WO1994019687A1 - Trennmittel - Google Patents

Trennmittel Download PDF

Info

Publication number
WO1994019687A1
WO1994019687A1 PCT/EP1994/000488 EP9400488W WO9419687A1 WO 1994019687 A1 WO1994019687 A1 WO 1994019687A1 EP 9400488 W EP9400488 W EP 9400488W WO 9419687 A1 WO9419687 A1 WO 9419687A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromatography
porous ceramic
column
porous
shaped body
Prior art date
Application number
PCT/EP1994/000488
Other languages
English (en)
French (fr)
Inventor
Karin Cabrera
Günther Sättler
Gerhard Wieland
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to DE59409547T priority Critical patent/DE59409547D1/de
Priority to EP94909007A priority patent/EP0686258B1/de
Publication of WO1994019687A1 publication Critical patent/WO1994019687A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/283Porous sorbents based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/284Porous sorbents based on alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/80Aspects related to sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J2220/82Shaped bodies, e.g. monoliths, plugs, tubes, continuous beds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/52Physical parameters
    • G01N2030/524Physical parameters structural properties
    • G01N2030/528Monolithic sorbent material

Definitions

  • the invention relates to the use of porous ceramic
  • Shaped bodies as a medium for separations, in particular as a stationary phase in chromatography.
  • the invention further relates to ceramic moldings whose pore surfaces are modified.
  • Material separations for the purposes of the invention essentially comprise chromatographic separations, for example by means of column, thin-layer or gas chromatography, liquid-liquid extractions, adsorption and desorption processes with the participation of a gas phase or a liquid phase and electrophoretic separations. This term does not include distillative and mechanical separations, for example filtrations.
  • chromatography tubes are used, which are closed at both ends with filter elements, and with connecting pieces for supply and discharge for
  • Eluents are provided. Powdered sorbents are filled into these tubes. Instead of chromatography tubes, in which all components have to be exchanged, cartridge systems are also used in which only a tube with filter elements, which contains a powdered sorbent, has to be exchanged. The fittings can still be used. Cartridge systems of this type are described in EP-B-0268 185 and in EP-B-0 305 817. In such column packs consisting of loose powdered sorbents, changes occur, for example, due to mechanical stress, which reduces the reproducibility between chromatographic runs.
  • the object of the invention is to provide stationary phases with a stable structure for separations, in particular for chromatography, for example for thin-layer and column chromatography. This object is achieved according to the invention by the use of porous ceramic moldings for material separations.
  • the invention relates to the use of porous ceramic moldings for material separations with the proviso that these moldings with a three-dimensionally interconnecting pore system are not produced by shaping a plastically deformable and subsequently solidifiable mass, the moldings being produced in layers by repeated sequence of steps - generating a correspondingly builds up the pore system from the mass - solidification of the layer, and the image structures of the individual layers are transferred from corresponding templates.
  • the invention relates to a porous ceramic molded body, the pore surfaces of which are modified, and its use for material separations.
  • the outer surfaces of this shaped body are non-porous or are provided with a tight coating.
  • the invention relates to a chromatography column equipped with connecting pieces for supply and discharge for eluents, characterized in that a porous ceramic molded body is contained as the stationary phase.
  • the invention relates to a cartridge for liquid chromatography, characterized in that a porous ceramic molded body is contained as the stationary phase.
  • Figure 1 shows a chromatography column according to the invention.
  • Patent application DE 42 05 969 discloses a special process for the production of porous ceramic moldings and the use of such moldings for chromatography: Porous moldings with a three-dimensional interconnecting pore system are formed by shaping of a plastically deformable and subsequently solidifiable mass, the molded body being layered by repeated sequence of steps
  • porous ceramic shaped bodies produced by other processes can also be used as the stationary phase in chromatography or other processes for separating materials.
  • Ceramics known materials are used, which are sintered at temperatures between 600 and 2000 ° C. These include oxidic and non-oxidic inorganic materials such as Oxides, carbides, borides, nitrides and mixtures thereof. Examples of such materials are, in particular, calcium phosphate-containing compounds such as hydroxylapatite,
  • SiO2, AI2O3, SiC, SiOC, ZrO2, TiO2 and BN are examples of materials.
  • Conventional chromatography columns can have an essentially monomodal pore size distribution if the particles used are classified closely and are not porous; they have an essentially bimodal pore size distribution, for example if the column packing consists of narrowly classified porous particles.
  • Other pore size distributions are also known in conventional chromatography columns. Accordingly, the porous shaped bodies used according to the invention can have an essentially monomodal pore size distribution or an essentially bimodal pore size distribution. Other pore size distributions can also be used according to the invention. This also includes continuous channel-shaped pores. Suitable methods for the production of porous ceramic molded articles from various materials are known to the person skilled in the art.
  • porous ceramic moldings used according to the invention can have various geometric shapes, such as cylinders, prisms,
  • Cuboids, cones, disks or plates are preferred.
  • cylindrical porous shaped bodies are preferred when used for column chromatography
  • disk-shaped or plate-shaped shaped bodies are preferred for thin-layer chromatography.
  • the adsorption chromatography is u. a. also used in sample preparation as a special embodiment.
  • Sorbents which essentially consist of an inorganic base support, for example SiO 2 or Al 2 O 3, are modified on the surface in order to influence the separability of the material. Basically, those used to modify chromatographic support materials can be used
  • - C 5 alkyl, n is 1, 2 or 3 and
  • R2 has one of the meanings given below: a1) unsubstituted or substituted alkyl or aryl, such as e.g. n-octadecyl, n-octyl, benzyl or cyanopropyl; a2) anionic or acidic residues, e.g. Carboxypropyl; a3) cationic or basic residues, e.g. Aminopropyl, diethylaminopropyl or triethylammonium propyl; a4) hydrophilic residues, e.g. (2,3-dihydroxypropyl) oxypropyl; a5) bindable activated residues, e.g. (2,3-epoxypropyl) oxypropyl.
  • alkyl or aryl such as e.g. n-octadecyl, n-octyl, benzyl or cyanopropyl
  • Vinyl compounds as well as peptides, proteins, polysaccharides and polysaccharide derivatives on the base support;
  • chiral phases e.g. of amino acid derivatives, peptides or proteins, or of cyclodextrins, polysaccharides or polysaccharide derivatives.
  • the shaped bodies according to the invention have the dimensions customary for columns in liquid chromatography: 2 - 10 mm diameter for analytical applications and larger diameters (up to approx. 0.5 m) for preparative applications; the length is a few millimeters up to
  • the moldings according to the invention are suitable both as separating columns and as guard columns. There is no need to pack columns or cartridges, which saves a lot, especially with guard columns that are often used only once.
  • the shaped bodies according to the invention represent a fixed, unchangeable sorbent bed in comparison to conventional sorbent packs. After their use, the shaped bodies used according to the invention are easy to dispose of, since, in contrast to columns or cartridges, they essentially consist only of the ceramic material.
  • the shaped bodies When used as a carrier for thin-layer chromatography, the shaped bodies are designed as thin layers, which can additionally have a thicker non-porous part, or which can be applied to a non-porous auxiliary carrier.
  • the time-consuming application of the sorbent layer to the plate or film is dispensed with.
  • the porosity is an essential property of the ceramic shaped bodies used according to the invention.
  • the porosity has significant influences on the flow behavior, on the surface effective for the chromatographic separation and on the possibility of derivatizing the surfaces of the shaped body.
  • the porosity is expressed as the ratio of the pore volume to the total volume of the shaped body. This ratio can be determined, for example, by determining the average density of the shaped body if the density of the framework material is known. Other methods of determining porosity are based on weight determination and after saturation of the shaped body with water or on the porosometry.
  • the porosity range depends on the separation process used and the dimensions of the molded body. A degree of porosity of 20-75%, in particular 50-65%, is preferred for column liquid chromatography.
  • the surface of the porous used in the invention is expressed as the ratio of the pore volume to the total volume of the shaped body. This ratio can be determined, for example, by determining the average density of the shaped body if the density
  • Shaped bodies are typically 1 - 1000 m 2 / g.
  • the chromatography column according to the invention shown by way of example in FIG. 1 consists of a porous ceramic molded body (1) serving as a sorbent bed, a liquid-tight jacket (2). Teflon, a pressure jacket (3) with terminal union nuts (4) with connecting pieces (5).
  • a filter (6) for example a Teflon sieve, can be arranged between the molded body and the connecting piece.
  • a pressure-transmitting liquid can be pressed into a gap (8) between the liquid-tight jacket (2) and the pressure jacket (3) through a connection piece (7) in the pressure jacket, the pressure applied being generally higher or is equal to the eluent pressure. Hydraulic oils, aqueous solutions or the eluent can serve as the pressure-transmitting liquid.
  • Example A1 Treatment of a molded article made of AI2O3
  • a commercially available porous molded body made of AI2O3 with a diameter of 4 mm and a length of 125 mm (degree of porosity 20-30%) is placed in a mixture of 125 ml of acetonitrile and 125 ml of sodium hydroxide solution (25 mM) and sonicated in a laboratory ultrasound bath for 45 minutes. The molded body is then sonicated again in pure acetonitrile (15 minutes).
  • Example A2 Treatment of a shaped body made of SiO 2
  • a commercially available ceramic molded body made of SiO 2 with a diameter of 4 mm, a length of 125 mm and a porosity of 50% by volume is placed in a measuring cylinder filled with 25% hydrochloric acid and there
  • Example A3 Modification of a porous ceramic molded body
  • a commercially available ceramic molded body made of SiO 2 with a diameter of 4 mm, a length of 125 mm and a porosity of 50% by volume is made according to the method described by Gilpin et al. described processes (Anal. Chem. 46, 1314 ff (1974)) chemically derivatized in situ with methyloctadecyldichlorosilane: For this purpose a solution (10% w / w) of the silane in toluene is pumped through the shaped body. It is then washed with pure toluene and conditioned with acetonitrile and acetonitrile water (50:50; V: V) until a constant baseline is reached.
  • Example A4 Production of a shaped body made of AI2O3 suitable for guard columns
  • Shaped bodies produced according to example A1 are cut into short (length 4 mm)
  • Example A5 Production of a porous, chemically modified, ceramic molded body
  • Example A2 The molded article pretreated according to Example A2 is chemically modified as described in Example A3.
  • Example B1 Separation column with a porous ceramic molded body
  • Example A1 The molded body from Example A1 is placed in a holder according to Figure 1, so that supply and discharge lines for the eluent can be attached to the end faces of the cylinder and the cylinder jacket is sealed in a solvent-tight manner.
  • This column is connected to a conventional HPLC apparatus.
  • Example B2 Separation column with a derivatized, porous ceramic molded body
  • Example A3 The molded body from Example A3 is placed in a holder according to Figure 1, so that supply and discharge lines for the eluent can be attached to the end faces of the cylinder and the cylinder jacket is sealed solvent-tight.
  • This column is connected to a conventional HPLC apparatus.
  • Example B3 Separation column with a porous, chemically modified, ceramic molded body
  • Example A5 The molded body from Example A5 is placed in a holder so that supply and discharge lines for the eluent can be attached to the end faces of the cylinder and the cylinder jacket is sealed in a solvent-tight manner.
  • This column is connected to a conventional HPLC apparatus.
  • Example B4 Separation column with a porous ceramic molded body
  • a commercially available porous shaped body made of Zr ⁇ 2 with a diameter of 4 mm and a length of 125 mm (degree of porosity 20-30%) is placed in a holder according to Figure 1, so that the inlet and
  • Derivatives for the eluent can be attached to the front of the cylinder and the cylinder jacket is sealed solvent-tight. This column is connected to a conventional HPLC apparatus.
  • Example C5 Separation of phthalic acid esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Gegenstand der Erfindung ist die Verwendung von porösen keramischen Formkörpern als Medium für Stofftrennungen, insbesondere als stationäre Phase für die Chromatographie. Weiterhin betrifft die Erfindung oberflächenmodifizierte poröse keramische Formkörper, sowie Chromatographiesäulen und -kartuschen, die poröse keramische Formkörper als stationäre Phase enthalten.

Description

Trennmittel
Beschreibung
Die Erfindung betrifft die Verwendung von porösen keramischen
Formkörpern als Medium für Stofftrennungen, insbesondere als stationäre Phase in der Chromatographie. Die Erfindung betrifft weiterhin keramische Formkörper, deren Porenoberflächen modifiziert sind.
Stofftrennungen im Sinne der Erfindung umfassen im wesentlichen chromatographische Trennungen, beispielsweise mittels Säulen-, Dünnschicht- oder Gaschromatographie, Flüssig-Flüssig-Extraktionen, Adsorptions- und Desorptionsverfahren unter Beteiligung einer Gasphase oder einer flüssigen Phase und elektrophoretische Trennungen. Nicht umfaßt unter diesem Begriff sind destillative und mechanische Trennungen, beispielsweise Filtrationen.
Bei den Verfahren der Säulenflüssigkeitschromatographie werden Chroma¬ tographierohre benutzt, die an beiden Enden mit Filterelementen verschlos- sen sind, und die mit Anschlußstücken für Zu- und Ableitung für
Elutionsmittel versehen sind. In diese Rohre werden pulverförmige Sorbentien eingefüllt. Anstelle von Chromatographierohren, bei denen alle Bauelemente ausgetauscht werden müssen, werden auch Kartuschensysteme benutzt, bei denen lediglich ein Rohr mit Filterelementen, das ein pulverförmiges Sorbens enthält, ausgetauscht werden muß. Die Verschraubungen sind weiterverwendbar. Derartige Kartuschensysteme sind in EP-B-0268 185 und in EP-B-0 305 817 beschrieben. Bei derartigen Säulenpackungen bestehend aus losen pulverförmigen Sorbentien kommt es beispielsweise durch mechanische Beanspruchung zu Veränderungen, wodurch die Reproduzierbarkeit zwischen Chromatographieläufen verringert wird.
Aufgabe der Erfindung ist es, stationäre Phasen mit stabiler Struktur für Stofftrennungen, insbesondere für die Chromatographie, beispielsweise für die Dünnschicht- und Säulenchromatographie, bereitzustellen. Diese Aufgabe wird erfindungsgemäß durch die Verwendung von porösen keramischen Formkörpern für Stofftrennungen gelöst.
Gegenstand der Erfindung ist die Verwendung von porösen keramischen Formkörpern für Stofftrennungen mit der Maßgabe, daß diese Formkörper mit dreidimensional interkonnektierendem Porensystem nicht durch Formgebung einer plastisch verformbaren und anschließend verfestigbaren Masse hergestellt werden, wobei man den Formkörper schichtenweise durch wiederholte Abfolge der Schritte - Erzeugung einer entsprechend dem Porensystem bildartig strukturierten Schicht aus der Masse - Verfestigung der Schicht aufbaut, und wobei man die Bildstrukturen der einzelnen Schichten von ent¬ sprechenden Vorlagen überträgt.
Gegenstand der Erfindung ist ein poröser keramischer Formkörper, dessen Porenflächen modifiziert sind, und dessen Verwendung für Stofftrennungen. In einer besonders bevorzugten Ausführungsform sind die Mantelflächen dieses Formkörpers unporös oder mit einem dichten Überzug versehen.
Gegenstand der Erfindung ist eine Chromatographiesäule ausgerüstet mit Anschlußstücken für Zu- und Ableitung für Elutionsmittel, dadurch gekenn¬ zeichnet, daß als stationäre Phase ein poröser keramischer Formkörper enthalten ist.
Gegenstand der Erfindung ist eine Kartusche für die Flüssigkeitschromato¬ graphie, dadurch gekennzeichnet, daß als stationäre Phase ein poröser keramischer Formkörper enthalten ist.
in der Abbildung 1 ist eine erfindungsgemäße Chromatographiesäule dargestellt.
In der Patentanmeldung DE 42 05 969 wird ein spezielles Verfahren zur Her¬ stellung poröser keramischer Formkörper, sowie die Verwendung derartiger Formkörper für die Chromatographie offenbart: Poröse Formkörper mit drei¬ dimensional interkonnektierendem Porensystem werden durch Formgebung einer plastisch verformbaren und anschließend verfestigbaren Masse herge¬ stellt, wobei man den Formkörper schichtenweise durch wiederholte Abfolge der Schritte
- Erzeugung einer entsprechend dem Porensystem bildartig strukturierten Schicht aus der Masse
- Verfestigung der Schicht aufbaut, und wobei man die Bildstrukturen der einzelnen Schichten von ent¬ sprechenden Vorlagen überträgt.
Es hat sich jedoch herausgestellt, daß auch nach anderen Verfahren herge¬ stellte poröse keramische Formkörper als stationäre Phase bei der Chromatographie oder anderen Verfahren der Stofftrennung eingesetzt werden können.
Erfindungsgemäß können die dem Fachmann für die Herstellung von
Keramiken bekannten Materialien benutzt werden, die bei Temperaturen zwischen 600 und 2000 °C gesintert werden. Dazu gehören oxidische und nichtoxidische anorganische Materialien wie z.B. Oxide, Carbide, Boride, Nitride sowie Mischungen davon. Beispiele solcher Materialien sind insbesonders calciumphosphathaltige Verbindungen wie Hydroxylapatit,
Siθ2, AI2O3, SiC, SiOC, Zrθ2, Tiθ2 und BN.
Herkömmliche Chromatographiesäulen können eine im wesentlichen mono¬ modale Porengrößenverteilung aufweisen, wenn die verwendeten Partikel eng klassiert und nicht porös sind; sie weisen eine im wesentlichen bimodale Porengrößenverteilung auf, beispielsweise wenn die Säulenpackung aus eng klassierten porösen Partikeln besteht. Auch andere Porengrößenverteilungen sind bei herkömmlichen Chromatographiesäulen bekannt. Entsprechend können die erfindungsgemäß benutzten porösen Formkörper eine im wesentlichen monomodale Porengrößenverteilung oder eine im wesentlichen bimodale Porengrößenverteilung aufweisen. Auch andere Porengrößenverteilungen können erfindungsgemäß benutzt werden. Dazu gehören auch durchgängige kanalförmige Poren. Dem Fachmann sind geeignete Verfahren zur Herstellung von porösen keramischen Formkörpern aus verschiedenartigen Materialien bekannt. Geeignete Ausgangs¬ materialien und Verfahrensvarianten sind in Handbüchern wie Ulimann's Encyclopedia of Industrial Chemistry (1986) Verlag Chemie und in Kingery, W.D., Bowen, H.K., und Uhlmann, D.R. (1976) Introduction to Ceramics, John Wiley Verlag, beschrieben. Entsprechend dem Verwendungszweck können die erfindungsgemäß verwendeten porösen keramischen Formkörper verschiedene geometrische Formen, wie z.B. Zylinder, Prismen,
Quader, Kegel, Scheiben oder Platten, aufweisen. Beispielsweise werden bei der Verwendung für die Säulenchromatographie zylinderförmige poröse Formkörper bevorzugt, bei der Dünnschichtchromatographie Scheiben- oder plattenförmige Formkörper.
Bei herkömmlichen chromatographischen Trennverfahren werden häufig chemisch modifizierte Trennmaterialien eingesetzt, um unterschiedlichste Selektivitäten für die verschiedenen Prinzipien der chromatographischen Stofftrennung zu erreichen: Adsorptionschromatographie, reversed phase (RP) Chromatographie,
Verteilungschromatographie,
Gelpermeationschromatographie, hydrophobe Interaktionschromatographie, Affinitätschromatographie, lonenaustauschchromatographie, chromatographische Trennung von Racematen an chiralen Trägern, selektive Adsorption und Desorption.
Die Adsorptionschromatographie wird u. a. auch bei der Probenvorbereitung als spezielle Ausführungsform eingesetzt. Dabei werden Sorbentien, die im wesentlichen aus einem anorganischen Basisträger bestehen, beispiels¬ weise aus Siθ2 oder AI2O3, an der Oberfläche modifiziert, um das Trennmögen des Materials zu beeinflussen. Grundsätzlich können die zur Modifizierung chromatographischer Trägermaterialien eingesetzten
Verfahren auch zur Modifizierung der erfindungsgemäßen Formkörpern benutzt werden; geeignete Modifikationsverfahren sind dem Fachmann bekannt. Der erfindungsgemäß verwendete Begriff "oberflächenmodifiziert" ist in diesem Sinn zu verstehen. Beispiele derartiger für den genannten Zweck bekannter Oberflächenmodifikationen sind: a) Die Derivatisierung mit Silanderivaten der Formel I SiXnR1 (3-n)R2 I
worin X Methoxy, Ethoxy oder Halogen,
R1 C-| - C5 -Alkyl, n 1 , 2 oder 3 bedeuten und
R2 eine der im folgenden angegebene Bedeutungen besitzt: a1 ) unsubstituiertes oder substituiertes Alkyl oder Aryl, wie z.B. n-Octadecyl, n-Octyl, Benzyl- oder Cyanopropyl; a2) anionische oder saure Reste, wie z.B. Carboxypropyl; a3) kationische oder basische Reste, wie z.B. Aminopropyl, Diethylaminopropyl oder Triethylammoniumpropyl; a4) hydrophile Reste, wie z.B. (2,3-Dihydroxypropyl)-oxypropyl; a5) bindungsfähige aktivierte Reste, wie z.B. (2,3-Epoxypropyl)-oxypropyl.
b) Die Adsorption oder chemische Bindung von Polymeren wie Polybutadien, Siloxanen, Polymeren auf der Grundlage von Styrol/Divinylbenzol, von (Meth)acrylsäurederivaten oder von anderen
Vinylverbindungen, sowie von Peptiden, Proteinen, Polysacchariden und Polysaccharidderivaten an dem Basisträger;
c) Die chemische Bindung von unter b) genannten Polymeren über die unter a) genannten Derivate; dazu gehören Pfropfpolymerisate von Poly(meth)- acrylsäurederivaten auf diolmodifiziertem Kieselgel nach EP-B-0 337 144.
d) Die Adsorption oder chemische Bindung von chiralen Phasen, wie z.B. von Aminosäurederivaten, Peptiden oder Proteinen, oder von Cyclodextrinen, Polysacchariden oder Polysaccharidderivaten.
Weitere gebräuchliche Derivatisierungsmöglichkeiten und Derivatisierungs- verfahren sind dem Fachmann bekannt und in gängigen Handbüchern wie Unger, K.K. (ed) Porous Silica, Elsevier Scientific Publishing Company (1979) oder Unger, K.K. Packings and Stationary Phases in
Chromatographie Techniques, Marcel Dekker (1990) beschrieben. Die erfindungsgemäßen Formkörper besitzen die für Säulen in der Flüssig¬ keitschromatographie gebräuchlichen Abmessungen: 2 - 10 mm Durchmes¬ ser für analytische Anwendungen und größere Durchmesser (bis zu ca. 0,5 m) für präparative Anwendungen; die Länge beträgt wenige Millimeter bis zu
50 cm, jedoch werden in Spezialfällen auch Säulen von bis zu 2 m Länge eingesetzt. Die erfindungsgemäßen Formkörper sind sowohl als Trenn- als auch als Vorsäulen geeignet. Dabei entfällt das Packen von Säulen oder Kartuschen, wodurch insbesondere bei Vorsäulen, die häufig nur einmal verwendet werden, eine große Ersparnis entsteht. Die erfindungsgemäßen Formkörper stellen ein im Vergleich zu herkömmlichen Sorbenspackungen festes, unveränderliches Sorbensbett dar. Nach ihrer Verwendung sind die erfindungsgemäß benutzten Formkörper leicht zu entsorgen, da diese im Gegensatz zu Säulen oder Kartuschen im wesentlichen nur aus dem kera- mischen Material bestehen.
Bei der Verwendung als Träger für die Dünnschichtchromatographie sind die Formkörper als dünne Schichten ausgebildet, die zusätzlich einen dickeren unporösen Teil aufweisen können, oder die auf einem nicht-porösen Hilfs- träger aufgebracht sein können. Bei der erfindungsgemäßen Verwendung von Formkörpern in der Dünnschichtchromatographie entfällt das aufwendige Auftragen der Sorbensschicht auf die Platte oder Folie.
Die Porosität ist eine wesentliche Eigenschaft der erfindungsgemäß verwen- deten keramischen Formkörper. Die Porosität hat wesentliche Einflüsse auf das Flußverhalten, auf die für die chromatographische Trennung wirksame Oberfläche und auf die Möglichkeit, die Oberflächen des Formkörpers zu derivatisieren. Die Porosität wird als Verhältnis von Porenvolumen zum Gesamtvolumen des Formkörpers ausgedrückt. Dieses Verhältnis läßt sich beispielsweise durch die Bestimmung der mittleren Dichte des Formkörpers bestimmen, wenn die Dichte des Gerüstmaterials bekannt ist. Andere Bestimmungsmethoden für die Porosität beruhen auf der Gewichtsbestimmung vor und nach Sättigung des Formkörpers mit Wasser oder auf der Porosometrie. Der Porositätsbereich ist abhängig von dem angewendeten Trennverfahren und den Dimensionen des Formkörpers. Für die Säulenflüssigkeitschromato¬ graphie wird ein Porositätsgrad von 20 - 75 %, insbesondere von 50 - 65 %, bevorzugt. Die Oberfläche der erfindungsgemäß verwendeten porösen
Formkörpern beträgt typischerweise 1 - 1000 m2/g.
Die in der Abbildung 1 beispielhaft dargestellte erfindungsgemäße Chromatographiesäule besteht aus einem als Sorbensbett dienenden porösen keramischen Formkörper (1), einem flüssigkeitsdichten Mantel (2) aus. Teflon, einem Druckmantel (3) mit endständigen Überwurfmuttern (4) mit Anschlußstücken (5). Zwischen dem Formkörper und dem Anschlußstück kann ein Filter (6), beispielsweise ein Sieb aus Teflon, angeordnet sein. Um den flüssigkeitsdichten Mantel von dem Elutionsmitteldruck zu entlasten, kann durch einen Anschlußstutzen (7) im Druckmantel eine druckübertragende Flüssigkeit in einen Spalt (8) zwischen flüssigkeitsdichten Mantel (2) und Druckmantel (3) gepreßt werden, wobei der dabei aufgewendete Druck im allgemeinen höher oder gleich dem Elutionsmitteldruck ist. Als druckübertragende Flüssigkeit können Hydrauliköle, wäßrige Lösungen oder das Elutionsmittel dienen.
Beispiele:
A Behandlung und Derivatisierung von Formkörpern
Beispiel A1: Behandlung eines Formkörpers aus AI2O3
Ein handelsüblicher poröser Formkörper aus AI2O3 mit einem Durchmesser von 4 mm und einer Länge von 125 mm (Porositätsgrad 20-30 %) wird in einer Mischung aus 125 ml Acetonitril und 125 ml Natronlauge (25 mM) gelegt und in einem Laborultraschallbad 45 Minuten beschallt. Anschließend wird der Formkörper in reinem Acetonitril nochmals beschallt (15 Mininuten). Beispiel A2: Behandlung eines Formkörpers aus Siθ2
Ein handelsüblicher keramischen Formkörper aus Siθ2 mit einem Durch¬ messer von 4 mm, einer Länge von 125 mm und einer Porosität von 50 Vol% wird in einen mit 25%iger Salzsäure gefüllten Meßzylinder gegeben und dort
48 Stunden belassen. Anschließend wird er mehrmals mit Methanol/ Wasser gewaschen.
Beispiel A3: Modifizierung eines porösen keramischen Formkörpers
Ein handelsüblicher keramischer Formkörper aus Siθ2 mit einem Durch- messser von 4 mm, einer Länge von 125 mm und einer Porosität von 50 Vol% wird nach dem von Gilpin et al. beschriebenen Verfahren (Anal. Chem. 46, 1314 ff (1974)) in situ mit Methyloctadecyldichlorsilan chemisch derivati- siert: Dazu wird eine Lösung (10 % G/G) des Silans in Toluol durch den Formkörper gepumpt. Anschließend wird mit reinem Toluol gewaschen und mit Acetonitril und Acetonitril-Wasser (50:50; V:V) bis zum Erreichen einer konstanten Basislinie konditioniert.
Beispiel A4: Herstellung eines für Vorsäulen geeigneten Formkörpers aus AI2O3
Nach Beispiel A1 hergestellte Formkörper werden in kurze (Länge 4 mm)
Stücke getrennt, die in eine Vorsäulenhalterung passen.
Beispiel A5: Herstellung eines porösen, chemisch modifizierten, keramischen Formkörpers
Der nach Beispiel A2 vorbehandelte Formkörper wird wie unter Beispiel A3 beschrieben chemisch modifiziert. B Chromatographiesäulen und -kartuschen
i '
Beispiel B1 : Trennsäule mit einem porösen keramischen Formkörper
Der Formkörper aus Beispiel A1 wird in eine Halterung entsprechend Abbil¬ dung 1 eingelegt, so daß Zu- und Ableitungen für das Elutionsmittel an den Stirnseiten des Zylinders angebracht werden können und der Zylindermantel lösungsmitteldicht abgeschlossen ist. Diese Säule wird an eine übliche HPLC-Apparatur angeschlossen.
10
Beispiel B2: Trennsäule mit einem derivatisierten, porösen keramischen Formkörper
15 Der Formkörper aus Beispiel A3 wird in eine Halterung entsprechend Abbil¬ dung 1 eingelegt, so daß Zu- und Ableitungen für das Elutionsmittel an den Stirnseiten des Zylinders angebracht werden können und der Zylindermantel lösungsmitteldicht abgeschlossen ist. Diese Säule wird an eine übliche HPLC-Apparatur angeschlossen.
20
Beispiel B3: Trennsäule mit einem porösen, chemisch modifizierten, keramischen Formkörper
25 Der Formkörper aus Beispiel A5 wird in eine Halterung eingelegt, so daß Zu- und Ableitungen für das Elutionsmittel an den Stirnseiten des Zylinders angebracht werden können und der Zylindermantel lösungsmitteldicht abgeschlossen ist. Diese Säule wird an eine übliche HPLC-Apparatur angeschlossen.
30
35 Beispiel B4: Trennsäule mit einem porösen keramischen Formkörper
Ein handelsüblicher poröser Formkörper aus Zrθ2 mit einem Durchmesser von 4 mm und einer Länge von 125 mm (Porositätsgrad 20-30 %) wird in eine Halterung entsprechend Abbildung 1 eingelegt, so daß Zu- und
Ableitungen für das Elutionsmittel an den Stirnseiten des Zylinders angebracht werden können und der Zylindermantel lösungsmitteldicht abgeschlossen ist. Diese Säule wird an eine übliche HPLC-Apparatur angeschlossen.
C Anwendungsbeispiele
Beispiel C1 : Trennung isomerer Nitroanilide
Auf die Trennsäule aus Beispiel B1 werden 5 μl einer Mischung von 2-Nitro- acetanilid (88 μg/ml) und 3-Nitroacetanilid (545 μg/ml) in dem Elutionsmittel n-Heptan/Dioxan (80:20; V:V) aufgetragen. Es wird mit 0,05 ml/min eluiert und durch Messung der UV- Absorption bei 254 nm detektiert. Beide Substanzen werden getrennt nach 22 Minuten (2-Nitroacetanilid) und nach
51 Minuten (3-Nitroacetanilid) eluiert.
Beispiel C2: Trennung von Aromaten
Auf die Trennsäule aus Beispiel B2 werden 10 μl einer Mischung von Naph¬ thalin (17 μg/ml), Anthracen (3 μg/ml) und Benzanthracen (600 μg/ml) in dem Elutionsmittel Acetonitril/Wasser (50:50; V:V) aufgegeben. Es wird mit einem Fluß von 1 ml/ Min. eluiert und durch UV-Absorption bei 254 nm detektiert. Alle drei Substanzen werden getrennt:
Retentionszeiten in Min Naphthalin 1.6
Anthracen 3.1
Benzanthracen 6.8 Beispiel C3: Trennung von methylierten Anilinen
Auf die Trennsäule aus Beispiel B2 werden 10 μl einer Mischung von Anilin, N-Methylanilin and N,N-Dimethylanilin in dem Elutionsmittel Acetonitril/ Wasser (75:25; V:V) aufgegeben. Es wird mit 0.8 ml/ Min eluiert und durch
Messung der UV-Absorption bei 254 nm detektiert. Alle drei Substanzen werden getrennt:
Aufgabe in μg/ ml Retentionszeit in Min Anilin 13.2 1.05
N-Methylanilin 8.6 1.74
N,N-Dimethylanilin 12.9 4.9
Beispiel C4: Trennung alkylierter Aniline
Auf die Trennsäule aus Beispiel B2 werden 10 μl einer Mischung aus N,N- Dimethylanilin und N,N-Diethylanilin aufgegeben und unter den Bedingungen wie in Beispiel C3 angegeben eluiert. Beide Substanzen werden getrennt eluiert:
Aufgabe in μg/ ml Retentionszeit in Min
N,N-Dimethylanilin 5.8 1.22
N,N-Diethylanilin 21.3 8.13
Beispiel C5: Trennung von Phtalsäureestern
Auf die Trennsäule aus Beispiel B2 werden 10 μl einer Mischung aus
Benzylbutylphthalat und Dinonylphthalat aufgegeben und unter den Bedingungen wie in Beispiel C3 angegeben eluiert. Beide Substanzen werden getrennt eluiert:
Aufgabe in μg/ ml Retentionszeit in Min
Benzylbutylphthalat 130 1.03
Dinonylphthalat 410 5.66 Beispiel Cβ: Trennung von Proteinen
Auf die Trennsäule aus Beispiel B3 werden 10 μl einer Proteinmischung aus Trypsin, Ribonuclease A, Cytochrom C, BSA und Ovalbumin gelöst in 0.1 % Trifluoressigsäure aufgegeben. Unter folgenden Bedingungen wird eluiert:
Fluß: 0.8 ml/ Min; Detektion: UV-Absorption bei 280 nm; Eluent : A: Wasser + 0.2% Trifluoressigsäure und B: Acetonitril + 0.2% Trifluoressigsäure; Gradient: von A: 80% + B: 20% auf A: 0% + B: 100% innerhalb von 10 Min. Die 5 Proteine werden getrennt:
Konzentration mg/ ml Retentionszeit in Min
Trypsin 5.5 0.7
Ribonuclease A 2.3 3.52
Cytochrom C 2.1 4.41
BSA 3.2 5.08
Ovalbumin 6.9 5.52
Beispiel C7: Trennung von isomeren i Nitroacetaniliden
Auf die Trennsäule aus Beispiel B4 werden 5 μl einer Mischung aus 2- Nitroacetanilid (88 μg/ ml) und 3-Nitroacetanilid (545 μg/ ml) in dem Elutionsmittel n-Heptan/Dioxan (99:1 ; V:V) aufgetragen. Es wird mit 0,2 ml/min eluiert und durch Messung der UV- Absorption bei 254 nm detektiert. Beide Substanzen werden getrennt nach 4,4 Minuten (2-Nitroacetanilid) und nach 9,7 Minuten (3-Nitroacetanilid) eluiert.
Bei der erfindungsgemäßen Verwendung der porösen keramischen Form- körper in Kartuschensystemen sind keine zusätzlichen Säulenrohre aus Glas oder Edelstahl notwendig, sondern lediglich die Verwendung von wiederverwendbaren Halterungen. Da die Formkörper aus einem einheit¬ lichen Material bestehen, ist die Entsorgung verbrauchter Kartuschen erheblich vereinfacht. Die feste unveränderliche Packung des Sorbens gewährleistet eine gute Reproduzierbarkeit zwischen verschiedenen Chromatographieläufen. Auch ohne weitere Ausführungen wird davon ausgegangen, daß ein Fach¬ mann die obige Beschreibung im weitesten Umfang nutzen kann. Die bevor- zugten Ausführungsformen sind deswegen lediglich als beschreibende, keineswegs in irgendeiner Weise begrenzende Offenbarung aufzufassen.
Die vollständige Offenbarung aller vor- und nachstehend aufgeführten Patentanmeldungen, Patente und Veröffentlichungen sind durch Bezug- nähme in diese Anmeldung eingeschlossen.

Claims

Ansprüche
1. Verwendung von porösen keramischen Formkörpern für Stofftrennun¬ gen mit der Maßgabe, daß diese Formkörper mit dreidimensional inter- konnektierendem Porensystem nicht durch Formgebung einer plastisch verformbaren und anschließend verfestigbaren Masse hergestellt werden, wobei man den Formkörper schichtenweise durch wiederholte Abfolge der Schritte
- Erzeugung einer entsprechend dem Porensystem bildartig strukturierten Schicht aus der Masse
- Verfestigung der Schicht aufbaut, und wobei man die Bildstrukturen der einzelnen Schichten von entsprechenden Vorlagen überträgt.
2. Verwendung von porösen keramischen Formkörpern für Stofftrennun¬ gen, dadurch gekennzeichnet, daß Formkörper verwendet werden, deren Porenflächen modifiziert sind.
3. Verwendung nach einem der Ansprüche 1 oder 2, dadurch gekenn- zeichnet, daß die Stofftrennung durch Chromatographie erfolgt.
4. Poröser keramischer Formkörper, dadurch gekennzeichnet, daß die Porenflächen modifiziert sind.
5. Formkörper nach Anspruch 4, dadurch gekennzeichnet, daß er die Form eines Zylinders mit kreisförmigen oder elliptischen Querschnitt oder einer prismatischen Säule besitzt.
6. Formkörper nach Anspruch 5, dadurch gekennzeichet, daß die Mantel- fläche(n) unporös sind.
7. Formkörper nach Anspruch 4, dadurch gekennzeichnet, daß er die Form einer flachen Scheibe oder Platte besitzt.
8. Chromatographiesäule ausgerüstet mit Anschlußstücken für Zu- und Ableitung für Elutionsmittel, dadurch gekennzeichnet, daß als stationäre Phase ein poröser keramischer Formkörper enthalten ist.
9. Kartusche für die Flüssigkeitschromatographie, dadurch gekennzeichnet, daß als stationäre Phase ein poröser keramischer Formkörper enthalten ist.
10. Verfahren zur säulenchromatographischen Auftrennung eines Gemisches, dadurch gekennzeichnet, daß eine Säule nach Anspruch 6 verwendet wird.
PCT/EP1994/000488 1993-02-26 1994-02-18 Trennmittel WO1994019687A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE59409547T DE59409547D1 (de) 1993-02-26 1994-02-18 Trennmittel
EP94909007A EP0686258B1 (de) 1993-02-26 1994-02-18 Trennmittel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP9300447 1993-02-26
GBPCT/EP93/00447 1993-02-26

Publications (1)

Publication Number Publication Date
WO1994019687A1 true WO1994019687A1 (de) 1994-09-01

Family

ID=8165707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/000488 WO1994019687A1 (de) 1993-02-26 1994-02-18 Trennmittel

Country Status (3)

Country Link
CZ (1) CZ286859B6 (de)
DE (1) DE59409547D1 (de)
WO (1) WO1994019687A1 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003242A1 (de) * 1996-07-19 1998-01-29 Merck Patent Gmbh Verwendung nicht-partikulärer sorbentien für 'simulated moving bed' trennverfahren
WO1998003261A1 (de) * 1996-07-19 1998-01-29 Merck Patent Gmbh Chirale nicht-partikuläre sorbentien
WO1998059238A1 (de) * 1997-06-20 1998-12-30 Merck Patent Gmbh Halterung für monolithische sorbentien
WO2000047304A1 (de) * 1999-02-09 2000-08-17 Merck Patent Gmbh Endstück für monolithische chromatographiesäulen
US6863820B2 (en) * 2000-04-07 2005-03-08 Merck Patent Gmbh Monolithic sorbents with fibre-reinforced plastic coating
WO2006068797A1 (en) * 2004-12-20 2006-06-29 Varian, Inc. Ultraporous sol gel monoliths
DE102007008360A1 (de) 2007-02-16 2008-08-21 Merck Patent Gmbh Ummantelung für monolithische Chromatographiesäulen
US7648761B2 (en) 2002-10-31 2010-01-19 Merck Patent Gmbh Inorganic monolithic mouldings coated with organic polymers
DE102009017943A1 (de) 2009-04-17 2010-10-21 Merck Patent Gmbh Poröse, magnetische Kieselgelformkörper, deren Herstellung und Anwendung
WO2013152829A1 (de) 2012-04-14 2013-10-17 Merck Patent Gmbh Halterung für monolithische sorbenzien
US8883011B2 (en) 2006-04-07 2014-11-11 Merck Patent Gmbh Production of monolithic separating columns
WO2015086125A1 (de) * 2013-12-10 2015-06-18 Merck Patent Gmbh Reinigungsvorrichtung
WO2016188606A1 (de) 2015-05-22 2016-12-01 Merck Patent Gmbh Vorrichtung für die stofftrennung
US11065601B2 (en) 2015-12-18 2021-07-20 University Of Canterbury Separation medium

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549524A (en) * 1965-11-10 1970-12-22 Wolfgang Haller Material and method for performing steric separations
FR2121002A5 (en) * 1970-12-29 1972-08-18 Shionogi & Co Chromatographic disc - consisting of sintered fine glass particles with particles of inorg adsorbent enclosed between glass pa
JPS549691A (en) * 1977-06-22 1979-01-24 Pilot Precision Column for chromatography
EP0160267A2 (de) * 1984-04-24 1985-11-06 Kanto Kagaku Kabushiki Kaisha Poröse keramische Cordientkörper, ihre Herstellung und ihre Verwendung
EP0161659A1 (de) * 1984-05-12 1985-11-21 Fuji Photo Film Co., Ltd. Verwendung eines Separationsmediums aus porösem Glas für die hochauflösende Flüssigkeitschromatographie
EP0220764A1 (de) * 1985-10-14 1987-05-06 Agency Of Industrial Science And Technology Chemisch beständiges poröses Glas und Verfahren zu dessen Herstellung
JPS63201020A (ja) * 1987-02-17 1988-08-19 Yukiyoshi Iwamoto 多孔質セラミツクスの製造方法
EP0313090A2 (de) * 1987-10-22 1989-04-26 Asahi Kogaku Kogyo Kabushiki Kaisha Poröses keramisches Material
US4933307A (en) * 1988-04-21 1990-06-12 Ppg Industries, Inc. Silica-rich porous substrates with reduced tendencies for breaking or cracking
JPH02291963A (ja) * 1989-05-02 1990-12-03 Matsunami Glass Kogyo Kk 多孔質ガラスを封入したガラス筒及びその封入方法
DE4102635A1 (de) * 1991-01-30 1992-08-06 Steinachglas Gmbh Grundglas zur herstellung poroeser glaeser
WO1993001494A1 (en) * 1991-07-12 1993-01-21 Toxi Lab, Inc. Method and apparatus for improved solid phase extraction
DE4205969A1 (de) * 1992-02-27 1993-09-02 Merck Patent Gmbh Verfahren zur herstellung von formkoerpern mit vorbestimmter porenstruktur

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549524A (en) * 1965-11-10 1970-12-22 Wolfgang Haller Material and method for performing steric separations
FR2121002A5 (en) * 1970-12-29 1972-08-18 Shionogi & Co Chromatographic disc - consisting of sintered fine glass particles with particles of inorg adsorbent enclosed between glass pa
JPS549691A (en) * 1977-06-22 1979-01-24 Pilot Precision Column for chromatography
EP0160267A2 (de) * 1984-04-24 1985-11-06 Kanto Kagaku Kabushiki Kaisha Poröse keramische Cordientkörper, ihre Herstellung und ihre Verwendung
EP0161659A1 (de) * 1984-05-12 1985-11-21 Fuji Photo Film Co., Ltd. Verwendung eines Separationsmediums aus porösem Glas für die hochauflösende Flüssigkeitschromatographie
EP0220764A1 (de) * 1985-10-14 1987-05-06 Agency Of Industrial Science And Technology Chemisch beständiges poröses Glas und Verfahren zu dessen Herstellung
JPS63201020A (ja) * 1987-02-17 1988-08-19 Yukiyoshi Iwamoto 多孔質セラミツクスの製造方法
EP0313090A2 (de) * 1987-10-22 1989-04-26 Asahi Kogaku Kogyo Kabushiki Kaisha Poröses keramisches Material
US4933307A (en) * 1988-04-21 1990-06-12 Ppg Industries, Inc. Silica-rich porous substrates with reduced tendencies for breaking or cracking
JPH02291963A (ja) * 1989-05-02 1990-12-03 Matsunami Glass Kogyo Kk 多孔質ガラスを封入したガラス筒及びその封入方法
DE4102635A1 (de) * 1991-01-30 1992-08-06 Steinachglas Gmbh Grundglas zur herstellung poroeser glaeser
WO1993001494A1 (en) * 1991-07-12 1993-01-21 Toxi Lab, Inc. Method and apparatus for improved solid phase extraction
DE4205969A1 (de) * 1992-02-27 1993-09-02 Merck Patent Gmbh Verfahren zur herstellung von formkoerpern mit vorbestimmter porenstruktur

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 110, no. 8, 20 February 1989, Columbus, Ohio, US; abstract no. 62516w, IWAMOTO: "MANUFACTURE OF GLASS-CERAMICS" page 311; column 1; *
CHEMICAL ABSTRACTS, vol. 90, no. 24, 11 June 1979, Columbus, Ohio, US; abstract no. 197143, KATO: "COLUMN FOR GAS AND LIQUID CHROMATOGRAPHY" page 714; column 1; *
DATABASE WPI Week 9103, Derwent World Patents Index; AN 91-019089 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003242A1 (de) * 1996-07-19 1998-01-29 Merck Patent Gmbh Verwendung nicht-partikulärer sorbentien für 'simulated moving bed' trennverfahren
WO1998003261A1 (de) * 1996-07-19 1998-01-29 Merck Patent Gmbh Chirale nicht-partikuläre sorbentien
WO1998059238A1 (de) * 1997-06-20 1998-12-30 Merck Patent Gmbh Halterung für monolithische sorbentien
WO2000047304A1 (de) * 1999-02-09 2000-08-17 Merck Patent Gmbh Endstück für monolithische chromatographiesäulen
US6863820B2 (en) * 2000-04-07 2005-03-08 Merck Patent Gmbh Monolithic sorbents with fibre-reinforced plastic coating
US7648761B2 (en) 2002-10-31 2010-01-19 Merck Patent Gmbh Inorganic monolithic mouldings coated with organic polymers
US7439272B2 (en) 2004-12-20 2008-10-21 Varian, Inc. Ultraporous sol gel monoliths
WO2006068797A1 (en) * 2004-12-20 2006-06-29 Varian, Inc. Ultraporous sol gel monoliths
AU2005319513B2 (en) * 2004-12-20 2010-05-13 Agilent Technologies, Inc. Ultraporous sol gel monoliths
US8883011B2 (en) 2006-04-07 2014-11-11 Merck Patent Gmbh Production of monolithic separating columns
DE102007008360A1 (de) 2007-02-16 2008-08-21 Merck Patent Gmbh Ummantelung für monolithische Chromatographiesäulen
DE102009017943A1 (de) 2009-04-17 2010-10-21 Merck Patent Gmbh Poröse, magnetische Kieselgelformkörper, deren Herstellung und Anwendung
WO2010118809A1 (de) 2009-04-17 2010-10-21 Merck Patent Gmbh Poröse, magnetische kieselgelformkörper, deren herstellung und anwendung
WO2013152829A1 (de) 2012-04-14 2013-10-17 Merck Patent Gmbh Halterung für monolithische sorbenzien
WO2015086125A1 (de) * 2013-12-10 2015-06-18 Merck Patent Gmbh Reinigungsvorrichtung
US10052566B2 (en) 2013-12-10 2018-08-21 Merck Patent Gmbh Purification device for a liquid-crystal mixture
WO2016188606A1 (de) 2015-05-22 2016-12-01 Merck Patent Gmbh Vorrichtung für die stofftrennung
US11065601B2 (en) 2015-12-18 2021-07-20 University Of Canterbury Separation medium

Also Published As

Publication number Publication date
CZ286859B6 (en) 2000-07-12
CZ214295A3 (en) 1996-05-15
DE59409547D1 (de) 2000-11-16

Similar Documents

Publication Publication Date Title
WO1994019687A1 (de) Trennmittel
EP0991940B1 (de) Verwendung monolithischer sorbentien für präparative chromatographische trennverfahren
EP0990153B1 (de) Ummantelung für monolithische sorbentien
DE3007869C2 (de)
AT394454B (de) Chromatographisches verfahren zur trennung einer oder mehrerer in loesung befindlicher verbindungen, sowie vorrichtung zur durchfuehrung des verfahrens
DE60012311T2 (de) Negativ geladene membranen
JPH0623266A (ja) コントロールされた気孔を有する複合ポリテトラフルオロエチレン品およびそのコントロール方法
EP0154246B1 (de) Phasenträger für die Verteilungschromatographie von Makromolekülen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4139664A1 (de) Vorrichtung und verfahren zur isolierung und reinigung von nukleinsaeuren
DE2638764B2 (de) Verwendung eines Austauscherharzes zum Auftrennen von Proteinen
GB1584730A (en) Controlled surface porosity particles and a method for their production
DE10344820B4 (de) Adsorptionsmembranen, Verfahren zur Herstellung derselben und Verwendung der Adsorptionsmembranen in Vorrichtungen
EP1259322B1 (de) Polymere anionenaustauscherharze und deren verwendung in chromatographischen verfahren
DE10344819B4 (de) Adsorptionsmembranen, Verfahren zur Herstellung derselben und Vorrichtungen, welche die Adsorptionsmembranen umfassen
DE19900681B4 (de) Verwendung von Anionaustauschermembranen zur Entfernung von Endotoxinen aus Nukleinsäure-haltigen Lösungen
EP0686258B1 (de) Trennmittel
EP0921847B1 (de) Verwendung nicht-partikulärer sorbentien für "simulated moving bed" trennverfahren
WO2001023083A1 (de) Poröse organische polymerformkörper
EP0744025B1 (de) Chromatographiematerial
DE102007005655A1 (de) Vorrichtung und Verfahren zur Aufreinigung von Nukleinsäuren
EP0789620B1 (de) Trennmaterialien und verfahren zu ihrer herstellung
DE68914048T2 (de) Trennung von einen Durchflussraum für Fluide bildenden Elementen.
DE10053553C2 (de) Vorrichtung zum Nachweis und zum Anreichern von Biomolekülen
EP0222146B1 (de) Selektives Adsorbens zur Bindung von Immunkomplexen
EP0325188A2 (de) Verfahren zur Verkleinerung der Poren eines Filtermediums für Getränke

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CZ JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994909007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PV1995-2142

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1994909007

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1995-2142

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: PV1995-2142

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1994909007

Country of ref document: EP