WO1997046924A1 - Regeleinrichtung und -verfahren für motoren - Google Patents

Regeleinrichtung und -verfahren für motoren Download PDF

Info

Publication number
WO1997046924A1
WO1997046924A1 PCT/EP1997/002910 EP9702910W WO9746924A1 WO 1997046924 A1 WO1997046924 A1 WO 1997046924A1 EP 9702910 W EP9702910 W EP 9702910W WO 9746924 A1 WO9746924 A1 WO 9746924A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
motor
speed
control
control device
Prior art date
Application number
PCT/EP1997/002910
Other languages
English (en)
French (fr)
Inventor
Michael Sienz
Siegfried Koepp
Dietmar Stoiber
Original Assignee
Krauss-Maffei Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7796291&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1997046924(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Krauss-Maffei Ag filed Critical Krauss-Maffei Ag
Priority to EP97927135A priority Critical patent/EP0902918B2/de
Priority to JP10500232A priority patent/JP2000512478A/ja
Priority to DE59702321T priority patent/DE59702321D1/de
Priority to US09/194,757 priority patent/US6118245A/en
Publication of WO1997046924A1 publication Critical patent/WO1997046924A1/de

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
    • G05B19/237Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude with a combination of feedback covered by G05B19/232 - G05B19/235
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33078Error table, interpolate between two stored values to correct error
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37019Position detection integrated in actuator, lvdt integrated linear actuator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37035Sensor in air gap of drive, detect directly speed or position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37323Derive acceleration from position or speed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41436Feedforward of speed and acceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42064Position, speed and acceleration

Definitions

  • the invention relates to a control device for an engine of the type specified in the preamble of claim 1 and to a method for controlling an engine.
  • Control devices for operating motors are generally known.
  • the state of motion or the position of the motor is determined by a sensor and fed to the control device, which operates the motor as a function of the difference between the setpoint and actual value of the motor parameters.
  • time-varying default values such as position, speed or acceleration can be observed with relative accuracy.
  • an automatic assembly machine for assembling circuit boards with electronic components must perform a point-to-point movement in which on the one hand the point for inserting the component must be controlled very precisely and on the other hand the point-to-point movement with high speed, which, due to the loading accelerations and decelerations, leads to vibrations in the system, which in turn impair the accuracy of the positioning.
  • This also applies to modern milling machines, in which a relatively small milling head is used for milling openings and contours of different sizes.
  • a high degree of positional accuracy must be combined with a high speed or acceleration of the milling head.
  • ball roller spindle drives are used as translational drives, in which an electric motor drives a ball roller spindle, which in turn displaces a tool table or a workpiece table.
  • the motor control then takes place on the one hand via a rotary encoder on the motor and on a linear scale on the tool table.
  • control accuracy can be increased even further by using a so-called pilot control, in which, for example, a speed pilot signal derived from the setpoints is additionally fed to the speed controller, the problems described above with regard to phase rotation, phase shift and deceleration remain however.
  • the invention is therefore based on the object of providing a regulating device for a motor which enables rapid and precise regulation of the state of motion of the motor; Furthermore, a corresponding method for regulating an engine is to be created.
  • the dependent claims relate to further developments of the invention.
  • the sensor for detecting the state of motion of the motor is arranged at the power transmission point of the motor. In this way, all changes in the state of motion of the motor can be detected directly and fed to the controller, so that direct control is possible which is essentially free of mechanical influences and / or influences of the control device such as differentiation etc.
  • the senor directly detects the state parameters of the power transmission medium at the power transmission point of the motor, for example the pressure state of a fluid or the electrical and / or magnetic field strength of an electric motor, i.e. of the field that also serves to transmit power in the engine.
  • This state parameter is a measure of the state of motion or of changes in the state of motion of the motor; for this purpose the sensor is arranged "in the broadest sense" in the power transmission medium of the engine.
  • the sensor can be an angular position sensor, an angular speed sensor or an angular acceleration sensor in the case of a rotary motor or a displacement sensor, a speed sensor and / or an accelerometer in the case of a linear motor.
  • the state of motion of the motor is determined directly at the power transmission interface, advantageously via the power transmission medium.
  • control method can advantageously be combined with a cascade control with a speed and / or acceleration control; it is also possible to use a speed and / or acceleration pre-control.
  • exemplary embodiments of the invention are explained with reference to the attached drawings. Show it:
  • FIG. 1 shows a schematic illustration of a CNC-controlled machine tool with a linear motor
  • FIG. 2 shows a schematic representation of a controller according to the invention
  • Fig. 3 shows a further schematic representation of a CNC machine with a linear motor.
  • 10 denotes a machine computer for controlling the CNC machine.
  • the machine computer 10 communicates with a data carrier 20, which contains, for example, default data for controlling a milling head (not shown).
  • the default data are fed to a drive computer 100 via an interface 30 and an interface 40.
  • the drive computer controls a schematically illustrated linear motor 200 via an output stage 60.
  • the linear motor 200 comprises a primary part (reaction part) 210 and a secondary part (stator) 220 in a known manner.
  • a linear scale 230 and a displacement sensor 240 are shown schematically.
  • a sensor 250 is provided for the direct detection of the speed.
  • the speed detection can be derived, for example, directly from the time course of the magnetic field at the location of the sensor.
  • the sensors 250 and 240 send their signals to the drive computer 100, which carries out a speed control, load control or current control.
  • the linear scale is shown separately from the linear motor in FIG. 1, but it can also be located at the location of the power transmission interface, ie in the air gap between the motor parts.
  • the properties of the force transmission medium, ie the electromagnetic field, can also be used for the linear scale or the displacement sensor.
  • FIG 2 shows in greater detail an example of the structure of the motor control running in the work computer 100.
  • a linear position interpolator 110 From the machine computer 10 or the data carrier 20, the default data are given to a linear position interpolator 110. This data is fed to a subtraction element 111, the inverting input of which is the position-actual data from the linear scale 230 via a high-resolution position interface 50. The difference is then fed to a position controller 112, the output data of which are fed to a further subtraction element 120. To form the speed difference, in the known technique the output signal of the position interface 50 is differentiated in a differentiating element 250 'and fed to the subtracting element 120. The subtraction element is followed by a circuit for determining the acceleration deviation, specifically the setpoint acceleration is determined in a circuit 270, from which the actual acceleration which is derived by a further differentiating element 260 'is subtracted. A subsequent control part comprising a current regulator 130, an output stage 60 and a current vector generator 132 forms the drive current for the synchronous linear motor 200 therefrom.
  • the control shown thus represents a cascaded control, with a speed precontrol 122 additionally being able to be carried out, with the additional control a speed pilot signal is applied to the subtractor 120.
  • the inventive control scheme deviates from the control scheme shown above in that an additional sensor 250 is provided directly on or in the synchronous linear motor instead of the differentiating element 250 '. This sensor 250 directly determines the speed of the primary part of the motor and sends a corresponding signal to the subtractor 120.
  • a separate acceleration sensor 260 can also be provided for the acceleration measurement, which transmits the acceleration signal to the subtractor 272 without differentiation, so that the differentiator 260 'can be dispensed with.
  • the differentiators 250 ', 260' are replaced by corresponding sensors 250, 260 which directly detect the state of motion of the motor.
  • FIG. 1 An advantageous implementation of the principle according to the invention can be seen from the schematic illustration in FIG.
  • the figure essentially corresponds to FIG. 1, the various interfaces having been omitted.
  • the speed sensor 250 is a coil sensor, which is arranged in the vicinity of the air gap of the linear motor 200 and detects the electromagnetic field in the air gap. That means, that the sensor directly detects the electromagnetic field on which the power transmission of the motor is based. Electrical voltages are induced in the coil or coils of the sensor 250, which are proportional to the change in the magnetic field over time and thus (in the case of a stationary magnetic field) proportional to the speed.
  • the (analog) signal of the coil sensor 250 is fed to the drive computer 100 as a speed signal v in a converter 252, optionally after quantization.
  • an acceleration-proportional signal a is derived from the speed-proportional signal of the coil sensor 250 via the differentiator 260 'already explained and is also fed to the drive computer 100.
  • the drive computer 100 controls the movement of the secondary part 210 of the linear motor 200 via the amplifier or the output stage 60.
  • the exemplary embodiment according to FIG. 3 has the decisive advantage that a speed-proportional signal is emitted directly by the sensor 250. There is therefore no need to derive a further, quantized speed signal from an already discrete position signal.
  • the acceleration is obtained only by simple differentiation of the speed signal and not, as in the prior art, by a double differentiation of a position signal.
  • the speed sensor 250 is arranged directly at the force interface, and the acceleration signal a derived from the speed signal thus corresponds directly to the differential acceleration between the primary part 210 and the secondary part 220.
  • a double acceleration measurement, on the one hand on the primary part 220, on the other hand on the secondary part 210, with subsequent difference formation to determine the actual differential acceleration is not necessary.
  • the aforementioned signal converter 252 is preferably provided for processing the signal from the sensor 250, the function of which is explained below.
  • the coil sensor 250 is arranged directly at the force interface of the motor 200, i.e. it runs on the same magnetic track as the primary part 210.
  • the signal of the speed sensor 250 is advantageously first rectified in the signal converter 252, and the signal of the travel sensor 240 is additionally fed to the speed converter.
  • the speed data of the sensor 250 and the position data of the travel sensor 240 are recorded simultaneously and correlated with one another, so that the location dependency of the speed signal a constant speed of the secondary part 210 can be determined.
  • a correction function v (s) is then determined in a known manner from the position-dependent function v (s) of the speed signal, which indicates how the signal of the sensor 250 must be corrected in order to maintain a constant at all speeds at constant speed Determine speed signal.
  • the value pairs ⁇ ⁇ , v ⁇ , for each location point can then be stored, for example, in a look-up table in the signal converter 252, so that the subsequent correction for each location point s - the corresponding correction value v ⁇ can be called up and the signal of the Speed sensor 250 can be corrected accordingly in an evaluation logic (not shown).
  • an evaluation logic (not shown). The details of how such an evaluation logic is to be set up and how a lookup table in the signal converter 252 is to be implemented by means of a memory are familiar to the person skilled in the art and are therefore not shown in detail.
  • the signal converter 252, the differentiating element 260 'and the sensor 250 can be combined into one unit, as indicated by the dashed line 254 in FIG. 3.
  • This unit 254 is then integrated directly in the primary part 210 of the motor 200, so that the motor 200 only has connections for the position signal s, the speed signal v and the acceleration signal a to the outside.
  • the correction function can be len or always automatically updated at the start of operation so that gradual changes, e.g. due to wear, can be taken into account.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Linear Motors (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

Die Erfindung beschreibt eine Regeleinrichtung bzw. ein Regelverfahren für Motoren. Zur Vermeidung von Phasenverdrehungen und dergleichen in Regelstrecken wird erfindungsgemäß vorgeschlagen, einen Sensor (250) zur Erfassung des Bewegungszustandes eines Motors (200) direkt an oder in der Kraftübertragungsschnittstelle (270) des Motors vorzusehen. Der Sensor kann beispielsweise direkt die Lage, die Geschwindigkeit oder die Beschleunigung ermitteln. Die Erfindung ist insbesondere geeignet zur Regelung von Linearmotoren bei Hochpräzisionsanwendungen wie Werkzeugmaschinen, Fräsmaschinen oder Bestückungsautomaten.

Description

Regeleinrichtung und -verfahren für Motoren
Die Erfindung bezieht sich auf eine Regeleinrichtung für einen Motor von der im Oberbegriff des Patentanspruchs 1 angegebenen Art sowie auf ein Verfahren zur Steuerung eines Motors .
Regeleinrichtungen zum Betrieb von Motoren sind allgemein bekannt . Zu diesem Zweck wird beispielsweise über einen Sensor der Bewegungszustand bzw. die Lage des Motors ermit¬ telt und der Regeleinrichtung zugeführt, die den Motor ab¬ hängig von der Differenz zwischen Soll- und Istwert der Mo¬ torparameter betreibt. Auf diese Weise können auch zeitlich veränderliche Vorgabewerte wie Lage, Geschwindigkeit oder Beschleunigung relativ genau eingehalten werden.
Im Zuge der technischen Weiterentwicklung werden jedoch die Anforderungen an die Präzision der Reglung von beispiels¬ weise Elektromotoren, aber auch Fluid- oder Verbrennungsmo¬ toren, immer höhere Anforderungen gestellt.
Insbesondere bei modernen Fertigungsautomaten wie Geräten zum Bonden, Bestückungsautomaten, Fräsmaschinen und der¬ gleichen müssen einander widersprechende Anforderungen von einer Regeleinrichtung erfüllt werden.
So muß ein Bestückungsautomat zur Bestückung von Schal¬ tungsplatinen mit elektronischen Bauelementen eine Punkt- zu-Punkt-Bewegung ausführen, bei der einerseits der Punkt zum Einsetzen des Bauelementes sehr genau angesteuert wer¬ den muß, andererseits die Punkt-zu-Punkt-Bewegung mit hoher Geschwindigkeit erfolgen soll, was, bedingt durch die Be- schleunigungen und Abbremsungen, zu Schwingungen im System führt, die wiederum die Genauigkeit bei der Positionierung beeinträchtigen. Dies gilt auch für moderne Fräsmaschinen, bei denen ein relativ kleiner Fräskopf für verschieden große Fräsöffnungen und -konturen verwendet wird. Auch hier muß eine große Lagegenauigkeit mit einer hohen Geschwindig¬ keit bzw. Beschleunigung des Fräskopfes verbunden werden.
Bei herkömmlichen Werkzeugmaschinen wie Fräsmaschinen oder dergleichen oder auch bei Bestückungsautomaten werden als translatorische Antriebe Kugelrollspindelantriebe verwen¬ det, bei denen ein Elektromotor eine Kugelrollspindel an¬ treibt, die ihrerseits einen Werkzeugtisch oder einen Werk- stücktisch verschiebt. Die Motorregelung erfolgt dann ei¬ nerseits über einen Drehgeber am Motor sowie über einen Li¬ nearmaßstab am Werkzeugtisch.
Dabei hat sich jedoch gezeigt, daß alle mechanischen Bau¬ elemente des Kugelrollspindelantriebs einen nachteiligen Einfluß auf die Regelstrecke ausüben, d. h. Zeitverzögerun¬ gen aufgrund der Elastizitätseigenschaften der Spindel, der Schwingungen des Werkstücks oder des Werkzeugtisches etc. wirken sich als Phasendrehungen in der Regelstrecke aus, was zu einem Schwingungsproblem führt .
In einem gewissen Ausmaß kann dieses Problem durch Einsatz von Direktantrieben, d. h. elektromagnetischen Linearmoto¬ ren, vermindert werden, da z. B. das mechanische Element der Kugelrollspindel bei einem linearen Direktantrieb ent¬ fällt. Allerdings ist auch hier zu beachten, daß alle me¬ chanischen Elemente wie die Aufhängung des Fräskopfes, des Werkstücktisches etc. einen nachteiligen Einfluß auf die Regelstrecke ausüben, wenn auch in reduziertem Maß. Dar¬ überhinaus werden auch Einflüsse der Regelschaltung selbst wichtig. Bei einer Geschwindigkeitsregelung wird im allge¬ meinen ein Geschwindigkeits-Istsignal aus einem Positions- Istsignal abgeleitet und mit einem Geschwindigkeits-Sollsi- gnal verglichen. Durch die zeitliche Ableitung wird so eine Verzögerung in das System eingebracht, die sich als Phasen¬ verschiebung oder -drehung auf die Regelstrecke nachteilig auswirkt. Ferner ist zu beachten, daß normalerweise die Po¬ sitionsdaten diskret aufgenommen werden, wodurch sich ein Quantisierungsrauschen ergibt, das bei der zeitlichen Ab¬ leitung noch verstärkt wird. Entsprechende Überlegungen gelten in verstärktem Maße für eine mögliche Beschleuni¬ gungsregelung.
Entsprechende Probleme ergeben sich auch bei der sogenann¬ ten kaskadierten Regelung, bei der mehrere Regler hinter- einandergeschaltet sind, beispielsweise eine Lagereglung, eine Geschwindigkeitsregelung und eine Beschleunigungsrege¬ lung.
Zwar läßt sich die Regelgenauigkeit durch Einsatz einer so¬ genannten Vorsteuerung, bei der beispielsweise dem Ge¬ schwindigkeitsregler zusätzlich ein aus den Sollwerten ab¬ geleitetes Geschwindigkeitsvorsteuersignal zugeführt wird, noch weiter steigern, die oben dargestellten Probleme hin¬ sichtlich der Phasendrehung, Phasenverschiebung und der Verzögerung bleiben jedoch erhalten.
Der Erfindung liegt somit die Aufgabe zugrunde, eine Regel¬ einrichtung für einen Motor zu schaffen, die eine schnelle und genaue Regelung des Bewegungszustandes des Motors er¬ möglicht; desweiteren soll ein entsprechendes Verfahren zur Regelung eines Motors geschaffen werden.
Diese Aufgabe wird durch eine Regeleinrichtung gemäß An¬ spruch 1 bzw. durch ein Verfahren zur Regelung eines Motors gemäß Anspruch 11 gelöst; die abhängigen Ansprüche betref¬ fen weitere Entwicklungen der Erfindung. Erfindungsgemäß ist der Sensor zur Erfassung des Bewegungs¬ zustandes des Motors an der Kraftübertragungsstelle des Mo¬ tors angeordnet. Auf diese Weise können alle Änderungen des Bewegungszustandes des Motors direkt erfaßt und dem Regler zugeführt werden, so daß eine unmittelbare Regelung möglich ist, die im wesentlichen frei von mechanischen Einflüssen und/oder Einflüssen der Regeleinrichtung wie Differenzie¬ rung etc. ist.
Vorzugsweise erfaßt der Sensor direkt die Zustandsparameter des Kraftübertragungsmediums an der Kraftübertragungsstelle des Motors, beispielsweise den Druckzustand eines Fluids oder die elektrische und/oder magnetische Feldstärke eines Elektromotors, d.h. des Feldes, das auch der Kraftübertra¬ gung im Motor dient. Dieser Zustandsparameter ist unmittel¬ bar eine Maßgabe für den Bewegungszustand bzw. für Änderun¬ gen des Bewegungszustandes des Motors; zu diesem Zweck ist der Sensor im weitesten Sinne "im" Kraftübertragungsmedium des Motors angeordnet.
Der Sensor kann ein Winkellagengeber, ein Winkelgeschwin¬ digkeitsgeber oder ein Winkelbeschleunigungsgeber im Fall eines Rotationsmotors sein oder ein Weggeber, ein Geschwin¬ digkeitsgeber und/oder ein Beschleunigungsgeber im Fall ei¬ nes Linearmotors.
Bei dem erfindungsgemäßen Verfahren wird der Bewegungszu¬ stand des Motors unmittelbar an der Kraftübertragungs- schnittstelle ermittelt, und zwar vorteilhafterweise über das Kraftübertragungsmedium.
Das Regelungsverfahren kann dabei vorteilhafterweise mit einer Kaskadenregelung mit einer Geschwindigkeits- und/oder Beschleunigungsreglung kombiniert werden; auch ist es mög¬ lich, eine Geschwindigkeits- und/oder Beschleunigungsvor¬ steuerung einzusetzen. Ausführungsbeispiele der Erfindung werden anhand der beige¬ fügten Zeichnungen erläutert. Es zeigen:
Fig. 1 eine schematische Darstellung einer CNC-gesteuer- ten Werkzeugmaschine mit einem Linearmotor,
Fig. 2 eine schematisch Darstellung eines erfindungsge¬ mäßen Reglers, und
Fig. 3 eine weitere schematische Darstellung einer CNC- Maschine mit Linearmotor.
In Fig. 1 bezeichnet 10 einen Maschinenrechner zur Steue¬ rung der CNC-Maschine. Der Maschinenrechner 10 kommuniziert mit einem Datenträger 20, der beispielsweise Vorgabedaten zur Steuerung eines Fräskopfes (nicht dargestellt) enthält. Über eine Schnittstelle 30 und eine Schnittstelle 40 werden die Vorgabedaten einem Antriebsrechner 100 zugeführt. Der Antriebsrechner steuert über eine Endstufe 60 einen schema- tisch dargestellten Linearmotor 200.
Der Linearmotor 200 umfaßt in bekannter Weise ein Primär¬ teil (Reaktionsteil) 210 und ein Sekundärteil (Ständer) 220. Schematisch dargestellt sind ein Linearmaßstab 230 und ein Weggeber 240. An oder in der Kraftübertragungsschnitt¬ stelle des Linarmotors, nämlich dem Luftspalt zwischen dem Primär- und dem Sekundärteil, ist ein Sensor 250 zur direk¬ ten Erfassung der Geschwindigkeit vorgesehen. Die Geschwin¬ digkeitserfassung kann beispielsweise direkt aus dem zeit¬ lichen Verlauf des Magnetfeldes am Ort des Sensors abgelei¬ tet werden.
Die Sensoren 250 und 240 geben ihre Signale an den An¬ triebsrechner 100, der eine Geschwindigkeitssteuerung, La¬ gesteuerung bzw. Stromsteuerung vornimmt. Der Linearmaßstab ist in Fig. 1 separat vom Linearmotor dargestellt, er kann sich jedoch ebenfalls am Ort der Kraftübertragungsschnittstelle, d. h. im Luftspalt zwischen den Motorteilen befinden. Auch für den Linearmaßstab bzw. den Wegsensor können die Eigenschaften des Kraftübertra¬ gungsmediums, d. h. des elektromagnetischen Feldes, ausge¬ nutzt werden.
Fig. 2 zeigt im größeren Detail ein Beispiel für den Aufbau der im Arbeitsrechner 100 ablaufenden Motorregelung.
Von dem Maschinenrechner 10 bzw. dem Datenträger 20 werden die Vorgabedaten an einem linearen Lageinterpolierer 110 gegeben. Diese Daten werden einem Subtraktionsglied 111 zu¬ geführt, dessen invertierendem Eingang die Lage-Ist-Daten vom Linearmaßstab 230 über eine hochauflösendes Positions¬ schnittstelle 50 zugeführt werden. Anschließend wird die Differenz einem Lageregler 112 zugeführt, dessen Ausgangs¬ daten einem weiteren Subtraktionsglied 120 zugeführt wer¬ den. Zur Bildung der Geschwindigkeitsdifferenz wird bei der bekannten Technik das Ausgangssignal der Positionsschnitt¬ stelle 50 in einem Differenzierglied 250' differenziert und dem Substraktionsglied 120 zugeführt. Dem Subtraktionsglied schließt sich eine Schaltung zur Ermittlung der Beschleuni¬ gungsabweichung an, und zwar wird in einer Schaltung 270 die Sollbeschleunigung ermittelt, von der die Istbeschleu¬ nigung subtrahiert wird, die durch eine weiteres Differen¬ zierglied 260' abgeleitet wurde. Ein anschließender Regel¬ teil aus einem Stromregler 130, einer Endstufe 60 und einem Stromvektorbildner 132 bildet daraus den Antriebsstrom für den Synchronlinearmotor 200.
Die dargestellte Regelung stellt somit eine kaskadierte Re¬ gelung dar, wobei zusätzlich noch eine Geschwindigkeitsvor¬ steuerung 122 vorgenommen werden kann, bei der zusätzlich ein Geschwindigkeitsvorsteuersignal auf das Subtrahierglied 120 gegeben wird.
Da die Informationen hinsichtlich des Geschwindigkeits-Ist¬ wertes und des Beschleunigungs-Istwertes über Differenzier¬ glieder 250' und 260' ermittelt werden, ergeben sich neben den mechanischen Beeinflussungen des Regelsystems auch ne¬ gative Einflüsse wegen Signalverzögerungen, Phasendrehungen etc .
Aufgrund dessen weicht das erfinderische Regelschema von dem oben dargestellten Regelschema dadurch ab, daß anstatt des Differenziergliedes 250' ein zusätzlicher Sensor 250 direkt am oder im Synchronlinearmotor vorgesehen ist. Die¬ ser Sensor 250 ermittelt unmittelbar die Geschwindigkeit des Primärteils des Motors und leitet ein entsprechendes Signal an das Subtrahierglied 120.
Auch für die Beschleunigungsmessung kann ein separater Be¬ schleunigungssensor 260 vorgesehen sein, der ohne Differen¬ zierung das Beschleunigungssignal an das Subtrahierglied 272 abgibt, so daß auf das Differenzierglied 260' verzich¬ tet werden kann. Erfindungsgemäß werden somit die Differen¬ zierglieder 250' , 260' durch entsprechende Sensoren 250, 260, die direkt den Bewegungszustand des Motors erfassen, ersetzt .
Eine vorteilhafter Umsetzung des erfindungsgemäßen Prinzips ist aus der schematischen Darstellung der Figur 3 ersicht¬ lich. Die Figur entspricht im wesentlichen der Figur 1, wo¬ bei die verschiedenen Schnittstellen weggelassen wurden.
Bei dem Ausfuhrungsbeispiel gemäß Figur 3 ist der Geschwin¬ digkeitssensor 250 ein Spulensensor, der in der Nähe des Luftspaltes des Linearmotors 200 angeordnet ist und das elektromagnetische Feld im Luftspalt erfaßt. Das bedeutet, daß der Sensor direkt das elektromagnetische Feld erfaßt, auf dem die Kraftübertragung des Motors beruht . In der oder den Spulen des Sensors 250 werden elektrische Spannungen induziert, die proportional zur zeitlichen Änderung des Ma¬ gnetfeldes und damit (bei stationärem Magnetfeld) propor¬ tional zur Geschwindigkeit sind. Das (analoge) Signal des Spulensensors 250 wird nach einer später zu erläuternden Signalverarbeitung in einem Umsetzer 252, gegebenenfalls nach Quantisierung, als Geschwindigkeitssignal v dem An¬ triebsrechner 100 zugeführt. Aus dem geschwindigkeitspro¬ portionalen Signal des Spulensensors 250 wird desweiteren über das bereits erläuterte Differenzierglied 260' ein be¬ schleunigungsproportionales Signal a abgeleitet und eben¬ falls dem Antriebsrechner 100 zugeführt. Über den Verstär¬ ker bzw. die Endstufe 60 regelt der Antriebsrechner 100 die Bewegung des Sekundärteils 210 des Linearmotors 200.
Das Ausführungsbeispiel gemäß Figur 3 hat den entscheiden¬ den Vorteil, daß direkt ein geschwindigkeitsproportionales Signal vom Sensor 250 abgegeben wird. Es entfällt somit die Notwendigkeit, aus einem bereits diskreten Positionssignal ein weiteres, quantisiertes Geschwindigkeitssignal abzulei¬ ten.
Obwohl bei dieser Ausführungsform ein Differenzierglied 260' für die Beschleunigungsmessung eingesetzt wird, hat diese Ausführungsform auch hinsichtlich der Beschleuni- gungsregelung entscheidene Vorteile. Zum einen wird die Be¬ schleunigung nur durch einfache Differenzierung des Ge¬ schwindigkeitssignals erhalten und nicht, wie beim Stand der Technik, durch eine zweifache Differenzierung eines Po- sitionssignalε . Zum zweiten ist der Geschwindigkeitssensor 250 direkt an der Kraftschnittstelle angeordnet, und das aus dem Geschwindigkeitssignal abgeleitete Beschleunigungs- signal a entspricht somit direkt der Differenzbeschleuni¬ gung zwischen dem Primärteil 210 und dem Sekundärteil 220. Eine zweifache Beschleunigungsmessung, einerseits am Pri¬ märteil 220, andererseits am Sekundärteil 210, mit an¬ schließender Differenzbildung zur Ermittlung der tatsächli¬ chen Differenzbeschleunigung ist dabei nicht erforderlich.
Vorzugsweise ist bei dem Ausführungsbeispiel der Figur 3 zur Verarbeitung des Signals des Sensors 250 der schon er¬ wähnte Signalumsetzer 252 vorgesehen, dessen Funktion im Folgenden erläutert wird. Der Spulensensor 250 ist direkt an der Kraftschnittstelle des Motors 200 angeordnet, d.h. er läuft auf der gleichen Magnetspur wie das Primärteil 210. Dabei erfaßt der Sensor nur seine lokale Umgebung, d.h. der Sensor 250 "sieht" nur einen sehr begrenzten Be¬ reich. Bauartbedingt (abwechselnde N- und S-Magnetpole im Primärteil) und aufgrund von Fertigungstoleranzen können dabei Abhängigkeiten des an sich nur geschwindigkeitspro¬ portionalen Signals des Sensors 250 vom Erfassungsort s auftreten, d.h. es gilt v = f ( s) . Wenn man somit in der Praxis den Motor beispielsweise mit einer konstanten Ge¬ schwindigkeit betreibt, d.h. den Primärteil 210 mit einer konstanten Geschwindigkeit von einem Ende des Sekundärteils 220 zum anderen Ende bewegt, wird man einer Variation des Geschwindigkeitssignals v in Abhängigkeit vom Ort s fest¬ stellen. Diese Ortsabhängigkeit des Geschwindigkeitssignals wird im Signalumsetzer 252 kompensiert.
Zu diesem Zweck wird vorteilhafterweise das Signal des Ge¬ schwindigkeitssensors 250 im Signalumsetzer 252 zunächst gleichgerichtet, und dem Geschwindigkeitsumsetzer wird zu¬ sätzlich das Signal des Weggebers 240 zugeführt. Bei einem Testlauf, bei dem der Primärteil 210 ein oder mehrere Male mit konstanter Geschwindigkeit über die gesamte Länge des Sekundärteils 220 bewegt wird, werden gleichzeitig die Ge¬ schwindigkeitsdaten des Sensors 250 und die Positionsdaten des Weggebers 240 aufgenommen und miteinander korreliert, so daß die Ortsabhängigkeit des Geschwindigkeitssignals bei einer konstanten Geschwindigkeit des Sekundärteils 210 er¬ mittelt werden kann. Aus der Ortsabhängigkeitsfunktion v ( s) des Geschwindigkeitssignals wird anschließend in bekannter Weise eine Korrekturfunktion v (s) ermittelt, die angibt, in welcher Weise das Signal des Sensors 250 korrigiert wer¬ den muß, um bei konstanter Geschwindigkeit ein an allen Or¬ ten konstantes Geschwindigkeitssignal zu ermitteln. Die Wertepaare ε^ , v ^, zu jedem Ortspunkt können dann bei¬ spielsweise in einer Nachschlagtabelle im Signalumsetzer 252 abgelegt werden, so daß bei der späteren Regelung zu jedem Ortspunkt s - der entsprechende Korrekturwert v ■ ab¬ gerufen werden kann und das Signal des Geschwindigkeitssen¬ sors 250 in einer nicht dargestellten Auswertelogik ent¬ sprechend korrigiert werden kann. Die Einzelheiten, wie eine derartige Auswertelogik aufzubauen ist und wie eine Nachschlagtabelle im Signalumsetzer 252 mittels eines Spei¬ chers zu realisieren ist, sind dem Fachmann geläufig und werden deshalb nicht näher dargestellt. Dabei ist es auch grundsätzlich möglich, die Korrekturfunktion v (s) nicht als Nachschlagtabelle abzulegen sondern über einen Funkti¬ onsgenerator zu generieren, der die Funktion v (s) mög¬ lichst genau wiedergibt, beispielsweise durch angepaßte trigonometrische Funktionen od.dgl.
Schließlich sei noch erwähnt, daß der Signalumsetzer 252, das Differenzierglied 260' und der Sensor 250 zu einer Ein¬ heit zusammengefaßt werden können, wie durch die gestri¬ chelte Linie 254 in Figur 3 angedeutet ist. Diese Einheit 254 wird dann direkt im Primärteil 210 des Motors 200 in¬ tegriert, so daß der Motor 200 nur noch Anschlüsse für das Positionssignal s, das Geschwindigkeitssignal v und das Be¬ schleunigungssignal a nach außen aufweist . Desweiteren ist es auch möglich, die Korrekturfunktion nicht nur in einem anfänglichen Testlauf zu ermitteln sondern in zeitlichen Abständen, abhängig von dem Einsatz des Motors. So kann die Korrekturfunktion beispielsweise in regelmäßigen Interval- len oder immer zum Betriebsbeginn automatisch aktualisiert werden, um so allmähliche Veränderungen, z.B. aufgrund von Verschleiß, berücksichtigen zu können.

Claims

Patentansprüche
1. Regeleinrichtung für einen Motor (200) , wobei der Mo¬ tor (200) zumindest zwei Motorteile (210, 220) aufweist, die über eine Kraftübertragungsschnittstelle (270) mitein¬ ander wechselwirken und relativ zueinander bewegbar sind, einem Sensor (250) zur Erfassung des Bewegungszustandes der Motorteile und einem Regler (100) zur Regelung des Bewe¬ gungszustandes des Motors abhängig von Signalen des Sen¬ sors, dadurch g e k e n n z e i c h n e t, daß der Sensor der Kraftübertragungsschnittstelle (270) des Motors (200) zugeordnet ist .
2. Regeleinrichtung nach Anspruch 1, dadurch g e ¬ k e n n z e i c h n e t , daß der Sensor im Kraftübertra¬ gungsmedium des Motors angeordnet ist .
3. Regeleinrichtung nach Anspruch 1 oder 2, dadurch g e k e n n z e i c h n e t , daß der Sensor zumindest einen Zustandsparameter des Kraftübertragungsmediums des Motors erfaßt.
4. Regeleinrichtung nach Anspruch 1, 2 oder 3, dadurch g e k e n n z e i c h n e t , daß das Kraftübertragungsme¬ dium des Motors ein Fluid oder ein elektromagnetisches Feld ist .
5. Regeleinrichtung nach einem der Ansprüche 1 bis 4, da¬ durch g e k e n n z e i c h n e t , daß der Motor ein Ro¬ tationsmotor ist und der Sensor ein Winkellagengeber, ein Winkelgeschwindigkeitsgeber und/oder ein Winkelbeschleuni¬ gungsgeber ist .
6. Regeleinrichtung nach einem der Ansprüche 1 bis 5, dadurch g e k e n n z e i c h n e t , daß der Motor ein Linearmotor ist und der Sensor ein Weggeber, ein Geschwin¬ digkeitsgeber und/oder ein Beschleunigungsgeber ist.
7. Regeleinreichtung nach einem der Ansprüche 5 oder 6, dadurch g e k e n n z e i c h n e t , daß der Sensor das elektromagnetische Feld oder Änderungen des elektromagneti¬ schen Feldes erfaßt, auf das sich die Kraftübertragung des Motors stützt.
8. Regeleinrichtung nach Anspruch 7, dadurch g e ¬ k e n n z e i c h n e t , daß der Sensor (250) ein Induk¬ tionssensor ist.
9. Regeleinrichtung nach Anspruch 8, dadurch g e ¬ k e n n z e i c h n e t , daß der Sensor (250) eine oder mehrere Spulen aufweist.
10. Regeleinrichtung nach einem der vorstehenden Ansprü¬ che, g e k e n n z e i c h n e t durch einen Signalumset¬ zer (252) , der mit einem Weggeber (240) und mit dem Sensor (250) zur Erfassung des Bewegungszustandes verbunden ist und Speicher- und Korrekturmittel aufweist, um eine mögli¬ che Abhängigkeit des Signals des Sensors (250) von der Po¬ sition zu kompensieren.
11. Verfahren zur Regelung eines Motors, wobei der Motor zumindest zwei Motorteile aufweist, die über eine Kraft- Übertragungsschnittstelle miteinander wechselwirken und re¬ lativ zueinander bewegbar sind, dadurch g e k e n n ¬ z e i c h n e t , daß man den Bewegungszustand des Motors an der Kraftübertragungsschnittstelle des Motors erfaßt.
12. Verfahren nach Anspruch 11, dadurch g e k e n n - z e i c h n e t , daß man Zustandsparameter des Kraftüber¬ tragungsmediums des Motors erfaßt .
13. Verfahren nach Anspruch 11 oder 12, dadurch g e ¬ k e n n z e i c h n e t , daß man den Druck eines Fluids oder Druckänderungen oder die Stärke eines elektromagneti¬ schen Feldes oder Feldänderungen an der Kraftübertragungs- schnittstelle des Motors erfaßt.
14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch g e k e n n z e i c h n e t , daß man die Winkellage der Motorteile, die Winkelgeschwindigkeit und/oder die Winkel- beschleunigung an der Kraftübertragungsschnittstelle er¬ faßt.
15. Verfahren nach einem der Ansprüche 11 bis 14, dadurch g e k e n n z e i c h n e t , daß man einen linearen Weg, eine Lineargeschwindigkeit und/oder eine Linearbeschleuni¬ gung an der Kraftübertragungsschnittstelle des Motors er¬ faßt.
16. Verfahren nach einem der Ansprüche 11 bis 15, dadurch g e k e n n z e i c h n e t , daß eine Lagenregelung und eine Geschwindigkeitsregelung kaskadiert sind.
17. Verfahren nach Anspruch 16, dadurch g e k e n n ¬ z e i c h n e t , daß man eine Geschwindigkeitsvorsteue- rung vornimmt .
18. Verfahren nach Anspruch 16 oder 17, dadurch g e ¬ k e n n z e i c h n e t , daß man eine kaskadierte Rege¬ lung mit einer Beschleunigungsregelung vornimmt .
19. Verfahren nach Anspruch 18, dadurch g e k e n n ¬ z e i c h n e t , daß man eine Beschleunigungsvorsteuerung vornimmt .
20. Verfahren nach einem der Ansprüche 11 bis 19, dadurch g e k e n n z e i c h n e t , daß man den Bewegungszustand des Motors mit einem Induktionssensor, vorzugsweise einem Sensor (250) mit einer oder mehreren Spulen, an der Kraft- Übertragungsschnittstelle eines Elektromotors in Form eines geschwindigkeitsproportionalen Signals erfaßt.
21. Verfahren nach Anspruch 20, dadurch g e k e n n ¬ z e i c h n e t , daß das geschwindigkeitsproportionale Signal einer Geschwindigkeitsregelung zugeführt wird und daß das geschwindigkeitsproportionale Signal nach zeitli¬ cher Differenzierung einer Beschleunigungsregelung zuge¬ führt wird.
22. Verfahren nach einem der Ansprüche 20 oder 21, dadurch g e k e n n z e i c h n e t , daß man vor Inbetriebnahme des Motors in einem Testablauf den Motor ein oder mehrere Male mit konstanter Geschwindigkeit betreibt und das ge¬ schwindigkeitsproportionale Signal in Abhängigkeit von der momentanen Position des Motors aufnimmt, daß man aus dem momentanen geschwindigkeitsproportio¬ nalen Signal (v) und den Signalen über den momentanen Ort (s) eine Korrekturfunktion (v (s) ) ermittelt und daß man das Signal des Sensors (250) mittels der Kor¬ rekturfunktion derart kompensiert, daß Abhängigkeiten der Signale des Sensors (250) von der Position (s) des Motors ausgeglichen werden.
23. Verfahren nach Anspruch 22, dadurch g e k e n n ¬ z e i c h n e t, daß die Korrekturfunktion (v (s) ) in Form einer Nachschlagtabelle abgespeichert oder in Form einer Näherungsfunktion generiert wird.
24. Verwendung einer Regeleinrichtung nach einem der An¬ sprüche 1 bis 10 oder eines Regelverfahrens nach einem der Ansprüche 11 bis 23, bei einem Translationsantrieb einer Werkzeugmaschine, eines Bestuckungsautomaten, eines Bon¬ dingautomaten oder dergleichen.
PCT/EP1997/002910 1996-06-05 1997-06-05 Regeleinrichtung und -verfahren für motoren WO1997046924A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP97927135A EP0902918B2 (de) 1996-06-05 1997-06-05 Regeleinrichtung und -verfahren für motoren
JP10500232A JP2000512478A (ja) 1996-06-05 1997-06-05 モータ用制御装置および制御方法
DE59702321T DE59702321D1 (de) 1996-06-05 1997-06-05 Regeleinrichtung und -verfahren für motoren
US09/194,757 US6118245A (en) 1996-06-05 1997-06-05 Control device and control process for motors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19622699A DE19622699A1 (de) 1996-06-05 1996-06-05 Regeleinrichtung und -verfahren für Motoren
DE19622699.6 1996-06-05

Publications (1)

Publication Number Publication Date
WO1997046924A1 true WO1997046924A1 (de) 1997-12-11

Family

ID=7796291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/002910 WO1997046924A1 (de) 1996-06-05 1997-06-05 Regeleinrichtung und -verfahren für motoren

Country Status (6)

Country Link
US (1) US6118245A (de)
EP (1) EP0902918B2 (de)
JP (1) JP2000512478A (de)
KR (1) KR20000016377A (de)
DE (2) DE19622699A1 (de)
WO (1) WO1997046924A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213634A1 (de) * 2000-12-06 2002-06-12 Tsunehiko Yamazaki Numerisch gesteuertes Verfahren
WO2005027322A2 (de) * 2003-09-15 2005-03-24 Siemens Aktiengesellschaft Verfahren und regelung einer elektrischen maschine bzw. vorrichtung zu deren regelung
CN104793568A (zh) * 2015-04-10 2015-07-22 深圳市明速自动化设备有限公司 多轴插补方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191140A (ja) * 1998-12-26 2000-07-11 Minebea Co Ltd リニアモ―タを用いた搬送システム
DE19930777A1 (de) * 1999-07-03 2001-01-04 Heidenhain Gmbh Dr Johannes Regelungsanordnung und Verfahren zur schnellen Lageregelung eines Elektromotors
DE19952805C5 (de) * 1999-11-02 2011-03-31 Thielenhaus Technologies Gmbh Verfahren und Vorrichtung zur Finishbearbeitung von Werkstücken
US20020099473A1 (en) * 2000-11-08 2002-07-25 Paul Amadeo Integrated computer-aided design (CAD) and robotic systems for rapid prototyping and manufacture of smart cards
DE20114750U1 (de) 2001-09-06 2002-11-28 Brückner Maschinenbau GmbH, 83313 Siegsdorf Anordnung zum Betrieb einer Kontaktwalze
US6427794B1 (en) * 2001-09-17 2002-08-06 Ford Global Technologies, Inc. Adaptive demagnetization compensation for a motor in an electric or partially electric motor vehicle
DE10304970B4 (de) * 2003-02-06 2006-08-10 Ina - Drives & Mechatronics Gmbh & Co. Ohg Positioniereinheit mit einem Kraftsensor
DE10334736A1 (de) * 2003-07-29 2005-02-17 Rexroth Indramat Gmbh Linearmotor mit Fortbewegungsregelung
DE10342562A1 (de) * 2003-09-15 2005-04-21 Siemens Ag Regelungseinrichtung bzw. Regelung einer elektrischen Maschine
DE102006015065A1 (de) * 2006-03-31 2007-10-18 Siemens Ag Einbaumotor, insbesondere Einbau-Torquemotor
US8084969B2 (en) 2007-10-01 2011-12-27 Allegro Microsystems, Inc. Hall-effect based linear motor controller
US7936144B2 (en) 2008-03-06 2011-05-03 Allegro Microsystems, Inc. Self-calibration algorithms in a small motor driver IC with an integrated position sensor
DE502008002888D1 (de) * 2008-09-09 2011-04-28 Siemens Ag Transfervorrichtung mit dynamisch veränderbaren Antriebsbereichen
EP2574821B1 (de) 2011-09-30 2013-10-30 Siemens Aktiengesellschaft Aktiver Schwingungsdämpfer ohne direkte Beschleunigungserfassung
EP2574820B1 (de) 2011-09-30 2014-04-16 Siemens Aktiengesellschaft Bearbeitungsmaschine mit Schwingungskompensation beweglicher mechanischer Strukturen
DE102012210097A1 (de) * 2012-06-15 2013-12-19 Hilti Aktiengesellschaft Steuerungsverfahren
CN107742997B (zh) * 2017-10-20 2020-08-07 北京航天发射技术研究所 双轴转位机构控制系统、控制方法及捷联惯组自标定方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1142774A (en) * 1967-04-17 1969-02-12 Gerber Scientific Instr Co Error correcting system for use with plotters, machine tools and the like
WO1985005710A1 (en) * 1984-06-01 1985-12-19 Scientific-Atlanta, Inc. Linear servoactuator with integrated transformer position sensor
JPH02297611A (ja) * 1989-05-12 1990-12-10 Fanuc Ltd 速度・加速度のフィードフォアードを含むスライディングモード制御方式
US5063335A (en) * 1990-09-11 1991-11-05 Allen-Bradley Company, Inc. Two-input control with independent proportional and integral gains for velocity error and velocity feedforward including velocity command limiting
EP0604666A1 (de) * 1992-07-17 1994-07-06 Fanuc Ltd. Adaptives pi-regel-verfahren
DE19605413A1 (de) * 1996-02-14 1996-07-11 Schinkoethe Wolfgang Prof Dr I Gleichstromlinearmotor mit integriertem Wegmeßsystem
EP0723137A1 (de) * 1995-01-17 1996-07-24 Eaton Corporation Zwei-Draht-Positionsbestimmung und Regelung für modulierendes Gasventil oder andere Elektromechanische Stellglieder
WO1997012305A1 (en) * 1995-09-26 1997-04-03 Roger Charles Hey Sidey Combined motor drive and control device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2020780A (en) 1934-05-11 1935-11-12 Jennie B Hamilton Price tag support
DE2020780A1 (de) 1969-04-04 1970-12-17 Pioneer Electronic Corp Elektrischer Gleichstrommotor
DE2146499C3 (de) * 1971-09-17 1975-09-25 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Regelanordnung zur abstandshaltenden elektromagnetischen Schwebeführung eines Schwebefahrzeuges gegenüber Trag- und Führungsschienen
US3867656A (en) 1971-12-13 1975-02-18 Siwa Seikosha Kk Brushless direct current motor
DE2314257C2 (de) 1973-03-22 1982-10-21 Papst-Motoren GmbH & Co KG, 7742 St Georgen Schaltungsanordnung zur Drehzahlregelung eines kollektorlosen Gleichstrommotors
JPS534883B2 (de) * 1973-03-31 1978-02-22
DE2414721C3 (de) * 1974-03-27 1980-06-19 Brown, Boveri & Cie Ag, 6800 Mannheim Verfahren zur Steuerung der Drehzahl- bzw. Geschwindigkeit einer frequenzumrichtergespeisten Drehstrom-Asynchronmaschine
GB1596681A (en) * 1977-01-19 1981-08-26 Sony Corp Drive circuits with speed control for brushless dc motors
JPS54139016A (en) * 1978-04-20 1979-10-29 Pioneer Electronic Corp Linear motor drive controller
DE3148007A1 (de) * 1981-12-04 1983-06-09 Herbert Prof. Dr.-Ing. 3300 Braunschweig Weh "pollageerfassung durch die kombination von zwei sensor-anordnungen"
DE3231966A1 (de) 1982-08-27 1984-03-01 Erich 8500 Nürnberg Rabe Elektrische maschine
DE3526166C2 (de) 1984-07-23 1996-05-02 Asahi Chemical Ind Bürstenloser Elektromotor und Verfahren zum Herstellen einer Spuleneinheit für diesen
DE4122769A1 (de) * 1991-07-10 1993-01-21 Ief Werner Gmbh Positionssensor fuer linearmotoren
US5250880A (en) * 1992-10-22 1993-10-05 Ford Motor Company Linear motor control system and method
DE19543562A1 (de) * 1994-11-22 1996-05-23 Bosch Gmbh Robert Anordnung zur berührungslosen Drehwinkelerfassung eines drehbaren Elements

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1142774A (en) * 1967-04-17 1969-02-12 Gerber Scientific Instr Co Error correcting system for use with plotters, machine tools and the like
WO1985005710A1 (en) * 1984-06-01 1985-12-19 Scientific-Atlanta, Inc. Linear servoactuator with integrated transformer position sensor
JPH02297611A (ja) * 1989-05-12 1990-12-10 Fanuc Ltd 速度・加速度のフィードフォアードを含むスライディングモード制御方式
US5063335A (en) * 1990-09-11 1991-11-05 Allen-Bradley Company, Inc. Two-input control with independent proportional and integral gains for velocity error and velocity feedforward including velocity command limiting
EP0604666A1 (de) * 1992-07-17 1994-07-06 Fanuc Ltd. Adaptives pi-regel-verfahren
EP0723137A1 (de) * 1995-01-17 1996-07-24 Eaton Corporation Zwei-Draht-Positionsbestimmung und Regelung für modulierendes Gasventil oder andere Elektromechanische Stellglieder
WO1997012305A1 (en) * 1995-09-26 1997-04-03 Roger Charles Hey Sidey Combined motor drive and control device
DE19605413A1 (de) * 1996-02-14 1996-07-11 Schinkoethe Wolfgang Prof Dr I Gleichstromlinearmotor mit integriertem Wegmeßsystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 083 (P - 1171) 26 February 1991 (1991-02-26) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213634A1 (de) * 2000-12-06 2002-06-12 Tsunehiko Yamazaki Numerisch gesteuertes Verfahren
WO2005027322A2 (de) * 2003-09-15 2005-03-24 Siemens Aktiengesellschaft Verfahren und regelung einer elektrischen maschine bzw. vorrichtung zu deren regelung
WO2005027322A3 (de) * 2003-09-15 2005-09-15 Siemens Ag Verfahren und regelung einer elektrischen maschine bzw. vorrichtung zu deren regelung
US7405525B2 (en) 2003-09-15 2008-07-29 Siemens Aktiengesellschaft Method for the control of an electric machine and/or device for the control thereof
CN104793568A (zh) * 2015-04-10 2015-07-22 深圳市明速自动化设备有限公司 多轴插补方法

Also Published As

Publication number Publication date
EP0902918B1 (de) 2000-09-06
DE19622699A1 (de) 1997-12-11
US6118245A (en) 2000-09-12
EP0902918B2 (de) 2005-01-12
JP2000512478A (ja) 2000-09-19
EP0902918A1 (de) 1999-03-24
DE59702321D1 (de) 2000-10-12
KR20000016377A (ko) 2000-03-25

Similar Documents

Publication Publication Date Title
WO1997046924A1 (de) Regeleinrichtung und -verfahren für motoren
DE102005003322B3 (de) Verfahren zum Bestimmen einer Raumkoordinate eines Messpunktes an einem Messobjekt sowie entsprechendes Koordinatenmessgerät
EP2048556B1 (de) Verfahren zur Ermittlung von Kenngrössen einer angetriebenen nicht horizontal ausgerichteten Achse, insbesondere einer Werkzeugmaschine, sowie geeignete Anwendungen, korrespondierende Vorrichtungen und deren Verwendung
DE4121531C2 (de) Bewegungssteuergerät
EP1508396A1 (de) Verfahren und Vorrichtung zum Steuern der Andruckkraft einer Schweisszange
DE19826133A1 (de) Verfahren und Vorrichtung zur Steuerung einer Fahrzeugbremsanlage
EP1917565A2 (de) Verfahren und vorrichtung zur steuerung und regelung von kräften an servo-elektrischen pressen
EP1818744B1 (de) Reglerstruktur mit einem Torsionsmodell
EP2023092B1 (de) Positionsmessgerät und Verfahren zur Übertragung einer Bewegungsinformation
DE69028574T2 (de) Hochpräzises Positioniersystem
DE4431326B4 (de) Steuervorrichtung für eine Werkzeugmaschine
EP2686952B1 (de) Verfahren und vorrichtung zur adaption einer kommutierung für eine elektronisch kommutierte elektrische maschine
DE4318263C2 (de) Verfahren und Schaltung zum temperaturkompensierten Anfahren mindestens einer eingelernten SOLL-Position
DE102014109469A1 (de) Motor-Steuerungs-Vorrichtung
DE19902664A1 (de) Verfahren zur Regelung der Zufuhr elektrischer Energie zu einer elektromagnetischen Einrichtung und Verwendung eines Sliding-Mode-Reglers
EP0979411B1 (de) Anordnung zur drehzahlerfassung
EP1939704B1 (de) Verfahren und Vorrichtung zur Schätzung des Lastenmoments bei drehzahl- oder positionsgeregelten elektrischen Antrieben
DE19708894A1 (de) Verfahren zur Lage- und/oder Geschwindigkeitsregelung von Achsen an einer Werkzeugmaschine sowie Vorrichtung zur Durchführung eines solchen Verfahrens
EP0184036B1 (de) Numerische Steuerung für Werkzeugmaschinen
DE19637632A1 (de) Numerisches Bahn-Steuersystem
DE102004024883B4 (de) Antriebssystem
EP3133461A1 (de) Modellbasierter beobachter zur dämpfung eines mechanischen systems und verfahren
EP0894292B1 (de) Elektronische steuerung für ein steuersystem für ein getriebe
DE102017221562A1 (de) Steuereinrichtung für einen Servomotor, Verfahren zum Steuern eines Servomotors und Computerprogramm
DD239057A1 (de) Regleranordnung zur positionierung schwach gedaempfter mechanischer regelstrecken von mehrmassensystemen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09194757

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997927135

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019980709951

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1997927135

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980709951

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997927135

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019980709951

Country of ref document: KR