is used as the sorbent and racemic chlorothalidone is separated under the following conditions: Sample. Chlorothalidone (0.44 mg / ml)
  • Injection volume 5 ⁇ l eluent: methanol / aqueous 25 mM sodium phosphate solution (pH 2) with 10 mM ⁇ -cyclodextrin (20/80; v / v) Temperature: room temperature Flow: 1.0 ml / min
  • a modified monolithic shaped body (RP-18, 83 x 7.2 mm) produced in accordance with Example 2 is used as sorbent and racemic prominal is separated under the following conditions: "Sample. Prominal (0.55 mg / ml)
  • Injection volume 5 ⁇ l eluent: methanol / aqueous 25 mM sodium phosphate solution (pH 2) with 10 mM ⁇ -cyclodextrin (20/80; v / v)

Abstract

Mit chiralen Gruppen modifizierte nicht-partikuläre Sorbentien, beispielsweise auf der Grundlage von monolithischen Basisträgern oder auf der Grundlage von derivatisierten Polyamidmembranen, werden offenbart; sie erlauben bei der Enantiomerentrennung hohe Flußraten.

Description

Chirale nicht-partikuläre Sorbentien
Die Erfindung betrifft chirale nicht-partikuläre Sorbentien und deren Verwendung für die Enantiomerentrennung.
Chirale Trennmaterialien für die Trennung von Enantiomeren sind in großer Anzahl im Stand der Technik bekannt. Es handelt sich ausschließlich um partikuläre Trennmaterialien. Die bekannten chiralen Trennmaterialien bestehen entweder aus der chiralen Verbindung selbst (zum Beispiel Cellulosetriacetat) oder aber ein chiraler Separationseffektor ist auf einen Träger aufgezogen oder chemisch an einen Träger gebunden. Außerdem ist es möglich, chirale Separationseffektoren, die mit einer stationären Phase in Wechselwirkung treten, dem Elutionsmittel zuzusetzen (dynamische Belegung).
Chirale Separationseffektoren sind in großer Zahl bekannt; die wichtigsten Gruppen bekannter chiraler Separationseffektoren sind: a) Aminosäuren und ihre Derivate, z.B. L-Phenylalanin, oder D-Phenyl- alanin, Ester oder Amide von Aminosäuren oder acylierte Aminosäuren oder Oligopeptide; b) natürliche und synthetische Polymere mit einer Asymmetrie oder Dis- symmetrie in der Hauptkette; dazu gehören Proteine (z.B. saures αi- Glycoprotein, Rinderserumalbumin, Cellulase; siehe J. Chrom. 264, Seiten 63 -68 (1983), J. Chrom. 269, Seiten 71 - 80 (1983), WO 91/12 221 ), Cellulose und Cellulosederivate, sowie andere Polysaccharide und deren Derivate (z.B. Cellulosetribenzoat, Cellulosetribenzylether, Cellulose-trisphenylcarbamat, Cellulose-tris-3-chlorobenzoat, Amylose- tris-(3,5-dimethylphenylcarbamat), Cellulose-tris-(3,5-dimethylbenzoat), Cellulose-tris-(3,5-dimethylphenylcarbamat); siehe EP 0 147 804, EP 0 155 637, EP 0 718 625); c) Cyclodextrine und Cyclodextrinderivate (z.B. J. High Resol. Chrom. & Chromat. Comm. 3, Seiten 147 - 148 (1984); EP 0407 412; EP 0445 604); d) Polymere mit Asymmetriezentren in der Seitenkette (z.B. EP 0249 078; EP 0282 770, EP 0 448 823); e) Polymere, die um chirale Strukturen polymerisiert werden ("inprint"- Polymere (z.B. J Chromat. 707, Seiten 199 - 203 (1995); J. Chromat. 694, Seiten 3 - 13 (1995)).
Chirale Trennmateπalien des Standes der Technik sind partikuläre Sorbentien und werden vorzugsweise in der Säulenchromatographie verwendet Die dabei verwendeten Säulenpackungen erfordern einen erheblichen Betriebsdruck, damit akzeptable Flußraten erreicht werden. Auch ist die mechanische Stabilität der partikularen Sorbensbetten nicht sehr gut
Es stellt sich also die Aufgabe, Verfahren zur Enantiomerentrennung unter Verwendung von stabileren Sorbenspackungen, die auch höhere Fluß- geschwindigkeiten erlauben, sowie stabilere chiral deπvatisierte Sorben- tien bereitzustellen
Es wurde gefunden, daß nicht-partikulare Sorbentien für die Enantiomerentrennung eingesetzt werden können, wobei hohe Elutionsgeschwindig- keiten erreicht werden können. Die Aufgabe wird durch die Bereitstellung von nicht-partikularen Sorbentien, die chirale Separationseffektoren aufweisen, gelost Nicht-partikuläre Sorbentien sind insbesondere Sorbentien auf der Grundlage von monolithischen Grundkorpern und auch auf der Grundlage von porösen Membranen Gegenstand der Erfindung ist ein chirales nicht-partikuläres Sorbens auf der Grundlage eines porösen Formkörpers, insbesondere auf der Grundlage eines porösen keramischen Formkörpers, der untereinander verbundene Makroporen sowie Mesoporen in den Wänden der Makro- poren aufweist, wobei der Durchmesser der Makroporen einen Medianwert größer als 0,1 μm aufweist, und wobei der Durchmesser der Mesoporen einen Medianwert von 2 und 100 nm aufweist, oder auf der Grundlage eines porösen Formkörpers aus Polyamid.
Gegenstand der Erfindung ist die Verwendung eines erfindungsgemäßen chiralen nicht-partikulären Sorbens für die chromatographischen Trennung von Enantiomeren.
Gegenstand der Erfindung sind auch Verfahren zur chromatographischen Trennung von Enantiomeren, wobei ein erfindungsgemäßes chirales nichtpartikuläres Sorbens verwendet wird.
Die Abbildungen 1 bis 3 stellen Elutionsdiagramme von verschiedenen Anwendungen dar; die experimentellen Einzelheiten sind in den Anwendungsbeispielen A - C beschrieben.
Es zeigte sich überraschenderweise, daß bei der Verwendung von nicht- partikulären, insbesondere monolithischen Sorbentien die H/u-Kurven flach sind. Weiterhin werden bei nicht-partikulären Sorbentien, die einen geringen Druckabfall verursachen, niedrige Trennstufenhöhen gefunden. Dadurch lassen sich präparativ-chromatographische Trennverfahren unter Verwendung von nicht-partikulären Sorbentien wesentlich besser als bei Verwendung von partikuläre Sorbentien optimieren; die Wirtschaftlichkeit dieser Prozesse kann bedeutend verbessert werden. Der erfindungsgemäß verwendete Begriff "nicht-partikuläre" Sorbentien stellt den Gegensatz zu bekannten oben gekennzeichneten partikulären Sorbentien dar, bei denen das Sorbensbett aus einzelnen diskreten Partikeln besteht. Sowohl monolithische Sorbentien als auch mit Separa- tionseffektoren derivatisierte Membranen werden von dem Begriff nichtpartikuläre Sorbenzien umfaßt.
Monolithische Sorbentien sind grundsätzlich aus der Literatur bekannt; dazu gehören vor allem poröse keramische Formkörper, wie sie in WO 94/19687 und in WO 95/03256 offenbart sind. Von dem Begriff monolithische Sorbenzien werden im weiteren Sinn auch Formkörper aus Polymerisaten umfaßt, wie sie von F. Svec und J.M. Frechet (1992) Anal. Chem. 64, Seiten 820 - 822, und von S. Hjerten et al. (1989) J. Chromatogr. 473, Seiten 273 - 275, beschrieben wurden.
Als Grundträger werden die in WO 95/03 256 offenbarten porösen keramischen Formkörper, die untereinander verbundene Makroporen sowie Mesoporen in den Wänden der Makroporen aufweisen, wobei der Durchmesser der Makroporen einen Medianwert größer als 0,1 μm aufweist, und wobei der Durchmesser der Mesoporen einen Medianwert von 2 und 100 nm aufweist, besonders bevorzugt. Diese Grundträger lassen sich nach grundsätzlich bekannten Verfahren modifizieren, wobei für die erfindungsgemäße Enantiomerentrennung geeignete Sorbentien erhalten werden. Geeignete Modifikationsverfahren sind dem Fachmann bekannt und in Handbüchern beschrieben, z.B. in Unger, K.K. (ed) Porous Silica, Elsevier Scientific Publishing Company (1979) oder in Unger, K.K. Packings and Stationary Phases in Chromatographie Techniques, Marcel Dekker (1990). Mit Separationseffektoren derivatisierte adsorptiv wirksame Membranen sind in WO 91/03 506, in DE 196 27 302.1 und in WO 96/22 316, sowie in PCT/EP97/02 768 offenbart. Besonders bevorzugt ist die Verwendung der in WO 96/22 316, in DE 196 27 302.1 und in PCT/EP97/02 768 offen- harten derivatisierten Polyamidmembranen. Verfahren zur Herstellung dieser Membranen sind in diesen Druckschriften angegeben. Diese Membranen können auch mit chiralen Separationseffektoren derivatisiert werden.
Als Basispolymer insbesondere für Membranen geeignetete Polyamide sind dem Fachmann bekannt und sind auch kommerziell erhältlich. Dazu gehören z.B. die unter dem Handelsnamen NYLON® bekannten Polymere, z.B. NYLON® 66 und NYLON® 6. Die Umsetzung derartiger Membranen ist bevorzugt, da unter den Reaktionsbedingungungen, wie sie in DE 195
01 726.9 und DE 196 24 813.2 verwendet werden (Reaktionstemperatur unter 80 °C), deren Form erhalten bleibt, während andere Verfahren zur
Derivatisierung von Polyamid in der Schmelze oder in Lösung ausgeführt werden.
Neben Azlacton- und Epoxidgruppen können die in den vorgenannten Anmeldungen offenbarten modifizierten Polyamide insbesondere Carboxyl-, Amino- oder Hydroxygruppen enthalten. Diese Gruppen erlauben es, chirale Separationseffektoren nach an sich bekannten Verfahren an die Polyamide zu binden. Auf die in den vorgenannten Anmeldungen offenbarten polymerisierbaren modifizierten Polyamide können optisch aktive Monomere, wie sie beispielsweise in EP 0249 078, EP 0 282 770 und EP 0 448 823 offenbart werden, nach an sich bekannten Methoden polymerisiert werden. Die adsorptive oder chemische Bindung der chiralen Separationseffektoren kann beispielsweise erzielt werden, indem man zunächst funktionelle Gruppen, wie z.B. Amino-, Carboxy, Carbonyl-, Hydroxy- oder Epoxy- gruppen oder Azlactonreste in den Grundträger einführt. Anschließend können beispielsweise chirale Separationseffektoren, die Aminogruppen enthalten (z.B. optisch aktive Amine, wie sie z.B. in EP 0249078 offenbart werden, Aminosäuren, Aminosäureester und -amide, Oligopeptide, Proteine, Aminozucker), unter Verwendung von wasserabspaltenden Mitteln, wie z.B. Carbodiimiden, an mit Carboxylgruppen modifizierten Grundträger gebunden werden. Diese chiralen Separationseffektoren können auch unter Verwendung von mit Azlacton- oder Epoxidgruppen modifizierten Grundträger gebunden werden. Chirale Separationseffektoren, die Carboxylgruppen enthalten (z.B. Aminosäuren oder N- acylierte Aminosäuren, Oligopeptide, Proteine, optisch aktive Carbon- säuren), können unter Verwendung von wasserabspaltenden Mittel, wie z.B. Carbodiimiden, an mit Amino- oder Hydroxygruppen modifizierten Grundträger gebunden werden. Chirale Separationseffektoren, die Hydroxylgruppen enthalten (z.B. Polysaccharide und deren Derivate, Cyclodextrine und deren Derivate) können unter Verwendung von wasser- abspaltenden Mittel, wie z.B. Carbodiimiden, an mit Carboxylgruppen modifizierten Grundträger gebunden werden. Außerdem können chirale Separationseffektoren durch bifunktionelle Reagenzien (z.B. Diisocyanate) an entsprechend modifizierte Grundträger gebunden werden. Chirale Sorbentien, die chemisch gebundene Cyclodextrine als chiralen Separa- tionseffektor enthalten, sind ausgehend von den bevorzugten Grundträgern nach den in EP 0 445 604 offenbarten Methoden zugänglich.
Diese Verfahren und gängige Varianten sind dem Fachmann bekannt und in Handbüchern und Übersichtsartikeln beschrieben. Unter dem Begriff chiral derivatisiertes nicht-partikuläres Sorbens, beziehungsweise derivatisierter nicht-partikulärer Formkörper wird erfindungsgemäß ein nicht-partikulärer Grundträger verstanden, der einen chiralen Separationseffektor enthält. Dabei kann der chirale Separationseffektor chemisch gebunden oder adsorbiert oder dynamisch belegt vorliegen.
Es wurde gefunden, daß bei Verwendung dieser bevorzugten Sorbentien die Flußgeschwindigkeit über einen weiten Bereich variiert werden kann, ohne daß die Trenneigenschaften dabei verschlechtert werden. Unter Ausnutzung dieser Eigenschaft ist es möglich, die Flußgeschwindigkeit an das Elutionsprofil anzupassen, ohne daß die Trennleistung verringert wird. Dadurch kann der Zeitbedarf der Trennung stark reduziert werden. Insbesondere für präparative Trennungen oder für Serienanalysen ergeben sich somit große Vorteile.
Auch ohne weitere Ausführungen wird davon ausgegangen, daß ein Fachmann die obige Beschreibung in weitesten Umfang nutzen kann. Die bevorzugten Ausführungsformen sind deswegen lediglich als beschreibende, keineswegs als in irgendeine Weise limitierende Offenbarung aufzufassen.
Die vollständige Offenbarung aller vor- und nachstehend aufgeführten Anmeldungen, Patente und Veröffentlichungen, sowie der korrespondierenden Anmeldungen DE 196 29 206.9, eingereicht am 19.07.1996, sowie DE 197 26 152.3, eingereicht am 20.06.1997, sind durch Bezugnahme in diese Anmeldung eingeführt. Beispiele
Die folgenden Beispiele sollen die Erfindung näher erläutern und stellen keine Einschränkung der Erfindung dar.
Im folgenden wird unter Raumtemperatur eine Temperatur zwischen 15 und 30 °C verstanden
Beispiel 1 : Herstellung eines chiralen Sorbens, an das ß-Cyclodextrin chemisch gebunden ist
Ein poröser Formkorper, hergestellt nach EP 0710219, wird analog zu der Beschreibung von Beispiel 2 aus EP 0 445 604 mit einer Reaktionslösung aus ß-Cyclodextrin, Chlorameisensaure-p-nitrophenylester und 3-(2- Amιnoethyl)aminoproρyltπmethoxysilan zu einem chiralen Sorbens mit chemisch gebundenem ß-Cyclodextrin umgesetzt Dazu wird die Reaktionslosung durch den Formkorper gepumpt.
Es wird ein modifizierter monolithischer Formkörper erhalten, an dem ß-Cyclodextπn chemisch gebunden vorliegt
Beispiel 2: Herstellung eines C18-RP Sorbens
Ein poröser Formkorper, hergestellt nach EP 0 710 219, wird mit Methyl- octadecyldichlorsilan chemisch derivatisiert; dazu wird die Reaktions- losung durch den Formkorper gepumpt
Es wird ein modifizierter monolithischer Formkörper erhalten, der mit Ciβ-Alkylgruppen derivatisiert ist, und der als stationäre Phase für die Enantiomerentrennung mit dynamisch belegtem Sorbens geeignet ist (siehe Anwendungsbeispiele B und C) Beispiel 3: Umsetzung einer Polyamidhohlfasermembran mit Vinyldimethylazlacton
2,56 g 1 ,8-Diazabιcyclo[5,4,0]undec-7-en (DBU) und 32 ml Vinyldimethylazlacton werden in 160 ml Dimethylformamid gelöst. Ein Polyamidhohlfaserbündel (Polyamid 6, 64 Fäden; Durchmesser der Einzelfaser; innen 0,2 mm, außen 0,5 mm, mittlere Porenweite 0,5 μm) wird in eine 300 -
10 mm Chromatographiesäule SUPERFORMANCE® (Fa. Merck KGaA) gepackt und die obige Losung bei Raumtemperatur mit einem Fluß von 2 ml/min 24 Stunden durch das Hohlfaserbündel im Kreis gepumpt. Anschließend wird das deπvatisierte Hohlfaserbündel mit Dimethylformamid, Aceton, Essigsaureethylester und Aceton gespült und im Vakuumtrocken- schrank bei 50 °C getrocknet
Beispiel 4: Bindung von γ - Globulin an eine mit Vinyldimethylazlacton aktivierte Polyamidhohlfasermembran
1 g γ-Globulin wird in 100 ml Tns-Puffer (50 mM, pH 7,4) gelöst und in der in Beispiel 1 beschriebenen Apparatur durch das nach Beispiel 3 derivati- sierte Hohlfaserbundel bei Raumtemperatur im Kreis gepumpt (Fluß: 5 ml/min) Dabei wurden die Proteinkonzentration in der Lösung und deren Abnahme kontinuierlich UV-spektrophotomethsch bestimmt, nach zwei Stunden blieb die Proteinkonzentration in der umgepumpten Lösung konstant Nach Auswaschen des Hohlfaserbündels mit Tris-Puffer (50 mM, pH 7,4) und 0,1 M Essigsäure wurde das im Hohlfaserbündel kovalent gebundene Protein bestimmt' 66,5 mg
γ-Globu n ist ein Polymeres, das eine Chiralität in der Hauptkette aufweist. Es resultiert ein Hohlfasermodul mit einer chiral modifizierten Polyamidmembran In ähnlicher Weise läßt sich beispielsweise Rinderserumalbumin an eine mit Aziacton- oder Epoxygruppen aktivierte Polyamidmembran binden. Es entsteht ein chirales Sorbens, das ähnlich wie in J. Chrom. 264. Seiten 63 68 (1983) beschrieben, für die Trennung von Enantiomeren geeignet ist.
Anwendunqsbeispiel A: Trennung von racemischen Cromakalim an einem chiralen Sorbens, das ß-Cyclodextrin chemisch gebunden enthält Ein entsprechend Beispiel 1 hergestellter modifizierter monolithischer Formkörper (83 x 7,2 mm) wird als Sorbens verwandt und racemisches Cromakalim unter folgenden Bedingungen aufgetrennt: Probe: Cromakalim (0,2 mg/ml in Ethanol)
Injektionsvolumen: 5 μl Eluent: Methanol/Wasser (20/80; v/v)
Temperatur: Raumtemperatur Fluß: 1 ,0 ml/min
Detektion: 254 nm
Das Elutionsdiagramm ist in Abbildung 1 dargestellt.
Anwendunqsbeispiel B: Trennung von racemischen Chlorthalidon mit dynamischer ß-Cyclodextrinbelegung
Ein entsprechend Beispiel 2 hergestellter modifizierter monolithischer Formkörper (RP-18; 83 x 7,2 mm) wird als Sorbens verwandt und racemisches Chlorthalidon unter folgenden Bedingungen aufgetrennt: Probe. Chlorthalidon (0,44 mg/ml)
Injektionsvolumen: 5 μl Eluent: Methanol/wäßrige 25 mM Natriumphosphatlösung (pH 2) mit 10 mM ß-Cyclodextrin (20/80; v/v) Temperatur: Raumtemperatur Fluß: 1 ,0 ml/min
Detektion 254 nm
Das Elutionsdiagramm ist in Abbildung 2 dargestellt.
Anwendunqsbeispiel C: Trennung von racemischen Prominal mit dynamischer ß-Cyclodextrinbelegung
Ein entsprechend Beispiel 2 hergestellter modifizierter monolithischer Formkörper (RP-18, 83 x 7,2 mm) wird als Sorbens verwandt und racemisches Prominal unter folgenden Bedingungen aufgetrennt" Probe. Prominal (0,55 mg/ml)
Injektionsvolumen: 5 μl Eluent: Methanol/wäßrige 25 mM Natriumphosphatlösung (pH 2) mit 10 mM ß-Cyclodextrin (20/80; v/v)
Temperatur. Raumtemperatur Fluß' 1 ,0 ml/min
Detektion 254 nm
Das Elutionsdiagramm ist in Abbildung 3 dargestellt

Claims

Ansprüche
1. Chirales nicht-partikuläres Sorbens auf der Grundlage eines porösen Formkörpers.
2. Chirales Sorbens nach Anspruch 1 , wobei als Grundlage ein poröser keramischer Formkörper verwendet wird, der untereinander verbundene Makroporen sowie Mesoporen in den Wänden der Makroporen aufweist, wobei der Durchmesser der Makroporen einen Medianwert größer als 0,1 μm aufweist, und wobei der Durchmesser der Mesoporen einen Medianwert von 2 und 100 nm aufweist.
3. Chirales Sorbens nach Anspruch 1 , wobei als Grundlage ein poröser Formkorper aus Polyamid verwendet wird
4. Verwendung eines chiralen nicht-partikularen Sorbens nach einem der Ansprüche 1 bis 3 für die chromatographischen Trennung von Enantiomeren.
5 Verfahren zur chromatographischen Trennung von Enantiomeren, dadurch gekennzeichnet, daß ein chirales nicht-partikuläres Sorbens nach einem der Ansprüche 1 bis 3 verwendet wird.
PCT/EP1997/003600 1996-07-19 1997-07-08 Chirale nicht-partikuläre sorbentien WO1998003261A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10506491A JP2000515627A (ja) 1996-07-19 1997-07-08 キラル非微粒子状溶媒
EP97937469A EP0912242A1 (de) 1996-07-19 1997-07-08 Chirale nicht-partikuläre sorbentien

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19629206.9 1996-07-19
DE19629206A DE19629206A1 (de) 1995-01-20 1996-07-19 Chiral modifizierte Polyamide
DE19726152.3 1997-06-20
DE1997126152 DE19726152A1 (de) 1997-06-20 1997-06-20 Verwendung von monolithischen Sorbentien für die Enantiomerentrennung

Publications (1)

Publication Number Publication Date
WO1998003261A1 true WO1998003261A1 (de) 1998-01-29

Family

ID=26027662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/003600 WO1998003261A1 (de) 1996-07-19 1997-07-08 Chirale nicht-partikuläre sorbentien

Country Status (3)

Country Link
EP (1) EP0912242A1 (de)
JP (1) JP2000515627A (de)
WO (1) WO1998003261A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073782A1 (de) * 1999-05-31 2000-12-07 Merck Patent Gmbh Verfahren zur herstellung monolithischer trägermaterialien
WO2001023083A1 (de) * 1999-09-29 2001-04-05 Merck Patent Gmbh Poröse organische polymerformkörper

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4842449B2 (ja) * 2001-03-30 2011-12-21 ジーエルサイエンス株式会社 クロマトグラフィー用多孔質体及びカラム
EP1562700A1 (de) * 2002-10-31 2005-08-17 MERCK PATENT GmbH Mit organischen polymeren beschichtete anorganische monolithische formk rper
JP4315337B2 (ja) 2004-01-16 2009-08-19 オルガノ株式会社 光学分割能を有する非粒子状有機多孔質体及びその製造方法
JP2006150214A (ja) 2004-11-29 2006-06-15 Daicel Chem Ind Ltd 光学異性体用分離剤及び光学異性体用分離カラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3843226A1 (de) * 1988-12-22 1990-06-28 Boehringer Ingelheim Kg Chromatographieplatten und verfahren zur duennschicht-chromatographischen trennung von enantiomeren
US5080795A (en) * 1990-05-23 1992-01-14 Research Corporation Technologies, Inc. Supported chiral liquid membrane for the separation of enantiomers
WO1992000805A1 (de) * 1990-07-10 1992-01-23 Sartorius Ag Poröse, nichtpartikuläre und konvektiv permeable matrix
WO1993007945A1 (en) * 1991-10-21 1993-04-29 Cornell Research Foundation, Inc. Column with macroporous polymer media
WO1994019687A1 (de) * 1993-02-26 1994-09-01 Merck Patent Gmbh Trennmittel
WO1995003256A1 (en) * 1993-07-19 1995-02-02 Merck Patent Gmbh Inorganic porous material and process for making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3843226A1 (de) * 1988-12-22 1990-06-28 Boehringer Ingelheim Kg Chromatographieplatten und verfahren zur duennschicht-chromatographischen trennung von enantiomeren
US5080795A (en) * 1990-05-23 1992-01-14 Research Corporation Technologies, Inc. Supported chiral liquid membrane for the separation of enantiomers
WO1992000805A1 (de) * 1990-07-10 1992-01-23 Sartorius Ag Poröse, nichtpartikuläre und konvektiv permeable matrix
WO1993007945A1 (en) * 1991-10-21 1993-04-29 Cornell Research Foundation, Inc. Column with macroporous polymer media
WO1994019687A1 (de) * 1993-02-26 1994-09-01 Merck Patent Gmbh Trennmittel
WO1995003256A1 (en) * 1993-07-19 1995-02-02 Merck Patent Gmbh Inorganic porous material and process for making same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073782A1 (de) * 1999-05-31 2000-12-07 Merck Patent Gmbh Verfahren zur herstellung monolithischer trägermaterialien
WO2001023083A1 (de) * 1999-09-29 2001-04-05 Merck Patent Gmbh Poröse organische polymerformkörper

Also Published As

Publication number Publication date
JP2000515627A (ja) 2000-11-21
EP0912242A1 (de) 1999-05-06

Similar Documents

Publication Publication Date Title
EP0991940B1 (de) Verwendung monolithischer sorbentien für präparative chromatographische trennverfahren
Gübitz et al. Chiral separation by chromatographic and electromigration techniques. A review
JP3808500B2 (ja) 分離剤としての大環状抗生物質
EP0445604B1 (de) Trennmaterialien für die Chromatographie
EP0424698B1 (de) Zur Eliminierung von Biomakromolekülen insbesondere LDL und Endotoxinen, aus Vollblut in extrakorporalem Kreislauf geeignetes Adsorbens
EP3484612B1 (de) Chromatographiemedium mit gebundenen mikroglobuli und verfahren zu dessen herstellung
EP0154246A1 (de) Phasenträger für die Verteilungschromatographie von Makromolekülen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10045434A1 (de) Adsorbens mit unterschiedlich modifizierten Oberflächenbereichen, Verfahren zu dessen Herstellung und Verwendung davon
DE102016004432A1 (de) Multimodales Adsorptionsmedium mit multimodalen Liganden, Verfahren zu dessen Herstellung und dessen Verwendung
WO1998003261A1 (de) Chirale nicht-partikuläre sorbentien
US4804686A (en) Cation-exchange support materials and method
DE60222243T2 (de) Trennmittel für optisches isomer
Maris et al. Applicability of new chiral stationary phases in the separation of racemic pharmaceutical compounds by high-performance liquid chromatography
EP0921847B1 (de) Verwendung nicht-partikulärer sorbentien für "simulated moving bed" trennverfahren
DE19726152A1 (de) Verwendung von monolithischen Sorbentien für die Enantiomerentrennung
DE2605789A1 (de) Chromatografisches trennverfahren
WO1998001496A1 (de) Azlacton-derivatisierte polyamide
DE19801575A1 (de) Verwendung monolithischer Sorbentien für präparative chromatographische Trennverfahren
EP0288529B1 (de) Verfahren zur ausschlusschromatographischen trennung und reinigung von kolloiden
DE19629206A1 (de) Chiral modifizierte Polyamide
EP1263806B1 (de) Alkalistabile beschichtung auf trägermaterialien
WO1996011894A1 (en) Process for separating enantiomers from a racemic mixture
DE102005023474A1 (de) Affinitätsträger mit immobilisiertem Protein A
DE19509881B4 (de) Ovoglycoprotein und dasselbe enthaltende Agens für chromatografische Aufspaltung
DE202017007538U1 (de) Chromatographiemedium mit gebundenen Mikroglobuli

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997937469

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09230052

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997937469

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1997937469

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997937469

Country of ref document: EP