WO1997045193A1 - Procede et installation pour tester in situ l'integrite des membranes de filtration - Google Patents

Procede et installation pour tester in situ l'integrite des membranes de filtration Download PDF

Info

Publication number
WO1997045193A1
WO1997045193A1 PCT/FR1997/000930 FR9700930W WO9745193A1 WO 1997045193 A1 WO1997045193 A1 WO 1997045193A1 FR 9700930 W FR9700930 W FR 9700930W WO 9745193 A1 WO9745193 A1 WO 9745193A1
Authority
WO
WIPO (PCT)
Prior art keywords
compartment
membrane
pressure
membranes
permeate
Prior art date
Application number
PCT/FR1997/000930
Other languages
English (en)
Inventor
Pierre CÔTÉ
Original Assignee
Otv Omnium De Traitements Et De Valorisation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otv Omnium De Traitements Et De Valorisation filed Critical Otv Omnium De Traitements Et De Valorisation
Priority to AU30969/97A priority Critical patent/AU718839B2/en
Priority to DE69703740T priority patent/DE69703740T2/de
Priority to PL97330192A priority patent/PL183910B1/pl
Priority to BR9709279A priority patent/BR9709279A/pt
Priority to JP09541744A priority patent/JP2000510766A/ja
Priority to HU9902297A priority patent/HU221782B1/hu
Priority to CA002257151A priority patent/CA2257151C/fr
Priority to EP97926047A priority patent/EP0909210B1/fr
Priority to AT97926047T priority patent/ATE198165T1/de
Priority to US09/194,489 priority patent/US6228271B1/en
Priority to DK97926047T priority patent/DK0909210T3/da
Publication of WO1997045193A1 publication Critical patent/WO1997045193A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/102Detection of leaks in membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials

Definitions

  • the invention relates to the field of filtration methods and installations used for the purification of liquids, in particular water, of the type including at least one filtration membrane.
  • the method and the installation according to the invention find their preferential application in the field of water purification with a view to their drinking water.
  • those skilled in the art may consider using the principles for other types of treatment or for the treatment of liquids other than water.
  • Water treatment with a view to drinking water has, taking into account the standards currently in force, the following main objectives:
  • the conventional treatment chains implementing such treatments involve a succession of physicochemical steps of the coagulation-flocculation-decantation-filtration type, generally supplemented by an oxidation step.
  • the role of the filtration step to which the invention relates more precisely is to disinfect the treated water by retaining the microorganisms (viruses, bacteria and protozoa) contained in them and in particular the pathogenic microorganisms.
  • Such a filtration step on membranes is advantageously carried out using organic membranes having pores of greater or lesser diameters depending on the size of the particles to be retained and which can moreover have different configurations (hollow fibers, spiral modules, etc.).
  • Japanese patent application JP-A-H7024273 proposes to use a gas loaded with particles of constant size and at a constant concentration, to filter the gas in question with the membrane to be tested and to detect the particles on the permeate side.
  • Such a technique has the disadvantage of involving the use of a particular fluid, namely a gas loaded with particles, the composition of which must be constant, which increases the complexity of the integrity test and its cost.
  • Japanese patent application JP-A-H7060073 proposes a technique of installing a microfilter at the outlet of the main filtration installation and measuring the pressure from time to time at this microfilter. Any increase in pressure at the microfilter indicates the presence of a leak.
  • the main disadvantage of such a technique is that it requires the use of an additional filtration device which is relatively difficult to implement and involves a significant increase in the overall cost of the installation.
  • Another method is to use a hydrophone to detect noise resulting from the breakage of hollow fibers.
  • this type of test does not detect leaks on other types of membranes than those with hollow fibers where air is used for backwashing.
  • Such leakage orifices have sizes much greater than the cutoff thresholds of the membranes tested, which are of the order of 0.1 ⁇ m for microfiltration membranes, of the order of 0.001 ⁇ m for the ultrafiltration membranes and even weaker in reverse osmosis.
  • Patent US-A-5353630 consists in placing the permeate compartment delimited by the membranes under air pressure and in measuring the pressure decrease or the flow of water displaced in the filtrate compartment as a function of time.
  • Such a technique has many drawbacks. First, it requires pressurization of the permeate compartment, which induces the need to equip the installation with means making it possible to supply air under pressure. However, such means are only present on certain types of filtration installation, in particular those using backwashing of the membranes with air.
  • this method is implemented in the opposite direction to the filtration direction, that is to say that the air used for the integrity test crosses the membrane from the permeate compartment to the filtrate compartment while, conversely, the liquid to be filtered crosses the membrane from the filtrate compartment to the permeate compartment.
  • Such a technique can therefore advantageously only be implemented with membranes having an isotropic (symmetrical) structure.
  • the use of pressurized air could dilate the membrane and give erroneous results, or even damage. the membrane.
  • the objective of the present invention is to propose a method for evaluating the integrity of filtration membranes which does not have the drawbacks of the state of the art.
  • an objective of the invention is to present such a method implementing the principle of measuring the bubble point but not involving the use of pressurized air.
  • Another objective of the invention is to describe such a process that can be implemented for any type of membrane, whether it be ultrafiltration, microfiltration, nanofiltration or reverse osmosis, symmetrical or asymmetrical, composite or not, for any configuration of membranes (hollow fibers, spiral modules, etc.)
  • Another objective of the invention is to propose such a method that can be easily implemented for a set of membrane modules or for a given module.
  • the invention which relates to a method for testing the integrity of at least one membrane for filtering a liquid, said membrane delimiting within a filtration device an upstream compartment receiving said liquid to be filtered and a permeate compartment collecting said filtered liquid, said method being characterized in that it comprises the steps consisting in: - filling said upstream compartment with air to put it under pressure atmospheric P atm and apply a partial vacuum in said permeate compartment so as to create a pressure differential between said upstream compartment and said permeate compartment;
  • the principle of the invention therefore consists in monitoring the evolution of the pressure prevailing in the permeate compartment and in determining for a stabilized pressure P test what is the flow of liquid Q test corresponding to the air passing through the membrane, this flow being representative of the integrity of the membrane.
  • the method according to the invention does not use pressurized air but conversely a partial vacuum.
  • it can be used for membrane filtration installations that do not include means for supplying air under pressure.
  • the method according to the invention implements the principle of measuring the bubble point by causing the passage of air through the still wet membrane in the direction used during filtration. This has the advantage of not weakening the membrane tested and, particularly in the case of asymmetrical or composite membranes, not to induce a detrimental expansion of the membrane.
  • the pressure P test chosen for the test will be determined by a person skilled in the art as a function of the membrane tested and may be more or less low. In practice, this pressure will preferably be between approximately 0.2 bar and 0.9 bar (absolute pressure). It will also be noted that the liquid flow rate Q te s t at this pressure P test will be measured before the compartment is completely emptied of its liquid.
  • the method according to the invention makes it possible to measure a flow rate Q test which corresponds to the air which passes through the membrane and accumulates in the upper part of the permeate compartment and to evaluate from this measurement the integrity of the membrane tested .
  • the method according to the invention preferably proposes to correct the measured flow rate Q test -
  • a first correction proposed by the invention makes it possible to pass from the flow rate Q test measured to the pressure P test prevailing in the permeate compartment, to the actual flow rate in the orifices Q or j f at medium pressure prevailing in the membrane (P atm + P t e st V2.
  • a second correction consists in passing from the test conditions to those corresponding to the fitration, which requires passing from air to liquid (viscosity correction) and from the transmembrane pressure of the test (P at m - P t es t ) at the transmembrane filtration pressure ( ⁇ P f ⁇ t ). To do this, we use the Hagen equation
  • Qfuite Qtest / fl h, where fi is a correction factor for viscosity of the filtered liquid compared to air, and f 2 is a pressure correction factor.
  • the value of the corrected leakage rate Q f a e is preferably calculated within the framework of the method according to the invention.
  • the integrity of the membrane tested is evaluated by calculating the logarithmic reduction of said membrane from said leakage flow rate Q f u, te and from the filtered flow rate Q f , ⁇ t on said membrane, by applying the equation :
  • This method of calculation is based on the assumption that all the particles (e.g. microorganisms) present in the leak flow pass through the membrane while all the particles present in the filtered flow are stopped by the membrane.
  • said step consisting of filling said upstream compartment with air so as to place this compartment at atmospheric pressure is carried out by emptying said compartment.
  • Such a preferred characteristic is particularly suitable for installations with submerged membranes, the emptying of which allows the filtrate side of the membranes to be rapidly exposed to air. This is the reason why the method according to the invention is advantageously implemented on this type of membranes, especially those made of hollow fibers.
  • the exposure to the air of the membrane in the permeate compartment will be obtained by aspiration of the free liquid present in this compartment by means allowing the creation of '' a partial vacuum in the permeate compartment.
  • the method is implemented in parallel on several membranes or sets of membranes and, when an integrity defect is noted at this stage, each of said membranes or each of said sets of membranes is tested ( e) subsequently successively in order to determine the said membrane (s) or the said set (s) of membranes having a lack of integrity.
  • the invention also relates to an installation for implementing the method described above, said installation comprising at least one filtration device including at least one set of filtration membranes defining at least one upstream compartment receiving a liquid to be filtered and at at least one permeate compartment collecting said filtered liquid, and being characterized in that it comprises means for placing said upstream compartment at atmospheric pressure, means for creating a partial vacuum in said permeate compartment, means for measuring the pressure in said permeate compartment and means making it possible to measure the flow of liquid corresponding to the air passing through said membrane.
  • the installation according to the invention comprises means for calculating the leakage rate and / or the logarithmic reduction of said membrane and / or the diameter of the leakage orifices. As indicated above, these parameters are useful for determining more precisely the state of the membrane.
  • said means for creating a partial vacuum in the permeate compartment comprise at least one pump provided with means making it possible to regulate its flow rate to keep the pressure constant, such as advantageously a positive displacement pump.
  • said membranes are immersed hollow fiber membranes.
  • the method according to the invention is particularly easy to implement with such membranes.
  • the capacity of said pump is defined as a fraction (preferably 10-3 to 10-6) of the filtration flow rate of the membrane or membranes tested.
  • said filtration device has means for emptying the upstream compartment.
  • emptying means make it possible to easily expose the wet membranes to the air.
  • this step can be carried out by sucking the free liquid into the upstream compartment using the upstream means making it possible to create a vacuum partial in the permeate compartment and by providing an admission of ambient air into the upstream compartment.
  • said filtration device comprises a plurality of membrane modules, said means for creating a partial vacuum and said calculation means being common to said modules, and selection means for implementing the aforementioned means either on all of said modules or only on one or more of them.
  • the method according to the invention can be carried out globally on a set of membranes or membrane modules and, in the event of a negative result at this stage, it is possible to isolate one or more of these modules or one or more of these membranes, to determine which elements are affected.
  • the selection means in question may for example consist of a network of manual valves or of solenoid valves.
  • FIG. 2 shows a water filtration installation with submerged membranes according to the invention represents
  • FIG. 1 shows the variation of the flow rate and pressure prevailing in the permeate compartment during the implementation of the method according to the invention
  • FIG. 4 shows another embodiment of an installation according to the invention.
  • the method according to the invention is explained with regard to a filtration installation including a membrane filtration device 1 showing, for reasons of clarity of the description, only one membrane 2 constituted by hollow fibers arranged vertically in said device, a single hollow fiber being represented, always for the clarity of the description.
  • This hollow fiber delimits within the filtration device 1, on the one hand an upstream compartment 3 located outside the fiber and receiving a liquid to be filtered, and on the other hand a permeate compartment 4 constituted by the lumen of the hollow fiber.
  • the membrane 2 is insulated by adhesive seals 10.1 1 provided respectively in its upper part and in its lower part.
  • the device 1 furthermore comprises, on the one hand, means for supplying the device 1 with liquid to be filtered directly connected to the upstream compartment 3, said supply means being essentially constituted by a valve 12 and a pump 14, and on the other hand, means for withdrawing the filtered liquid (permeate) directly connected to the permeate compartment 4, said means being essentially constituted by a valve 13.
  • the installation comprises, means 5 making it possible to place the upstream compartment at atmospheric pressure, means 9 for emptying this compartment, means 6 for creating a partial vacuum in the permeate compartment 4, means 7 (external pressure gauge) for measuring the pressure prevailing in this compartment by a pressure sensor placed at mid-height of the membrane assembly, means 16 (flow meter) for measuring the water flow corresponding to the ir passing through the membrane and means 8 for measuring the partial vacuum level and for calculating, from the values of the flow rates recorded, the leakage rate of the membrane and the logarithmic reduction thereof.
  • flow meter 16 can be replaced by a measurement of the speed of rotation of the pump.
  • the pressure prevailing in the permeate compartment can be read on the external pressure gauge 7. This being provided at mid-height of the membrane assembly, it in fact gives directly the pressure Pr is - H could of course also be considered to place this manometer in another position, and to obtain P test by a simple calculation.
  • the means 9 are constituted by a simple drain valve mounted in the lower part of the upstream compartment 3
  • the means 5 are constituted by a valve provided in its upper part.
  • the means for creating a partial vacuum in the upstream compartment advantageously include a positive displacement pump 6 making it possible to obtain a constant pressure by varying its speed of rotation. This pump is connected to the permeate compartment 4 by a pipe provided with a valve 15.
  • the filtration mode thereof is stopped.
  • the supply of liquid to be filtered is stopped by closing the valves 12 and 13 and by stopping the pump 14.
  • the upstream compartment 3 is drained and brought to atmospheric pressure by concomitantly opening the valves 5 and 9.
  • the valve 15 is open and the pump 6 is implemented so as to apply a partial vacuum in the permeate compartment 4 and an air passage through the leakage orifices which may exist in the membrane under the effect of the pressure differential existing between this permeate compartment 4 and the upstream compartment 3.
  • the pressure prevailing in this compartment gradually decreases until to reach a predetermined value P test .
  • the corresponding liquid flow rate also gradually decreases until it reaches a leakage rate Q test .
  • the pressures and the flow rates are measured continuously.
  • the substantially constant leakage rate Q test is measured, this data is transmitted to the calculation means 8 making it possible to calculate the corrected leakage rate as a function of the pressure and the viscosity, and the reduction of the membrane.
  • the calculation means include means for entering the parameters and constants necessary for these calculations.
  • FIG. 1 shows membranes in the form of a filtration module 2a consisting of a plurality of membranes directly immersed in the liquid to be filtered. In mode filtration, the permeate is evacuated both from the top and from the bottom of the modules.
  • the filtration module 2a consists of ZeeWeed submerged membranes (trademark registered by Zenon Environmental Inc.,
  • the means for measuring the water flow corresponding to the air passing through the membrane are replaced by a measurement of the speed of rotation of the pump
  • curve A shows the evolution over time of the pressure prevailing during the test in the permeate compartment and curve B shows the evolution over time of the corresponding flow rate.
  • Both curve A and curve B essentially show three phases I, II and III as shown in Figure 3.
  • Phase I corresponds to the discharge of free water at a pressure close to static pressure. This phase is short in the context of this embodiment since there is only little free water in the upstream compartment, this water having been almost completely evacuated by the draining means. On the other hand, in other embodiments, when this free water cannot be drained, the free water will be evacuated by using the pump provided to create a partial vacuum in the permeate compartment. Phase 1 will then be much longer.
  • phase II the negative pressure created by the pump 6 contracts the membrane, which has the effect of causing a rapid drop in the flow rate.
  • the pressure inside the permeate compartment stabilizes at the value chosen for the test and the flow measured Q test corresponds to leaks through the orifices which allow air to pass.
  • the pressure P test was set at 0.61 bar and the water flow rate measured at was 42 l / h. These data were entered into the calculation means 8 as indicated above.
  • the transmembrane pressure was calculated for the top of the membrane and for the bottom of the membrane, taking into account that the height of the latter is 1.80 m and that the average transmembrane pressure is at 0.4 bar. This calculation leads to a transmembrane pressure at the top of the membrane equal to 0.31 bar and to a transmembrane pressure at the bottom of the membrane equal to 0.49 bar corresponding respectively to leak orifices of 1.5 ⁇ m and 2 , 3 ⁇ m. Calculation of the corrected leak rate 0 ⁇
  • FIG. 4 another embodiment of the installation according to the invention is shown, said installation comprising three filtration modules identical to that of FIG. 1.
  • the installation also comprises a pump 6, means for measuring the water flow 7 and calculation means 8 common to the three modules.
  • Each module is equipped with a pressure sensor prevailing in its permeate compartment and connected to the calculation means 8.
  • selection means constituted by a network of valves 15, 17, 18, 19, make it possible to place the means 6, 7, 8 in communication with all the modules or only in communication with only one of them.
  • Such an arrangement makes it possible to implement the method according to the invention firstly for all of the modules and, if an integrity defect is noted at this stage, secondly for only one of these modules in order to determine which module (s) is (are) actually affected.

Abstract

L'invention concerne un procédé pour tester l'intégrité d'au moins une membrane de filtration d'un liquide consistant à remplir le compartiment amont d'air en le plaçant à la pression atmosphérique et appliquer un vide partiel dans ledit compartiment perméat de façon à créer un différentiel de pression entre ledit compartiment amont et ledit compartiment perméat; mesurer, à la sortie dudit compartiment perméat, le débit de liquide correspondant à l'air passant par les orifices de fuite sous l'effet dudit différentiel de pression ainsi que la pression régnant dans ledit compartiment perméat; après stabilisation de la pression mesurée à une pression Ptest prédéterminée, mesurer le débit de liquide Qtest constant correspondant; évaluer l'intégrité de la membrane en fonction du débit d'air Qtest mesuré. L'invention concerne également une installation pour la mise en oeuvre du procédé selon l'invention.

Description

Procédé et installation pour tester in situ l'intégrité des membranes de filtration.
L'invention concerne le domaine des procédés et des installations de filtration utilisés pour l'épuration de liquides, notamment des eaux, du type incluant au moins une membrane de filtration.
Le procédé et l'installation selon l'invention trouvent leur application préférentielle dans le domaine de l'épuration des eaux en vue de leur potabilisation. Toutefois, l'homme du métier pourra envisager d'en utiliser les principes pour d'autres types de traitements ou encore pour le traitement d'autres liquides que l'eau. Les traitements des eaux en vue de leur potabilisation ont, compte tenu des normes actuellement en vigueur, les objectifs principaux suivants :
- éliminer les matières en suspension,
- éliminer les matières organiques,
- éliminer les ions gênants, - stériliser.
Les chaînes de traitement classiques mettant en oeuvre de tels traitements font intervenir une succession d'étapes physico-chimiques du type coagulation-floculation- décantation-filtration généralement complétée par une étape d'oxydation.
Le rôle de l'étape de filtration auquel se rapporte plus précisément l'invention est de désinfecter les eaux traitées en retenant les micro-organismes (virus, bactéries et protozoaires) contenus dans celles-ci et notamment les micro-organismes pathogènes.
Une telle étape de filtration sur membranes est avantageusement effectuée grâce à des membranes organiques présentant des pores de diamètres plus ou moins élevés selon la taille des particules à retenir et pouvant par ailleurs présenter différentes configurations (fibres creuses, modules spirales, etc.).
L'ultrafiltration et la microfiltration sur membranes organiques sont ainsi considérées comme d'excellentes méthodes de traitement et de potabilisation des eaux.
L'un des problèmes principaux posé par les installations de filtration à membranes réside dans les fuites qui peuvent apparaître dans celles-ci et provoquer une diminution notable de leur efficacité. En pratique, il existe plusieurs sources potentielles de fuites dans de telles installations à membranes, au rang desquelles ont peut notamment citer : les imperfections des membranes, les joints mécaniques, les joints et tampons de colle et les bris de membranes. En ce qui concerne ce dernier point, ce problème est accru avec les membranes constituées de fibres creuses qui sont relativement fragiles.
Pour contrer ce problème il est donc essentiel, notamment dans le contexte de la potabilisation de l'eau, de disposer de procédés permettant de s'assurer de l'intégrité des systèmes membranaires et de vérifier que ceux-ci sont exempts de fuites. De tels procédés sont destinés à localiser rapidement les fuites de façon à pouvoir réparer ou remplacer les éléments défaillants responsables de la fuite localisée. De tels procédés doivent impérativement pouvoir être mis en oeuvre in situ c'est-à-dire directement sur l'installation de filtration sans avoir à démonter les membranes de filtration.
Il a été proposé dans l'état de la technique plusieurs procédés permettant d'atteindre cet objectif. Certains procédés proposent simplement de compter les particules dans le liquide filtré (perméat) afin de déterminer si l'opération de filtration est correctement effectuée par l'installation testée. En pratique, si le nombre de particules retrouvées dans le perméat est trop élevé, il peut être conclu qu'une fuite existe au niveau de l'installation. Quoiqu' efficaces, de tels procédés présentent plusieurs inconvénients. En premier lieu, ils nécessitent la mise en oeuvre d'un matériel relativement sophistiqué et coûteux nécessaire au comptage des particules. En second lieu et surtout, ils présentent l'inconvénient de ne pouvoir être facilement mise en oeuvre sur des eaux initialement peu chargées en particules à filtrer.
La demande de brevet japonais JP-A-H7024273 propose d'utiliser un gaz chargé en particules de taille constante et selon une concentration constante, de filtrer le gaz en question avec la membrane à tester et de détecter les particules du côté perméat. Une telle technique a l'inconvénient d'impliquer l'utilisation d'un fluide particulier, à savoir un gaz chargé en particules, dont la composition doit être constante, ce qui accroit la complexité du test d'intégrité et son coût. La demande de brevet japonais JP-A-H7060073 propose quant à elle une technique consistant à installer un microfiltre à la sortie de l'installation principale de filtration et à mesurer de temps en temps la pression au niveau de ce microfiltre. Toute augmentation de pression au niveau du microfiltre indique la présence d'une fuite. Une telle technique présente le principal inconvénient de nécessiter l'utilisation d'un dispositif supplémentaire de filtration relativement difficile à mettre en oeuvre et impliquant une augmentation sensible du coût global de l'installation.
Une autre méthode consiste à utiliser un hydrophone pour détecter les bruits résultant de la casse des fibres creuses. Toutefois, ce type de test ne permet pas de détecter les fuites sur les autres types de membranes que celles à fibres creuses où l'air est utilisé pour le rétrolavage.
Il a également été proposé dans l'état de la technique, notamment dans la demande de brevet américain US-A-5353630, d'évaluer l'intégrité de membranes de filtration en mettant en oeuvre le principe du point de bulle. Cette mesure consiste à mouiller la membrane à tester et à la soumettre à une pression d'air croissant graduellement jusqu'à ce que l'air chasse le liquide par les orifices de fuite de ladite membrane. En utilisant des pressions de test comprises entre 0,5 bar et 1 bar environ, on peut ainsi détecter la présence d'orifices présentant une taille de l'ordre du micron correspondant à des imperfections dans la couche filtrante, à des joints qui fuient, à des fibres creuses cassées etc.. De tels orifices de fuite présentent des tailles bien supérieures aux seuils de coupure des membranes testées qui sont de l'ordre de 0,1 μm pour les membranes de microfiltration, de l'ordre de 0,001 μm pour les membranes d'ultrafiltration et encore plus faibles en osmose inverse.
L'équation de Young et Laplace permet d'estimer la tailles de ces orifices laissant passer l'air et ainsi de déterminer si la membrane présente ou non des fuites. En effet, selon cette équation : d = 4 γ Kt cosθ / ΔP dans laquelle, d est le diamètre de l'orifice, γ est la tension superficielle à l'interface air-liquide, Kt est un facteur de correction tenant compte de la tortuosité des pores et dont la valeur est typiquement de 0,2 à 0,3 pour les membranes fabriquées par inversion de phase, ΔP est le point de bulle, γest la tension superficielle à l'interface air- liquide. On notera que lorsqu'une bulle d'air pénètre un orifice, le diamètre de cette bulle atteint celui de l'orifice, donc θ = 0 et cos θ = 1.
Le brevet US-A-5353630 consiste à mettre le compartiment perméat délimité par les membranes sous pression d'air et à mesurer la diminution de pression ou le débit d'eau déplacé dans le compartiment filtrat en fonction du temps.
Une telle technique présente de nombreux inconvénients. En premier lieu, elle nécessite une mise sous pression du compartiment perméat, ce qui induit la nécessité d'équiper l'installation de moyens permettant de fournir de l'air sous pression. Or, de tels moyens ne sont présents que sur seulement certains types d'installation de filtration, notamment celles mettant en oeuvre un rétrolavage des membranes à l'air.
En second lieu, cette méthode est mise en oeuvre selon le sens inverse au sens de filtration c'est-à-dire que l'air utilisé pour le test d'intégrité traverse la membrane du compartiment perméat vers le compartiment filtrat alors, qu'inversement, le liquide à filtrer traverse la membrane du compartiment filtrat vers le compartiment perméat. Une telle technique ne peut donc avantageusement être mise en oeuvre qu'avec les membranes présentant une structure isotrope (symétrique). En effet, dans le cadre d'installations de filtration à membranes asymétriques ou encore de membranes composites présentant une mince couche filtrante, l'utilisation d'air sous pression risquerait de dilater la membrane et de donner des résultats erronés, voir même d'abimer la membrane. L'objectif de la présente invention est de proposer un procédé d'évaluation de l'intégrité de membranes de filtration ne présentant pas les inconvénients de l'état de la technique.
Notamment, un objectif de l'invention est de présenter un tel procédé mettant en oeuvre le principe de la mesure du point de bulle mais n'impliquant pas l'utilisation d'air sous pression.
Un autre objectif de l'invention est de décrire un tel procédé pouvant être mis en oeuvre pour n'importe quel type de membranes, qu'elles soient d'ultrafiltration, de microfiltration, de nanofiltration ou d'osmose inverse, symétrique ou asymétrique, composite ou non, pour n'importe quelle configuration de membranes (fibres creuses, modules spirales, etc ...) Encore un objectif de l'invention est de proposer un tel procédé pouvant être facilement mis en oeuvre pour un ensemble de modules membranaires ou pour un module donné.
Ces différents objectifs, ainsi que d'autres qui apparaîtront par la suite sont atteints grâce à l'invention qui concerne un procédé pour tester l'intégrité d'au moins une membrane de filtration d'un liquide, ladite membrane délimitant au sein d'un dispositif de filtration un compartiment amont accueillant ledit liquide à filtrer et un compartiment perméat recueillant ledit liquide filtré, ledit procédé étant caractérisé en ce qu'il comprend les étapes consistant à : - remplir ledit compartiment amont d'air pour le mettre à la pression atmosphérique Patm et appliquer un vide partiel dans ledit compartiment perméat de façon à créer un différentiel de pression entre ledit compartiment amont et ledit compartiment perméat ;
- mesurer le débit de liquide correspondant à l'air passant par les orifices de fuite sous l'effet dudit différentiel de pression ainsi que la pression régnant dans ledit compartiment perméat ;
- après stabilisation de la pression à une pression Ptest prédéterminée, et avant que le compartiment perméat ne soit vidé de son liquide, mesurer le débit de liquide Qtest constant correspondant ;
- évaluer l'intégrité de la membrane en fonction du débit Qtëst mesuré. Le principe de l'invention consiste donc à suivre l'évolution de la pression régnant dans le compartiment perméat et à déterminer pour une pression stabilisée Ptest quel est le débit de liquide Qtest correspondant à l'air tranversant la membrane, ce débit étant représentatif de l'intégrité de la membrane.
Contrairement à la technique mise en oeuvre dans le brevet US-A-5353630, le procédé selon l'invention ne met pas en oeuvre d'air sous pression mais inversement un vide partiel. Ainsi, il peut être utilisé pour les installations de filtration membranaire n'incluant pas de moyens d'amenée d'air sous pression.
De plus, le procédé selon l'invention met en oeuvre le principe de la mesure du point de bulle en provoquant le passage d'air à travers la membrane encore mouillée dans le sens utilisé au cours de la filtration. Ceci présente l'avantage de ne pas fragiliser la membrane testée et, particulièrement dans le cas de membranes asymétriques ou composites, de ne pas induire une dilatation préjudiciable de la membrane.
La pression Ptest choisie pour le test sera déterminée par l'homme de l'art en fonction de la membrane testée et pourra être plus ou moins faible. En pratique, cette pression sera préférentiellement comprise entre environ 0,2 bar et 0,9 bar (pression absolue). On notera par ailleurs que le débit de liquide Qtest à cette pression Ptest sera mesuré avant que le compartiment ne soit complètement vidé de son liquide.
Le procédé selon l'invention permet de mesurer un débit Qtest qui correspond à l'air qui traverse la membrane et s'accumule dans la partie supérieure du compartiment perméat et d'évaluer à partir de cette mesure l'intégrité de la membrane testée.
Toutefois, afin de permettre une évaluation plus précise de cette intégrité, le procédé selon l'invention propose préférentiellement de corriger le débit mesuré Qtest-
Une première correction proposée par l'invention permet de passer du débit Qtest mesuré à la pression Ptest régnant dans le compartiment perméat, au débit réel dans les orifices Qorjf à pression moyenne régnant dans la membrane (Patm + PtestV2.
En utilisant la loi des gaz parfaits, on estime ce débit d'air dans les orifices à:
Qorif = Qtest (Ptest / (Patiri + Ptes^ 2))
Une deuxième correction consiste à passer des conditions du test à celles correspondant à la fitration, ce qui nécessite de passer de l'air au liquide (correction de viscosité) et de la pression transmembranaire du test (Patm - Ptest) à la pression transmembranaire de filtration (ΔPfϋt). On utilise pour ce faire l'équation de Hagen-
Poisseuille qui décrit l'écoulement laminaire dans un cylindre:
Q μ / ΔP = πd4/1281 dans laquelle Q est le débit dans le cylindre, d, le diamètre de l'orifice cylindrique,ΔP la perte de charge, μ la viscosité et 1 la longueur du cylindre.
Cette équation appliquée au test selon l'invention donne :
Qorif μair / (Patin ~ Ptest) = πd4 / 128 1
Cette même équation appliquée à la filtration donne :
Qfuite liquide / ΔP filt = πd4 / 128 1 De ces deux équations, on tire : Qfuite =Qoπf 1W ΔP filt I M-hquide (Patm ~ Ptest)
En remplaçant Q oπf par sa valeur ci-dessus lors de la première correction on obtient une expression pour Qft„te exprimée en fonction de variables connues :
Qfuite
Figure imgf000009_0001
(Patm2 ~ Ptest2)) En définissant f \ = μιιqUιde / μair et f2 =(Patm2 - Ptest2) / 2 ΔP nu Ptest, on peut expπmer QfU)te. P^ l'équation suivante :
Qfuite = Qtest / fl h, dans laquelle f i est un facteur de correction de viscosité du liquide filtré par rapport à l'air, et f2 est un facteur de correction de pression. La valeur du débit de fuite corrigé Qfune est préférentiellement calculée dans le cadre du procédé selon l'invention.
On notera que le mode de correction du débit Qtest précisé ci-dessus n'est nullement limitatif et que l'homme de l'art pourra envisager de corriger Qtest selon un autre procédé sans sortir du cadre de l'invention.
Egalement préférentiellement, l'intégrité de la membrane testée est évaluée en calculant l'abattement logarithmique de ladite membrane à partir dudit débit de fuite Qfu,te et du débit filtré Qft sur ladite membrane, en appliquant l'équation :
AL = lθgιo (Qfu.te / Qfilt)
Ce mode de calcul part de l'hypothèse selon laquelle toutes les particules (e.g. micro-organismes) présentes dans le débit de fuite traversent la membrane alors que toutes les particules présentes dans le débit filtré sont arrêtées par la membrane.
Préférentiellement, le procédé selon l'invention comprend également une étape consistant à calculer le diamètre des orifices de fuite de la membrane en fonction de la pression transmembranaire en appliquant l'équation d= 4 γ Kt / ΔP avec γ ΔP et Kj tels que définis ci-dessus. Par ailleurs, selon une variante intéressante de l'invention, ladite étape consistant à remplir d'air ledit compartiment amont de façon à placer ce compartiment à la pression atmosphérique est effectuée en vidangeant ledit compartiment. Une telle caractéristique préférentielle est particulièrement adaptée aux installations à membranes immergées dont la vidange permet d'exposer rapidement à l'air le côté filtrat des membranes. C'est la raison pour laquelle le procédé selon l'invention est avantageusement mis en oeuvre sur ce type de membranes, notamment celles constituées de fibres creuses.
Lorsque le procédé sera mis en oeuvre sur une installation ne comportant pas de moyens de vidange, l'exposition à l'air de la membrane dans le compartiment perméat sera obtenue par aspiration du liquide libre présent dans ce compartiment grâce aux moyens permettant la création d'un vide partiel dans le compartiment perméat.
Selon une variante intéressante de l'invention, le procédé est mis en oeuvre parallèlement sur plusieurs membranes ou jeux de membranes et, lorsqu'un défaut d'intégrité est constaté à ce stade, chacune desdites membranes ou chacun desdits jeux de membranes est testé(e) ultérieurement successivement afin de déterminer le ou lesdites membrane(s) ou le ou lesdits jeu(x) de membranes présentant un défaut d'intégrité.
L'invention concerne également une installation pour la mise en oeuvre du procédé décrit ci-dessus, ladite installation comprenant au moins un dispositif de filtration incluant au moins un jeu de membranes de filtration délimitant au moins un compartiment amont accueillant un liquide à filtrer et au moins un compartiment perméat recueillant ledit liquide filtré, et étant caractérisée en ce qu'elle comprend des moyens pour placer ledit compartiment amont à la pression atmosphérique, des moyens pour créer un vide partiel dans ledit compartiment perméat, des moyens permettant de mesurer la pression dans ledit compartiment perméat et des moyens permettant de mesurer le débit de liquide correspondant à l'air traversant ladite membrane. Préférentiellement, l'installation selon l'invention comprend des moyens pour calculer le débit de fuite et/ou l'abattement logarithmique de ladite membrane et/ou le diamètre des orifices de fuites. Comme indiqué ci-dessus, ces paramètres sont intéressants pour déterminer plus précisément l'état de la membrane.
Egalement préférentiellement, lesdits moyens pour créer un vide partiel dans le compartiment perméat comprennent au moins une pompe munie de moyens permettant de réguler son débit pour maintenir la pression constante, telle qu'avantageusement une pompe à déplacement positif.
Avantageusement, lesdites membranes sont des membranes immergées à fibres creuses. En effet, comme déjà indiqué, le procédé selon l'invention est particulièrement facile à mettre en oeuvre avec de telles membranes. Préférentiellement, la capacité de ladite pompe est définie comme une fraction (préférentiellement 10-3 à 10-6) du débit de filtration de la membrane ou des membranes testée(s)
Avantageusement, ledit dispositif de filtration présente des moyens de vidange du compartiment amont. Comme déjà précisé, dans le cadre d'installations à membranes immergées, de telles moyens de vidange permettent d'exposer facilement les membranes mouillées à l'air. Lorsque l'étape consistant à placer le compartiment amont à la pression atmosphérique ne pourra pas être obtenu en vidangeant ce compartiment, cette étape pourra être effectuer en aspirant le liquide libre dans le compartiment amont en mettant en oeuvre les moyens amont permettant de créer un vide partiel dans le compartiment perméat et en prévoyant une admission d'air ambiant dans le compartiment amont.
Selon une variante intéressante de l'invention, ledit dispositif de filtration comprend une pluralité de modules de membranes, lesdits moyens pour créer un vide partiel et lesdits moyens de calcul étant communs auxdits modules, et des moyens de sélection pour mettre en oeuvre les moyens précités soit sur l'ensemble desdits modules soit seulement sur un ou plusieurs d'entre eux. De cette manière, le procédé selon l'invention peut être mené globalement sur un ensemble de membranes ou de modules membranaires et, en cas de résultat négatif à ce stade, il est possible d'isoler un ou plusieurs de ces modules ou une ou plusieurs de ces membranes, afin de déterminer quels éléments sont touchés. Les moyens de sélection en question pourront par exemple être constituées d'un réseau de vannes manuelles ou d'électrovannes.
L'invention, ainsi que les différents avantages qu'elle présente seront plus facilement compris grâce à la description qui va suivre d'un mode non limitatif de réalisation de celle-ci en référence aux dessins, dans lesquels : - la figure 1 est un schéma montrant le principe du procédé selon l'invention ;
- la figure 2 représente une installation de filtration d'eau à membranes immergées selon la représente invention ;
- la figure 3 représente la variation du débit et de la pression régnant dans le compartiment perméat au cours de la mise en oeuvre du procédé selon l'invention ; - la figure 4 représente un autre mode de réalisation d'une installation selon l'invention. En référence à la figure 1, le procédé selon l'invention est exposé en regard d'une installation de filtration incluant un dispositif membranaire de filtration 1 ne montrant, pour des raisons de clarté de la description, qu'une seule membrane 2 constituées par des fibres creuses disposées verticalement dans ledit dispositif, une seule fibre creuse étant représentée, toujours pour la clarté de la description. Cette fibre creuse délimite au sein du dispositif de filtration 1 , d'une part un compartiment amont 3 situé à l'extérieur de la fibre et accueillant un liquide à filtrer, et d'autre part un compartiment perméat 4 constitué par la lumière de la fibre creuse. La membrane 2 est isolée par des joints de colle 10,1 1 prévus respectivement dans sa partie supérieure et dans sa partie inférieure. Le dispositif 1 comprend par ailleurs, d'une part des moyens d'alimentation du dispositif 1 en liquide à filtrer directement reliés au compartiment amont 3, lesdits moyens d'alimentation étant essentiellement constitués par une vanne 12 et une pompe 14, et d'autre part des moyens pour soutirer le liquide filtré (perméat) directement reliés au compartiment perméat 4, lesdits moyens étant constitués essentiellement par une vanne 13. Conformément à la présente invention, l'installation comprend, des moyens 5 permettant de placer le compartiment amont à la pression atmosphérique, des moyens 9 permettant de vidanger ce compartiment, des moyens 6 permettant de créer un vide partiel dans le compartiment perméat 4, des moyens 7 (manomètre extérieur) permettant de mesurer la pression régnant dans ce compartiment par un capteur de pression placé à mi- hauteur de l'ensemble de membranes, des moyens 16 (débit-mètre) permettant de mesurer le débit d'eau correspondant à l'air traversant la membrane et des moyens 8 pour mesurer le neveau de vide partiel et pour calculer à partir des valeurs de débit relevées, le débit de fuite de la membrane et l'abattement logarithmique de celle-ci.
On notera que le débit-mètre 16 pourra être remplacé par une mesure de la vitesse de la rotation de la pompe.
La pression régnant dans le compartiment perméat peut être lue sur le manomètre extérieur 7. Celui-ci étant prévu à mi-hauteur de l'ensemble membranaire, il donne en effet directement la pression Prest- H pourra bien sûr aussi être envisagé de placer ce manomètre en une autre position, et d'obtenir Ptest par un simple calcul. Dans le cadre du présent mode de réalisation, les moyens 9 sont constitués par une simple vanne de vidange montée dans la partie inférieure du compartiment amont 3 les moyens 5 sont constituées par une vanne prévue dans sa partie supérieure. Les moyens pour créer un vide partiel dans le compartiment amont incluent avantageusement une pompe à déplacement positif 6 permettant d'obtenir une pression constante par variation de sa vitesse de rotation. Cette pompe est reliée au compartiment perméat 4 par une canalisation munie d'une vanne 15.
Lors de la mise en oeuvre du procédé selon l'invention, le mode filtration de celle- ci est arrêté. A cet effet, l'alimentation en liquide à filtrer est stoppée en fermant les vannes 12 et 13 et en arrêtant la pompe 14. Ensuite, le compartiment amont 3 est vidangé et mis à la pression atmosphérique en ouvrant concomitamment les vannes 5 et 9. Une fois, ce compartiment vidé du liquide à filtrer et placé à la pression atmosphérique, la vanne 15 est ouverte et la pompe 6 est mise en oeuvre de façon à appliquer un vide partiel dans le compartiment perméat 4 et un passage d'air à travers les orifices de fuite pouvant exister dans la membrane sous l'effet du différentiel de pression existant entre ce compartiment perméat 4 et le compartiment amont 3. Comme il sera explicité ci-après plus en détail, la pression régnant dans ce compartiment diminue progressivement jusqu'à atteindre une valeur prédéterminée Ptest. Parallèlement, le débit de liquide correspondant diminue également progressivement jusqu'à atteindre un débit de fuite Qtest. Les pressions et les débits sont mesurés en continu. Lorsqu'à la pression Ptest, le débit de fuite Qtest sensiblement constant est mesuré, cette donnée est transmis aux moyens de calcul 8 permettant de calculer le débit de fuite corrigé en fonction de la pression et de la viscosité, et l'abattement de la membrane. A cet effet, les moyens de calcul incluent des moyens permettant d'entrer les paramètres et constantes nécessaires à ces calculs. En référence à la figure 2, une autre installation de filtration d'eau à membranes immergées est représentée. Dans ce type d'installation l'alimentation n'est pas effectuée sous pression mais le perméat est soutiré grâce à une pompe 14 a. (Les éléments structurels communs aux figures 1 et 2 sont référencés à l'aide des mêmes références). Cette figure montre des membranes sous la forme d'un module de filtration 2a constituée d'une pluralité de membranes directement immergées dans le liquide à filtrer. En mode filtration, le perméat est évacué à la fois par le haut et par le bas des modules. Dans le cadre du présent mode de réalisation, le module de filtration 2a est constitué de membranes immergées ZeeWeed (marque déposée par Zenon Environmental Inc.,
Burlington, Canada) présentant une surface de filtration de 13, 9 m2 et une hauteur de 1,80 m- Enfin, on notera que, par rapport à l'installation décrite en référence à la figure
1, les moyens de mesure du débit d'eau correspondant à l'air traversant la membrane sont remplacés par une mesure de la vitesse de la rotation de la pompe
L'intégrité des membranes de l'installation montrée à la figure 2 a été testée selon l'invention. Au cours de ce test, les paramètres suivants ont été entrés par un opérateur dans les moyens de calcul 8 :
Hauteur des membranes 1 ,80 m
Pression atmosphérique Patrn 1 ,01 bar
Pression absolue Ptest atteinte pendant le test ramenée au centre de l'ensemble de membranes 0,61 bar
Débit de fuite Qtest mesuré pendant le test 42 1 / h
Tension superficielle à l'interface eau-air γ 0,0723 N/m
Facteur de correction Kt de la membrane 0,25
Viscosité de l'air μair 0,0182 cP Viscosité de 1 ' eau μeaU 1 ,0019cP
Débit en filtration 7001/h
La presssion transmembranaire moyenne en filtration (ΔP) 0,4 bar
En référence à la figure 3, la courbe A montre l'évolution dans le temps de la pression régnant au cours du test dans le compartiment perméat et la courbe B montre l'évolution dans le temps du débit correspondant.
Tant la courbe A que la courbe B montrent essentiellement trois phases I, II et III telles qu'indiquées sur la figure 3.
La phase I, au début du test correspond à l'évacuation de l'eau libre à une pression proche de la pression statique. Cette phase est courte dans le cadre du présent mode de réalisation puisqu'il ne reste que peu d'eau libre dans le compartiment amont, cette eau ayant été presque totalement évacuée par les moyens de vidange. Par contre, dans d'autres modes de réalisation, lorsque cette eau libre ne pourra pas être vidangée, l'eau libre sera évacuée en mettant en oeuvre la pompe prévue pour créer un vide partiel dans le compartiment perméat. La phase 1 sera alors beaucoup plus longue.
Durant la phase II, la pression négative créée par la pompe 6 contracte la membrane, ce qui a pour effet d'entraîner une chute rapide du débit.
Enfin, au cours de la phase III, la pression régnant à l'intérieur du compartiment perméat se stabilise à la valeur choisie pour le test et le débit mesuré Qtest correspond aux fuites par les orifices qui laissent passer l'air. Dans le cadre du présent mode de réalisation, la pression Ptest a été fixée 0,61 bar et le débit d'eau mesuré à a été de 42 1 / h. Ces données ont été rentrées dans les moyens de calcul 8 comme indiqué ci-dessus.
Grâce aux paramètres entrées dans les moyens de calcul 8, ceux-ci ont établi le diamètre des orifices laissant passer l'air, le débit de fuite corrigé et l'abattement logarithmique de la membrane.
Calcul des diamètres des orifices de fuite Ces diamètres ont été évalués grâce à l'équation : d = 4 γ Kt / ΔP dans laquelle γ est la tension superficielle à l'interface air-liquide, ΔP est la pression transmembranaire, et Kt est un facteur de correction représentatif de la tortuosité des pores de ladite membranes.
La pression transmembranaire a été calculée pour le haut de la membrane et pour le bas de la membrane en tenant compte du fait que la hauteur de celle-ci est de 1,80m et que la pression transmembranaire moyenne est de à 0,4 bar. Ce calcul aboutit à une pression transmembranaire dans le haut de la membrane égale à 0,31 bar et à une pression transmembranaire dans le bas de la membrane égale à 0,49 bar correspondant respectivement à des orifices de fuite de 1,5 μm et 2,3 μm. Calcul du débit de fuite corrigé 0^^
Ce débit corrigé a été établi à partir du débit mesuré Qtest qui a été relevé à 42 1 / h Les facteurs de correction f i et f 2 ont été établis grâce aux équations indiquées ci- dessus et les résultats suivants ont été obtenus : facteur de correction de la viscosité fi : fl = μeau / μair = 1,0019 / 0,0182 = 55 facteur de correcion de la pression f2 : h = (Patm2 - Ptest2 ) / 2 ΔP flι, P,est = (1,01 2 - 0,61 2) / 2 x 0,40 x 0,61= 1,33
L'équation Qfuitc = Qtest / f i f 2 a ensuit été utilisée par les moyens de calcul et la valeur Qfuite = 0,575 1 / h a été obtenue.
Calcul de l'abattement logarithmique AL de la membrane
L'équation AL = log jo (Qfuite I Qfilt) a été utilisée par les moyens de calcul et la valeur AL = 3,1 a été obtenue.
En référence à la figure 4, un autre mode de réalisation de l'installation selon l'invention est représenté, ladite installation comprenant trois modules de filtration identiques à celui de la figure 1. L'installation comprend par ailleurs une pompe 6, des moyens de mesure du débit d'eau 7 et des moyens de calcul 8 communs aux trois modules. Chaque module est équipé d'un capteur de la pression régnant dans son compartiment perméat et relié aux moyens de calculs 8.
Enfin, des moyens de sélection constitués par un réseau de vannesl5,17,18,19, permettent de placer les moyens 6,7, 8 en communication avec tous les modules ou seulement en communication avec un seul d'entre eux. Une telle disposition permet de mettre en oeuvre le procédé selon l'invention en premier lieu pour l'ensemble des modules et, si un défaut d'intégrité est relevé à ce stade, en second lieu pour seulement un seul de ces modules afin de déterminer quel(s) module(s) est (sont) effectivement touché(s).
Les modes de réalisation de l'invention présentés ici n'ont pas pour objet de réduire la portée de celle-ci. Il pourra donc y être apporté de nombreuses modifications sans sortir de son cadre tel que défini par les revendications. Ces modifications pourront notamment porter sur le type de membranes, sur leur configuration et bien sûr sur les pressions utilisées.

Claims

REVENDICATIONS
1 . Procédé pour tester l'intégrité d'au moins une membrane de filtration d'un liquide, ladite membrane délimitant au sein d'un dispositif de filtration un compartiment amont accueillant ledit liquide à filtrer et un compartiment perméat recueillant ledit liquide filtré, ledit procédé étant caractérisé en ce qu'il comprend les étapes consistant à :
- remplir ledit compartiment amont d'air pour le mettre à la pression atmosphérique Patm et appliquer un vide partiel dans ledit compartiment perméat de façon à créer un différentiel de pression entre ledit compartiment amont et ledit compartiment perméat ; - mesurer le débit de liquide correspondant à l'air passant par les orifices de fuite sous l'effet dudit différentiel de pression ainsi que la pression régnant dans ledit compartiment perméat ;
- après stabilisation de la pression mesurée à une pression Ptest prédéterminée, et avant que le compartiment perméat ne soit vidé de son eau, mesurer le débit de liquide Qlest constant correspondant ;
- évaluer l'intégrité de la membrane en fonction du débit Qtest mesuré.
2. Procédé selon la revendication 1 caractérisé en ce que la pression Ptest utilisée est comprise entre environ 0,2 bar et 0,9 bar (pression absolue).
3. Procédé selon la revendication 1 ou 2 caractérisé en ce qu'il comprend une étape supplémentaire consistant à corriger le débit mesuré Qtest en appliquant l'équation
Qfuite = Qtest / f l ^2, dans laquelle f i est un facteur de correction de viscosité du liquide filtré par rapport à l'air, et f2 est un facteur de correction de pression.
4. Procédé selon la revendication 3 caractérisé en ce que ladite étape consistant à évaluer l'intégrité de la membrane est effectuée en calculant l'abattement logarithmique AL de ladite membrane à partir du débit de fuite Qfuite et du débit filtré Qfi1t sur ladite membrane, en appliquant l'équation AL = logio (Qfuite / Qfîit)-
5 . Procédé selon l'une des revendications 1 à 4 caractérisé en ce qu'il comprend une étape consistant à calculer le diamètre des orifices de fuite en fonction de la pression transmembranaire en appliquant l'équation d= 4γ Kt / ΔP dans laquelle ΔP est la pression transmembranaire, et Kt est un facteur de correction représentatif de la tortuosité des pores de ladite membranes.
6 . Procédé selon l'une des revendications 1 à 5 caractérisé en ce que ladite membrane est une membrane immergée constituée de fibres creuses.
7 . Procédé selon la revendication 6 caractérisé en ce que ladite étape consistant à remplir d' air ledit compartiment amont est effectuée en vidangeant ledit compartiment.
8 . Procédé selon l'une des revendication 1 à 5 caractérisé en ce que ladite étape consistant à remplir d'air ledit compartiment amont est effectuée en aspirant le liquide libre présent dans le compartiment amont en mettant en oeuvre les moyens amont permettant de créer un vide partiel dans le compartiment perméat et en prévoyant une admission d'air ambiant dans le compartiment amont.
9 . Procédé selon l'une des revendications 1 à 8 caractérisé en ce qu'il est mis en oeuvre parallèlement sur plusieurs membranes ou jeux de membranes et, lorsqu'un défaut d'intégrité est constaté à ce stade, en ce qu'il consiste à tester ultérieurement successivement chacune desdites membranes ou chacun desdits jeux de membranes afin de déterminer le ou lesdites membrane(s) ou le ou lesdits jeu(x) de membranes présentant un défaut d'intégrité.
10. Installation pour la mise en oeuvre du procédé selon l'une des revendications 1 à
9. ladite installation comprenant au moins un dispositif de filtration (1) incluant au moins une membrane de filtration (2) délimitant au moins un compartiment amont (3) accueillant un liquide à filtrer et au moins un compartiment perméat (4) recueillant ledit liquide filtré, ladite installation étant caractérisée en ce qu'elle comprend des moyens (5) pour placer ledit compartiment amont (3) à la pression atmosphérique, des moyens pour créer un vide partiel (6) dans ledit compartiment perméat (4), des moyens (7) pour mesurer la pression régnant dans ledit compartiment perméat, et des moyens (16) permettant de mesurer le débit correspondant à l'air traversant ladite membrane (2).
11. Installation selon la revendication 10 caractérisée en ce qu'elle comprend des moyens (8) pour calculer le débit de fuite et/ou l'abattement logarithmique et/ou le diamètre des orifices de fuites de ladite membrane.
12. Installation selon l'une des revendications 10 ou 11 caractérisée en ce lesdits moyens (6) pour créer un vide partiel dans le compartiment perméat comprennent au moins une pompe munie de moyens permettant de réguler son débit pour maintenir la pression constante.
13. Installation selon la revendication 12 caractérisée en ce que la capacité de ladite pompe est définie comme une fraction du débit de filtration de la membrane ou des membranes testée(s).
14. Installation selon l'une des revendications 10 à 13 caractérisé en ce que lesdites membranes sont des membranes immergées à fibres creuses.
15. Installation selon la revendication 14 caractérisée en ce que ledit dispositif de filtration (1) présente des moyens de vidange (9) du compartiment amont.
16. Installation selon l'une des revendications 10 à 15 caractérisée en ce que ledit dispositif de filtration (1) comprend une pluralité de modules de membranes, lesdits moyens (6) pour créer un vide partiel, lesdits moyens de mesure (7) et lesdits moyens de calcul (8) étant communs auxdits modules, et des moyens de sélection pour mettre en oeuvre lesdits moyens (6,7,8) soit sur l'ensemble desdits modules soit seulement sur un ou plusieurs d'entre eux.
PCT/FR1997/000930 1996-05-28 1997-05-28 Procede et installation pour tester in situ l'integrite des membranes de filtration WO1997045193A1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
AU30969/97A AU718839B2 (en) 1996-05-28 1997-05-28 Process and installation for in situ testing of the integrity of filtration membranes
DE69703740T DE69703740T2 (de) 1996-05-28 1997-05-28 Verfahren und einrichtung zur in situ funktionsprüfung von filtrationsmembranen
PL97330192A PL183910B1 (pl) 1996-05-28 1997-05-28 Sposób testowania integralności membran filtracyjnych oraz instalacja do testowania integralności membran filtracyjnych
BR9709279A BR9709279A (pt) 1996-05-28 1997-05-28 Processo e instalação para testar in situ a integridade de membranas de filtração
JP09541744A JP2000510766A (ja) 1996-05-28 1997-05-28 濾過膜の完全性を原位置でテストするための方法と設備
HU9902297A HU221782B1 (hu) 1996-05-28 1997-05-28 Eljárás és berendezés folyadékszűrésre való, legalább egy membrán sértetlenségének vizsgálatára
CA002257151A CA2257151C (fr) 1996-05-28 1997-05-28 Procede et installation pour tester in situ l'integrite des membranes de filtration
EP97926047A EP0909210B1 (fr) 1996-05-28 1997-05-28 Procede et installation pour tester in situ l'integrite des membranes de filtration
AT97926047T ATE198165T1 (de) 1996-05-28 1997-05-28 Verfahren und einrichtung zur in situ funktionsprüfung von filtrationsmembranen
US09/194,489 US6228271B1 (en) 1996-05-28 1997-05-28 Method and installation for in situ testing of membrane integrity
DK97926047T DK0909210T3 (da) 1996-05-28 1997-05-28 Fremgangsmåde og installation til afprøvning in situ af filtreringsmembraners integritet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR96/06780 1996-05-28
FR9606780A FR2749190B1 (fr) 1996-05-28 1996-05-28 Procede et installation pour tester in situ l'integrite des membranes de filtration

Publications (1)

Publication Number Publication Date
WO1997045193A1 true WO1997045193A1 (fr) 1997-12-04

Family

ID=9492631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/000930 WO1997045193A1 (fr) 1996-05-28 1997-05-28 Procede et installation pour tester in situ l'integrite des membranes de filtration

Country Status (14)

Country Link
US (1) US6228271B1 (fr)
EP (1) EP0909210B1 (fr)
JP (1) JP2000510766A (fr)
AT (1) ATE198165T1 (fr)
AU (1) AU718839B2 (fr)
BR (1) BR9709279A (fr)
CA (1) CA2257151C (fr)
DE (1) DE69703740T2 (fr)
DK (1) DK0909210T3 (fr)
ES (1) ES2154045T3 (fr)
FR (1) FR2749190B1 (fr)
HU (1) HU221782B1 (fr)
PL (1) PL183910B1 (fr)
WO (1) WO1997045193A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036074A1 (fr) * 1999-11-18 2001-05-25 Zenon Environmental Inc. Modules et elements de membrane immergés
WO2001045829A1 (fr) * 1999-12-21 2001-06-28 Zenon Environmental Inc. Procede et appareil pour controler le bon fonctionnement de membranes filtrantes
KR100736430B1 (ko) * 1999-11-18 2007-07-09 제논 인바이런멘탈 인코포레이티드 잠겨진 막 요소와 모듈
USRE42669E1 (en) 1995-08-11 2011-09-06 Zenon Technology Partnership Vertical cylindrical skein of hollow fiber membranes and method of maintaining clean fiber surfaces
US8075776B2 (en) * 1995-08-11 2011-12-13 Zenon Technology Partnership Apparatus for withdrawing permeate using an immersed vertical skein of hollow fibre membranes
US8852438B2 (en) 1995-08-11 2014-10-07 Zenon Technology Partnership Membrane filtration module with adjustable header spacing
US10702832B2 (en) 2015-11-20 2020-07-07 Emd Millipore Corporation Enhanced stability filter integrity test
US11571501B2 (en) 2018-04-25 2023-02-07 Gambro Lundia Ab Apparatus and method for testing integrity of an ultrafilter membrane

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60004021T2 (de) 1999-02-26 2004-04-22 United States Filter Corp., Palm Desert Verfahren und vorrichtung zur prüfung von membranfiltern
US6572576B2 (en) 2001-07-07 2003-06-03 Nxstage Medical, Inc. Method and apparatus for leak detection in a fluid line
US20030128125A1 (en) 2002-01-04 2003-07-10 Burbank Jeffrey H. Method and apparatus for machine error detection by combining multiple sensor inputs
US7040142B2 (en) * 2002-01-04 2006-05-09 Nxstage Medical, Inc. Method and apparatus for leak detection in blood circuits combining external fluid detection and air infiltration detection
US9717840B2 (en) 2002-01-04 2017-08-01 Nxstage Medical, Inc. Method and apparatus for machine error detection by combining multiple sensor inputs
NL1020491C2 (nl) * 2002-04-26 2003-10-28 Norit Membraan Tech Bv Membraan integriteitstest.
JP2005013992A (ja) * 2003-06-02 2005-01-20 Daicen Membrane Systems Ltd 中空糸膜モジュールの安全性試験方法
DE602005013233D1 (de) * 2004-07-06 2009-04-23 Leuven K U Res & Dev Screening mit hohem durchsatz für schnelle membranentwicklung und membranverfahren
CN100493687C (zh) * 2004-08-31 2009-06-03 陶氏环球技术公司 检测分离模块的方法
PL1898973T5 (pl) * 2005-07-01 2020-02-28 Gambro Lundia Ab Aparat do testowania filtra
US20100180667A1 (en) * 2007-05-24 2010-07-22 Gregory Bender Methods and apparatuses for detecting odors
EP2490794A1 (fr) * 2009-10-19 2012-08-29 Dow Global Technologies LLC Procédés pour tester l'intégrité de modules enroulés en spirale
US8557118B2 (en) * 2010-02-02 2013-10-15 General Electric Company Gasification grey water treatment systems
EP2418012A1 (fr) 2010-08-11 2012-02-15 Gambro Lundia AB Dispositif et procédé pour tester des filtres
CN106000108B (zh) * 2010-12-30 2019-12-24 Bl技术股份有限公司 分离器组件的制造方法和设备
DE102011006545A1 (de) * 2011-03-31 2012-10-04 Krones Ag Verfahren zum Überprüfen eines Membranfiltrationsmoduls einer Filtrationsanlage
US20140216138A1 (en) * 2011-08-31 2014-08-07 Mitsubishi Rayon Co., Ltd. Inspection method of hollow fiber membrane module
JP2014128780A (ja) * 2012-12-27 2014-07-10 Nihon Medi Physics Co Ltd フィルター完全性試験機構を備えた薬液分注機
US9561323B2 (en) * 2013-03-14 2017-02-07 Fresenius Medical Care Holdings, Inc. Medical fluid cassette leak detection methods and devices
US9376595B2 (en) 2013-06-21 2016-06-28 General Electric Company Method and apparatus for fabricating separator assembly
TWI503160B (zh) * 2013-06-21 2015-10-11 Inst Nuclear Energy Res An automated testing device for the risk and integrity of a drug filter and its method
US10633263B2 (en) 2015-04-17 2020-04-28 Bl Technologies, Inc. Conversion of media filter into membrane gravity filter
KR102527277B1 (ko) * 2015-04-17 2023-04-27 비엘 테크놀러지스 인크. 막 중력 여과장치로의 매체 여과장치의 변환
US9868659B2 (en) 2015-04-17 2018-01-16 General Electric Company Subsurface water purification method
CA3011514C (fr) 2016-01-22 2020-11-24 Baxter International Inc. Procede et machine de production de sacs a produit pour solution sterile
GB2562959A (en) 2016-01-22 2018-11-28 Baxter Int Sterile solutions product bag
CN105738039B (zh) * 2016-04-28 2018-01-09 安徽工业大学 一种柱塞‑铜套副环形缝隙流动的测量装置和测量方法
AU2017341695B2 (en) 2016-10-14 2023-04-13 Bl Technologies, Inc. Conversion of media filter into membrane gravity filter
JP6873248B2 (ja) * 2017-02-22 2021-05-19 イー・エム・デイー・ミリポア・コーポレイシヨン 透過側へアクセスしない多孔質材料混合ガス完全性試験
EP3444022A1 (fr) 2017-08-16 2019-02-20 Gambro Lundia AB Procédé de test des filtres
CN114858650B (zh) * 2022-05-17 2023-10-17 合肥檀泰环保科技有限公司 过滤器中的过滤膜破损检测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0064159A2 (fr) * 1981-05-02 1982-11-10 Huschke, Bruno, Ing.-grad. Dispositif d'essai pour filtres, spécialement pour des filtres stérilisés
GB2132366A (en) * 1982-12-27 1984-07-04 Brunswick Corp Method and device for testing the permeability of membrane filters
DE3312729A1 (de) * 1983-04-08 1984-10-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Verfahren und messkammer zur ermittlung des porendurchmessers von mikro- und ultrafiltrationsmembranen
EP0139202A1 (fr) * 1983-09-09 1985-05-02 Fujisawa Pharmaceutical Co., Ltd. Appareil pour tester des membranes filtrantes, et appareil de stérilisation de liquides à l'aide d'une membrane filtrante
DE3917856A1 (de) * 1988-06-04 1989-12-07 Sartorius Gmbh Messgeraet als teil einer pruefeinrichtung fuer filtersysteme, pruefeinrichtung und pruefverfahren
EP0517501A2 (fr) * 1991-06-06 1992-12-09 Asahi Kasei Kogyo Kabushiki Kaisha Procédé pour évaluer la capacité d'une membrane polymère poreuse à éliminer des virus
EP0592066A1 (fr) * 1992-05-01 1994-04-13 Memtec Japan Limited Dispositif pour tester l'intégrité des plaques filtrantes à membrane
DE4421639A1 (de) * 1994-06-21 1996-01-04 Microdyn Modulbau Gmbh & Co Kg Verfahren zur Reinigung eines Membranfilters

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419541A (ja) * 1990-05-14 1992-01-23 Ishigaki Mech Ind Co セラミックの溶射膜体並びにその気孔率の測定方法
JP3401541B2 (ja) * 1993-08-27 2003-04-28 栗田工業株式会社 膜分離装置及びその運転方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0064159A2 (fr) * 1981-05-02 1982-11-10 Huschke, Bruno, Ing.-grad. Dispositif d'essai pour filtres, spécialement pour des filtres stérilisés
GB2132366A (en) * 1982-12-27 1984-07-04 Brunswick Corp Method and device for testing the permeability of membrane filters
DE3312729A1 (de) * 1983-04-08 1984-10-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Verfahren und messkammer zur ermittlung des porendurchmessers von mikro- und ultrafiltrationsmembranen
EP0139202A1 (fr) * 1983-09-09 1985-05-02 Fujisawa Pharmaceutical Co., Ltd. Appareil pour tester des membranes filtrantes, et appareil de stérilisation de liquides à l'aide d'une membrane filtrante
DE3917856A1 (de) * 1988-06-04 1989-12-07 Sartorius Gmbh Messgeraet als teil einer pruefeinrichtung fuer filtersysteme, pruefeinrichtung und pruefverfahren
EP0517501A2 (fr) * 1991-06-06 1992-12-09 Asahi Kasei Kogyo Kabushiki Kaisha Procédé pour évaluer la capacité d'une membrane polymère poreuse à éliminer des virus
EP0592066A1 (fr) * 1992-05-01 1994-04-13 Memtec Japan Limited Dispositif pour tester l'intégrité des plaques filtrantes à membrane
US5353630A (en) * 1992-05-01 1994-10-11 Memtec Japan Limited Apparatus for testing membrane filter integrity
DE4421639A1 (de) * 1994-06-21 1996-01-04 Microdyn Modulbau Gmbh & Co Kg Verfahren zur Reinigung eines Membranfilters

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42669E1 (en) 1995-08-11 2011-09-06 Zenon Technology Partnership Vertical cylindrical skein of hollow fiber membranes and method of maintaining clean fiber surfaces
US8075776B2 (en) * 1995-08-11 2011-12-13 Zenon Technology Partnership Apparatus for withdrawing permeate using an immersed vertical skein of hollow fibre membranes
US8852438B2 (en) 1995-08-11 2014-10-07 Zenon Technology Partnership Membrane filtration module with adjustable header spacing
WO2001036074A1 (fr) * 1999-11-18 2001-05-25 Zenon Environmental Inc. Modules et elements de membrane immergés
US6790360B1 (en) 1999-11-18 2004-09-14 Zenon Environmental Inc. Immersed membrane element and module
AU777485B2 (en) * 1999-11-18 2004-10-21 Zenon Environmental Inc. Immersed membrane element and module
KR100736430B1 (ko) * 1999-11-18 2007-07-09 제논 인바이런멘탈 인코포레이티드 잠겨진 막 요소와 모듈
WO2001045829A1 (fr) * 1999-12-21 2001-06-28 Zenon Environmental Inc. Procede et appareil pour controler le bon fonctionnement de membranes filtrantes
US6324898B1 (en) 1999-12-21 2001-12-04 Zenon Environmental Inc. Method and apparatus for testing the integrity of filtering membranes
US10702832B2 (en) 2015-11-20 2020-07-07 Emd Millipore Corporation Enhanced stability filter integrity test
US11192070B2 (en) 2015-11-20 2021-12-07 Emd Millipore Corporation Enhanced stability filter integrity test
US11571501B2 (en) 2018-04-25 2023-02-07 Gambro Lundia Ab Apparatus and method for testing integrity of an ultrafilter membrane

Also Published As

Publication number Publication date
AU3096997A (en) 1998-01-05
DE69703740D1 (de) 2001-01-25
BR9709279A (pt) 1999-08-10
CA2257151C (fr) 2005-08-09
JP2000510766A (ja) 2000-08-22
ATE198165T1 (de) 2001-01-15
EP0909210A1 (fr) 1999-04-21
FR2749190A1 (fr) 1997-12-05
AU718839B2 (en) 2000-04-20
CA2257151A1 (fr) 1997-12-04
HUP9902297A2 (hu) 1999-11-29
HUP9902297A3 (en) 2000-01-28
EP0909210B1 (fr) 2000-12-20
PL183910B1 (pl) 2002-08-30
FR2749190B1 (fr) 1998-09-18
HU221782B1 (hu) 2003-01-28
DK0909210T3 (da) 2001-04-23
ES2154045T3 (es) 2001-03-16
PL330192A1 (en) 1999-04-26
DE69703740T2 (de) 2001-08-02
US6228271B1 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
EP0909210B1 (fr) Procede et installation pour tester in situ l'integrite des membranes de filtration
EP0499509B1 (fr) Procédé et modules perfectionnés de filtration en milieu liquide sous flux tangentiel instationnaire
EP1971846A1 (fr) Procede et dispositif de test d'integrite de membranes de filtration.
EP2897714B1 (fr) Procede de test sous-marin de systeme de filtration
FR2691364A1 (fr) Rein artificiel avec dispositif de filtration du liquide de dialyse.
JP2003517922A (ja) 濾過膜の完全性を試験する方法及び装置
FR2674448A1 (fr) Procede de nettoyage de membranes tubulaires mesoporeuses d'ultrafiltration.
EP0132210A1 (fr) Appareillage utilisable notamment en plasmaphérèse
EP2040826B1 (fr) Dispositif de filtration tangentielle
EP3077087A1 (fr) Procede de controle de l'integrite de membranes de filtration durant leur fonctionnement
EP0470015B1 (fr) Procédé de décolmatage en microfiltration tangentielle
WO2000029100A1 (fr) Procede et dispositif de filtration continue en milieu liquide et utilisations
CA2563317C (fr) Support a porosite modifiee et membrane pour la filtration tangentielle d'un fluide
JP2007007539A (ja) 膜分離装置のリーク検出方法
FR2812219A1 (fr) "dispositif de traitement des eaux comprenant un ensemble a membrane de filtrage a pores de grandes dimensions"
JP2003210949A (ja) 膜ろ過装置の膜破損検出装置及び検出方法
EP1349643B1 (fr) Decolmatage d'un filtre a fibres creuses fonctionnant en mode frontal
JP2008253888A (ja) 膜損傷検知方法
JP2002320829A (ja) 膜モジュールの完全性検査方法
JP5089414B2 (ja) 中空糸膜モジュールのリーク検査方法
WO2007135333A1 (fr) Dispositif et procede pour decolmater la membrane d'un dispositif de filtration tangentielle d'un fluide
JP2013066865A (ja) 中空状膜の親水化方法
WO2008081099A2 (fr) Procede de lavage de membranes d'une installation de filtration, et dispositif pour la mise en oeuvre de ce procede.
EP2136907A1 (fr) Support pour filtration tangentielle et son procede de preparation
FR2860297A1 (fr) Dispositif de mesure de caracteristiques liees a la porosite des media poreux

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997926047

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2257151

Country of ref document: CA

Ref document number: 2257151

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/A/1998/009975

Country of ref document: MX

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1997926047

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09194489

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1997926047

Country of ref document: EP