WO1997045888A1 - Verfahren zur abstimmung von planaren supraleitenden filtern - Google Patents

Verfahren zur abstimmung von planaren supraleitenden filtern Download PDF

Info

Publication number
WO1997045888A1
WO1997045888A1 PCT/DE1997/000934 DE9700934W WO9745888A1 WO 1997045888 A1 WO1997045888 A1 WO 1997045888A1 DE 9700934 W DE9700934 W DE 9700934W WO 9745888 A1 WO9745888 A1 WO 9745888A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
housing
cover
resonators
filters
Prior art date
Application number
PCT/DE1997/000934
Other languages
English (en)
French (fr)
Inventor
Werner GRÜENWALD
Christian Neumann
Matthias Klauda
Claus Schmidt
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP97922897A priority Critical patent/EP0901692B1/de
Priority to DE59704975T priority patent/DE59704975D1/de
Publication of WO1997045888A1 publication Critical patent/WO1997045888A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20363Linear resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2135Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using strip line filters

Definitions

  • the invention is based on a method for tuning planar superconducting filters according to the type of the independent claim.
  • planar filter to be tuned consists of a substrate with a superconductor layer on the underside, which serves as a ground line.
  • a micro structure also made of superconducting material, which has a conductor for capacitive coupling of the
  • High-frequency signal, a resonator, and a line for capacitive coupling of the signal comprises.
  • the resonator is an approximately circular planar microstructure, the lateral dimensions of which determine its resonance properties.
  • the effective dielectric function of the surroundings of the resonator determines its resonance properties.
  • the imaginary part of the effective dielectric function causes the filter losses, its real part influences the position of the resonance frequency.
  • the filter is located in a housing, in the lid of which at least one with a thread provided through hole is provided. This rotates a screw such that the screw head is outside the housing and the threaded end of the screw is immersed in the electric field of the microwave or millimeter wave propagating in the filter.
  • the attachment of a superconducting plate with approximately the same diameter as the thread of the screw on the screw tip is proposed.
  • a screw located above a resonator influences its resonance frequency in a first approximation.
  • a screw that dips into the space between two adjacent resonators primarily affects the coupling between these two resonators.
  • the tuning method proposed in EP 05 22 515 AI for a single resonator is suitable for the production of filters with very low losses, but the tuning of more complex filters with a larger number of resonators is extremely time-consuming due to the large number of degrees of freedom. This is known to the person skilled in the art.
  • WO 94/28592 in particular FIG. 12, shows a planar bandpass filter
  • High-temperature superconductor base known in microstrip technology.
  • a superconductor layer on the underside of a carrier substrate, which serves as a ground line.
  • a microstructure also made of superconducting material, which comprises a conductor for the capacitive coupling of the high-frequency signal, several resonators, and a line for the capacitive coupling out of the signal.
  • the resonator is a strip conductor of approximately rectangular shape, the lateral dimensions of which resonate determine.
  • the carrier substrate consists of a layer structure which contains at least one ferroelectric or antiferroelectric layer.
  • this ferroelectric or antiferroelectric layer By applying a voltage to this ferroelectric or antiferroelectric layer, its dielectric function can be changed significantly, and thus also the dielectric function of the environment of the planar filter.
  • the resonance characteristic of the filter can thus also be changed, but only integrally, that is to say in an approximately identical manner for all
  • the method according to the invention with the characterizing features of the independent claim has the advantage that the coordination is significantly less complex and still allows to produce filters with low losses. Another advantage is that, due to the shorter time required for the tuning, the manufacturing costs of a fully tuned filter turn out to be significantly lower, since the time required for tuning represents a significant proportion of the manufacturing costs.
  • FIG. 1 shows the perspective view of a filter in a cut-open housing which is provided with a height-adjustable cover
  • FIG. 2 shows a transmission curve of a filter according to the invention
  • FIG. 3 shows a filter installed in a housing, which has an inner cover that can be lowered from the cover,
  • FIG. 4 shows a filter which is built into a housing and which has an inner cover which can be lowered relative to the cover by means of piezotranslators,
  • Figure 5 shows a filter installed in a housing which is provided with plates on the inside of the lid and
  • Figure 6 is a filter bank, on the housing cover a stepped plate is attached.
  • Figure 1 shows a planar filter
  • the planar filter consists of a dielectric substrate (1), which has a superconductor, preferably a high temperature superconductor is coated. This layer forms the ground line (2).
  • This planar superconducting filter is installed in a housing consisting of a base plate (10), a housing wall (11) and a cover (12).
  • the cover (12) is fastened to the housing wall (11) by means of two screws (13, 14).
  • the terms housing wall or wall are also used as a collective term for cover, base plate and wall.
  • the cover (12) perpendicular to the line (30), there is a coupling screw (20), the threaded end of which protrudes from the inside of the housing.
  • the line (30) runs between the resonators (5,6); Sectional drawings in the following figures show sections along a plane which contains this line and runs perpendicular to the surface of the substrate (1).
  • the planar filter shown in FIG. 1 is a bandpass filter, in which only microwaves or millimeter waves (hereinafter also referred to collectively as high-frequency waves) with a frequency that corresponds to the natural frequency of the resonators (4, 5, 6) between the input conductors (3) and output conductor (7) are transmitted.
  • Suitable filtering can also be used to implement other types of filters, in particular band-stop filters, low-pass filters or high-pass filters, to which the method according to the invention can also be applied.
  • the cover (12) is by means of the screws (13,14) attached to the housing wall (11).
  • these screws (13, 14) are used to adjust the height of the cover. This is done by loosening the screws (13, 14) and holding up the cover (12) by a lock nut (15) placed on the screws (13, 14).
  • the lock nut placed on the screw (14) is covered by the cover (12) in FIG. 1.
  • the coupling between the individual resonators determines the spectral fine structure within the transmission band.
  • An example of this very weak spectral fine structure is marked with an arrow in FIG.
  • This coupling is influenced by the coupling screw (20).
  • the threaded end of the coupling screw is immersed both in the electrical field of the resonator (5) and in the electrical field of the resonator (6) and thus serves as a double capacitive coupling between the resonators (5) and (6).
  • a more developed coupling, which in the embodiment chosen here is a further screwed in
  • FIG. 3 shows a section through a filter in a housing along a section line (30) (see FIG. 1). Components that are the same or function the same as in FIG. 1 have been provided with the same reference number.
  • a superconducting layer (2) which functions as a ground conductor.
  • the resonators of the filter lie outside the section plane and are therefore not visible in FIG. 3.
  • the filter is installed in a housing with a base plate (10) and housing wall (11), the structural design of which ensures that the filter element is securely fixed.
  • the housing also has a cover (12) which is provided with holes (50, 52, 53).
  • the inner cover (40) Inside the housing, parallel to the cover (12), is the inner cover (40), which has a bore (51) aligned with the bore (50), which is provided with a thread.
  • two threaded bolts (41, 42) are attached to the cover (40), such that they protrude outwards through the holes (52, 53) in the cover (12), and a seal (45) which seals the inner cover (40). seals against the housing wall.
  • Nuts (44.45) are screwed onto the threaded bolt (41.42).
  • Springs (16) are glued to the outside of the cover in such a way that their resilient end touches the end of the threaded bolts (41, 42) and exerts an axial force on them in the direction of the filter.
  • Securing lugs (15) are provided on the housing walls (11).
  • the nuts (44,45) located on the threaded bolts (41,42) serve together with those on the threaded bolts pressing springs (16) for setting and fixing a distance between the inner cover (40) and the cover (12).
  • the securing lugs (15) protect the superconducting microstructure on the top of the substrate against damage by an erroneously detached inner cover (40).
  • the coupling screw (20) makes it possible to influence the coupling between the individual resonators, and thus the spectral fine structure within the transmission band.
  • the seal (45) and the fact that the hole (51) is threaded results in a relatively tight housing.
  • FIG. 4 An electrically controllable method of lowering the inner cover in order to tune the filter is shown in the further exemplary embodiment in FIG. 4.
  • a planar filter applied to a dielectric substrate (1), of which only the superconducting ground conductor (2) is visible in the sectional drawing shown, in a housing which consists of a base plate (10), a housing wall (11) and a Cover (12) exists.
  • the filter and housing are cut along the same cutting line as the device in Fig. 3.
  • the same or functionally identical components as in the previous figures have been given the same reference numerals.
  • two piezotranslators (60) are attached, which in turn are connected to the inside cover (40).
  • Inner cover (40) and cover (12) have two coaxial bores (51, 50), of which the bore (51) is threaded and the bore (50) is provided with an electrically insulating guide bush (61).
  • a coupling screw (20) is located in the bore (51).
  • the raising and lowering of the inner cover which influences the filter characteristics in the same way as in the previous example, is done in this example by applying a voltage to the piezo transformer (s) (60).
  • the piezo transformer (s) 60
  • Coupling screw (20) attached to the inner cover and not to the outer cover.
  • An obvious solution for applying a voltage to the piezo translator (60) is therefore to apply a voltage between the cover (12) and coupling screw (20).
  • One possible application of this exemplary embodiment of the invention disclosed here is to combine the electrically controlled tuning of the filter with a control and regulating circuit in order to compensate for drift phenomena, for example.
  • FIG. 5 shows a further preferred exemplary embodiment.
  • the section is carried out along the section line shown in FIG. 1; same or functionally identical components as in the previous figures are provided with the same reference numerals.
  • a filter consisting of a ground conductor (2), applied to a dielectric substrate (1), and a resonator (not visible in FIG. 5) in a housing, consisting of a base plate (10), housing wall (11) and cover (12 ) , built-in.
  • a coupling screw (20) is screwed into a threaded hole (50).
  • a conductive plate (70) is attached to the inside of the cover (12).
  • the spectral position of the filter band is selected by selecting a plate (70) with the appropriate thickness and attaching it to the inside of the cover (12). Again, the coupling screw (20) can be used to influence the spectral
  • Fine structure of the filter belt can be used.
  • the change in the spectral position of the transmission band is no longer possible after the assembly of the housing without opening the housing again, however, a pretuning can be made in this way with very simple means, which then only with the aid of the coupling screws (20) Detail needs to be corrected.
  • FIG. 6 shows the cross section through a filter bank in which there are four identical planar filters (80), produced with identical masks on identical ones
  • the housing consists of a base plate (10), a housing wall (11) and a cover (12).
  • a step plate (72) is attached to the inside of the cover (12). Due to the different distances between the planar filters (80) and the surface of the step plate (72) facing them, the spectral position of the transmission frequencies of the channels realized by the individual planar filters is slightly detuned from one another without changing the spectral fine structure. In this way, a multi-channel filter bank can be built with very simple means and bypassing the production of several masks. If necessary and / or desired, additional screws for fine tuning can also be provided in this implementation example.
  • the housing cover was used to represent other housing components which are sufficiently close to the planar filter so that they interact with the electrical field of the high-frequency wave propagating through the filter structure.
  • Possible modifications of the invention consist in making one or more side walls and / or the floor slidable in the sense mentioned above. It also seems conceivable to implement the coupling screws (20) and the sliding cover on different surfaces, for example to attach the coupling screws (20) to a side wall coaxially to the line (30) shown in FIG. 1, and which are parallel to the substrate (1) running housing surface facing (that is, the surface with the resonators) as a sliding cover in the sense mentioned above.
  • coupling screws (20), which protrude into the half-space between two resonators, were used if, in addition to the displacement of the transmission band, the fine structure of the transmission band is changed by the displaceable housing wall should. It is also conceivable, in addition to the lowerable housing cover, to provide one or more tuning screws in the field space above a single resonator. It is then possible to move the entire transmission band integrally by moving the housing wall, and in addition, for example by moving the resonance of a single resonator, to design the filter to be narrowband or broadband.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Es wird ein Verfahren vorgeschlagen, planare supraleitende Filter abzustimmen. Dies wird erreicht durch einen in der Höhe variablen Gehäusedeckel, welcher eine Einstellung der Mittenfrequenz des Bandfilters erlaubt. Hierdurch wird eine deutlich vereinfachte A bstimmung der Filter erreicht. Ausgehend von dieser Methode wird der Aufbau einer Filterbank für Multiplexanwendungen vorgeschlagen.

Description

Verfahren zur Abstimmung von planaren supraleitenden Filtern
Stand der Technik
Die Erfindung geht aus von einem Verfahren zur Abstimmung von planaren supraleitenden Filtern nach der Gattung des unabhängigen Anspruchs.
Aus der EP 05 22 515 AI ist eine Methode, einen planaren supraleitenden Filter mit einem einzelnen Resonator zu verstimmen, bekannt. Der abzustimmende planare Filter besteht hierbei aus einem Substrat mit einer Supraleiterschicht auf der Unterseite, welche als Masseleitung dient. Auf der Oberseite befindet sich, ebenfalls aus supraleitendem Material, eine MikroStruktur, welche einen Leiter zur kapazitiven Einkopplung des
Hochfrequenzsignals, einen Resonator, und eine Leitung zur kapazitiven Auskopplung des Signals umfaßt. Der Resonator ist eine in etwa kreisförmige planare MikroStruktur, deren laterale Abmessungen seine Resonanzeigenschaften bestimmen. Des weiteren bestimmt die effektive dielektrische Funktion der Umgebung des Resonators seine Resonanzeigenschaften. Der Imaginärteil der effektiven dielektrischen Funktion bewirkt die Filterverluste, ihr Realteil beeinflußt die Lage der Resonanzfrequenz. Der Filter befindet sich in einem Gehäuse, in dessen Deckel mindestens ein mit einem Gewinde versehenes Durchgangsloch vorgesehen ist. Hierdurch wird eine Schraube gedreht, derart, daß der Schraubenkopf sich außerhalb des Gehäuses befindet, und das Gewindeende der Schraube in das elektrische Feld der sich im Filter fortpflanzenden Mikrowelle oder Millimeterwelle eintaucht. Zur Minimierung der Verluste wird die Anbringung eines supraleitenden Plättchens mit in etwa demselben Durchmesser wie das Gewinde der Schraube an der Schraubenspitze vorgeschlagen.
In einem Filter mit mehreren Resonatoren beeinflußt eine über einem Resonator befindliche Schraube in erster Näherung dessen Resonanzfrequenz. Eine Schraube, welche in den Zwischenraum zwischen zwei benachbarten Resonatoren eintaucht, beeinflußt in erster Linie die Kopplung zwischen diesen beiden Resonatoren. Die in EP 05 22 515 AI für einen einzelnen Resonator vorgeschlagene Abstimmethode ist geeignet für die Herstellung von Filtern mit sehr geringen Verlusten, jedoch ist die Abstimmung von komplexeren Filtern mit einer größeren Anzahl von Resonatoren, bedingt durch die große Anzahl von Freiheitsgraden, extrem zeitaufwendig. Dies ist dem Fachmann bekannt .
Weiterhin ist aus der WO 94/28592, insbesondere Figur 12, ist ein planarer Bandpaßfilter auf
Hochtemperatursupraleiterbasis in Mikrostreifenleitertechnik bekannt. Auf einem Trägersubstrat befindet sich eine Supraleiterschicht auf der Unterseite, welche als Masseleitung dient. Auf der Oberseite befindet sich, ebenfalls aus supraleitendem Material, eine MikroStruktur, welche einen Leiter zur kapazitiven Einkopplung des Hochfrequenzsignals, mehrere Resonatoren, und eine Leitung zur kapazitiven Auskopplung des Signals umfaßt. Der Resonator ist ein Streifenleiter von etwa rechteckiger Form, dessen laterale Abmessungen seine Resonanzeigenschaften bestimmen. In der WO 94/28591 besteht das Trägersubstrat aus einer Schichtstruktur, welche mindestens eine ferroelektrische oder antiferroelektrische Schicht beinhaltet. Durch Anlegen einer Spannung an diese ferroelektrische oder antiferroelektrische Schicht kann deren dielektrische Funktion signifikant geändert werden, und somit auch die dielektrische Funktion der Umgebung des planaren Filters. Somit kann auch die Resonanzcharakteristik des Filters geändert werden, allerdings nur integral, das heißt, in einer näherungsweise gleichen Weise für alle
Resonatoren, welche den Filter bilden. Mit einher geht bei diesem Verfahren eine Erhöhung der Verluste.
Vorteile der Erfindung
Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des unabhängigen Anspruchs hat demgegenüber den Vorteil, daß die Abstimmung deutlich weniger aufwendig ist und trotzdem erlaubt, Filter mit geringen Verlusten herzustellen. Als weiterer Vorteil ist anzusehen, daß, bedingt durch den geringeren Zeitaufwand bei der Abstimmung, die Herstellungskosten eines fertig abgestimmten Filters deutlich niedriger ausfallen, da der Zeitaufwand, welcher zur Abstimmung notwendig ist, einen signifikanten Anteil an den Herstellungskosten darstellt.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und
Verbesserungen des im unabhängigen Anspruch angegebenen Verfahrens möglich. Besonders vorteilhaft ist es, am Gehäuse eine verschiebbare Wandung vorzusehen, da hiermit alle Resonanzfrequenzen aller Resonatoren gleichmäßig verschoben werden und nur noch geringfügiger Abstimmungsaufwand an weniger Schrauben zur Kopplung der einzelnen Resonatoren notwendig ist.
Besonders vorteilhaft ist ferner, eine dopelwandige Gehäusewandung mit einem absenkbaren Innendeckel vorzusehen, da somit das Gehäuse leichter abgedichtet werden kann.
Weiterhin ist es besonders vorteilhaft, diesen Innendeckel mittels Piezotranslatoren zu verschieben, da diese Methode der Abstimmung auch bei Betriebstemperatur (i. A. 77 Kelvin) und gegebenenfalls auch im Kältemittelbad erfolgen kann. Als weiterer Vorteil ist anzusehen, daß, bedingt durch die elektrische Steuerung der Resonanzverschiebung, diese Methode mit elektrischen Regelkreisen kompatibel ist.
Ferner ist besonders vorteilhaft, den Gehäusedeckel auf der Innenseite mit einer leitenden Platte einer genau definierten Dicke zu versehen, da diese Methode schon bei der Montage des Filters einen grob vorjustierten Filter liefert. Als weiterer Vorteil ist anzusehen, daß durch
Herstellung eines geeigneten Satzes von Platten, welche sehr preiswert herzustellen sind, ein Satz von Filtern mit geringfügig verschiedenen Resonanzfrequenzen hergestellt werden kann, ohne unterschiedliche Supraleitermikrostrukturen zu erzeugen, für welche ein ungleich kostspieligerer Satz von verschiedenen Masken vonnöten wäre.
Schließlich ist es besonders vorteilhaft, mehrere Filter gleicher Bauart in einem Gehäuse mit gestuftem Deckel unterzubringen, da auf diese Weise sehr preisgünstig eine Filterbank für Frequenzmultiplexanwendungen erhalten werden kann. Zei chnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert . Es zeigen
Figur 1 die perspektivische Ansicht eines Filters in einem aufgeschnittenen Gehäuse, welches mit einem höhenverstellbaren Deckel versehen ist,
Figur 2 eine Transmissionskurve eines erfindungsgemäßen Filters,
Figur 3 ein Filter eingebaut in ein Gehäuse, welches einen vom Deckel absenkbaren Innendeckel aufweist,
Figur 4 einen Filter, welcher in ein Gehäuse eingebaut ist, welches einen mittels Piezotranslatoren gegenüber dem Deckel absenkbaren Innendeckel aufweist,
Figur 5 einen Filter, eingebaut in ein Gehäuse, welches mit Platten auf der Deckelinnenseite versehen ist und
Figur 6 eine Filterbank, auf deren Gehäusedeckel eine gestufte Platte angebracht ist.
Beschreibung der Erfindung
Figur 1 zeigt einen planaren Filter in
Mikrostreifenleiterbauweise in einem Gehäuse. Der planare Filter besteht aus einem dielektrischen Substrat (1) , welches auf der Unterseite mit einem Supraleiter, vorzugsweise einem Hochtemperatursupraleiter, beschichtet ist. Diese Schicht bildet die Masseleitung (2) . Auf der Oberseite des dielektrischen Substrats (1) ist eine MikroStruktur, ebenfalls aus supraleitendem Material, aufgebracht, bestehend aus einer Eingangsleitung (3) ,
Resonatoren (4,5,6) und einer Ausgangsleitung (7) . Dieser planare supraleitende Filter ist in ein Gehäuse, bestehend aus einer Bodenplatte (10) , einer Gehäusewand (11) und einem Deckel (12) eingebaut. Der Deckel (12) ist mittels zweier Schrauben (13,14) an der Gehäusewand (11) befestigt. Im folgenden Text werden auch die Begriffe Gehäusewandung oder Wandung als Sammelbegriff für Deckel, Bodenplatte und Wand herangezogen. Im Deckel (12) , senkrecht über der Linie (30) befindet sich eine KoppeIschraube (20) , deren Gewindeende m das Gehäuseinnere ragt. Die Linie (30) verläuft zwischen den Resonatoren (5,6) ; SchnittZeichnungen in den folgenden Figuren geben Schnitte entlang einer Ebene, welche diese Linie beinhaltet und senkrecht zur Oberfläche des Substrats (1) verläuft, wieder.
Eine einlaufende Millimeter- oder Mikrowelle wird über den Emgangsleiter (3) an die Serie von Resonatoren (4,5,6) angekoppelt. Das gefilterte Signal steht am kapazitiv gekoppelten Ausgangsleiter (7) zur Verfügung. Bei dem in Figur 1 gezeigten Planarfilter handelt es sich um einen Bandpaßfilter, bei welchem nur Mikrowellen oder Millimeterwellen (im folgenden auch mit dem Sammelbegriff Hochfrequenzwellen bezeichnet) mit einer Frequenz, welche der Eigenfrequenz der Resonatoren (4,5,6) entspricht, zwischen Eingangsleiter (3) und Ausgangsleiter (7) transmittiert werden. Durch geeignete Strukturierung sind auch andere Filterarten realisierbar, insbesondere Bandsperrfilter, Tiefpaßfilter oder Hochpaßfilter, auf welche die erfindungsgemäße Methode ebenfalls angewandt werden kann. Der Deckel (12) ist mittels der Schrauben (13,14) an der Gehäusewand (11) befestigt. Darüber hinaus werden diese Schrauben (13,14) zur Höhenverstellung des Deckels herangezogen. Dies geschieht durch Lockern der Schrauben (13,14) und Hochhalten des Deckels (12) durch eine auf die Schrauben (13,14) aufgesetzte Kontermutter (15) . Die auf der Schraube (14) aufgesetzte Kontermutter wird vom Deckel (12) in Figur 1 verdeckt. Durch Absenken des Deckels (12) werden die Resonanzfrequenzen aller Resonatoren (4,5,6) und damit das Transmissionsband des Filters zu höheren Frequenzen verschoben, Anheben des Deckels wirkt entgegengesetzt. Die Charakteristik eines solchen Filters, allerdings mit sieben Resonatoren, für zwei verschiedene Lagen des Deckels ist in Figur 2 dargestellt.
Die Kopplung zwischen den einzelnen Resonatoren bestimmt die spektrale Feinstruktur innerhalb des Transmissionsbandes. Ein Beispiel für diese sehr schwache spektrale Feinstruktur ist in Figur 2 mit einem Pfeil gekennzeichnet. Diese Kopplung wird durch die KoppeIschraube (20) beeinflußt. Das Gewindeende der KoppeIschraube taucht sowohl in das elektrische Feld des Resonators (5) als auch in das elektrische Feld des Resonators (6) ein und dient somit als doppelte kapazitive Kopplung zwischen den Resonatoren (5) und (6) . Eine stärker entwickelte Kopplung, welche im hier gewählten Ausführungsbeispiel einer weiter eingedrehten
Schraube entspricht, glättet die Feinstruktur innerhalb des Transmissionsbands. Bei stärkerer Kopplung wird auch das Transmissionsband gespreizt, so daß die Feinjustierung das Ziel hat, Bandbreite und spektrale Feinstruktur des Filters gleichzeitig an den beabsichtigten Einsatz anzupassen. Diese Feinjustierung der spektralen Transmissionscharakteristik wird im allgemeinen nach der Fixierung der spektralen Lage des gesamten Transmissionsbandes durch den absenkbaren Deckel vorgenommen werden. Ein zweites erfindungsgemäßes Ausführungsbeispiel ist in Figur 3 dargestellt. Die Figur 3 zeigt einen Schnitt durch einen Filter in einem Gehäuse entlang einer Schnittlinie (30) (siehe Figur 1) . Gleichartige oder gleichfunktionierende Bauteile wie in Figur 1 wurden mit derselben Bezugsziffer versehen. Auf der Unterseite (2) eines dielektrischen Substrats (1) befindet sich eine supraleitende Schicht (2) , welche als Masseleiter fungiert. Die Resonatoren des Filters liegen außerhalb der Schnittebene und sind deshalb in Figur 3 nicht sichtbar. Der Filter ist in ein Gehäuse, mit Bodenplatte (10) und Gehäusewand (11) , deren konstruktive Ausgestaltung eine sichere Fixierung des Filterelements gewährleistet, eingebaut. Dem Fachmann sind jedoch auch alternative Methoden zur Befestigung, wie z. B. Kleben, Schrauben, Klammern usw. , offensichtlich. Ferner weist das Gehäuse einen Deckel (12) auf, welcher mit Löchern (50,52,53) versehen ist. Im Innern des Gehäuses, parallel zum Deckel (12) , befindet sich der Innendeckel (40) , welcher eine mit der Bohrung (50) fluchtende Bohrung (51) aufweist, welche mit einem Gewinde versehen ist. An dem Deckel (40) sind ferner zwei Gewindebolzen (41,42) angebracht, dergestalt, daß sie durch die Löcher (52,53) im Deckel (12) nach außen ragen, sowie eine Dichtung (45) welche den Innendeckel (40) gegen die Gehäusewand abdichtet. Auf den Gewindebolzen (41,42) sind Muttern (44,45) aufgeschraubt. Auf der Außenseite des Deckels sind Federn (16) aufgeklebt, derart, daß ihr federndes Ende das Ende der Gewindebolzen (41,42) berührt und eine axiale Kraft auf diese in Richtung des Filters ausübt. Durch das Gewindeloch (51) ist eine
KoppeIschraube (20) eingeschraubt. An den Gehäusewänden (11) sind Sicherungsnasen (15) vorgesehen.
Die auf den Gewindebolzen (41,42) befindlichen Muttern (44,45) dienen zusammen mit den auf die Gewindebolzen drückenden Federn (16) zum Einstellen und Fixieren eines Abstandes zwischen dem Innendeckel (40) und dem Deckel (12) . Durch Lösen der Kontermuttern (44,45) wird der Innnendeckel (40) durch den Federdruck abgesenkt und somit die Frequenz des Transmissionsbands des Filters erhöht. Die Sicherungsnasen (15) schützen die supraleitende MikroStruktur auf der Oberseite des Substrats vor Beschädigungen durch einen irrtümlich losgelösten Innendeckel (40) . Durch die KoppeIschraube (20) ist es möglich, die Kopplung zwischen den einzelnen Resonatoren, und damit die spektrale Feinstruktur innerhalb des Transmissionsbands, zu beeinflussen. Die Dichtung (45) und die Tatsache, daß das Loch (51) mit einem Gewinde versehen ist, bewirken ein relativ dichtes Gehäuse. Trotzdem mag es u. U. zweckmäßig sein, das Loch (50) anstelle des Lochs (51) mit einem Gewinde zur Verstellung der KoppeIschraube (20) zu versehen, um die Kopplung zwischen Resonatoren und die FrequenzVerstimmung der Resonatoren zu trennen. Ebenso ist ein anderer Schraubenmechanismus zur Höhenverstellung des Innendeckels (40) als der hier gezeigte denkbar.
Insbesondere sind hier auch hochgenaue, mit geringen Einbaumaßen aufwartende, in den Deckel zu integrierende Einsätze vorstellbar.
Eine elektrisch steuerbare Methode, den Innendeckel abzusenken, um den Filter abzustimmen, ist in dem weiteren Ausführungsbeispiel in Figur 4 gezeigt. Wiederum befindet sich ein auf einem dielektrischen Substrat (1) aufgebrachter planarer Filter, von welcher in der dargestellten Schnittzeichnung nur der supraleitende Masseleiter (2) sichtbar ist, in einem Gehäuse, welches aus einer Bodenplatte (10) , einer Gehäusewand (11) und einem Deckel (12) besteht. Filter und Gehäuse sind entlang der gleichen Schnittlinie aufgeschnitten wie die Einrichtung in Fig. 3. Gleiche oder funktionsgleiche Bauteile wie in den vorhergehenden Figuren wurden mit denselben Bezugszeichen versehen. An der Innenseite des Deckels (12) sind zwei Piezotranslatoren (60) angebracht, welche wiederum mit dem Innendeckel (40) verbunden sind. Innendeckel (40) und Deckel (12) weisen zwei koaxiale Bohrungen (51,50) auf, von welchen die Bohrung (51) mit einem Gewinde versehen ist und die Bohrung (50) mit einer elektrisch isolierenden Führungsbuchse (61) versehen ist. In der Bohrung (51) befindet sich eine KoppeIschraube (20) .
Das Anheben und Absenken des Innendeckels, welches die Filtercharakteristik in derselben Weise wie im vorherigen Beispiel beeinflußt, geschieht in diesem Beispiel durch Anlegen einer Spannung an den oder die Piezotranslatoren (60) . Im vorliegenden Ausführungsbeispiel ist die
KoppeIschraube (20) am Innendeckel und nicht am Außendeckel befestigt. Eine naheliegende Lösung für das Anlegen einer Spannung am Piezotranslator (60) besteht daher darin, eine Spannung zwischen Deckel (12) und KoppeIschraube (20) anzulegen. Ebenso besteht die Möglichkeit, die
SpannungsZuführung zu den Piezotranslatoren (60) mittels zweier Leiterdrähte zu lösen; in diesem Falle besteht auch die Möglichkeit, die KoppeIschraube (20) im Deckel (12) statt im Zwischendeckel (40) zu verankern, um die Justierung der spektralen Lage des Transmissionsbands einerseits, und seiner spektralen Form andererseits weitgehend zu trennen. Eine Anwendungsmöglichkeit dieses Ausführungsbeipiels der hier offenbarten Erfindung besteht darin, die elektrisch gesteuerte Abstimmung des Filters mit einem Steuer- und Regelkreis zu kombinieren, um somit beispielsweise Drifterscheinungen zu kompensieren.
Die Schnittzeichnung in Figur 5 zeigt ein weiteres bevorzugtes Ausführungsbeispiel . Der Schnitt ist entlang der in Figur 1 dargestellten Schnittlinie ausgeführt; gleiche oder funktionsgleiche Bauteile wie in den vorhergehenden Figuren werden mit denselben Bezugszeichen versehen. Wiederum ist ein Filter, bestehend aus einem Masseleiter (2) , aufgebracht auf einem dielektrischen Substrat (1), und einem nicht in der Figur 5 sichtbaren Resonator in ein Gehäuse, bestehend aus Bodenplatte (10) , Gehäusewand (11) und Deckel (12) , eingebaut. Eine Koppelschraube (20) ist in ein Gewindeloch (50) eingeschraubt. Auf der Innenseite des Deckels (12) ist eine leitende Platte (70) angebracht.
In diesem Ausführungsbeispiel erfolgt die Auswahl der spektralen Lage des Filterbands durch Auswahl einer Platte (70) mit der passenden Dicke und ihrer Anbringung auf der Innenseite des Deckels (12) . Wiederum kann die KoppeIschraube (20) zur Beeinflussung der spektralen
Feinstruktur des Filterbandes herangezogen werden. Die Änderung der spektralen Lage des Transmissionsbands ist nach dem Zusammenbau des Gehäuses nicht mehr möglich, ohne das Gehäuse wieder zu öffnen, jedoch läßt sich auf diese Weise mit sehr einfachen Mitteln eine Vorabstimmung treffen, welche dann mit Hilfe der Koppelschrauben (20) nur noch im Detail korrigiert werden muß. Ebenso ist es möglich, mittels eines Satzes ausgewählter Platten (70) aus derselben Supraleitermikrostruktur einen Satz Filter herzustellen, deren Transmissionscharakteristik sich in einer genau definierten Weise unterscheidet.
Figur 6 zeigt den Querschnitt durch eine Filterbank, in welcher sich vier identische planare Filter (80) , hergestellt mit identischen Masken auf identischen
Substraten, ausgehend von identischen Supraleiterschichten auf beiden Seiten, befinden. Das Gehäuse besteht aus einer Bodenplatte (10) , einer Gehäusewand (11) und einem Deckel (12) . Auf der Innenseite des Deckels (12) ist eine Stufenplatte (72) befestigt. Durch die unterschiedlichen Abstände zwischen den planaren Filtern (80) und der ihnen zugewandten Oberfläche der Stufenplatte (72) wird die spektrale Lage der Transmissionsfrequenzen der durch die einzelnen Planarfilter realisierten Kanäle leicht gegeneinander verstimmt, ohne die spektrale Feinstruktur zu ändern. Auf diese Weise kann mit sehr einfachen Mitteln und unter Umgehung der Herstellung mehrerer Masken eine Vielkanalfilterbank gebaut werden. Falls erforderlich und/oder erwünscht können auch in diesem Realisierungsbeispiel noch zusätzliche Schrauben zur Feinabstimmung vorgesehen werden.
In den vorhergehenden Ausführungsbeispielen wurde der Gehäusedeckel stellvertretend für andere Gehäusekomponenten, welche sich hinreichend nahe am Planarfilter befinden, so daß sie mit dem elektrischen Feld der sich durch die Filterstruktur ausbreitenden Hochfrequenzwelle wechselwirken, herangezogen. Mögliche Abwandlungen der Erfindung bestehen darin, eine oder mehrere Seitenwände und/oder den Boden verschiebbar im oben genannten Sinne zu gestalten. Ebenso erscheint es denkbar, die Koppelschrauben (20) und den verschiebbaren Deckel an verschiedenen Flächen zu realisieren, beispielsweise die Koppelschrauben (20) an einer Seitenwand koaxial zu der in Figur 1 gezeigten Linie (30) anzubringen, und die parallel zum Substrat (1) verlaufende, der Oberfläche (das heißt, der Fläche mit den Resonatoren) zugewandte Gehäusefläche als verschiebbaren Deckel im oben genannten Sinne auszubilden.
In den obigen Ausführungsbeispielen kamen Koppelschrauben (20) , welche in den Halbraum zwischen zwei Resonatoren ragten, zum Einsatz, falls zusätzlich zur Verschiebung des Transmissionsbands durch die verschiebbare Gehäusewandung die Feinstruktur des Transmissionsbands geändert werden sollte. Ebenso ist aber denkbar, zusätzlich zum absenkbaren Gehäusedeckel, eine oder mehrere Abstimmschrauben im Feldraum über einem einzelnen Resonator vorzusehen. Es ist dann möglich, das gesamte Transmissionsband integral durch Verschieben der Gehäusewandung zu verschieben, und zusätzlich, beispielsweise durch Verschieben der Resonanz eines einzelnen Resonators, den Filter schmalbandiger oder breitbandiger auszugestalten.

Claims

Ansprüche
1. Verfahren zur Abstimmung von planaren supraleitenden Filtern für Millimeterwellen oder Mikrowellen mit mehreren Resonatoren, wobei der Filter in einem Gehäuse angeordnet ist, und wobei ein leitendes Element, welches sich hinreichend nahe am Filter befindet, so daß dieses mit dem elektrischen Feld der Millimeterwellen oder Mikrowellen wechselwirken kann, relativ zum Filter verschoben wird, dadurch gekennzeichnet, daß sich das leitende Element über mehrere Resonatoren erstreckt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, mindestens eine Gehäusewandung verschoben wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der den Resonatoren zugewandte Teil einer doppelwandigen Gehäusewandung relativ zum Filter verschoben wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Verschiebung durch Drehen einer Schraube oder einer Mutter bewirkt wird.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Verschiebung durch Piezotranslatoren bewirkt wird.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß auf mindestens einer Innenwand des Gehäuses eine leitende Platte mit der zur gewünschten Verstimmung notwendigen Dicke angebracht wird.
7. Filterbank bestehend aus mindestens zwei planaren supraleitenden Filtern für Millimeterwellen oder Mikrowellen, eingebaut in einem Gehäuse, dadurch gekennzeichnet, daß auf der Deckelinnenseite eine leitende Stufenplatte in hinreichender Nähe, so daß die den Filtern zugewandte Oberfläche der Stufenplatte mit dem elektrischen Feld der Millimeterwellen oder Mikrowellen wechselwirken kann, angebracht ist.
PCT/DE1997/000934 1996-05-28 1997-05-09 Verfahren zur abstimmung von planaren supraleitenden filtern WO1997045888A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP97922897A EP0901692B1 (de) 1996-05-28 1997-05-09 Verfahren zur abstimmung von planaren supraleitenden filtern
DE59704975T DE59704975D1 (de) 1996-05-28 1997-05-09 Verfahren zur abstimmung von planaren supraleitenden filtern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19621335A DE19621335A1 (de) 1996-05-28 1996-05-28 Verfahren zur Abstimmung von planaren supraleitenden Filtern
DE19621335.5 1996-05-28

Publications (1)

Publication Number Publication Date
WO1997045888A1 true WO1997045888A1 (de) 1997-12-04

Family

ID=7795469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/000934 WO1997045888A1 (de) 1996-05-28 1997-05-09 Verfahren zur abstimmung von planaren supraleitenden filtern

Country Status (3)

Country Link
EP (1) EP0901692B1 (de)
DE (2) DE19621335A1 (de)
WO (1) WO1997045888A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338701A (ja) * 2002-05-20 2003-11-28 Seiko Epson Corp 高周波スイッチの製造方法及び高周波スイッチ並びに電子機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281302A (en) * 1979-12-27 1981-07-28 Communications Satellite Corporation Quasi-elliptic function microstrip interdigital filter
JPS6328103A (ja) * 1986-07-22 1988-02-05 Murata Mfg Co Ltd ストリツプラインフイルタ
US4849722A (en) * 1986-09-25 1989-07-18 Alcatel Thomson Faisceaux Hertziens Adjustable band suspended substrate filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281302A (en) * 1979-12-27 1981-07-28 Communications Satellite Corporation Quasi-elliptic function microstrip interdigital filter
JPS6328103A (ja) * 1986-07-22 1988-02-05 Murata Mfg Co Ltd ストリツプラインフイルタ
US4849722A (en) * 1986-09-25 1989-07-18 Alcatel Thomson Faisceaux Hertziens Adjustable band suspended substrate filter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MANSOUR R R ET AL: "DESIGN OF HYBRID-COUPLED MULTIPLEXERS AND DIPLEXERS USING ASYMMETRICAL SUPERCONDUCTING FILTERS", IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, ATLANTA, JUNE 14 - 18, 1993, vol. 3, 14 June 1993 (1993-06-14), INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, pages 1281 - 1284, XP000481231 *
PATENT ABSTRACTS OF JAPAN vol. 012, no. 234 (E - 629) 5 July 1988 (1988-07-05) *

Also Published As

Publication number Publication date
DE59704975D1 (de) 2001-11-22
DE19621335A1 (de) 1997-12-04
EP0901692A1 (de) 1999-03-17
EP0901692B1 (de) 2001-10-17

Similar Documents

Publication Publication Date Title
DE19620932C1 (de) Planarer Filter mit ferroelektrischen und/oder antiferroelektrischen Elementen
DE69216917T2 (de) Abstimmbare Resonatoranordnung
DE602006000444T2 (de) Aus dielektrischem material hergestellter, mit diskreten spannungen abstimmbarer resonator
DE4337079C2 (de) Koaxiales Kammlinienfilter
DE112005001053B4 (de) Abstimmbarer Filter, Duplexer und Kommunikationsvorrichtung
DE4236769C2 (de) Dielektrisches Resonatorbauelement
DE69411885T2 (de) Monopolantenne mit platten- und stabstrahlern
DE2045560A1 (de) Rechteckiger Hohlleiterresonator und mit solchen Resonatoren aufgebautes Mikrowellenfilter
EP2656435A1 (de) Abstimmbares hochfrequenzfilter
DE69214027T2 (de) Mikrowellenresonator aus Mischoxid-Supraleitermaterial
DE69805095T2 (de) Mit verschiedenen oberflächen gekoppelter resonator
DE3706965C2 (de)
WO2006029868A1 (de) Hochfrequenzfilter
DE102004016158B4 (de) Antenne nach planarer Bauart
DE69206951T2 (de) Dielektrischer resonator
DE3007581C2 (de) Oszillator mit einem dielektrischen Resonator
EP0901692B1 (de) Verfahren zur abstimmung von planaren supraleitenden filtern
DE7002406U (de) Miniaturspulenanordnung.
DE19723286A1 (de) Vorrichtung zur Filterung von Hochfrequenzsignalen
EP1024508A2 (de) Elektrostatisch durchstimmbare Kapazität
DE2905677A1 (de) Hohlraum-resonator
DE10100296A1 (de) Vorrichtung mit einem Kondensator mit veränderbarer Kapazität, insbesondere Hochfrequenz-Mikroschalter
EP1665315B1 (de) Bauteil zur impedanzänderung bei einem koplanaren wellenleiter sowie verfahren zur herstellung eines bauelements
EP0961340B1 (de) Verfahren zum Abstimmen der Resonanzfrequenz eines dielektrischen Resonators
DE69717233T2 (de) Dielektrisches Filter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997922897

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97540285

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997922897

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997922897

Country of ref document: EP