WO1997050140A1 - Direkt-methanol-brennstoffzelle (dmfc) - Google Patents

Direkt-methanol-brennstoffzelle (dmfc) Download PDF

Info

Publication number
WO1997050140A1
WO1997050140A1 PCT/DE1997/001320 DE9701320W WO9750140A1 WO 1997050140 A1 WO1997050140 A1 WO 1997050140A1 DE 9701320 W DE9701320 W DE 9701320W WO 9750140 A1 WO9750140 A1 WO 9750140A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel cell
methanol
water
anode
Prior art date
Application number
PCT/DE1997/001320
Other languages
English (en)
French (fr)
Inventor
Günter Luft
Kurt Pantel
Manfred Waidhas
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP10502109A priority Critical patent/JP2000512797A/ja
Priority to DK97932708T priority patent/DK0907979T3/da
Priority to AT97932708T priority patent/ATE190756T1/de
Priority to EP97932708A priority patent/EP0907979B1/de
Priority to DE59701268T priority patent/DE59701268D1/de
Priority to US09/214,107 priority patent/US6509112B1/en
Publication of WO1997050140A1 publication Critical patent/WO1997050140A1/de
Priority to NO986064A priority patent/NO986064L/no

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a direct methanol fuel cell (DMFC), a system consisting of several DMFC and a method for operating DMFC systems with high voltage and Faraday efficiency.
  • DMFC direct methanol fuel cell
  • the principle of the DMFC has been known since 1922, so far the work has concentrated on operating the DMFC with liquid fuel.
  • the DMFC uses methanol as fuel; in earlier years, alternatives to methanol such as formic acid, formaldehyde or higher-chain alcohols were also tried as fuel.
  • the use of methanol is of the greatest technical importance, which is why the name DMFC has become common.
  • the operation of the DMFC with liquid fuel takes place at relatively low temperatures and has the disadvantage that the conversion of the methanol takes place with a relatively poor voltage efficiency due to kinetic inhibitions of the anode reaction.
  • the reaction of gaseous methanol is known from JP-22 34 359.
  • the water for moistening the membrane and for the course of the reaction [CH 3 OH + H 2 0 -> C0 2 + 6H 4 + 6e ⁇ ] is fed separately on the back (ie on the cathode side).
  • the supply of water on the cathode side has the disadvantage that, at higher current densities, the electroosmotic water transport, which is proportional to the current, counteracts the water diffusion through the membrane. This leads to increased water consumption because the membrane must be kept moist with additional water. In addition, with this state of the art, water is not metered in depending on the load.
  • a general problem in the implementation of the DMFC remains the diffusion of the fuel methanol through the electrolyte to the cathode, where this is also implemented. The result of this is, in addition to the loss of fuel (lowering of the Faratta efficiency), a reduction of the cell voltage (lowering of the voltage efficiency).
  • the Faraday efficiency is the degree of energy utilization, which means the percentage to which the fuel was actually converted at the anode.
  • thermodynamic quiescent voltage The ratio between cell voltage under current load and thermodynamic quiescent voltage is referred to as voltage efficiency.
  • the Faraday efficiency can be increased by minimizing the methanol diffusion within the cell if the methanol is added as a function of the load and is accordingly consumed in the anode compartment. Then it is not present in such a high concentration that a large diffusion pressure arises towards the cathode.
  • the invention is based on the knowledge that the voltage efficiency can be improved by increasing the operating temperature because this leads to a minimization of the kinetic inhibition of the anode reaction.
  • the Faraday efficiency is also increased by the load-dependent supply of the reactants at a low current density.
  • the problem of excessive water transport through the polymer electrolyte can be reduced by adding an inert gas such as carbon dioxide and / or nitrogen, because this lowers the water content on the anode side of the DMFC and less water is transported to the cathode.
  • an inert gas such as carbon dioxide and / or nitrogen
  • the present invention therefore relates to a DMFC, in each case comprising a supply and disposal channel for the fuel and the oxidant, a membrane electrode unit and bi-polar plates, an evaporator being connected upstream of the supply channel for the fuel so that the fuel is present in gaseous form during the reaction at the anode of the fuel cell.
  • the present invention furthermore relates to a fuel cell system which comprises a cell stack of fuel cells according to the invention, an evaporator and, if appropriate, up to three pumps (two metering pumps for the supply of methanol and water and a pump which circulates the CO ⁇ exhaust gas is, again to the required gauge pressure) into the supply line of the fuel, as well as in the derivation of the fuel comprises a C0 2 separator, in which, the fuel cell stack downstream C0 2 separator the condensate of the gaseous fuel from the carbon dioxide thermally or otherwise is separable.
  • the present invention furthermore relates to a method for operating a DMFC system in which the fuel, consisting at least of methanol and water, of the anode is supplied in gaseous form.
  • the fuel of the fuel cell according to the invention can either consist only of methanol or of any mixture of water and methanol. If the fuel consists of any mixture of water and methanol, the concentration of both methanol or water can be adjusted in a load-dependent manner via a metering pump upstream of the evaporator.
  • the fuel can be introduced into the fuel cell at variable pressure and any amount of inert carrier gas such as CO 2 , N 2 , argon, etc. can be added to it.
  • a preferred embodiment of the fuel cell provides that the methanol / water mixture contains an inert gas such as e.g. Carbon dioxide and / or nitrogen or the like is added.
  • an inert gas such as e.g. Carbon dioxide and / or nitrogen or the like is added.
  • the fuel cell system according to the invention preferably consists of a cell stack of fuel cells according to the invention, but it can also be constructed in a combination of different types of fuel cells.
  • the evaporator and possibly one or two metering pumps, which feed the fuel or the water depending on the load, are integrated in the feed of the fuel to the cell stack.
  • the resulting C0 2 is separated from the exhaust gas, which is rich in unused methanol.
  • the exhaust gas is then present in condensed form and can be circulated, ie it can be introduced into the evaporator.
  • part of the separated carbon dioxide can also be circulated via a pressure pump, which also regulates the amount of inert gas added.
  • Anode cycle means that the fuel methanol or methanol / water mixture, in each case with or without the addition of inert gas, is conducted past the anode in a circularly closed system, additional fuel being fed to the system when necessary and gaseous reaction product being separated from the system .
  • the unused fuel which is contained in the fuel off-gas, is first condensed or cooled using heat and then reintroduced into the feed line or into the evaporator.
  • the load-dependent control of the metering pumps, the inflow of water / Control methanol in the evaporator be designed so that the changes in concentration of the methanol / water mixture in the evaporator are taken into account through the supply line from the exhaust gas.
  • the unused fuel from the fuel off-gas is physically or possibly chemically separated from the carbon dioxide contained in the heat exchanger or CO 2 separator.
  • Physical separation means that the separation takes place via the different physical properties of the substances (such as density, boiling point, etc.).
  • Chemical separation is also conceivable and means that the CO 2 is chemically bound, for example precipitated as carbonate (due to the high mass of the carbonate formed it makes little sense in terms of energy, but alternative chemical methods can be discussed).
  • the DMFC is the direct methanol fuel cell which, analogous to the general principle of electrochemical energy converters, consists of anode, cathode and a suitable electrolyte.
  • the electrodes are generally contacted on the back, ie with the side facing away from the electrolyte, by a current collector, which has the task of distributing the gas or reactants. Due to the type of electrolyte used, there are various possibilities for realizing a DMFC. In the context of the present invention, preferred acidic electrolytes, and in particular acidic solid electrolytes, are treated. Proton-conducting polymers (electrolyte membranes) that are stable under the corresponding operating conditions are generally suitable.
  • Nafion (registered trademark) may be mentioned as an example.
  • Other electrolytes are those which are based on inorganic systems, such as tin phosphates or electrolytes which are based on siloxane skeletons.
  • Carbon-based materials for example carbon fiber papers or fabrics, are usually used as current collectors.
  • Platinum / ruthenium alloys are primarily used as catalysts on the anode side, and platinum is usually used on the cathode side.
  • the individual cells are connected in bipolar series to achieve higher voltages.
  • the bipolar plates required for this can be made of graphite, metallic or other electrically conductive and corrosion-resistant materials. The bipolar plates simultaneously take on the task of supplying the reactants. They are therefore structured with appropriate channels, if necessary.
  • the DMFC can be operated at temperatures between 60 and 160 ° C.
  • the operating temperature will preferably fall in a range from 100 to 150.degree. C., typically between 120 and 130.degree.
  • methanol or corresponding methanol / water mixtures are heated above the boiling point and fed to the cell in gaseous form.
  • the system pressure is adjusted so that it corresponds to the equilibrium pressure of the methanol / water mixture at the temperature of the fuel cells.
  • the steam is therefore in the state of saturation in the anode compartment of the DMFC. This vaporous supply of the reactant minimizes the electroosmotic water transport because the amount of water at the anode is greatly reduced.
  • the terms “fuel”, “methanol” and “mixture of water and methanol” always refer to a vaporous fuel which contains an indefinite amount of inert gas (that is to say from 0% to a degree of moisture of almost 100)
  • inert gas that is to say from 0% to a degree of moisture of almost 100
  • C0 2 as the inert gas
  • it can be part of the anode exhaust gas, which is brought back to the required positive pressure by means of a pump and a corresponding control valve (see also FIG. 2) and is circulated .
  • a methanol / water mixture or pure methanol, with or without the addition of inert gas, is used as fuel, but the invention should not be restricted to this if the electrochemical oxidizability of other water-soluble organic molecules turns out to be technically profitable.
  • the fuel is circulated via a carbon dioxide separator connected to the exhaust gas line of the fuel cell, which at the same time has the function of separating the carbon dioxide formed from the remaining exhaust gas.
  • Either pure oxygen or air or any mixture of these components is referred to as the oxidant, the oxidant preferably being supplied to the cathode in a stoichiometric amount.
  • a particular problem of the DMFC is the search for suitable anode materials for the oxidation of the fuel.
  • different anode materials and catalysts can therefore be used on the anode according to the invention, depending on the state of research.
  • the activity of the anode compared to the binary system platinum / ruthenium can be slightly improved again by alloying a third component, such as tin or nickel.
  • the invention is also not intended to be limited to noble metals as catalysts and anode materials or cathode materials, but rather noble metal-free catalysts are also conceivable.
  • the concentration of methanol in the fuel mixture can be between 0.05 and 5 mol / l.
  • a concentration between 0.5 and 1.5 mol / l is particularly preferred.
  • the pressure which can lie between normal pressure and low overpressure and underpressure, should be mentioned as a further operating parameter.
  • Figure 1 shows a block diagram of a fuel cell system according to the invention.
  • FIG. 2 also shows a block diagram of a fuel cell system according to the invention, in which, however, the fuel is circulated via a C0 2 separator connected to the fuel cell.
  • FIG. 1 shows a fuel cell system which can be operated both with a methanol / water mixture and with pure methanol as fuel.
  • the system has the metering pumps 3 and 3 ', which regulate the supply of methanol and / or water depending on the load via a control system.
  • FIG. 1 first shows the two containers 1 and 2 in which water and methanol are contained.
  • the constituents of the liquid fuel, ie water and methanol, flow from these storage containers 1 and 2 into the metering pumps 3 and 3 ', each of which regulates the flow rate of the liquids.
  • the amount of water measured in the metering pump 3 as a function of the load reaches the evaporator 4 via the line 11.
  • a certain amount of methanol also reaches the storage tank 2 via the metering pump 3 '. and the line 12 in the same evaporator 4.
  • both liquids are heated above the boiling point and the vapor mixture formed in the evaporator is fed into the fuel line 13.
  • cell stack 5 initiated. There it is conducted via a supply channel into the respective anode compartments of the individual fuel cells.
  • the spent fuel gas enriched with CO 2 leaves the fuel cell stack again and reaches the carbon dioxide separator or heat exchanger 6, in which it is condensed out again using the thermal energy.
  • the C0 2 formed can be separated from the exhaust gas / condensate there.
  • the fuel cell is supplied with oxidant on the cathode side via line 14 parallel to line 13.
  • the oxide exhaust gas leaves the cell stack again via the line 16 and is passed into the heat exchanger 7.
  • FIG. 2 shows a similar block diagram of a fuel cell system according to the invention, with the difference that the heat exchanger or carbon dioxide separator 6 connected to the fuel exhaust line from the fuel cell stack is connected to the evaporator 4 via the line 8.
  • the fuel exhaust gas which has possibly been condensed or cooled in the heat exchanger or carbon dioxide separator 6 then returns to the evaporator 4, where it is fed again to the fuel cell via line 13.
  • the separated CO 2 from the heat exchanger 6 is likewise passed into the evaporator 4 via a second line 18.
  • the line 18 there is a pump 19 through which the CO 2 is brought back to the required positive pressure.
  • the composition of the fuel mixture depends on the load on the fuel cell stack and the specification of the degree of moisture.
  • the output of the metering pumps 3 and 3 ' is set by means of a control mechanism which compares the water / methanol concentrations given as a setpoint with the actual value of the mixture given in line 13.
  • the addition of inert gas is controlled by a control mechanism, which determines the degree of moisture in line 13 as an actual value with a compares the specified moisture level as the setpoint, controls it.
  • a fuel cell system in particular a battery consisting of the fuel cells according to the invention, operates with a voltage and Faraday efficiency which is significantly higher than in the prior art.
  • the transport of oxygen is hindered and the cell voltage collapses]
  • the cathode is prevented, at least largely suppressed.
  • the increase in Faraday efficiency is mainly achieved by minimizing the diffusion of methanol through the membrane.
  • a "load-dependent setpoint, which can be seen through the Faraday" defines equivalents of the reaction and an operating range, which preferably consists of an excess, as the "demand for fuel”.
  • the methanol concentration can thus be variably adjusted at the anode load change and can also handle extreme operating parameters (such as standby and full load) in a state that is optimally close to the diffusion limit current (ie still with maximum power but close to the diffusion limit current along the characteristic curve in voltage / Current diagram).
  • the change in the methanol concentration in the gas mixture does not have to be regulated via the water supply or the pressure, but can of course also be controlled via the addition of an inert carrier gas. No additional measurement of the actual value of methanol or fuel concentration prevailing in the cell is required to set the metering pumps, because the metering pump can be set depending on the load, and the consumption of methanol and thus also the amount which is returned Exhaust gas is still included, over the current course can be calculated.
  • An additional control determination of the actual value of the methanol concentration in the gaseous fuel mixture can also take place, for example, in the feed line 13 from the evaporator to the fuel stack or in the evaporator itself. If the actual value is determined in the evaporator, the dimensions of the evaporator vessel must be such that complete evaporation is guaranteed under all conceivable operating conditions and therefore none
  • a simpler structure of the cell is achieved in that the water is supplied on the anode side and not, as in the prior art mentioned, on the cathode side.
  • a battery consisting of fuel cells according to the invention is i.a. conceivable for use in mobile energy supply, such as in automobiles. However, it is also conceivable for larger stationary energy supply systems, such as in power plants or for supplying residential or commercial buildings with electrical power and heat.

Abstract

Die Erfindung betrifft eine DMFC, bei der der Zelle (5) ein Verdampfer (4) vorgeschaltet ist. Der Brennstoff, der vorwiegend ein Methanol/Wassergemisch mit evtl. Zusatz an Inertgas ist, ist in seiner Zusammensetzung variabel, wobei die jeweilige Methanol/Wasser- und ggf. Inertgas-Mischung lastabhängig einstellbar ist. Außerdem betrifft die Erfindung ein Verfahren zum Betreiben einer DMFC-Anlage, bei dem der Brennstoff gasförmig im Anodenraum vorliegt.

Description

Direkt-Methanol-Brennstoffzelle (DMFC)
Die Erfindung betrifft eine Direkt-Methanol-Brennstoffzelle (DMFC) , eine Anlage bestehend aus mehreren DMFC sowie ein Verfahren zum Betreiben von DMFC-Anlagen, mit hohem Span- nungs- und Faradaywirkungsgrad.
Seit 1922 ist es das Prinzip der DMFC bekannt, bislang kon¬ zentrierten sich die Arbeiten auf das Betreiben der DMFC mit flüssigem Brennstoff. Als Brennstoff wird bei der DMFC Metha¬ nol genommen, in früheren Jahren wurden auch noch Alternati¬ ven zu Methanol wie Ameisensäure, Formaldehyd oder höherket- tige Alkohole als Brennstoff ausprobiert. Die Verwendung von Methanol hat dabei die größte technische Bedeutung, weshalb sich auch der Name DMFC eingebürgert hat. Das Betreiben der DMFC mit flüssigem Brennstoff findet bei relativ tiefen Tem¬ peraturen statt und hat den Nachteil, daß die Umsetzung des Methanols mit relativ schlechtem Spannungswirkungsgrad er¬ folgt und zwar aufgrund kinetischer Hemmungen der Anodenreak¬ tion.
Aus der J.P.-22 34 359 ist die Umsetzung dampfförmigen Metha- nols bekannt. Dabei wird das Wasser für die Befeuchtung der Membran und für den Ablauf der Reaktion [ CH3OH + H20 —> C02 + 6H4 + 6e~ ] separat rückseitig (also kathodenseitig) zuge¬ führt. Die kathodenseitige Zuführung des Wassers hat den Nachteil, daß bei höheren Stromdichten, der dem Strom propor- tionale, elektroosmotische Wassertransport der Wasserdiffusi¬ on durch die Membran entgegenwirkt. Dies führt zu einem er¬ höhten Wasserverbrauch, weil die Membran mit zusätzlichem Wasser feucht gehalten werden muß. Außerdem erfolgt die Zudo- sierung von Wasser bei diesem Stand der Technik nicht lastab- hängig. Ein generelles Problem bei der Realisierung der DMFC bleibt die Diffusion des Brennstoff-Methanols durch den Elektrolyten zur Kathode, wo dieses auch umgesetzt wird. Die Folge davon ist neben dem Verlust des Brennstoffs (Erniedrigung des Fara- daywirkungsgrades) eine Verringerung der Zellspannung (Erniedrigung des Spannnungswirkungsgrads) .
Aufgabe der vorliegenden Erfindung ist es daher, eine Brenn¬ stoffzelle und eine BrennstoffZeilenanlage sowie ein Verfah- ren zum Betreiben der Anlage zur Verfügung zu stellen, bei der bei hohen Stromdichten hohe Spannungs- und Faradaywir- kungsgrade realisiert werden. Zudem ist Aufgabe der vorlie¬ genden Erfindung, daß eine Brennstoffzelle, eine Brennstoff¬ zellenanlage sowie ein Verfahren zum Betreiben einer Brenn- stoffzelle zur Verfügung gestellt wird, die mit geringem elektroosmotischen Wasserverlust in der Zelle und mit einem möglichst geringem Wassertransport durch den Polymerelektro¬ lyten arbeitet.
Als Faradaywirkungsgrad wird der Energienutzungsgrad bezeich¬ net, der besagt zu welchem Prozentsatz der Brennstoff tat¬ sächlich an der Anode umgesetzt wurde.
Als Spannungswirkungsgrad wird das Verhältnis zwischen Zellspannung unter Strombelastung und thermodynamischer Ruhe¬ spannung bezeichnet.
Allgemeine Erkenntnis der Erfindung ist,
- erstens, daß eine Erhöhung des Faradaywirkungsgrades durch Minimierung der Methanoldiffusion innerhalb der Zelle möglich ist, wenn das Methanol lastabhängig zugeführt und entspre¬ chend im Anodenraum verbraucht wird. Dann liegt es nicht in so hoher Konzentration vor, daß ein großer Diffusionsdruck zur Kathode hin entsteht. - zweitens liegt der Erfindung die Erkenntnis zugrunde, daß der Spannungswirkungsgrad durch Erhöhung der Betriebstempera¬ tur verbessert werden kann, weil das zu einer Minimierung der kinetischen Hemmung der Anodenreaktion führt. Außerdem wird der Faradaywirkungsgrad auch durch die lastabhängige Zufüh¬ rung der Reaktanden bei geringer Stromdichte erhöht.
- drittens kann das Problem eines zu hohen Wassertransports durch den Polymerelektrolyten durch die Zugabe eines Inertga- ses wie Kohlendioxid und/oder Stickstoff verringert werden, weil sich dadurch der Wassergehalt auf der Anodenseite der DMFC erniedrigt und weniger Wasser zur Kathode transportiert wird.
Gegenstand der vorliegenden Erfindung ist deshalb eine DMFC, jeweils einen Versorgungs-und Entsorgungskanal für den Brenn¬ stoff und das Oxidans, eine Membran-Elektrodeneinheit und bi¬ polare Platten umfassend, wobei dem Versorgungskanal für den Brennstoff ein Verdampfer so vorgeschaltet ist, daß der Brennstoff bei der Umsetzung an der Anode der Brennstoffzelle gasförmig vorliegt. Weiterhin ist Gegenstand der vorliegenden Erfindung eine Brennstoffzellenanlage, die einen Zellstapel aus erfindungsgemäßen Brennstoffzellen, einen Verdampfer und ggf. bis zu drei Pumpen (zwei Dosierpumpen für die Zuführung von Methanol und Wasser und eine Pumpe, die das CO∑-Abgas, das im Kreis geführt wird, wieder auf den erforderlichen Überdruck bringt) in der Zuleitung des Brennstoffs sowie in der Ableitung des Brennstoffs einen C02-Abscheider umfaßt, wobei in dem, dem Brennstoffzellenstapel nachgeschalteten C02 -Abscheider das Kondensat des gasförmigen Brennstoffs vom Kohlendioxid thermisch oder auf sonstige Weise abtrennbar ist.
Weiterhin ist Gegenstand der vorliegenden Erfindung ein Ver- fahren zum Betreiben einer DMFC-Anlage, bei dem der Brenn¬ stoff, zumindest aus Methanol und Wasser bestehend, der Anode gasförmig zugeleitet wird. Weitere vorteilhafte Ausgestaltun¬ gen der Erfindung sind in den Unteransprüchen sowie in der Beschreibung, den Erläuterungen zu den Figuren und den Figu¬ ren selbst enthalten.
Der Brennstoff der erfindunsgemäßen Brennstoffzelle kann ent¬ weder nur aus Methanol oder aus einem beliebigen Gemisch aus Wasser und Methanol bestehen. Falls der Brennstoff aus einem beliebigen Gemisch aus Wasser und Methanol besteht, so kann über eine, dem Verdampfer vorgeschaltete Dosierpumpe die Kon¬ zentration an sowohl Methanol oder Wasser lastabhängig ein¬ stellbar sein. Der Brennstoff kann dabei mit variablem Druck in die Brennstoffzelle eingeleitet werden und es kann ihm ei¬ ne beliebige Menge an inertem Trägergas wie C02, N2, Argon, etc....beigemischt sein.
Eine bevorzugte Ausführungsform der Brennstoffzelle sieht vor, daß dem Methanol/Wassergemisch ein Inertgas wie z.B. Kohlendioxid und/oder Stickstoff oder ähnliches zugemischt wird. Dadurch verringert sich der Wassergehalt auf der An¬ odenseite der DMFC und es wird weniger Wasser durch den Poly¬ merelektrolyten zur Kathodenseite transportiert.
Der Feuchtegrad xf = VnW / Vn [VnW = Wasserdampfvolumen unter Normalbedingungen; Vn = Gesamtvolumen unter Normalbedingun¬ gen] kann durch das Inertgas beliebig eingestellt werden. Als zweckmäßig erweisen sich Feuchtegrade größer 70%, bevorzugt zwischen 80 und 90%, da dann die Polymermembran noch nicht austrocknet. Der Feuchtegrad wird möglichst hoch sein, damit der Energieaufwand für den Gastransport möglichst gering bleibt. Der Feuchtegrad hängt auch von der Betriebstemperatur der DMFC ab. Je höher diese ist, desto höher muß auch der Feuchtegrad sein, da der Wassergehalt in der Membran bei Tem¬ peraturen über 100°C schnell abnimmt. Der Feuchtegrad Xf (auf das Volumen bezogen) ist wie folgt definiert: Xf = VnW/Vn = VnW/ (VnW + VnL) = pw/p
VnL = Trockengasvolumen unter Normalbedingungen, d.h. das Vo¬ lumen aus gasförmigem Methanol, mit oder ohne Inertgaszusatz; pw = Wasserdampfteildruck p = Gesamtdruck
Die erfindungsgemäße Brennstoffzellenanlage besteht bevorzugt aus einem Zellstapel aus erfindungsgemäßen Brennstoffzellen, sie kann aber auch aus verschiedenen Arten von Brennstoffzel¬ len kombiniert gebaut sein. Dabei sind der Verdampfer und ggf. ein oder zwei Dosierpumpen, die den Brennstoff oder das Wasser lastabhängig zuleiten, in der Zuleitung des Brenn¬ stoffs zum Zellstapel integriert.
In einem Anodenkreislauf wird im C02-Abscheider das entstan¬ dene C02 von dem Abgas, das reich an unverbrauchtem Methanol ist, abgetrennt. Das Abgas liegt dann in kondensierter Form vor und kann im Kreislauf geführt, werden, d.h. in den Ver- dampfer eingeleitet werden. Weiterhin kann ein Teil des abge¬ trennten Kohlendioxids über eine Überdruckpumpe, die auch die Zugabemenge an dem Inertgas regelt, ebenfalls im Kreis ge¬ führt werden.
Anodenkreislauf bedeutet, daß der Brennstoff Methanol oder Methanol/Wasser-Gemisch, jeweils mit oder ohne Inertgaszu¬ satz, in einem kreisförmig-geschlossenem System an der Anode vorbeigeführt wird, wobei zusätzlicher Brennstoff bei Bedarf dem System zugeführt und gasförmiges Reaktionsprodukt aus dem System abgeschieden wird.
Der unverbrauchte Brennstoff, der im Brennstoffabgas enthal¬ ten ist, wird zunächst unter Wärmeausnutzung kondensiert oder abgekühlt und dann wieder in die Zuleitung oder in den Ver- dampfer eingeleitet. Dabei muß natürlich die lastabhängige Steuerung der Dosierpumpen, die den Zufluß an Wasser /Methanol in den Verdampfer regeln, so konstruiert sein, daß die Konzentrationänderungen des Methanol/ Wassergemisches im Verdampfer durch die Zuleitung aus dem Abgas berücksichtigt wird.
Der unverbrauchte Brennstoff aus dem Brennstoffabgas wird in dem Wärmeaustauscher oder C02-Abscheider vom enthaltenen Koh¬ lendioxid physikalisch oder u.U. auch chemisch abgetrennt. Physikalische Abtrennung bedeutet dabei, daß die Abtrennung über die unterschiedlichen physikalischen Eigenschaften der Substanzen (wie Dichte, Siedepunkt etc.) erfolgt. Auch die chemische Abtrennung ist denkbar und bedeutet, daß das C02 chemisch gebunden wird, beispielsweise als Carbonat ausge¬ fällt wird (wegen der Hohen Masse des entstehenden Carbonats energetisch wenig sinnvoll aber alternative chemische Metho¬ den können diskutiert werden) .
Als DMFC wird die Direkt-Methanol-Brennstoffzelle bezeichnet, die in Analogie zum allgemeinen Prinzip elektrochemischer Energiewandler aus Anode, Kathode und einem geeigneten Elek¬ trolyten besteht. Die Elektroden werden im allgemeinen rück¬ seitig d.h. mit der zum Elektrolyten abgewandten Seite durch einen Stromkollektor kontaktiert, der zu dem die Aufgabe der Gas- bzw. Reaktandenverteilung hat. Bedingt durch die Art des verwendeten Elektrolyten ergeben sich verschiedene Möglich¬ keiten zur Realisierung einer DMFC. Im Rahmen der vorliegen¬ den Erfindung werden bevorzugte saure Elektrolyte, und dabei insbesondere saure feste Elektrolyte behandelt. Es eignen sich dabei generell protonenleitende Polymere (Elektrolyt- Membranen) , die unter den entsprechenden Betriebsbedingungen stabil sind. Als Beispiel sei Nafion (registrierte Marke) er¬ wähnt. Als weitere Elektrolyte, außer den erwähnten seien exemplarisch noch welche die auf anorganischen Systemen beru¬ hen erwähnt wie Zinnphosphate oder Elektrolyte, die auf Si- loxangerüsten basieren. Als Stromkollektoren werden üblicherweise Werkstoffe auf Koh- lenstoffbasis, z.B. Kohlefaserpapiere oder - gewebe, einge¬ setzt. Als Katalysatoren finden anodenseitig vorrangig Pla¬ tin/Ruthenium-Legierungen Verwendung, kathodenseitig meist reines Platin. Bei der Realisierung einer Brennstoffzellenan- lage, wie z.B.einer Batterie, werden zur Erzielung höherer Spannungen die einzelnen Zellen bipolar in Reihe geschaltet. Die dafür nötigen bipolaren Platten können aus Graphit, me¬ tallischen oder sonstigen elektrisch leitenden und korrosi- onsbeständigen Werkstoffen sein. Die bipolaren Platten über¬ nehmen gleichzeitig die Aufgabe der Reaktandenzuführung. Sie sind deshalb ggf. mit entsprechenden Kanälen strukturiert.
Der Betrieb der DMFC kann, je nach Siedepunkt des Gemisches, bei Temperaturen zwischen 60 und 160°C erfolgen. Bevorzugt wird die Betriebstemperatur in einem Bereich von 100 bis 150°C fallen, typischerweise liegt sie zwischen 120 und 130°C. Dementsprechend wird Methanol oder auch entsprechende Methanol/Wassergemische über die Siedetemperatur hinaus er- hitzt und der Zelle gasförmig zugeführt. Dabei wird der Sy¬ stemdruck so eingestellt, daß er dem Gleichgewichtsdruck des Methanol/Wassergemisches bei der Temperatur der Brennstoff¬ zellen entspricht. Im Anodenraum der DMFC befindet sich des¬ halb der Dampf im Zustand der Sättigung. Durch diese dampf- förmige Zuführung des Reaktanden wird der elektroosmotische Wassertransport minimiert, weil die Menge an Wasser an der Anode stark verringert wird. Die Begriffe „Brennstoff", „Methanol" und „Gemisch aus Wasser und Methanol" bezeichnen im Rahmen der vorliegenden Anmeldung immer einen dampfförmi- gen Brennstoff, der eine unbestimmte Menge an Inertgas (also von 0% bis zu einem Feuchtegrad von nahezu 100) enthält. Im Falle von C02 als Inertgas kann es sich um einen Teil des An¬ odenabgases handeln, das über eine Pumpe und ein entsprechen¬ des Regelventil wieder auf den erforderlichen Überdruck ge- bracht wird (siehe auch Figur 2) und im Kreis gefahren wird. Als Brennstoff wird, wie gesagt, ein Methanol/ Wassergemisch oder reines Methanol, mit oder ohne Inertgaszusatz, verwen¬ det, es soll jedoch die Erfindung darauf nicht beschränkt sein, falls sich die elektrochemische Oxidierbarkeit anderer wasserlöslicher organischer Moleküle als technisch gewinn¬ bringend herausstellt. Der Brennstoff wird wie gesagt im Kreislauf geführt über einen, an die Abgasleitung der Brenn¬ stoffzelle angeschlossenen Kohlendioxid-Abscheider, der gleichzeitig die Funktion hat, das entstandene Kohlendioxid vom restlichen Abgas abzutrennen.
Als Oxidans wird entweder reiner Sauerstoff oder Luft oder beliebige Gemische dieser Komponenten bezeichnet, wobei das Oxidans der Kathode bevorzugt in überstöchiometrischer Menge zugeführt wird.
Ein besonderes Problem der DMFC ist die Suche nach geeigneten Anodenmaterialien für die Oxidation des Brennstoffs. Neben den genannten Platin/Ruthenium-Legierungen können deshalb je nach Forschungsstand verschiedene Anodenmaterialien und Kata¬ lysatoren auf der Anode erfindungsgemäß eingesetzt werden. Beispielhaft sei noch erwähnt, daß unter Umständen durch Zu¬ legieren einer dritten Komponente, wie Zinn oder Nickel, die Aktivität der Anode gegenüber dem binären System Pla¬ tin/Ruthenium nochmals leicht verbessert werden kann. Die Er¬ findung soll auch nicht auf Edelmetalle als Katalysatoren und Anodenmaterialien bzw. Kathodenmaterialien beschränkt sein, sondern es sind durchaus auch edelmetallfreie Katalysatoren denkbar.
Die Konzentration an Methanol im Brennstoffgemisch, bezogen auf den unverdampften, flüssigen Zustand kann zwischen 0,05 und 5 Mol/1 betragen. Dabei ist besonders bevorzugt eine Kon- zentration zwischen 0,5 und 1,5 Mol/1. Als weiteren Betriebsparameter sei noch der Druck erwähnt, der zwischen Normaldruck und geringem Über- und Unterdruck liegen kann. Die vorstehenden Definitionen gelten für die Be¬ schreibung, die Erläuterungen zu den Figuren sowie die An- sprüche.
Im folgenden wird die Erfindung noch anhand von zwei Figuren näher erläutert.
Figur 1 zeigt ein Blockschaltbild einer erfindungsgemäßen Brennstoffzellenanlage.
Figur 2 zeigt ebenfalls ein Blockschaltbild einer erfindungs¬ gemäßen Brennstoffzellenanlage, bei der jedoch der Brennstoff über einen, an die Brennstoffzelle angeschlossenen C02- Abscheider im Kreis gefahren wird.
Figur 1 zeigt eine Brennstoffzellenanlage, die sowohl mit ei¬ nem Methanol/Wasser Gemisch als auch mit reinem Methanol als Brennstoff betrieben werden kann. Die Anlage verfügt über die Dosierpumpen 3 und 3' , die über ein Steuerungssystem die Zu¬ fuhr von Methanol oder/und Wasser lastabhängig regeln. Von links nach rechts gehend zeigt Figur 1 zunächst die beiden Behälter 1 und 2, in denen Wasser und Methanol enthalten sind. Aus diesen Vorratsbehältern 1 und 2 fließen die Be¬ standteile des flüssigen Brennstoffs, also Wasser und Metha¬ nol, in die Dosierpumpen 3 und 3' , die jeweils die Strömungs¬ geschwindigkeit der Flüssigkeiten regeln. Im Falle des Vor¬ ratsbehälters 1 , der beispielsweise der Wasserbehälter ist, gelangt über die Leitung 11 die lastabhängig in der Dosier¬ pumpe 3 abgemessene Menge Wasser in den Verdampfer 4. Ebenso gelangt eine bestimmte Menge Methanol aus dem Vorratsbehälter 2 über die Dosierpumpe 3' und die Leitung 12 in denselben Verdampfer 4. Im Verdampfer 4 werden beide Flüssigkeiten über den Siedepunkt hinaus erhitzt und über die Leitung 13 wird das im Verdampfer entstandene Dampfgemisch in den Brennstoff- zellenstapel 5 eingeleitet. Dort wird es über einen Versor¬ gungskanal in die jeweiligen Anodenräume der einzelnen Brenn¬ stoffzellen geleitet. Über die Leitung 15 verläßt das ver¬ brauchte und mit C02 angereicherte Brennstoffabgas den Brenn- stoffzellenstapel wieder und gelangt in den Kohlendioxid- ■ Abscheider oder Wärmeaustauscher 6, in dem es unter Nutzung der Wärmeenergie ggf. wieder auskondensiert wird. Das ent¬ standene C02 kann dort vom Abgas/Kondensat abgetrennt werden. Über die zur Leitung 13 parallele Leitung 14 wird die Brenn- stoffzelle kathodenseitig mit Oxidans versorgt. Das Oxi¬ dansabgas verläßt den Zellstapel über die Leitung 16 wieder und wird in den Wärmeaustauscher 7 geleitet.
Figur 2 zeigt ein ähnliches Blockschaltbild einer erfindungs- gemäßen Brennstoffzellenanlage mit dem Unterschied, daß der an die Brennstoff-Abgasleitung aus dem Brennstoffzellenstapel angeschlossene Wärmeaustauscher oder Kohlendioxid-Abscheider 6 über die Leitung 8 mit dem Verdampfer 4 verbunden ist. Über die Leitung 8 gelangt nun das im Wärmeaustauscher oder Koh- lendioxid -Abscheider 6 ggf. auskondensierte oder abgekühlte Brennstoffabgas wieder in den Verdampfer 4, wo es über die Leitung 13 erneut der Brennstoffzelle zugeführt wird. Über eine zweite Leitung 18 wird das abgeschiedene C02 aus dem Wärmetauscher 6 ebenfalls in den Verdampfer 4 geleitet. In der Leitung 18 befindet sich eine Pumpe 19, durch die das C02 wieder auf den erforderlichen Überdruck gebracht wird.
Die Zusammensetzung des Brennstoffgemisches richtet sich, wie gesagt, nach der jeweiligen Belastung des Brennstoffzellen- stapeis und der Vorgabe des Feuchtegrades. Über einen Regel¬ mechanismus, der die belastungsmäßig gegebenen Vorgaben an Wasser/ Methanolkonzentrationen als Sollwert mit dem in der Leitung 13 gegebenen Istwert des Gemisches vergleicht, wird die Leistung der Dosierpumpen 3 und 3' einstellt. Ebenso wird die Zugabe an Inertgas über einen Regelmechanismus, der den Feuchtegrad in der Leitung 13 als Istwert mit einem vorgege- benen Feuchtegrad als Sollwert vergleicht, kontrolliert. Die¬ se Ausführungsform der Erfindung ermöglicht somit eine Opti¬ mierung des Faraday-Wirkungsgrades.
Eine Brennstoffzellenanlage, insbesondere eine Batterie be¬ stehend aus den erfindungsgemäßen Brennstoffzellen, arbeitet mit einem gegenüber dem Stand der Technik wesentlich erhöhten Spannungs- und Faradaywirkungsgrad. Zusätzlich wird durch das dampfförmige Vorliegen der Reaktanten das „Fluten" [„geflutet" bedeutet, daß Methanol und auch Wasser in die Ar¬ beitsschicht der Kathode gelangt und die Hydrophobität der Gastransportporen senkt, so daß sie voll Reaktionswasser (=„geflutet") sind. Dadurch wird der Antransport von Sauer¬ stoff behindert und die Zellspannung bricht zusammen] der Ka- thode verhindert, zumindest weitgehend zurückgedrängt.
Die Erhöhung des Faraday-Wirkungsgrades wird dabei hauptsäch¬ lich durch die Minimierung der Methanol-Diffusion durch die Membran erreicht. Über die lastabhängig gesteuerte Dosierpum- pe 3 verdampft nur jeweils soviel Methanol im Verdampfer 4, wie im momentanen Betriebszustand von Brennstoffzellenstapel gefordert wird. Als „Forderung an Brennstoff" wird dabei ein lastabhängiger Sollwert, der durch die Faraday"sehen Äquiva¬ lente der Reaktion und eine betriebsbedingte Bandbreite, die bevorzugt in einem Überschuß besteht, festgelegt. Die Metha¬ nolkonzentration ist so an der Anode lastwechsel folgend va¬ riabel einstellbar und kann auch extremen Betriebsparametern (wie Standby und Vollast) in einem Zustand der optimal nahe dem Diffusionsgrenzstrom (d.h. noch mit maximaler Leistung aber nahe dem Diffusionsgrenzstrom entlang der Kennlinie im Spannungs/Strom-Diagramm) ist, eingestellt werden. Die Verän¬ derung der Methanolkonzentration im Gasgemisch muß nicht über die Wasserzufuhr oder den Druck geregelt werden, sondern sie kann selbstverständlich auch über die Zugabe eines inerten Trägergases gesteuert werden. Zur Einstellung der Dosierpumpen muß keine extra Messung des in der Zelle herrschenden Ist-Wertes an Methanol- oder Brenn¬ stoff-Konzentration erfolgen, weil die Dosierpumpe lastabhän¬ gig einstellbar ist, und der Verbrauch an Methanol und damit auch die Menge, die im rückgeführten Abgas noch enthalten ist, über den Stromverlauf berechenbar ist.
Eine zusätzliche Kontroll-Feststellung des Istwertes der Methanolkonzentration im gasförmigen Brennstoffgemisch kann aber auch beispielsweise in der Zuleitung 13 vom Verdampfer zum BrennstoffStapel oder im Verdampfer selbst erfolgen. Falls die Feststellung der Istwertes im Verdampfer stattfin¬ det, muß das Gefäß des Verdampfers dimensionsmäßig so gewählt werden, daß unter allen denkbaren Betriebszuständen eine vollständige Verdampfung gewährleistet ist und somit keine
Konzentrationsänderung durch Kondensation entsteht. Im Regel¬ fall wird jedoch eine Kontroll-Feststellung des Wasser- Methanol-Mischungsverhältnisses, wenn überhaupt, dann mög¬ lichst in der direkten Zuleitung zu dem Versorgungskanal des Brennstoffzellenstapels stattfinden.
Erfindungsgemäß wird ein einfacherer Aufbau der Zelle dadurch realisiert, daß das Wasser anodenseitig und nicht, wie nach dem genannten Stand der Technik, kathodenseitig zugeführt wird.
Eine aus erfindungsgemäßen Brennstoffzellen bestehende Batte¬ rie ist u.a. denkbar zum Einsatz in der mobilen Energiever¬ sorgung, wie beispielsweise im Automobil. Sie ist aber auch denkbar bei größeren stationären Energieversorgungsanlagen, wie beispielsweise in Kraftwerken oder zur Versorgung von Wohngebäuden oder Geschäftsgebäuden mit elektrischem Strom und Wärme.

Claims

Patentansprüche
1. Direkt-Methanol-Brennstoffzelle, jeweils einen Versor- gungs- und Entsorgungskanal für den Brennstoff und das Oxi¬ dans, eine Membran-Elektroden-Einheit und bipolare Platten umfassend, wobei dem Versorgungskanal für den Brennstoff ein Verdampfer so vorgeschaltet ist, daß der Brennstoff bei der Umsetzung an der Anode der Brennstoffzelle gasförmig vor¬ liegt.
2. Direkt-Methanol-Brennstoffzelle nach Anspruch 1, bei der der Feuchtegrad größer 70% ist.
3. Direkt-Methanol-Brennstoffzelle nach einem der vorstehen- den Ansprüche, bei der im Brennstoff die Konzentrationen an
Methanol und/oder Wasser und/oder Inertgas über dem Verdamp¬ fer vorgeschaltete Pumpen lastabhängig einstellbar sind.
4. Brennstoffzellenanlage, einen Zellstapel aus Brennstoff- zellen nach einem der Ansprüche 1 bis 3, den Verdampfer und ggf. ein bis drei Pumpen in der Zuleitung des Brennstoffs, sowie in der Ableitung des Brennstoffabgases einen Kohlendi¬ oxid-Abscheider oder Wärmeaustauscher umfassend, wobei in letztgenanntem unverbrauchter Brennstoff von dem Reaktions- produkt Kohlendioxid physikalisch oder chemisch abtrennbar ist.
5. Brennstoffzellenanlage nach Anspruch 4, bei der Leitungen für einen Anodenkreislauf, sowohl für den Brennstoff als auch für das Reaktionsprodukt Kohlendioxid, vorgesehen sind.
6. Verfahren zum Betreiben einer Direkt-Methanol-Brennstoff- zellenanlage, bei dem der Brennstoff der Anode gasförmig zu¬ geleitet wird.
7. Verfahren zum Betreiben einer Direkt-Methanol-Brennstoff- zellenanlage nach Anspruch 6, bei dem der aus der Brennstoff¬ zelle unverbraucht austretende Brennstoff nach vorheriger Kondensation und/oder das entstandene Kohlendioxid wieder in die Zuleitung zur Anode eingespeist werden.
8. Verfahren zum Betreiben einer Direkt-Methanol-Brennstoff- zellenanlage nach Anspruch 6 oder 7, bei dem die Konzentra¬ tionen an Methanol und/oder Wasser und/oder Inertgas im Brennstoff lastabhängig eingestellt werden.
PCT/DE1997/001320 1996-06-26 1997-06-25 Direkt-methanol-brennstoffzelle (dmfc) WO1997050140A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP10502109A JP2000512797A (ja) 1996-06-26 1997-06-25 直接―メタノール―燃料電池(dmfc)
DK97932708T DK0907979T3 (da) 1996-06-26 1997-06-25 Direkte-methanolbrændselscelle
AT97932708T ATE190756T1 (de) 1996-06-26 1997-06-25 Direkt-methanol-brennstoffzelle (dmfc)
EP97932708A EP0907979B1 (de) 1996-06-26 1997-06-25 Direkt-methanol-brennstoffzelle (dmfc)
DE59701268T DE59701268D1 (de) 1996-06-26 1997-06-25 Direkt-methanol-brennstoffzelle (dmfc)
US09/214,107 US6509112B1 (en) 1996-06-26 1997-06-25 Direct methanol fuel cell (DMFC)
NO986064A NO986064L (no) 1996-06-26 1998-12-22 Direkte metanolbrenselceller (DMFC)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19625621.6 1996-06-26
DE19625621 1996-06-26

Publications (1)

Publication Number Publication Date
WO1997050140A1 true WO1997050140A1 (de) 1997-12-31

Family

ID=7798102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/001320 WO1997050140A1 (de) 1996-06-26 1997-06-25 Direkt-methanol-brennstoffzelle (dmfc)

Country Status (10)

Country Link
US (1) US6509112B1 (de)
EP (1) EP0907979B1 (de)
JP (1) JP2000512797A (de)
AT (1) ATE190756T1 (de)
CA (1) CA2259195A1 (de)
DE (1) DE59701268D1 (de)
DK (1) DK0907979T3 (de)
ES (1) ES2144873T3 (de)
NO (1) NO986064L (de)
WO (1) WO1997050140A1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19802038A1 (de) * 1998-01-21 1999-07-22 Forschungszentrum Juelich Gmbh Verfahren und Vorrichtung zum Betreiben einer Direkt-Methanol-Brennstoffzelle mit gasförmigem Brennstoff
WO2001003220A1 (de) * 1999-06-30 2001-01-11 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren und vorrichtung zum betrieb einer brennstoffzelle
WO2001022512A2 (de) * 1999-09-23 2001-03-29 Siemens Aktiengesellschaft Brennstoffzellenanlage und zugehöriges betriebsverfahren
WO2001061776A1 (de) * 2000-02-19 2001-08-23 Forschungszentrum Jülich GmbH Alkalische direkt-methanol brennstoffzelle
WO2002015314A1 (de) * 2000-08-16 2002-02-21 Siemens Aktiengesellschaft Verfahren zur regelung der brennstoffkonzentration in der anodenflüssigkeit einer brennstoffzelle und zugehörige vorrichtung
WO2002049125A2 (en) * 2000-11-22 2002-06-20 Mti Microfuel Cells Inc. Apparatus and methods for sensor-less optimization of methanol concentration in a direct methanol fuel cell system
US6589679B1 (en) 2000-11-22 2003-07-08 Mti Microfuel Cells Inc. Apparatus and methods for sensor-less optimization of methanol concentration in a direct methanol fuel cell system
US6682840B2 (en) * 1999-12-02 2004-01-27 Ballard Power Systems Ag Fuel cell system having an evaporator
WO2004047204A1 (en) * 2002-11-18 2004-06-03 Zakrytoe Aktsionernoe Obschestvo 'independent Power Technologies' Alcohol-air fuel cell
EP1473790A1 (de) * 2003-04-28 2004-11-03 Sony Corporation Brennstoffzelle und Verfahren zur deren Benutzung
WO2006085428A1 (ja) 2005-02-10 2006-08-17 Sony Corporation 電気化学エネルギー生成装置及びこの装置の駆動方法
US7093623B2 (en) 2003-06-27 2006-08-22 The Gillette Company Methods of providing refueling for fuel cell-powered devices
US7306869B2 (en) 2003-12-02 2007-12-11 Mti Microfuel Cells Inc. Electrostatically actuated shutter and array for use in a direct oxidation fuel cell
WO2010066900A1 (de) * 2008-12-11 2010-06-17 Volker Harbusch Vorrichtung zum bereitstellen eines brennstoff enthaltenden trägergases und brennstoffzelle mit einer solchen vorrichtung
DE102014100702A1 (de) 2014-01-22 2015-07-23 Siqens Gmbh Brennstoffzellensystem
WO2017037197A1 (de) * 2015-09-01 2017-03-09 Siqens Gmbh Verfahren und vorrichtung zum parallelen kondensieren und verdampfen für ein brennstoffzellensystem mit einer kondensations-/verdampfungs-vorrichtung sowie ein brennstoffzellensystem mit einer solchen kondensations-/verdampfungs-vorrichtung

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5017739B2 (ja) * 1999-11-04 2012-09-05 トヨタ自動車株式会社 燃料電池装置および燃料電池の運転方法
US6632553B2 (en) 2001-03-27 2003-10-14 Mti Microfuel Cells, Inc. Methods and apparatuses for managing effluent products in a fuel cell system
US6981877B2 (en) * 2002-02-19 2006-01-03 Mti Microfuel Cells Inc. Simplified direct oxidation fuel cell system
US20040062980A1 (en) * 2002-09-30 2004-04-01 Xiaoming Ren Fluid management component for use in a fuel cell
JP3821081B2 (ja) * 2002-09-30 2006-09-13 日本電気株式会社 燃料電池およびこれを搭載した携帯機器ならびに燃料電池の運転方法
US7282293B2 (en) 2003-04-15 2007-10-16 Mti Microfuel Cells Inc. Passive water management techniques in direct methanol fuel cells
US20040209133A1 (en) * 2003-04-15 2004-10-21 Hirsch Robert S. Vapor feed fuel cell system with controllable fuel delivery
US7407721B2 (en) * 2003-04-15 2008-08-05 Mti Microfuel Cells, Inc. Direct oxidation fuel cell operating with direct feed of concentrated fuel under passive water management
US20050170224A1 (en) * 2003-04-15 2005-08-04 Xiaoming Ren Controlled direct liquid injection vapor feed for a DMFC
JP4781619B2 (ja) * 2003-07-18 2011-09-28 パナソニック株式会社 電源装置
US7687167B2 (en) * 2003-07-18 2010-03-30 Panasonic Corporation Power supply unit
JP4969018B2 (ja) * 2003-07-18 2012-07-04 パナソニック株式会社 電源装置
JP4583010B2 (ja) * 2003-08-19 2010-11-17 パナソニック株式会社 電源装置の制御方法
US7935457B2 (en) * 2003-09-16 2011-05-03 The Gillette Company Enhanced fuel delivery for direct methanol fuel cells
JP2005100864A (ja) * 2003-09-25 2005-04-14 Nec Corp アルコール濃度測定方法、アルコール濃度測定装置、および当該装置を含む燃料電池システム
US7255947B2 (en) 2003-10-17 2007-08-14 The Gillette Company Fuel substance and associated cartridge for fuel cell
TWI276654B (en) * 2004-02-18 2007-03-21 Ind Tech Res Inst Proton exchange membrane (PEM) with different molecular permeation rates
US20050202291A1 (en) * 2004-03-09 2005-09-15 Schweizer Patrick M. Shutter mechanism for fuel cell
JP4576856B2 (ja) * 2004-03-12 2010-11-10 パナソニック株式会社 燃料電池システム
KR100657893B1 (ko) * 2004-04-03 2006-12-14 삼성전자주식회사 프로톤전도체
US7175934B2 (en) * 2004-05-11 2007-02-13 Mti Microfuel Cells Inc. Single pump fuel cell system
JP2008500171A (ja) * 2004-05-27 2008-01-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 燃料電池触媒のための貴金属成分および炭素を有する酸化物またはオキシ水酸化物を含んでなるゾル−ゲル誘導複合体
JP4951847B2 (ja) * 2004-07-23 2012-06-13 パナソニック株式会社 燃料電池の活性化方法
TW200631229A (en) * 2005-01-11 2006-09-01 Toshiba Kk Fuel Cell
AU2006350252B2 (en) * 2005-11-18 2010-10-14 Security First Corporation Secure data parser method and system
US20100142934A1 (en) * 2005-12-01 2010-06-10 Vapore, Inc. Advanced Capillary Force Vaporizers
KR100730197B1 (ko) * 2006-01-21 2007-06-19 삼성에스디아이 주식회사 연료전지용 캐소드 전극 구조
US20080081227A1 (en) * 2006-05-05 2008-04-03 Polyfuel, Inc. Gas Phase Fuel Cells
WO2007131229A2 (en) * 2006-05-05 2007-11-15 Polyfuel, Inc. Gas phase fuel cells
US20100068596A1 (en) * 2006-10-11 2010-03-18 Kurita Water Industries Ltd. Direct methanol fuel cell system and portable electronic device
US8201752B2 (en) * 2008-03-10 2012-06-19 Vapore, Inc. Low energy vaporization of liquids: apparatus and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0072038A2 (de) * 1981-08-12 1983-02-16 Hitachi, Ltd. Brennstoffzelle
JPS63237363A (ja) * 1987-03-25 1988-10-03 Hitachi Ltd メタノ−ル燃料電池
JPH02234359A (ja) * 1989-03-06 1990-09-17 Nippon Soken Inc 直接型燃料電池
JPH02234358A (ja) * 1989-03-07 1990-09-17 Nippon Soken Inc 燃料電池
US5523177A (en) * 1994-10-12 1996-06-04 Giner, Inc. Membrane-electrode assembly for a direct methanol fuel cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657829A (en) 1982-12-27 1987-04-14 United Technologies Corporation Fuel cell power supply with oxidant and fuel gas switching
CA1257647A (en) * 1984-10-31 1989-07-18 Tsutomu Tsukui Liquid fuel cell
US5059494A (en) * 1990-05-10 1991-10-22 International Fuel Cells Fuel cell power plant
JPH04229958A (ja) * 1990-12-27 1992-08-19 Aisin Aw Co Ltd 液体燃料電池の気液分離器
US5547776A (en) * 1991-01-15 1996-08-20 Ballard Power Systems Inc. Electrochemical fuel cell stack with concurrently flowing coolant and oxidant streams
DE4425634C1 (de) 1994-07-20 1995-10-26 Daimler Benz Ag Verfahren und Vorrichtung zum dosierten Zuführen von flüssigen Reaktanden zu einem Brennstoffzellensystem
JPH0869808A (ja) * 1994-08-30 1996-03-12 Toyota Motor Corp 改質装置と燃料電池システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0072038A2 (de) * 1981-08-12 1983-02-16 Hitachi, Ltd. Brennstoffzelle
JPS63237363A (ja) * 1987-03-25 1988-10-03 Hitachi Ltd メタノ−ル燃料電池
JPH02234359A (ja) * 1989-03-06 1990-09-17 Nippon Soken Inc 直接型燃料電池
JPH02234358A (ja) * 1989-03-07 1990-09-17 Nippon Soken Inc 燃料電池
US5523177A (en) * 1994-10-12 1996-06-04 Giner, Inc. Membrane-electrode assembly for a direct methanol fuel cell

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
A.S. ARICO ET AL: "Analysis of the Electrochemical Characteristics of a direct Methanol Fuel Cell based on a PtRu/C Anode Catalyst", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 143, no. 12, December 1996 (1996-12-01), MANCHESTER, NEW HAMPSHIRE US, pages 3950 - 3959, XP002044892 *
CHEMICAL ABSTRACTS, vol. 110, no. 12, 20 March 1989, Columbus, Ohio, US; abstract no. 98862 *
CHEMICAL ABSTRACTS, vol. 115, no. 18, 4 November 1991, Columbus, Ohio, US; abstract no. 186706 *
K.SCOTT ET AL: "Performance and modelling of a direct methanol solid polymer electrolyte fuel cell", JOURNAL OF POWER SOURCES., vol. 65, no. 1-2, March 1997 (1997-03-01), LAUSANNE CH, pages 159 - 171, XP002044891 *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 038 (E - 709) 27 January 1989 (1989-01-27) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 546 (E - 1008) 4 December 1990 (1990-12-04) *
REN X ET AL: "HIGH PERFORMANCE DIRECT METHANOL POLYMER ELECTROLYTE FUEL CELLS", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 143, no. 1, 1 January 1996 (1996-01-01), pages L12 - L15, XP000556203 *
SHUKIA A K ET AL: "VAPOUR-FEED DIRECT-METHANOL FUEL CELL WITH PROTON-EXCHANGE MEMBRANE ELECTROLYTE", JOURNAL OF POWER SOURCES, vol. 55, no. 1, 1 May 1995 (1995-05-01), pages 87 - 91, XP000541735 *
V.M. SCHMIDT ET AL: "DEMS AND SINGLE CELL MEASUREMENTS OF A DIRECT METHANOL FUEL CELL", PROCEEDINGS OF THE FIRST INTERNATIONAL SYMPOSIUM ON PROTON CONDUCTING MEMBRANE FUEL CELLS I - THE ELECTROCHEMICAL SOCIETY, vol. 95, no. 23, 1995, PENNINGTON, pages 267 - 277, XP002044890 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468683B1 (en) 1998-01-21 2002-10-22 Forschungszentrum Julich Gmbh Method and device for operating a direct methanol fuel cell with gaseous fuel
WO1999038223A1 (de) * 1998-01-21 1999-07-29 Forschungszentrum Jülich GmbH Verfahren und vorrichtung zum betreiben einer direkt-methanol-brennstoffzelle mit gasförmigem brennstoff
DE19802038A1 (de) * 1998-01-21 1999-07-22 Forschungszentrum Juelich Gmbh Verfahren und Vorrichtung zum Betreiben einer Direkt-Methanol-Brennstoffzelle mit gasförmigem Brennstoff
WO2001003220A1 (de) * 1999-06-30 2001-01-11 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren und vorrichtung zum betrieb einer brennstoffzelle
WO2001022512A2 (de) * 1999-09-23 2001-03-29 Siemens Aktiengesellschaft Brennstoffzellenanlage und zugehöriges betriebsverfahren
WO2001022512A3 (de) * 1999-09-23 2002-04-25 Manfred Baldauf Brennstoffzellenanlage und zugehöriges betriebsverfahren
US6682840B2 (en) * 1999-12-02 2004-01-27 Ballard Power Systems Ag Fuel cell system having an evaporator
US7056610B2 (en) 2000-02-19 2006-06-06 Forschungszentrum Julich Gmbh Alkaline direct methanol fuel cell
WO2001061776A1 (de) * 2000-02-19 2001-08-23 Forschungszentrum Jülich GmbH Alkalische direkt-methanol brennstoffzelle
WO2002015314A1 (de) * 2000-08-16 2002-02-21 Siemens Aktiengesellschaft Verfahren zur regelung der brennstoffkonzentration in der anodenflüssigkeit einer brennstoffzelle und zugehörige vorrichtung
WO2002049125A2 (en) * 2000-11-22 2002-06-20 Mti Microfuel Cells Inc. Apparatus and methods for sensor-less optimization of methanol concentration in a direct methanol fuel cell system
US6589679B1 (en) 2000-11-22 2003-07-08 Mti Microfuel Cells Inc. Apparatus and methods for sensor-less optimization of methanol concentration in a direct methanol fuel cell system
WO2002049125A3 (en) * 2000-11-22 2003-12-04 Mti Microfuel Cells Inc Apparatus and methods for sensor-less optimization of methanol concentration in a direct methanol fuel cell system
US6824899B2 (en) 2000-11-22 2004-11-30 Mti Microfuel Cells, Inc. Apparatus and methods for sensor-less optimization of methanol concentration in a direct methanol fuel cell system
US6991865B2 (en) 2000-11-22 2006-01-31 Mti Microfuel Cells Inc. Apparatus and methods for sensor-less optimization of methanol concentration in a direct methanol fuel cell system
WO2004047204A1 (en) * 2002-11-18 2004-06-03 Zakrytoe Aktsionernoe Obschestvo 'independent Power Technologies' Alcohol-air fuel cell
EP1473790A1 (de) * 2003-04-28 2004-11-03 Sony Corporation Brennstoffzelle und Verfahren zur deren Benutzung
US7799478B2 (en) 2003-04-28 2010-09-21 Sony Corporation Fuel cell and method for operating the same
US7435493B2 (en) 2003-04-28 2008-10-14 Sony Corporation Fuel cell and method for operating the same
US7093623B2 (en) 2003-06-27 2006-08-22 The Gillette Company Methods of providing refueling for fuel cell-powered devices
US7306869B2 (en) 2003-12-02 2007-12-11 Mti Microfuel Cells Inc. Electrostatically actuated shutter and array for use in a direct oxidation fuel cell
EP1858099A4 (de) * 2005-02-10 2009-11-11 Sony Corp Elektrochemischer energiegenerator und verfahren zu seiner ansteuerung
WO2006085428A1 (ja) 2005-02-10 2006-08-17 Sony Corporation 電気化学エネルギー生成装置及びこの装置の駆動方法
US7858254B2 (en) 2005-02-10 2010-12-28 Sony Corporation Electrochemical energy generating apparatus and method of driving the same
EP1858099A1 (de) * 2005-02-10 2007-11-21 Sony Corporation Elektrochemischer energiegenerator und verfahren zu seiner ansteuerung
US9496575B2 (en) 2008-12-11 2016-11-15 Siqens Gmbh Humidification Unit for Providing a Carrier Gas Containing a Fuel, and Fuel Cell with Such a Humidification Unit
WO2010066900A1 (de) * 2008-12-11 2010-06-17 Volker Harbusch Vorrichtung zum bereitstellen eines brennstoff enthaltenden trägergases und brennstoffzelle mit einer solchen vorrichtung
DE102008061771A1 (de) 2008-12-11 2010-06-24 Volker Harbusch Brennstoffzelleneinheit für gasförmige Brennstoffe
DE102014100702A1 (de) 2014-01-22 2015-07-23 Siqens Gmbh Brennstoffzellensystem
DE102014100702B4 (de) * 2014-01-22 2017-06-29 Siqens Gmbh Brennstoffzellensystem zur thermisch gekoppelten Reformierung mit Reformataufbereitung und Verfahren dazu
WO2017037197A1 (de) * 2015-09-01 2017-03-09 Siqens Gmbh Verfahren und vorrichtung zum parallelen kondensieren und verdampfen für ein brennstoffzellensystem mit einer kondensations-/verdampfungs-vorrichtung sowie ein brennstoffzellensystem mit einer solchen kondensations-/verdampfungs-vorrichtung
CN108352550A (zh) * 2015-09-01 2018-07-31 西肯斯股份有限公司 带冷凝-蒸发装置燃料电池系统并行冷凝蒸发方法和装置及带冷凝-蒸发装置染料电池系统
CN108352550B (zh) * 2015-09-01 2021-08-06 西肯斯股份有限公司 冷凝蒸发装置、具有该装置的燃料电池系统及该系统的并行冷凝蒸发方法
US11152635B2 (en) 2015-09-01 2021-10-19 Siqens Gmbh Method and device for parallel condensation and evaporation for fuel cell system

Also Published As

Publication number Publication date
CA2259195A1 (en) 1997-12-31
JP2000512797A (ja) 2000-09-26
EP0907979B1 (de) 2000-03-15
NO986064D0 (no) 1998-12-22
US6509112B1 (en) 2003-01-21
NO986064L (no) 1999-02-26
EP0907979A1 (de) 1999-04-14
ES2144873T3 (es) 2000-06-16
DK0907979T3 (da) 2000-08-21
DE59701268D1 (de) 2000-04-20
ATE190756T1 (de) 2000-04-15

Similar Documents

Publication Publication Date Title
EP0907979B1 (de) Direkt-methanol-brennstoffzelle (dmfc)
DE19857398B4 (de) Brennstoffzellensystem, insbesondere für elektromotorisch angetriebene Fahrzeuge
Büchi et al. Operating proton exchange membrane fuel cells without external humidification of the reactant gases: Fundamental aspects
EP1194971B1 (de) Brennstoffzellen-system und brennstoffzelle für derartiges system
WO1994003937A1 (de) Brennstoffzelle und verfahren zur befeuchtung des elektrolyten
DE10151458A1 (de) Verfahren zur Herstellung von Membranelektrolytbaugruppen
DE102007044246A1 (de) Membran-Elektroden-Einheit mit hydrierbarem Material für eine Brennstoffzelle
DE10392493T5 (de) Brennstoffzellen und Brennstoffzellenkatalysatoren
DE19945667C2 (de) Brennstoffzelle, Verfahren zu deren Betrieb und zugehörige Verwendung
EP0654182A1 (de) Brennstoffzelle und verfahren zur befeuchtung des elektrolyten.
DE112010002798T5 (de) Verringern des verlusts von flüssigem elektrolyt aus einerhochtemperatur-polymerelektrolytmembran-brennstoffzelle
DE102004024844A1 (de) Elektrodenpaste zur Herstellung einer Katalysatorschicht für eine elektrochemische Zelle sowie Verfahren zur Herstellung einer Katalysatorschicht
EP4008035B1 (de) Befeuchter, brennstoffzellenvorrichtung mit befeuchter sowie kraftfahrzeug
DE19815455A1 (de) Kombination aus Elektrolyse- und Brennstoffzelle
DE102010041465B4 (de) Brennstoffzellensystem mit Direktmethanolbrennstoffzelle und Verfahren zu dessen Betrieb
DE102021208137A1 (de) Elektrolysezelle mit Temperiervorrichtung, Elektrolyseurstack aufweisend eine Temperiervorrichtung, Elektrolysesystem aufweisend den Elektrolyseurstack und Verfahren zur Temperierung eines Elektrolyseurstacks
DE102020100599A1 (de) Verfahren für einen Froststart eines Brennstoffzellensystems, Brennstoffzellensystem und Kraftfahrzeug mit einem solchen
EP1243046B1 (de) Optimierung der betriebsparameter eines direkt-methanol-brennstoffzellensystems
DE102019133095A1 (de) Verfahren zum Durchführen einer Testmessung an einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Kraftfahrzeug
DE102019128422A1 (de) Verfahren zum Neustart einer Brennstoffzellenvorrichtung nach einem vorherigen Abstellen, Brennstoffzellenvorrichtung sowie Kraftfahrzeug
DE102020115789A1 (de) Verfahren zum Betreiben einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Brennstoffzellenfahrzeug
DE102019132950A1 (de) Verfahren zum Betreiben einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Kraftfahrzeug mit einer solchen
DE102020102692A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems sowie Brennstoffzellensystem und Kraftfahrzeug mit einem Brennstoffzellensystem
DE102005010497B4 (de) Verfahren zum Betreiben eines Direkt-Methanol-Brennstoffzellenstapels
DE102019132960A1 (de) Verfahren für einen Froststart einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Kraftfahrzeug mit einer Brennstoffzellenvorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997932708

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2259195

Country of ref document: CA

Ref country code: CA

Ref document number: 2259195

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09214107

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997932708

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997932708

Country of ref document: EP