WO1997043623A1 - Defect detecting apparatus and method - Google Patents

Defect detecting apparatus and method Download PDF

Info

Publication number
WO1997043623A1
WO1997043623A1 PCT/JP1997/001562 JP9701562W WO9743623A1 WO 1997043623 A1 WO1997043623 A1 WO 1997043623A1 JP 9701562 W JP9701562 W JP 9701562W WO 9743623 A1 WO9743623 A1 WO 9743623A1
Authority
WO
WIPO (PCT)
Prior art keywords
brightness
predetermined threshold
pixel
threshold value
defect
Prior art date
Application number
PCT/JP1997/001562
Other languages
French (fr)
Japanese (ja)
Inventor
Kimio Nakano
Satoshi Nishida
Yoshihiko Nakakoji
Toru Inomoto
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Publication of WO1997043623A1 publication Critical patent/WO1997043623A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Definitions

  • the present invention relates to a defect detection apparatus and method for capturing an image of a detection target and detecting an uneven defect appearing on the detection target.
  • irregularities may occur on a surface that should be originally smooth. If there is such an uneven portion, the wire may be bonded to the uneven portion in the wire bonding step, and poor bonding may occur. Therefore, it is necessary to reliably detect such irregularities appearing on the smooth surface in the inspection process and treat them as defective.
  • the defect portion is imaged as having a different brightness from the surroundings.
  • the illumination of the inspection stage provided in the process, the position of the camera, and the like are adjusted, and the above-described irregularities such as voids have lower brightness than the surroundings. (Blackened).
  • the areas determined to be low in brightness below the predetermined threshold include non-defective surface irregularities in addition to voids, which are original defects.
  • unevenness is a slight change in unevenness that appears on the surface of an electronic component such as an IC mold and is not a defect. If the normal surface is a mirror surface, the shallow, fine and subtle irregularities (none) will be uneven. On the other hand, if the normal surface is shallow and fine and delicate irregularities (plain ground), the mirror surface will be uneven.
  • Such uneven parts are imaged on a normal electronic component surface as having a different brightness than the surroundings. Therefore, as described above, when the illumination of the inspection stage and the camera position are adjusted so that the unevenness defect portion such as a void becomes lighter (blacker) than the surroundings, the unevenness portion also becomes the unevenness defect portion. Similarly, since the brightness is low, the unevenness may be erroneously detected as a “defect” and may be erroneously recognized as a defective product although it is a good product. Disclosure of the invention
  • the present invention has been made in view of such circumstances, and has as its object to clearly identify non-defective irregularities and original irregular-shaped defects so that defect detection can be performed accurately. Is what you do.
  • a defect detection apparatus that captures an image of a detection target and detects an uneven defect appearing on the detection target includes:
  • First binarizing means for binarizing the brightness of each pixel of the captured image with a predetermined threshold
  • Differentiating means for calculating the amount of change in brightness of each surface element of the captured image
  • Second binarizing means for binarizing the change in brightness of each pixel calculated by the differentiating means with a predetermined threshold value
  • the first binarizing means provides a predetermined threshold value, brightness equal to or less than a predetermined value, and (2) a binarizing means for obtaining a coordinate position of a pixel having a brightness change amount equal to or greater than a predetermined threshold value, and a detecting means for detecting that there is an irregular defect at this coordinate position;
  • the brightness of each pixel of the captured image is binarized by a predetermined threshold value, and assuming that the brightness is equal to or less than the predetermined threshold value, irregularities such as voids and the like are considered. Are extracted.
  • the amount of change in the brightness of each pixel of the captured image is calculated, and the calculated amount of change in the brightness of each pixel is binarized by a predetermined threshold value.
  • irregular defects such as voids and characters and circuit patterns printed on the surface are extracted.
  • an uneven defect is detected by obtaining an area having a common coordinate position among the areas extracted by these two types of thresholds.
  • 1 (a) to 1 (d) are plan views of an inspection object according to an embodiment of a defect detection device and method according to the present invention, and are diagrams used to explain a defect inspection processing procedure. ⁇ .
  • FIGS. 2A and 2B are diagrams used to explain a defect inspection method capable of performing arithmetic processing at high speed.
  • FIG. 3 is a flowchart showing a processing procedure performed in the embodiment.
  • FIG. 4 is a flowchart showing a processing procedure capable of reducing the area for calculating the brightness change amount.
  • FIG. 5 is a flowchart showing a processing procedure capable of reducing the area for performing the brightness binary processing.
  • FIG. 1A is a plan view showing an IC mold 1 which is a defect inspection object assumed in the embodiment, and the surface of the IC mold 1 has a void 3 as a defect and a void 3 as a defect. Surface unevenness (dirt) 4 and printed characters “123” appear.
  • an inspection area 2 to be imaged by a camera (not shown) is set on the surface of the IC mold 1 (step 101).
  • the inspection area 2 is picked up by the camera as a light and shade image, and the brightness of each pixel of the picked-up image is binarized by a threshold C1 for distinguishing the void 3 from a normal part.
  • a threshold C1 for distinguishing the void 3 from a normal part.
  • an area of a pixel having a brightness equal to or less than the threshold value C1 (referred to as a blob) is obtained.
  • the barycentric coordinate positions Gl (X1, Yl) and G2 (X2, Y2) of the blobs Pl and P2 are obtained, and these barycentric coordinate positions Gl and G2 are
  • the blobs to be extracted are blob P1 indicating the body 3 and blob P2 indicating the surface unevenness 4.
  • the printed character 5 has a high brightness and has a brightness equal to or higher than the threshold value C1. Is not extracted as a blob (step 103).
  • a differential calculation process is performed to determine the amount of change in brightness (brightness gradient) of each pixel of the grayscale image of the inspection area 2 imaged by the camera (step 104).
  • the brightness change amount of each pixel of the differentiated picked-up image is binarized by the threshold value C2 for discriminating between the void 3 and the normal state (step 105). Then, a blob having a brightness change amount equal to or greater than the threshold value C2 is obtained.
  • the coordinates of the centroid of each blob P3, P4, P5, P6 Positions G3 (X3, Y3), G4 (X4, Y4), G5 (X5, Y5), G6 (X6, Y6) are obtained, and these barycentric coordinate positions G3, G4, G5, G6 are determined by the respective blobs P3, P4, It is stored in a predetermined memory in association with P5 and P6.
  • the extracted blobs are blob P3 indicating void 3 and blobs P4, P5, and P6 each indicating the printed character “123”.
  • the surface unevenness (dirt) 4 since the boundary edge is not clear and the brightness change amount is low, the brightness change amount is smaller than the threshold value C2 and is not extracted as a blob (step 106).
  • This threshold value C3 is a threshold value for judging whether or not the positions of the centers of gravity of both blobs coincide (step 109).
  • step 109 If the distance between the positions of the centers of gravity of both blobs is greater than the threshold value C3, i is incremented by +1 (step 1 1 1), and the processing of step 109 is executed until i reaches n ( Step 108).
  • the distance between the barycenter coordinate position G1 of blob P1 and the barycenter coordinate position G3 of blob P3 is equal to or smaller than the threshold value C3.
  • the determination 109 it can be determined that the coordinate position G1 or G3 has the center of gravity of the void 3 (step 110).
  • a loop may be provided to shift from step 110 to step 111.
  • the brightness is binarized for the entire inspection area A, as in steps 101, 102, and 103 in FIG. 3, and the brightness becomes equal to or less than the threshold value C1.
  • the brightness change amount of each pixel of the local area 6 subjected to the differential processing is binarized by the threshold value C2 for discriminating the void 3 from a normal part (step 208). Then, a blob having a brightness change amount equal to or greater than the threshold value C2 is obtained.
  • the barycentric coordinate position G3 (X3, Y3) is obtained.
  • the barycentric coordinate position G3 is obtained by the blob P3 And is stored in a predetermined memory.
  • blobs P4, P5, and P6 indicating the printed character "123" are outside the local area 6, and are not extracted as blobs.
  • the brightness change amount is smaller than the threshold value C2 and is not extracted as a blob (step 209).
  • a loop that shifts from step 210 to step 211 may be provided as shown by a broken line E.
  • the size B of the region to be differentiated is smaller than when the whole A is differentiated.
  • the search for the void 3 is performed only by differentiating the area around the low brightness area, the blob indicating the print character 5 is not extracted in the search process.
  • arithmetic processing can be performed at high speed.
  • a large-capacity memory is required to store an image obtained by differentiating the entire inspection area 2.
  • the area to be stored can be reduced, so that a large-capacity memory is required. No memory is required. Therefore, the cost of the device can be reduced.
  • the processing speed may be increased by reducing the area for performing the brightness binary processing.
  • steps 301, 302, and 303 the process of binarizing the brightness change amount for the entire inspection area A by the threshold value C2 in the same manner as steps 101, 104, and 105 in FIG. Done.
  • step 304 a blob having a brightness change amount equal to or greater than the threshold value C2 is obtained.
  • the blob P1 indicating the void 3 and the blobs P2, P3, and P4 respectively indicating the printed character "123" are extracted, and the center-of-gravity coordinate positions G1 to G4 of these blobs are stored.
  • a process of binarizing the brightness of each pixel of the grayscale image with the threshold value C1 is executed (step 308).
  • a blob having brightness equal to or less than the threshold value C1 is obtained.
  • the blob P5 indicating the body 3 is extracted. Blobs showing surface unevenness 4 are outside the local area 6 and are not extracted as blobs (step 309).
  • Step 310 the distance between the barycentric coordinate position G1 of the blob P1 and the barycentric coordinate position G5 of the blob P5 matches, so that it is possible to determine that the coordinate position G1 or G5 is the barycenter of the void 3. It should be noted that, as described above, without determining whether or not the distances match, at the time when the determination YES of step 309 is reached (at the time of detecting the probe P5), it is determined that it is void 3. (Step 310).
  • a loop may be provided to shift from step 310 to step 311 as shown by the broken line F.
  • the size B of the area where the brightness is binarized is smaller than when the entire A is binarized. Moreover, since the brightness 3 is binarized only in the area around the area where the brightness variation is high, the search for the void 3 is performed, and in the search process, blobs showing surface unevenness (dirt) 4 are extracted. Not done. For this reason, arithmetic processing can be performed at high speed.
  • a defect called void 3 is generated on the surface of the IC mold, but the inspection object to be inspected and the type of the defect are arbitrary.
  • the present invention can be applied to the detection of unevenness defects appearing on a wafer chip, unevenness defects appearing on a ceramic substrate, unevenness defects on a circuit pattern, and concave defects appearing on the side surface of a laminated substrate.
  • the thresholds C l and C 2 may be varied according to the type of defect. ,.
  • the present invention is not limited to the detection of defects in electronic components, but can be applied to any inspection object as long as it detects irregular defects.
  • the processing contents of the above-described first to third embodiments may be appropriately stored in a floppy disk, and distributed and distributed to a user or an operator who performs a defect inspection.
  • the storage medium to be distributed and distributed may be a storage medium other than a floppy disk, such as a hard disk, an IC card, or a CD-ROM.
  • hardware that uses the software of the present embodiment and software of the present embodiment are developed for distribution.
  • a development computer containing the software may be communicably connected via a public line or a network, and may be distributed via the network.
  • an installer may be attached and distributed to distribute the software.
  • Data may be distributed and distributed c Industrial availability
  • the present invention is not limited to the detection of defects in electronic components, and detects irregular defects. If applicable, it can be applied to any inspection object.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

An apparatus and a method for detecting a defect while discriminating uneven brightness which is not a defect from a real defect comprising a recess or projection, with a high accuracy. The brightness of each picture element of a picked-up image is binarized with a predetermined threshold value, and recessed and projecting defects, such as voids, and unevenness are extracted as portions where the brightnesses are lower than this predetermined threshold value. The amount of variation of the brightness of each picture element of the image is computed, the computed amount of variation of brightness of each picture element is binarized with a predetermined threshold value, and recessed/projecting defects, such as voids, and characters and circuit patterns printed on the surface are extracted as variations of brightness of a level higher than this predetermined threshold value. A recessed/projecting defect is detected by finding a region having a common coordinate position out of the regions extracted by these two kinds of threshold values.

Description

明細書 欠陥検出装置および方法 技術分野  Description Defect detection apparatus and method
本発明は、 被検出対象の画像を撮像して当該被検出対象上に表れる凹凸状の欠 陥を検出する欠陥検出装置および方法に関する。 背景技術  The present invention relates to a defect detection apparatus and method for capturing an image of a detection target and detecting an uneven defect appearing on the detection target. Background art
I Cモールド等、 とりわけ樹脂成形によって生産される電子部品にあっては、 電子部品の榭脂が固まる際に樹脂組成の不均一さ、 金型の損傷等の理由によって、 部品表面にボイ ド (v o i d ) と呼ばれる小穴が発生することがある。  In the case of electronic parts produced by resin molding, such as IC molds, especially when the resin of the electronic parts solidifies, the resin surface becomes uneven due to uneven resin composition and damage to the mold. A small hole called) may occur.
こうしたボイ ドは見た目が悪いだけではなく、 それが I C内部にまで達してい る場合には性能上大きな問題となるため検査工程で確実に検出し、 不良品として 扱う必要がある。  These voids not only look bad, but if they reach the inside of the IC, they pose a major performance problem, so they must be reliably detected during the inspection process and treated as defective.
また、 ウェハチップなどでは、 本来、 平滑であるべき面に凹凸が生じることが ある。 こうした凹凸部があるとワイヤボンディング工程でワイヤが凹凸部にボン デイングされてしまい接着不良を起こすことがある。 よって、 こうした平滑面に 表れる凹凸部についても、 検査工程で確実に検出し、 不良品として扱う必要があ る。  Also, in the case of a wafer chip or the like, irregularities may occur on a surface that should be originally smooth. If there is such an uneven portion, the wire may be bonded to the uneven portion in the wire bonding step, and poor bonding may occur. Therefore, it is necessary to reliably detect such irregularities appearing on the smooth surface in the inspection process and treat them as defective.
上述したボイ ド等の凹凸状の欠陥部分を有する電子部品表面を撮像すると、 欠 陥部分は明度が周囲に較べて異なった明度として撮像される。 この場合、 一般的 に、 検査工程では、 工程に備え付けられている検査ステージの照明およびカメラ 位置等を調整し、 上述したボイ ド等の凹凸状の欠陥部分を、 周囲に較べて明度が 低くなる (黒くなる) ように調整する。  When an image of the surface of an electronic component having an uneven defect portion such as the above-described void is imaged, the defect portion is imaged as having a different brightness from the surroundings. In this case, in general, in the inspection process, the illumination of the inspection stage provided in the process, the position of the camera, and the like are adjusted, and the above-described irregularities such as voids have lower brightness than the surroundings. (Blackened).
そこで、 こうして調整された撮像画像の各画素の明度を所定のしきい値で 2値 化することによってボイ ド等の凹凸状の欠陥を検出していた。 すなわち、 上記所 定のしきい値以下の明度の低い領域は (明度の低い領域が一定の面積を越えた場 合に) ボイ ド等の凹凸状の欠陥であると、 上記所定のしきい値よりも大きい明度 の髙ぃ領域は正常であると判定していた。 Therefore, unevenness defects such as voids have been detected by binarizing the brightness of each pixel of the captured image adjusted in this way with a predetermined threshold value. In other words, if the low brightness area below the above-mentioned threshold value is a concave / convex defect such as a void (when the low brightness area exceeds a certain area), the above-mentioned predetermined threshold value is obtained. Brightness greater than Area 髙 ぃ was determined to be normal.
しかし、 上記所定のしきい値以下の明度の低い領域と判定されるものの中には、 本来の欠陥であるボイ ド以外にも、 欠陥ではない表面のムラが含まれる。  However, the areas determined to be low in brightness below the predetermined threshold include non-defective surface irregularities in addition to voids, which are original defects.
ここで、 ムラとは、 I Cモールド等の電子部品表面において現れる、 欠陥とは 言えない微妙な凹凸の変化のことである。 正常な表面が鏡面の場合、 浅く細かい 微妙な凹凸 (なし地) 部分がムラとされる。 一方、 正常な表面が浅く細かい微妙 な凹凸 (なし地) とすると、 逆に鏡面部分がムラとされる。  Here, unevenness is a slight change in unevenness that appears on the surface of an electronic component such as an IC mold and is not a defect. If the normal surface is a mirror surface, the shallow, fine and subtle irregularities (none) will be uneven. On the other hand, if the normal surface is shallow and fine and delicate irregularities (plain ground), the mirror surface will be uneven.
また、 正常な電子部品表面に対して、 微妙に傾いている部分もムラとされる。 さらに、 正常な電子部品表面の汚れもムラとされる。 このムラは製造工程の装 置等の工程差で現れることがある。  Also, parts that are slightly inclined with respect to the normal electronic component surface are regarded as uneven. In addition, the dirt on the surface of normal electronic components is regarded as uneven. This unevenness may appear due to process differences between the manufacturing process equipment and the like.
こうしたムラの部分は、 正常な電子部品表面では明度が周囲に較べて異なった ものとして撮像される。 よって、 上述したようにボイ ド等の凹凸欠陥部分を周囲 に較べて明度が低くなる (黒くなる) ように、 検査ステージの照明、 カメラ位置 を調整すると、 同時にそのムラの部分も凹凸欠陥部分と同様に明度が低くなるの で、 ムラを 「欠陥」 と誤って検出してしまい、 良品であるにもかかわらず不良品 と誤認-識してしまうことがある。 発明の開示  Such uneven parts are imaged on a normal electronic component surface as having a different brightness than the surroundings. Therefore, as described above, when the illumination of the inspection stage and the camera position are adjusted so that the unevenness defect portion such as a void becomes lighter (blacker) than the surroundings, the unevenness portion also becomes the unevenness defect portion. Similarly, since the brightness is low, the unevenness may be erroneously detected as a “defect” and may be erroneously recognized as a defective product although it is a good product. Disclosure of the invention
本発明は、 こうした実状に鑑みてなされたものであり、 欠陥ではないムラと本 来の凹凸状の欠陥を明確に識別して、 欠陥検出を精度よく行うことができるよう にすることを目的とするものである。  The present invention has been made in view of such circumstances, and has as its object to clearly identify non-defective irregularities and original irregular-shaped defects so that defect detection can be performed accurately. Is what you do.
そこで、 本発明の主たる発明では、 被検出対象の画像を撮像して当該被検出対 象上に表れる凹凸状の欠陥を検出する欠陥検出装置において、  Therefore, in the main invention of the present invention, a defect detection apparatus that captures an image of a detection target and detects an uneven defect appearing on the detection target includes:
前記撮像画像の各画素の明度を所定のしきい値で 2値化する第 1の 2値化手段 と、  First binarizing means for binarizing the brightness of each pixel of the captured image with a predetermined threshold,
前記撮像画像の各面素の明度の変化量を演算する微分手段と、  Differentiating means for calculating the amount of change in brightness of each surface element of the captured image,
前記微分手段によって演算された各画素の明度の変化量を所定のしきい値で 2 値化する第 2の 2値化手段と、  Second binarizing means for binarizing the change in brightness of each pixel calculated by the differentiating means with a predetermined threshold value,
前記第 1の 2値化手段によつて所定のしきレ、値以下の明度となり、 かつ前記第 2の 2値化手段によって所定のしきい値以上の明度変化量となる画素の座標位置 を求め、 この座標位置に凹凸状の欠陥があることを検出する検出手段と The first binarizing means provides a predetermined threshold value, brightness equal to or less than a predetermined value, and (2) a binarizing means for obtaining a coordinate position of a pixel having a brightness change amount equal to or greater than a predetermined threshold value, and a detecting means for detecting that there is an irregular defect at this coordinate position;
を具えるようにしている。  It is equipped with.
かかる構成によれば、 撮像画像の各画素の明度が所定のしきい値で 2値化され、 この所定のしきい値以下の明度となるものとして、 ボイ ド等の凹凸状の欠陥とム ラとが抽出される。  According to such a configuration, the brightness of each pixel of the captured image is binarized by a predetermined threshold value, and assuming that the brightness is equal to or less than the predetermined threshold value, irregularities such as voids and the like are considered. Are extracted.
さらに、 撮像画像の各画素の明度の変化量が演算され、 この演算された各画素 の明度の変化量が所定のしきい値で 2値化され、 この所定のしきい値以上の明度 変化量となるものとして、 ボイ ド等の凹凸状の欠陥と表面に印字された文字や回 路パターンとが抽出される。  Further, the amount of change in the brightness of each pixel of the captured image is calculated, and the calculated amount of change in the brightness of each pixel is binarized by a predetermined threshold value. As a result, irregular defects such as voids and characters and circuit patterns printed on the surface are extracted.
よって、 これら 2種類のしきい値によって抽出された領域のうちで、 共通の座 標位置を有する領域を求めることにより、 凹凸状の欠陥が検出される。  Therefore, an uneven defect is detected by obtaining an area having a common coordinate position among the areas extracted by these two types of thresholds.
このように、 本発明によれば、 各種領域を抽出する過程で本来検出すべき凹凸 状の欠陥と欠陥でないムラとが明確に識別されるので、 欠陥検出の精度が飛躍的 に向上する。 図面の簡単な説明  As described above, according to the present invention, in the process of extracting various regions, uneven defects that should be originally detected and non-defect unevenness are clearly distinguished, so that the accuracy of defect detection is dramatically improved. BRIEF DESCRIPTION OF THE FIGURES
図 1 ( a ) 〜 (d ) は、 本発明に係る欠陥の検出装置および方法の実施の形態 の検査対象物の平面図であり、 欠陥検査の処理手順を説明するために用いた図で あ ο。  1 (a) to 1 (d) are plan views of an inspection object according to an embodiment of a defect detection device and method according to the present invention, and are diagrams used to explain a defect inspection processing procedure. ο.
図 2 ( a ) 、 (b ) 〖ま、 演算処理を高速に行うことができる欠陥検査方法を説 明するために用いた図である。  FIGS. 2A and 2B are diagrams used to explain a defect inspection method capable of performing arithmetic processing at high speed.
図 3は実施の形態で行われる処理手順を示すフローチヤ一トである。  FIG. 3 is a flowchart showing a processing procedure performed in the embodiment.
図 4は明度変化量を演算する領域を減少することができる処理手順を示すフロ FIG. 4 is a flowchart showing a processing procedure capable of reducing the area for calculating the brightness change amount.
—チヤ一トである。 —This is a charter.
図 5は明度の 2値処理をする領域を減少することができる処理手順を示すフロ 一チヤ一トである。 発明を実施するための最良の形態 以下、 図面を参照して本発明に係る欠陥検出装置および方法の実施の形態につ いて説明する。 FIG. 5 is a flowchart showing a processing procedure capable of reducing the area for performing the brightness binary processing. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a defect detection apparatus and method according to the present invention will be described with reference to the drawings.
図 1 (a) は、 実施の形態において想定している欠陥検査対象物である I Cモ 一ルド 1を示す平面図であり、 この I Cモールド 1の表面には、 欠陥であるボイ ド 3と、 表面ムラ (汚れ) 4と、 印字された文字 「 1 23」 が現れている。  FIG. 1A is a plan view showing an IC mold 1 which is a defect inspection object assumed in the embodiment, and the surface of the IC mold 1 has a void 3 as a defect and a void 3 as a defect. Surface unevenness (dirt) 4 and printed characters “123” appear.
•第 1の実施の形態  • First Embodiment
以下、 上記ボイ ド 3の座標位置を検出する処理手順について図 3に示すフロ一 チヤ一トを参照して説明する。  Hereinafter, a processing procedure for detecting the coordinate position of the void 3 will be described with reference to a flowchart shown in FIG.
まず、 図 1 (b) に示すように、 図示せぬカメラによって撮像すべき検査領域 2が I Cモールド 1表面に設定される (ステップ 101) 。  First, as shown in FIG. 1 (b), an inspection area 2 to be imaged by a camera (not shown) is set on the surface of the IC mold 1 (step 101).
そして、 上記検査領域 2が明暗の濃淡画像として上記カメラによって撮像され、 この撮像画像の各画素の明度が、 上記ボイ ド 3と正常な部分とを識別するための しきい値 C1によって 2値化 (明度の高い領域は論理 「1」 、 明度の低い領域は論 理 「0」 に 2値化) される (ステップ 102) 。  Then, the inspection area 2 is picked up by the camera as a light and shade image, and the brightness of each pixel of the picked-up image is binarized by a threshold C1 for distinguishing the void 3 from a normal part. (A high brightness area is binarized to logic "1" and a low brightness area is binarized to logic "0") (step 102).
この結果、 上記しきい値 C1以下の明度となる画素の領域 (これをブロブという) が求められる。  As a result, an area of a pixel having a brightness equal to or less than the threshold value C1 (referred to as a blob) is obtained.
すなわち、 図 1 (c) に示すように、 各ブロブ Pl、 P2の重心座標位置 Gl (X 1、 Yl) 、 G2 (X2、 Y2) が求められ、 これら重心座標位置 Gl、 G2が、 各ブロ ブ Pl、 P2に対応づけられて所定のメモリに記憶されるとともに、 抽出したブロ ブの数 n (= 2) が上記メモリに記憶される。 ここで、 抽出されるブロブは、 ボ ィ ド 3を示すブロブ P1と表面ムラ 4を示すブロブ P2であり、 印字された文字 5 については明度が高く、 上記しきい値 C1以上の明度を有しているので、 ブロブと して抽出されない (ステップ 103) 。  That is, as shown in FIG. 1 (c), the barycentric coordinate positions Gl (X1, Yl) and G2 (X2, Y2) of the blobs Pl and P2 are obtained, and these barycentric coordinate positions Gl and G2 are The numbers n (= 2) of the extracted blobs are stored in the above-mentioned memory while being stored in a predetermined memory in association with the blobs Pl and P2. Here, the blobs to be extracted are blob P1 indicating the body 3 and blob P2 indicating the surface unevenness 4.The printed character 5 has a high brightness and has a brightness equal to or higher than the threshold value C1. Is not extracted as a blob (step 103).
ついで、 上記カメラによって摄像された検査領域 2の濃淡画像の各画素の明度 の変化量 (明度勾配) を求める微分演算処理が実行される (ステップ 104) 。  Next, a differential calculation process is performed to determine the amount of change in brightness (brightness gradient) of each pixel of the grayscale image of the inspection area 2 imaged by the camera (step 104).
そして、 微分処理された撮像画像の各画素の明度変化量が、 上記ボイ ド 3と正 常な都分とを識別するためのしきい値 C2によって 2値化される (ステップ 105 ) 。 そして、 上記しきい値 C2以上の明度変化量となるブロブが求められる。  Then, the brightness change amount of each pixel of the differentiated picked-up image is binarized by the threshold value C2 for discriminating between the void 3 and the normal state (step 105). Then, a blob having a brightness change amount equal to or greater than the threshold value C2 is obtained.
すなわち、 図 1 (d) に示すように、 各ブロブ P3、 P4、 P5、 P6の重心座標 位置 G3 (X3、 Y3) 、 G4 (X4、 Y4) 、 G5 (X5、 Y5) 、 G6 (X6、 Y6) 求められ、 これら重心座標位置 G3、 G4、 G5、 G6が、 各ブロブ P3、 P4、 P5、 P6に対応づけられて所定のメモリに記憶される。 ここで、 抽出されるブロブは、 ボイ ド 3を示すブロブ P3と印字された文字 「123」 をそれぞれ示すブロブ P4、 P5、 P6である。 表面ムラ (汚れ) 4については、 境界エッジが明確ではなく明 度変化量が低いので、 上記しきい値 C2よりも明度変化量が小さく、 ブロブとして 抽出されない (ステップ 106) 。 That is, as shown in Fig. 1 (d), the coordinates of the centroid of each blob P3, P4, P5, P6 Positions G3 (X3, Y3), G4 (X4, Y4), G5 (X5, Y5), G6 (X6, Y6) are obtained, and these barycentric coordinate positions G3, G4, G5, G6 are determined by the respective blobs P3, P4, It is stored in a predetermined memory in association with P5 and P6. Here, the extracted blobs are blob P3 indicating void 3 and blobs P4, P5, and P6 each indicating the printed character “123”. Regarding the surface unevenness (dirt) 4, since the boundary edge is not clear and the brightness change amount is low, the brightness change amount is smaller than the threshold value C2 and is not extracted as a blob (step 106).
ついで、 上記ステップ 103で記憶された各ブロブ Pl、 P2の重心座標位置 G 1、 G2と、 上記ステップ 106で記憶された各ブロブ P3、 P4、 P5、 P6の重心 座標位置 G3、 G4、 G5、 G6との距離が一致しているものを、 ボイ ド 3であると 判断する処理が実行される。  Next, the barycentric coordinate positions G1, G2 of the blobs Pl, P2 stored in step 103 above and the barycentric coordinate positions G3, G4, G5, b3 of the blobs P3, P4, P5, P6 stored in step 106 above. The processing of determining that the distance is the same as that of G6 as void 3 is performed.
すなわち、 まず上記ステップ 103で記憶された各ブロブ P i ( i =l、 2) を示す iを 1にイニシャライズして (ステップ 107) 、 このブロブ P iの重心 座標位置 Gi ( i = l、 2) と、 上記ステップ 106で記憶された各ブロブ P3、 P4、 P5、 P6の重心座標位置 G3、 G4、 G5、 G6との距離が所定のしきい値 C3 以下であるか否かが判断される。 このしきい値 C3は、 両ブロブの重心位置が一致 しているか否かを判断するためのしきい値である (ステップ 109) 。  That is, first, i indicating each blob P i (i = l, 2) stored in step 103 is initialized to 1 (step 107), and the barycenter coordinate position Gi (i = l, 2 ) And whether or not the distance between the centroid coordinate position G3, G4, G5, G6 of each of the blobs P3, P4, P5, P6 stored in the above step 106 is equal to or less than a predetermined threshold value C3. . This threshold value C3 is a threshold value for judging whether or not the positions of the centers of gravity of both blobs coincide (step 109).
両ブロブの重心位置間の距離が上記しきい値 C3よりも大きい場合には、 iを + 1インクリメントして (ステップ 1 1 1) 、 iが nに達するまでステップ 109 の処理が実行される (ステップ 108) 。  If the distance between the positions of the centers of gravity of both blobs is greater than the threshold value C3, i is incremented by +1 (step 1 1 1), and the processing of step 109 is executed until i reaches n ( Step 108).
この結果、 図 1 (c) と図 1 (d) から明らかなように、 ブロブ P1の重心座標 位置 G 1とブロブ P3の重心座標位置 G3との距離がしきい値 C3以下となるので ( ステップ 109の判断 YE S) 、 この座標位置 G1または G3にボイ ド 3の重心が あると判定することができる (ステップ 1 10) 。  As a result, as is clear from FIGS. 1 (c) and 1 (d), the distance between the barycenter coordinate position G1 of blob P1 and the barycenter coordinate position G3 of blob P3 is equal to or smaller than the threshold value C3. In the determination 109 (YES), it can be determined that the coordinate position G1 or G3 has the center of gravity of the void 3 (step 110).
なお、 ボイ ド 3が 2以上ある場合には、 破線 Dに示すように、 ステップ 1 10 からステップ 1 1 1に移行するループを設けるようにすればよい。  In the case where there are two or more voids 3, as shown by a broken line D, a loop may be provided to shift from step 110 to step 111.
•第 2の実施の形態  • Second embodiment
つぎに、 微分演算処理を行う領域を減少させることにより処理の高速化を図る ことができる実施の形態について図 4を参照して説明する。 同図 4に示すようにステップ 20 1、 202、 203では、 図 3のステップ 1 01、 102、 103と同様に検査領域 2全体 Aについて明度を 2値化してしき い値 C1以下の明度となるブロブ Pl、 ?2の重心座標位置01、 G2を記憶する処理 がなされるが、 つぎの段階では、 上記ブロブ Pl、 P2のいずれかがボイ ド 3であ ることが明らかであるので、 ブロブ Pl、 P2の重心座標位置 Gl、 G2の周囲の一 定の大きさ B (B<A) の局所領域 6についてのみ微分演算処理を行い、 極力少 ない領域のみを微分処理することでボイ ド 3を探索するようにしている。 Next, an embodiment that can increase the processing speed by reducing the area for performing the differential operation processing will be described with reference to FIG. As shown in FIG. 4, in steps 201, 202, and 203, the brightness is binarized for the entire inspection area A, as in steps 101, 102, and 103 in FIG. 3, and the brightness becomes equal to or less than the threshold value C1. Blob Pl,? The process of storing the barycentric coordinate positions 01 and G2 of 2 is performed, but in the next stage, it is clear that either of the above blobs Pl or P2 is void 3, so the centroids of the blobs Pl and P2 are Differential calculation processing is performed only for the local area 6 of a fixed size B (B <A) around the coordinate positions Gl and G2, and the search for void 3 is performed by differentiating only the smallest area. ing.
すなわち、 上記ステップ 203で記憶された各ブロブ P i ( i = l、 2) を示 す iを 1にイニシャライズして (ステップ 204) 、 iが nに達するまで以下の ステップ 206〜ステップ 209の処理を繰り返し実行する (ステップ 21 1、 205) 。  That is, i indicating each blob P i (i = l, 2) stored in the above step 203 is initialized to 1 (step 204), and the processing of the following steps 206 to 209 is performed until i reaches n. Is repeatedly executed (steps 211 and 205).
すなわち、 図 2 (a) に示すように、 ブロブ P iの重心座標位置 Gi ( i = 1、 2) を中心とする所定の大きさ Bの矩形の局所領域 6が生成される (ステップ 2 06) 。 そして、 この局所領域 6の濃淡画像の各面素の明度の変化量 (明度勾配) を求める微分演算処理が実行される (ステップ 207) 。  That is, as shown in FIG. 2A, a rectangular local area 6 of a predetermined size B centered on the barycenter coordinate position Gi (i = 1, 2) of the blob P i is generated (step 206). ). Then, a differential calculation process is performed to determine the change in brightness (brightness gradient) of each surface element of the grayscale image of the local area 6 (step 207).
そして、 微分処理された局所領域 6の各画素の明度変化量が、 上記ボイ ド 3と 正常な部分とを識別するためのしきい値 C2によって 2値化される (ステップ 20 8) 。 そして、 上記しきい値 C2以上の明度変化量となるブロブが求められる。 こ の場合、 図 2 (b) に示すように、 ボイ ド 3を示すブロブ P3のみが求められ、 そ の重心座標位置 G3 (X3、 Y3) が求められ、 これら重心座標位置 G3が、 ブロブ P3に対応づけられて所定のメモリに記憶される。 なお、 印字された文字 「123」 を示すブロブ P4、 P5、 P6については局所領域 6外にあるので、 ブロブとして抽 出されない。 また、 表面ムラ (汚れ) 4については、 境界エッジが明確ではなく 明度変化量が低いので、 上記しきい値 C2よりも明度変化量が小さく、 ブロブとし て抽出されることはない (ステップ 209) 。  Then, the brightness change amount of each pixel of the local area 6 subjected to the differential processing is binarized by the threshold value C2 for discriminating the void 3 from a normal part (step 208). Then, a blob having a brightness change amount equal to or greater than the threshold value C2 is obtained. In this case, as shown in Fig. 2 (b), only the blob P3 indicating the void 3 is obtained, and the barycentric coordinate position G3 (X3, Y3) is obtained.The barycentric coordinate position G3 is obtained by the blob P3 And is stored in a predetermined memory. Note that blobs P4, P5, and P6 indicating the printed character "123" are outside the local area 6, and are not extracted as blobs. In addition, for the surface unevenness (dirt) 4, since the boundary edge is not clear and the brightness change amount is low, the brightness change amount is smaller than the threshold value C2 and is not extracted as a blob (step 209). .
ついで、 上記ステップ 203で記憶された各ブロブ Pl、 P2の重心座標位置 G 1、 G2と、 上記ステップ 209で記憶された各ブロブ P 3の重心座標位置 G3との 距離が一致しているものを、 ボイ ド 3であると判断する処理が実行される。  Next, the one in which the distance between the center of gravity coordinate position G1, G2 of each blob Pl, P2 stored in the above step 203 and the center of gravity coordinate position G3 of each blob P3, stored in the above step 209, matches. Then, a process for determining that it is the void 3 is executed.
この結果、 図 2 (a) と図 2 (b) から明らかなように、 ブロブ P1の重心座標 位置 G 1とブロブ P3の重心座標位置 G3との距離が一致するので、 この座標位置 G1または G3がボイ ド 3の重心であると判定することができる。 なお、 上述した ように距離が一致したか否かの判定を行うことなく、 ステップ 209の判断 YE Sとなった時点 (プロブ P3検出時点) で、 それがボイ ド 3であると判断してもよ レヽ (ステップ 2 10) 。 As a result, as is clear from Figs. 2 (a) and 2 (b), the barycentric coordinates of blob P1 Since the distance between the position G1 and the barycentric coordinate position G3 of the blob P3 matches, it can be determined that the coordinate position G1 or G3 is the barycenter of the void 3. Note that, as described above, without determining whether the distances match or not, when the determination YES in step 209 is reached (probe P3 detection time), it is determined that it is void 3. Yeah (Step 2 10).
なお、 ボイ ド 3が 2以上ある場合には、 破線 Eに示すように、 ステップ 210 からステップ 21 1に移行するループを設けるようにすればよい。  If there are two or more voids 3, a loop that shifts from step 210 to step 211 may be provided as shown by a broken line E.
以上のように、 この第 2の実施の形態によれば、 微分する領域の大きさ Bが全 体 Aを微分処理する場合に較べて小さくなる。 しかも、 明度が低い領域の周囲に ついてのみ微分処理を行うことによりボイ ド 3を探索するようにしたので、 探索 の過程で印字文字 5を示すブロブについては抽出されない。  As described above, according to the second embodiment, the size B of the region to be differentiated is smaller than when the whole A is differentiated. In addition, since the search for the void 3 is performed only by differentiating the area around the low brightness area, the blob indicating the print character 5 is not extracted in the search process.
このため演算処理を高速に行うことができる。 また、 検査領域 2全体を微分処 理した画像を記憶するためには大容量のメモリを必要とするが、 この実施の形態 によれば、 記憶すべき領域を少なくすることができるので、 大容量のメモリは不 要となる。 このため、 装置のコストを低減することができる。  Therefore, arithmetic processing can be performed at high speed. In addition, a large-capacity memory is required to store an image obtained by differentiating the entire inspection area 2. However, according to this embodiment, the area to be stored can be reduced, so that a large-capacity memory is required. No memory is required. Therefore, the cost of the device can be reduced.
•第 3の実施の形態  • Third embodiment
つぎに、 上記第 2の実施の形態とは逆に、 明度の 2値化演算処理を行う領域を 減少させることにより処理の高速化を図ることができるようにしてもよレ、。  Next, contrary to the above-described second embodiment, the processing speed may be increased by reducing the area for performing the brightness binary processing.
すなわち、 図 5に示すようにステップ 301、 302、 303では、 図 3のス テツプ 101、 104、 105と同様に検査領域 2全体 Aについて明度変化量を しきい値 C2によって 2値化する処理がなされる。  That is, as shown in FIG. 5, in steps 301, 302, and 303, the process of binarizing the brightness change amount for the entire inspection area A by the threshold value C2 in the same manner as steps 101, 104, and 105 in FIG. Done.
ついで、 ステップ 304では、 そして、 上記しきい値 C2以上の明度変化量とな るブロブが求められる。  Next, in step 304, a blob having a brightness change amount equal to or greater than the threshold value C2 is obtained.
すなわち、 ボイ ド 3を示すブロブ P1と印字された文字 「1 23」 をそれぞれ示 すブロブ P 2、 P3、 P 4が抽出され、 これらブロブの重心座標位置 G1〜G4が記憶 されるとともに、 ブロブの数 n (=4) が記憶される (ステップ 304) 。  That is, the blob P1 indicating the void 3 and the blobs P2, P3, and P4 respectively indicating the printed character "123" are extracted, and the center-of-gravity coordinate positions G1 to G4 of these blobs are stored. The number n (= 4) is stored (step 304).
つぎの段階では、 上記ブロブ Pl、 P2、 P3、 P 4のいずれかがボイ ド 3である ことが明らかであるので、 ブロブ Pl、 P2、 P3、 P4の重心座標位置 Gl、 G2、 G3、 G4の周囲の一定の大きさ B (B< A) の局所領域 6についてのみ明度をし きい値 CIによって 2値化する処理を行い、 極力少ない領域のみを 2値化処理する ことでボイ ド 3を探索する。 In the next stage, since it is clear that any of the above blobs P1, P2, P3, and P4 is void 3, the centroid coordinate positions Gl, G2, G3, and G4 of blobs P1, P2, P3, and P4 Only a local area 6 of a fixed size B (B <A) around Search for void 3 by performing binarization using the threshold CI and binarizing only the smallest possible area.
すなわち、 上記ステップ 304で記憶された各ブロブ P i ( i == l、 2、 3、 4) を示す iを 1にイニシャライズして (ステップ 305) 、 iが nに達するま で以下のステップ 307〜ステップ 309の処理を繰り返し実行する (ステップ 31 1、 306) 。  That is, i indicating each blob P i (i == l, 2, 3, 4) stored in the above step 304 is initialized to 1 (step 305), and the following steps 307 are performed until i reaches n. -Repeat the processing of step 309 (steps 311, 306).
すなわち、 ブロブ P iの重心座標位置 Gi ( i = l、 2、 3、 4) を中心とす る所定の大きさ Bの矩形の局所領域 6が生成され (ステップ 307) 、 この局所 領域 6の濃淡画像の各画素の明度をしきい値 C 1によって 2値化する処理が実行さ れる (ステップ 308) 。  That is, a rectangular local area 6 of a predetermined size B centered on the barycenter coordinate position Gi (i = 1, 2, 3, 4) of the blob P i is generated (step 307). A process of binarizing the brightness of each pixel of the grayscale image with the threshold value C1 is executed (step 308).
そして、 上記しきい値 C1以下の明度となるブロブが求められる。 この場合、 ボ ィ ド 3を示すブロブ P5のみが抽出される。 表面ムラ 4を示すブロブについては、 局所領域 6外にあるので、 ブロブとして抽出されない (ステップ 309) 。  Then, a blob having brightness equal to or less than the threshold value C1 is obtained. In this case, only the blob P5 indicating the body 3 is extracted. Blobs showing surface unevenness 4 are outside the local area 6 and are not extracted as blobs (step 309).
ついで、 上記ステップ 304で記憶された各ブロブ Pl、 P2、 P3、 P4の重心 座標位置 Gl、 G2、 G3、 G4と、 上記ステップ 309で記憶されたブロブ P 5の重 心座標位置 G5との距離が一致しているものを、 ボイ ド 3であると判断する処理が 実行される。  Then, the distance between the barycentric coordinate position Gl, G2, G3, G4 of each blob Pl, P2, P3, P4 stored in step 304 above and the barycentric coordinate position G5 of blob P5 stored in step 309 above A process that determines that the match is found to be a void 3 is executed.
この結果、 ブロブ P1の重心座標位置 G 1とブロブ P5の重心座標位置 G5との距 離が一致するので、 この座標位置 G1または G5がボイ ド 3の重心であると判定す ることができる。 なお、 上述したように距離が一致したか否かの判定を行うこと なく、 ステップ 309の判断 YE Sとなった時点 (プロブ P 5検出時点) で、 それ がボイ ド 3であると判断してもよレ、 (ステップ 310) 。  As a result, the distance between the barycentric coordinate position G1 of the blob P1 and the barycentric coordinate position G5 of the blob P5 matches, so that it is possible to determine that the coordinate position G1 or G5 is the barycenter of the void 3. It should be noted that, as described above, without determining whether or not the distances match, at the time when the determination YES of step 309 is reached (at the time of detecting the probe P5), it is determined that it is void 3. (Step 310).
なお、 ボイ ド 3が 2以上ある場合には、 破線 Fに示すように、 ステップ 310 からステップ 3 1 1に移行するループを設けるようにすればよい。  If there are two or more voids 3, a loop may be provided to shift from step 310 to step 311 as shown by the broken line F.
以上のように、 この第 3の実施の形態によれば、 明度を 2値化する領域の大き さ Bが全体 Aを 2値化処理する場合に較べて小さくなる。 しかも、 明度変化量が 高い領域の周囲についてのみ明度の 2値化処理を行うことによりボイ ド 3を探索 するようにしたので、 探索の過程で、 表面ムラ (汚れ) 4を示すブロブについて は抽出されない。 このため演算処理を高速に行うことができる。 As described above, according to the third embodiment, the size B of the area where the brightness is binarized is smaller than when the entire A is binarized. Moreover, since the brightness 3 is binarized only in the area around the area where the brightness variation is high, the search for the void 3 is performed, and in the search process, blobs showing surface unevenness (dirt) 4 are extracted. Not done. For this reason, arithmetic processing can be performed at high speed.
なお、 上述した実施の形態では、 I Cモールド表面にボイ ド 3という欠陥が発 生することを想定しているが、 検査すべき検査対象物、 欠陥の種類については、 任意である。  In the above-described embodiment, it is assumed that a defect called void 3 is generated on the surface of the IC mold, but the inspection object to be inspected and the type of the defect are arbitrary.
たとえば、 ウェハチップ上に現れる凹凸欠陥、 セラミック基板上に現れる凹凸 欠陥、 回路パターン上の凹凸欠陥、 積層基板側面に現れる凹欠陥を検出する場合 に適用可能である。  For example, the present invention can be applied to the detection of unevenness defects appearing on a wafer chip, unevenness defects appearing on a ceramic substrate, unevenness defects on a circuit pattern, and concave defects appearing on the side surface of a laminated substrate.
この場合、 検出すべき欠陥の種類によって、 その欠陥部分の明度や明度変化量 が異なるので、 欠陥の種類に応じて、 上記しきい値 C l、 C 2を異ならせるように してもよレ、。  In this case, since the brightness and the amount of change in brightness of the defect portion vary depending on the type of defect to be detected, the thresholds C l and C 2 may be varied according to the type of defect. ,.
また、 本発明としては電子部品の欠陥検出に限定されることなく、 凹凸状の欠 陥を検出するのであれば、 任意の検査対象物に適用可能である。  In addition, the present invention is not limited to the detection of defects in electronic components, but can be applied to any inspection object as long as it detects irregular defects.
なお、 上述した実施の形態を実施する態様としては、 以下のような場合が考え られる。  The following cases can be considered as modes for implementing the above-described embodiment.
すなわち、 上記第 1の実施の形態ないし第 3の実施の形態の処理内容を適宜、 フロッピィディスクに格納して、 欠陥検査を行うユーザ、 オペレータに流通、 配 布してもよい。 また、 流通配布する記憶媒体としては、 フロッピィディスク以外 のハードディスク、 I Cカード、 C D— R OMといった記憶媒体であってもよい。 また、 流通させる態様としては、 上述したように携行自在の記憶媒体を配布す る態様だけでなくて、 本実施の形態のソフトウエアを利用するハードウエアと、 本実施の形態のソフトウェアを開発し、 このソフトウエアを収容した開発用のコ ンピュータとを、 公衆回線やネッ トワークによって通信自在に接続し、 これらネ ッ トワーク等を介して、 流通させる態様であってもよい。  That is, the processing contents of the above-described first to third embodiments may be appropriately stored in a floppy disk, and distributed and distributed to a user or an operator who performs a defect inspection. Further, the storage medium to be distributed and distributed may be a storage medium other than a floppy disk, such as a hard disk, an IC card, or a CD-ROM. In addition to the modes for distributing portable storage media as described above, hardware that uses the software of the present embodiment and software of the present embodiment are developed for distribution. Alternatively, a development computer containing the software may be communicably connected via a public line or a network, and may be distributed via the network.
また、 上記流通、 配布する際、 ソフトウェアを利用するハードウェア (欠陥検 出装置) にソフトウェアをインス トールするために、 インスト一ラを添付して流 通配布してもよく、 ソフトウェアを容量圧縮したデータを流通、 配布してもよい c 産業上の利用可能性 At the time of the above distribution and distribution, in order to install the software on hardware (defect detection device) that uses the software, an installer may be attached and distributed to distribute the software. Data may be distributed and distributed c Industrial availability
本発明は、 電子部品の欠陥検出に限定されることなく、 凹凸状の欠陥を検出す るのであれば、 任意の検査対象物に適用可能である。 The present invention is not limited to the detection of defects in electronic components, and detects irregular defects. If applicable, it can be applied to any inspection object.

Claims

請求の範囲 The scope of the claims
1 . 被検出対象の画像を撮像して当該被検出対象上に表れる凹凸状の欠陥 を検出する欠陥検出装置において、  1. A defect detection device that captures an image of an object to be detected and detects an uneven defect appearing on the object to be detected.
前記撮像画像の各画素の明度を所定のしきい値で 2値化する第 1の 2値化手段 と、  First binarizing means for binarizing the brightness of each pixel of the captured image with a predetermined threshold,
前記摄像画像の各画素の明度の変化量を演算する微分手段と、  Differentiating means for calculating the amount of change in brightness of each pixel of the 摄 image image,
前記微分手段によって演算された各画素の明度の変化量を所定のしきい値で 2 値化する第 2の 2値化手段と、  Second binarizing means for binarizing the change in brightness of each pixel calculated by the differentiating means with a predetermined threshold value,
前記第 1の 2値化手段によつて所定のしきレ、値以下の明度となり、 かつ前記第 2の 2値化手段によって所定のしきレ、値以上の明度変化量となる画素の座標位置 を求め、 この座標位置に凹凸状の欠陥があることを検出する検出手段と  A coordinate position of a pixel which has a predetermined threshold and a brightness equal to or less than a value by the first binarization means and a brightness change amount equal to or more than the predetermined threshold and value by the second binarization means. Detecting means for detecting that there is an irregular defect at this coordinate position;
を具えた欠陥検出装置。  Defect detection device equipped with
2 . 前記第 1の 2値化手段の所定のしきい値および前記第 2の 2値化手段 の所定のしきい値は、 検出すべき凹凸状の欠陥の種類に応じて異ならせるように したことを特徴とする請求の範囲 1項記載の欠陥検出装置。  2. The predetermined threshold value of the first binarization unit and the predetermined threshold value of the second binarization unit are made different depending on the type of the uneven defect to be detected. 2. The defect detection device according to claim 1, wherein:
3 . . 被検出対象の画像を撮像して当該被検出対象上に表れる凹凸状の欠陥 を検出する欠陥検出装置において、  3. A defect detection device that captures an image of a detection target and detects uneven defects appearing on the detection target,
前記撮像画像の各画素の明度を所定のしきい値で 2値化する第 1の 2値化手段 と、  First binarizing means for binarizing the brightness of each pixel of the captured image with a predetermined threshold,
前記第 1の 2値化手段によつて所定のしきレ、値以下の明度となる画素の座標位 置を記億する記億手段と、  A storage means for storing a coordinate position of a pixel having a brightness equal to or less than a predetermined threshold and value by the first binarization means;
前記記憶手段によって記憶された画素を含む所定の大きさの局所領域を設定し、 この局所領域の各画素の明度の変化 iを演算する微分手段と、  A differentiating means for setting a local area of a predetermined size including the pixels stored by the storage means, and calculating a change i in brightness of each pixel in the local area;
前記微分手段によって演算された各画素の明度の変化量を所定のしきい値で 2 値化する第 2の 2値化手段と、  Second binarizing means for binarizing the change in brightness of each pixel calculated by the differentiating means with a predetermined threshold value,
前記 2の 2値化手段によつて所定のしきい値以上の明度変化量となる画素の座 標位置を求め、 この座標位置に凹凸状の欠陥があることを検出する検出手段と を具えた欠陥検出装置。  Detecting means for determining a coordinate position of a pixel having a brightness change amount equal to or greater than a predetermined threshold value by the binarizing means, and detecting that there is an irregular defect at the coordinate position. Defect detection device.
4 . 被検出対象の画像を撮像して当該被検出対象上に表れる凹凸状の欠陥 を検出する欠陥検出装置において、 4. Irregular defects appearing on the detected object by capturing the image of the detected object In the defect detection device that detects
前記撮像画像の各画素の明度の変化量を演算する微分手段と、  Differentiating means for calculating the change in brightness of each pixel of the captured image,
前記微分手段によって演算された各画素の明度の変化量を所定のしきい値で 2 値化する第 1の 2値化手段と、  First binarizing means for binarizing the change in brightness of each pixel calculated by the differentiating means with a predetermined threshold value,
前記第 1の 2値化手段によつて所定のしきい値以上の明度変化量となる画素の 座標位置を記憶する記憶手段と、  Storage means for storing, by the first binarization means, a coordinate position of a pixel having a brightness change amount equal to or greater than a predetermined threshold value;
前記記憶手段によつて記憶された画素を含む所定の大きさの局所領域を設定し、 この局所領域の各画素の明度を所定のしきい値で 2値化する第 2の 2値化手段と、 前記 2の 2値化手段によって所定のしきい値以下の明度となる画素の座標位置 を求め、 この座標位置に凹凸状の欠陥があることを検出する検出手段と  A second binarizing unit for setting a local region of a predetermined size including the pixels stored by the storage unit, and binarizing the brightness of each pixel in the local region with a predetermined threshold value; Detecting means for determining a coordinate position of a pixel having a brightness equal to or less than a predetermined threshold value by the binarizing means, and detecting that the coordinate position has an uneven defect;
を具えた欠陥検出装置。  Defect detection device equipped with
5 . 被検出対象の画像を撮像して当該被検出対象上に表れる凹凸状の欠陥 を検出する欠陥検出方法において、  5. A defect detection method for capturing an image of an object to be detected and detecting an uneven defect appearing on the object to be detected,
前記撮像画像の各画素の明度を所定のしきい値で 2値化する第 1の 2値化ステ ップと、  A first binarization step of binarizing the brightness of each pixel of the captured image with a predetermined threshold value;
前記撮像画像の各画素の明度の変化量を演算する微分ステップと、  A differentiating step of calculating an amount of change in brightness of each pixel of the captured image,
前記微分ステップによって演算された各画素の明度の変化!:を所定のしきい値 で 2値化する第 2の 2値化ステップと、  Change in brightness of each pixel calculated by the differentiating step! : A second binarization step of binarizing with a predetermined threshold value;
前記第 1の 2値化ステップによって所定のしきい値以下の明度となり、 かつ前 記第 2の 2値化ステップによって所定のしきい値以上の明度変化量となる画素の 座標位置を求め、 この座標位置に凹凸状の欠陥があることを検出する検出ステツ プと  By the first binarization step, a coordinate position of a pixel having a brightness equal to or less than a predetermined threshold value and a brightness change amount equal to or greater than the predetermined threshold value is determined by the second binarization step, A detection step for detecting the presence of an irregular defect at the coordinate position;
を具えた欠陥検出方法。  Defect detection method comprising:
6 . 前記第 1の 2値化ステップの所定のしきい値および前記第 2の 2値化 ステップの所定のしきい値は、 検出すべき凹凸状の欠陥の種類に応じて異ならせ るようにしたことを特徴とする請求の範囲 1項記載の欠陥検出方法。  6. The predetermined threshold value of the first binarization step and the predetermined threshold value of the second binarization step are made different depending on the type of uneven defect to be detected. 2. The defect detection method according to claim 1, wherein the defect is detected.
7 . 被検出対象の画像を撮像して当該被検出対象上に表れる凹凸状の欠陥 を検出する欠陥検出方法において、  7. A defect detection method for capturing an image of an object to be detected and detecting an uneven defect appearing on the object to be detected,
前記撮像画像の各画素の明度を所定のしきい値で 2値化する第 1の 2値化ステ ップと、 A first binarization step for binarizing the brightness of each pixel of the captured image with a predetermined threshold And
前記第 1の 2値化ステップによって所定のしきい値以下の明度となる画素の座 標位置を記憶する記憶ステップと、  A storage step of storing a coordinate position of a pixel having a brightness equal to or less than a predetermined threshold value in the first binarization step;
前記記憶ステップによつて記憶された画素を含む所定の大きさの局所領域を設 定し、 この局所領域の各画素の明度の変化量を演算する微分ステップと、 前記微分ステップによって演算された各画素の明度の変化量を所定のしきい値 で 2値化する第 2の 2値化ステップと、  A differentiating step of setting a local area of a predetermined size including the pixels stored in the storing step and calculating an amount of change in the brightness of each pixel in the local area; A second binarization step of binarizing a change in brightness of a pixel with a predetermined threshold value;
前記 2の 2値化ステップによって所定のしきい値以上の明度変化量となる画素 の座標位置を求め、 この座標位置に凹凸状の欠陥があることを検出する検出ステ ップと  A detection step of determining a coordinate position of a pixel having a brightness change amount equal to or greater than a predetermined threshold value by the binarization step of 2 and detecting that there is an uneven defect at the coordinate position;
を具えた欠陥検出方法。  Defect detection method comprising:
8 . 被検出対象の画像を撮像して当該被検出対象上に表れる凹凸状の欠陥 を検出する欠陥検出方法において、  8. A defect detection method for capturing an image of an object to be detected and detecting an uneven defect appearing on the object to be detected,
前記撮像画像の各画素の明度の変化量を演算する微分ステップと、  A differentiating step of calculating an amount of change in brightness of each pixel of the captured image,
前記微分ステップによって演算された各画素の明度の変化量を所定のしきい値 で 2値化する第 1の 2値化ステップと、  A first binarization step of binarizing a change in brightness of each pixel calculated by the differentiation step with a predetermined threshold value;
前記第 1の 2値化ステップによって所定のしきい値以上の明度変化量となる画 素の座標位置を記憶する記憶ステップと、  A storage step of storing a coordinate position of a pixel having a brightness change amount equal to or greater than a predetermined threshold value in the first binarization step;
前記記憶ステップによって記憶された面素を含む所定の大きさの局所領域を設 定し、 この局所領域の各画素の明度を所定のしきい値で 2値化する第 2の 2値化 ステップと、  A second binarizing step of setting a local region of a predetermined size including the surface element stored in the storing step, and binarizing the brightness of each pixel of the local region with a predetermined threshold value; ,
前記 2の 2値化ステップによつて所定のしきレ、値以下の明度となる画素の座標 位置を求め、 この座標位置に凹凸状の欠陥があることを検出する検出ステップと を具えた欠陥検出方法。  A defect detection step comprising: determining a coordinate position of a pixel having a brightness equal to or smaller than a predetermined threshold and a value in the binarization step of 2; and detecting that there is an irregular defect at the coordinate position. Method.
PCT/JP1997/001562 1996-05-10 1997-05-09 Defect detecting apparatus and method WO1997043623A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8116670A JPH09304292A (en) 1996-05-10 1996-05-10 Apparatus and method for detecting flaw
JP8/116670 1996-05-10

Publications (1)

Publication Number Publication Date
WO1997043623A1 true WO1997043623A1 (en) 1997-11-20

Family

ID=14692996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001562 WO1997043623A1 (en) 1996-05-10 1997-05-09 Defect detecting apparatus and method

Country Status (2)

Country Link
JP (1) JPH09304292A (en)
WO (1) WO1997043623A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117409001A (en) * 2023-12-14 2024-01-16 合肥晶合集成电路股份有限公司 Bubble analysis method and analysis device for wafer bonding

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4978215B2 (en) * 2007-01-30 2012-07-18 トヨタ自動車株式会社 Machining surface defect judgment method
JP5358383B2 (en) * 2009-09-30 2013-12-04 パナソニック デバイスSunx株式会社 Displacement sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133342A (en) * 1981-02-12 1982-08-18 Sanki Denshi Kogyo Kk Detector for contamination
JPS61126437A (en) * 1984-11-26 1986-06-13 Matsushita Electric Works Ltd Video processor
JPH01175351U (en) * 1988-05-26 1989-12-13
JPH03295408A (en) * 1990-04-14 1991-12-26 Matsushita Electric Works Ltd Method and instrument for inspecting uneven surface
JPH05280959A (en) * 1992-03-30 1993-10-29 Fuji Photo Film Co Ltd Defect inspecton device
JPH0815172A (en) * 1994-06-27 1996-01-19 Matsushita Electric Works Ltd Visual inspection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133342A (en) * 1981-02-12 1982-08-18 Sanki Denshi Kogyo Kk Detector for contamination
JPS61126437A (en) * 1984-11-26 1986-06-13 Matsushita Electric Works Ltd Video processor
JPH01175351U (en) * 1988-05-26 1989-12-13
JPH03295408A (en) * 1990-04-14 1991-12-26 Matsushita Electric Works Ltd Method and instrument for inspecting uneven surface
JPH05280959A (en) * 1992-03-30 1993-10-29 Fuji Photo Film Co Ltd Defect inspecton device
JPH0815172A (en) * 1994-06-27 1996-01-19 Matsushita Electric Works Ltd Visual inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117409001A (en) * 2023-12-14 2024-01-16 合肥晶合集成电路股份有限公司 Bubble analysis method and analysis device for wafer bonding
CN117409001B (en) * 2023-12-14 2024-04-05 合肥晶合集成电路股份有限公司 Bubble analysis method and analysis device for wafer bonding

Also Published As

Publication number Publication date
JPH09304292A (en) 1997-11-28

Similar Documents

Publication Publication Date Title
US11636585B2 (en) Substrate defect inspection apparatus, substrate defect inspection method, and storage medium
US20060018534A1 (en) Technique for detecting a defect of an object by area segmentation of a color image of the object
KR20200086812A (en) System for inspecting substrate defects by bubbles and Method for inspecting substrate defects by bubbles
JP2004109018A (en) Circuit pattern inspecting method and inspecting device
Iwahori et al. Defect classification of electronic board using dense SIFT and CNN
KR101022187B1 (en) Substrate inspection device
WO1997043623A1 (en) Defect detecting apparatus and method
JP4010838B2 (en) Pattern inspection device
JP3233205B2 (en) Circuit inspection method and device
JPWO2009118842A1 (en) Coin center detection device and coin center detection method
JP2692147B2 (en) Object detection method
JP2004163113A (en) Visual examination device of component for electronic circuit
JP4474006B2 (en) Inspection device
JP3919207B2 (en) Appearance inspection device
JP3665587B2 (en) Semiconductor element inspection method, semiconductor element inspection program, and recording medium on which the semiconductor element inspection program is recorded
JP3581040B2 (en) Wiring pattern inspection method
JPH102725A (en) Visual inspection device for tape carrier package
JP2024025687A (en) Inspection apparatus and inspection method
JP2002015303A (en) Defect detecting method for pattern and its device
KR102583036B1 (en) Method of inspecting a substrate
JP3191373B2 (en) Pattern recognition method
JP3568835B2 (en) Image recognition device and visual inspection device using the device
JPH0720060A (en) Device for inspecting defective pattern and foreign matter
JP2954498B2 (en) Method for estimating joint position of electronic components
JP4275582B2 (en) Board inspection equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR SG US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)