WO1997043042A1 - Compositions catalytiques a nanoparticules de metal sur support refractaire - Google Patents

Compositions catalytiques a nanoparticules de metal sur support refractaire Download PDF

Info

Publication number
WO1997043042A1
WO1997043042A1 PCT/US1997/007793 US9707793W WO9743042A1 WO 1997043042 A1 WO1997043042 A1 WO 1997043042A1 US 9707793 W US9707793 W US 9707793W WO 9743042 A1 WO9743042 A1 WO 9743042A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractory support
active metal
palladium
catalyst composition
catalyst
Prior art date
Application number
PCT/US1997/007793
Other languages
English (en)
Inventor
Syed Ismat Ullah Shah
Theodore Auger Koch
Original Assignee
E.I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E.I. Du Pont De Nemours And Company filed Critical E.I. Du Pont De Nemours And Company
Priority to EP97933987A priority Critical patent/EP0902728A1/fr
Priority to JP09540943A priority patent/JP2000510042A/ja
Priority to AU37155/97A priority patent/AU3715597A/en
Publication of WO1997043042A1 publication Critical patent/WO1997043042A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/022Preparation from organic compounds
    • C01B15/023Preparation from organic compounds by the alkyl-anthraquinone process
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/06Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by conversion of non-aromatic six-membered rings or of such rings formed in situ into aromatic six-membered rings, e.g. by dehydrogenation
    • C07C37/07Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by conversion of non-aromatic six-membered rings or of such rings formed in situ into aromatic six-membered rings, e.g. by dehydrogenation with simultaneous reduction of C=O group in that ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes

Definitions

  • the invention generally relates to catalyst compositions of nanoparticulate metal deposited on a refractory support material, processes for manufacturing said catalyst compositions and the use of said catalyst compositions.
  • the catalyst compositions are useful in hydrogenation processes.
  • U. S. Patent No. 4,046,712 discloses a catalyst comprising a hard, substantially non-porous paniculate substrate and a sputtered deposit of catalytic metal on the substrate, said deposit existing as an atomic dispersion and derived from a target of material subjected to ion beam bombardment. Specific utility of these catalysts is for high temperature, gas phase catalytic reactions.
  • 1086710 discloses a process for preparing supported palladium catalysts comprising the vapor deposition of a compound of palladium onto a porous support while the support is at a temperature above the decomposition temperature of the compound of palladium. Deposition of palladium occurs on the surface of the support and as well as into pores having diameters greater than 50 Angstrom units (A).
  • U. S. Patent No. 4,536,482 discloses a catalyst wherein a paniculate catalyst support has co-sputtered on its surface a mixture of a catalytically active metal and a co-sputtered support material. The use of RF sputtering is disclosed.
  • U. S. Patent No. 5,077,258 discloses a metal catalytic film comprising a flexible substrate, a catalytic metal layer adherent thereto, said layer having a thickness of 200 to 10,000 Angstroms (A). The process for preparing this film material involves the use of an electron beam gun or a magnetron sputtering device. Sputtering is carried out under reduced pressure of 0.1 Torr or less.
  • the process of the present invention provides catalysts comprising catalytic metals in the form of nanoparticles on a refractory support.
  • the metal nanoparticles are neither atomic dispersions nor thin films. They are particles ranging in size from between about 10 and 100 nanometers (nm).
  • the catalysts of the present invention are prepared by magnetron sputtering, as opposed to ion beam sputtering, which is a different and a much simpler process compared to the process disclosed by Cairns.
  • the present invention provides a composition having utility as a catalyst comprising a nanoparticulate catalytically active metal on a refractory support.
  • the invention further provides a process for the preparation of a composition having utility as a catalyst comprising a nanoparticulate catalytically active metal on a refractory support, said process comprising the physical vapor deposition of a catalytically active metal by sputtering, at a preferred pressure of > 10 mTorr, onto a refractory support cooled, preferably by liquid nitrogen, during deposition to ensure limited mobility of the incoming sputtered catalytically active metal atoms.
  • sputtering takes place using a magnetron gun.
  • the invention further provides for an improved process for the reduction of anthraquinones to anthrahydroquinones as an integral part of a process to prepare hydrogen peroxide, said improvement comprising the use of the composition of the present invention as a hydrogenation catalyst.
  • the present invention provides a composition having utility as a catalyst comprising a nanoparticulate catalytically active metal on a refractory support.
  • the nanoparticulate catalytically active metal can be a single active metal or can be a combination of one or more selected active metals.
  • the catalytically active metal, or combination of active metals is selected from the group consisting of platinum, palladium, rhodium, iridium, ruthenium, silver, gold, copper, mercury and rhenium.
  • the most preferred catalytically active metal is palladium, including combinations therewith.
  • the refractory support is preferably selected from the group consisting of alumina, (various forms), silica, titania, carbon (various forms), zirconia, silica- alumina and magnesia.
  • a specifically preferred refractory support is alumina, most preferred being ⁇ -alumina.
  • the size of the catalyst support is not critical to the practice of the invention but may be important in the subsequent use of the catalyst. In gas phase reactions and in fixed bed reactors, a suitable support size would generally be about 2-3 mm in diameter as spherical or cylindrical shapes (L/D - 1). For slurry liquid phase reactions, a suitable support size would generally have a mean particle diameter of about 40 to about 150 microns depending on substrate density.
  • nanoparticulate is meant that the particles of the catalytically active metal have particle sizes in the range of about 10 nanometers to about 100 nanometers.
  • Pressures usable in the sputtering process of the present invention range from greater than about 10 up to about 200 mTorr. Most preferred is a pressure of approximately 30 mTorr.
  • the refractory support is cooled during deposition to ensure limited mobility of the incoming sputtered catalytically active metal atoms. Temperatures usable are from between about 20 C C to about minus 180°C. Liquid nitrogen is the preferred and most convenient means of providing such an environment.
  • catalytically active metals dispersed on refractory supports are common in the chemical process industry.
  • a major group of processes included in this category are catalytic hydrogenations.
  • Several important catalytic hydrogenations include, for example, the conversion of benzene to cyclohexane, the hydrogenation of edible oils to yield margerine-type products and the conversion of unsaturated oxygen-containing compounds, aldehydes and ketones, to alcohols.
  • Palladium supported on ⁇ -Al2 ⁇ 3 is a catalyst that may be used, for example, in the process for the production of hydrogen peroxide.
  • An integral part of this process involves the catalytic hydrogenation of various substituted anthraquinones to the corresponding anthrahydroquinones.
  • a catalyst currently employed in this hydrogenation process is palladium either supported or as palladium black.
  • One catalyst currently in use is produced by solution precipitation and deposition of palladium on the chosen support.
  • a commonly used support material is alumina.
  • the present invention provides a new process, physical vapor deposition (PVD) as a process for producing such an alumina supported palladium hydrogenation catalyst.
  • PVD physical vapor deposition
  • the grain size is apparent in the attached figures wherein a lattice image of nanoparticulate palladium on a copper grid is shown.
  • palladium nanocatalyst supported on ⁇ 20 ⁇ m ⁇ -Al 2 O 3 was prepared by high pressure sputtering. Sputtering was carried out using a magnetron gun with a palladium target. High sputtering pressure ( > 10 mTorr) is required to thermalize the sputtered atoms so as to limit their mobility at the surface of the AI 2 O 3 particles. With this limited mobility diffusion of not more than 2-3 atomic distances, cluster or nanoparticle formation occurs rather than the deposition of a continuous film. The particles of the refractory support are cooled in liquid nitrogen during deposition to ensure limited mobility of the incoming sputtered palladium atoms.
  • the temperature of AI 2 O 3 can be varied in a controlled fashion in order to produce nanoparticles of varying sizes. Sputtering is a line-of-sight process. Therefore, the Al 2 O 3 must be either agitated while being deposited on or the deposition has to be done several times with mixing in between to expose fresh support surface so that the desired amount of metal loading can be achieved. Moreover, since the total exposed area of the nanoparticle is the determining factor for the enhancement of activity, if multilayers of palladium nanoparticles are formed, the activity per unit weight metal is reduced. Ideally, a monolayer of well dispersed nanoparticles is desired.
  • Scanning electron microscopy (SEM) analysis of a palladium/alumina catalyst for anthraquinone reduction prepared by the Applicants' solution precipitation method shows an average grain size of palladium to be about 0.1 ⁇ m.
  • the resolution of conventional SEM is not high enough to measure the grain size of the nanoparticulate palladium/alumina prepared by the process of the present invention. Therefore, transmission electron microscopy (TEM) analyses of parallel samples deposited on a copper grid support were used to show the grain size to be less than about 200 angstrom (A), (20 nanometers).
  • EXAMPLE 1 Catalyst Preparation Physical Vapor Deposition was carried out in a stainless steel vacuum chamber (Huntington, Santa Clara, CA). The base pressure prior to the deposition was 3.2 x 10( _6 )Torr. A 99.999% pure palladium target was used (Englehard Industries Inc.). Argon gas was introduced in the chamber at 30 seem and a pressure of 30 mTorr was established by throttling the high vacuum gate valve. A commercially available magnetron gun was used for sputtering (US Gun: 2 inch) in a sputter down configuration. A DC power supply (MDX) was used.
  • Sputtering was carried out in a constant power mode at 75 Watts with the target voltage being 250 V and the current 0.3 A.
  • the alumina powder 0.2 grams, was placed 2 inches away from, and directly underneath, the target in a copper boat.
  • the boat was cooled to -150 C C by flowing liquid nitrogen through the copper tubes welded to the bottom of the boat. Once a temperature of -150°C was established, the plasma was ignited.
  • the powder was mixed using a wobble stick to coat the powder uniformly. A loading of approximately 1 wt. % was achieved in 20 minutes of deposition. Once the desired loading was achieved, the power to the target, the Argon gas to the chamber and the liquid nitrogen to the powder holder were turned off. The sample was allowed to warm-up to the room temperature in vacuum to avoid any moisture condensation.
  • the hydrogenated product was then air sparged to convert the alkyl anthrahydroquinone to quinone and hydrogen peroxide.
  • the hydrogen peroxide was extracted and the amount was determined by titration.
  • the activity was finally calculated in terms of mL H 2 /min/g Pd.
  • Activity measured for the palladium/alumina catalyst of the present invention gave values of 300 mL H 2 /min/g palladium where the best values for the palladium/alumina catalyst prepared by solution precipitation are about 30 mL H 2 /min/g palladium at the same Pd loading.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

Compositions catalytiques comprenant des nanoparticules de métal sur un support réfractaire. Procédé de fabrication de ces compositions et utilisation de ces dernières, par exemple dans des procédés d'hydrogénation.
PCT/US1997/007793 1996-05-14 1997-05-07 Compositions catalytiques a nanoparticules de metal sur support refractaire WO1997043042A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97933987A EP0902728A1 (fr) 1996-05-14 1997-05-07 Compositions catalytiques a nanoparticules de metal sur support refractaire
JP09540943A JP2000510042A (ja) 1996-05-14 1997-05-07 耐火性担体上にナノ微粒子状金属を有する触媒組成物
AU37155/97A AU3715597A (en) 1996-05-14 1997-05-07 Catalyst compositions of nanoparticulate metal on a refractory support

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6264196P 1996-05-14 1996-05-14
US60/062,641 1996-05-14

Publications (1)

Publication Number Publication Date
WO1997043042A1 true WO1997043042A1 (fr) 1997-11-20

Family

ID=22043846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/007793 WO1997043042A1 (fr) 1996-05-14 1997-05-07 Compositions catalytiques a nanoparticules de metal sur support refractaire

Country Status (4)

Country Link
EP (1) EP0902728A1 (fr)
JP (1) JP2000510042A (fr)
AU (1) AU3715597A (fr)
WO (1) WO1997043042A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055432A1 (fr) * 2001-01-10 2002-07-18 Razmik Malkhasyan Procede destiner a synthetiser des carbures et des catalyseurs actifs de taille nanometrique
WO2003094195A1 (fr) * 2002-05-02 2003-11-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procede de fabrication de catalyseurs
US6787500B2 (en) 2001-06-29 2004-09-07 Denso Corporation Catalyst particles and method of manufacturing the same
WO2005030382A2 (fr) * 2003-09-26 2005-04-07 3M Innovative Properties Company Catalyseurs, agents d'activation, support et methodologies associees utilisees pour produire des systemes catalytiques notamment lorsque le catalyseur est depose sur le support par depot physique en phase vapeur
US7274458B2 (en) 2005-03-07 2007-09-25 3M Innovative Properties Company Thermoplastic film having metallic nanoparticle coating
WO2008118097A1 (fr) * 2007-03-23 2008-10-02 Agency For Science, Technology And Research Catalyseurs à base de palladium
FR2941878A1 (fr) * 2009-02-10 2010-08-13 Quertech Ingenierie Procede de traitement par un faisceau d'ions d'une couche metallique deposee sur un substrat
US8058202B2 (en) 2005-01-04 2011-11-15 3M Innovative Properties Company Heterogeneous, composite, carbonaceous catalyst system and methods that use catalytically active gold
US8137750B2 (en) 2006-02-15 2012-03-20 3M Innovative Properties Company Catalytically active gold supported on thermally treated nanoporous supports
WO2013160163A1 (fr) 2012-04-27 2013-10-31 Solvay Sa Catalyseurs d'hydrogénation, leur procédé de fabrication et leur utilisation pour la préparation de peroxyde d'hydrogène
WO2014001133A1 (fr) 2012-06-27 2014-01-03 Solvay Sa Catalyseur d'hydrogénation, procédé de fabrication de celui-ci et procédé pour préparer du peroxyde d'hydrogène
EP2705901A1 (fr) 2012-09-06 2014-03-12 Solvay SA Catalyseurs d'hydrogénation, procédé de fabrication associé et son utilisation pour préparer du peroxyde d'hydrogène
EP2794105A4 (fr) * 2011-12-21 2016-03-09 3M Innovative Properties Co Systèmes de catalyseurs
GB2544277A (en) * 2015-11-10 2017-05-17 Johnson Matthey Plc Catalysts

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052517B2 (ja) * 2004-06-25 2008-02-27 孝之 阿部 担持微粒子の製造方法
JP4769783B2 (ja) * 2007-10-30 2011-09-07 孝之 阿部 担持微粒子の製造方法
JP5751484B2 (ja) * 2011-06-10 2015-07-22 国立大学法人東北大学 ナノ金属ガラス粒子集合体薄膜の製造方法
KR102096118B1 (ko) * 2012-02-24 2020-04-02 디에스엠 아이피 어셋츠 비.브이. 수소화 공정을 위한 금속 분말형 촉매

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1486108A (en) * 1975-02-27 1977-09-21 Ici Ltd Reforming and/or isomerisation of hydrocarbon feedstocks using a sputtered catalyst
GB1537839A (en) * 1975-06-10 1979-01-04 Atomic Energy Authority Uk Catalysts comprising a particulate substrate with a sputtered deposit of catalytic material
US5077258A (en) * 1990-06-15 1991-12-31 Flex Products, Inc. Vapor deposited metal catalytic film, process for making the same and liquid container with the film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1486108A (en) * 1975-02-27 1977-09-21 Ici Ltd Reforming and/or isomerisation of hydrocarbon feedstocks using a sputtered catalyst
GB1537839A (en) * 1975-06-10 1979-01-04 Atomic Energy Authority Uk Catalysts comprising a particulate substrate with a sputtered deposit of catalytic material
US5077258A (en) * 1990-06-15 1991-12-31 Flex Products, Inc. Vapor deposited metal catalytic film, process for making the same and liquid container with the film

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055432A1 (fr) * 2001-01-10 2002-07-18 Razmik Malkhasyan Procede destiner a synthetiser des carbures et des catalyseurs actifs de taille nanometrique
US6787500B2 (en) 2001-06-29 2004-09-07 Denso Corporation Catalyst particles and method of manufacturing the same
WO2003094195A1 (fr) * 2002-05-02 2003-11-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procede de fabrication de catalyseurs
US7727931B2 (en) 2003-09-26 2010-06-01 3M Innovative Properties Company Catalysts, activating agents, support media, and related methodologies useful for making catalyst systems especially when the catalyst is deposited onto the support media using physical vapor deposition
EP2316567A1 (fr) 2003-09-26 2011-05-04 3M Innovative Properties Co. Catalyseurs d'or de l'échelle nano, agents d'activation, moyen de support et méthodologies apparentées utiles pour la fabrication de systèmes catalyseurs lorsque le catalyseur est déposé sur le moyen de support par le dépôt de vapeur physique
CN101973546B (zh) * 2003-09-26 2012-09-05 3M创新有限公司 一种氧化一氧化碳的方法
KR101120789B1 (ko) 2003-09-26 2012-04-20 쓰리엠 이노베이티브 프로퍼티즈 컴파니 촉매, 활성화제, 지지 매체, 및 특히 물리증착을 이용하여지지 매체 상에 촉매 증착시 촉매 시스템 제조에 유용한관련 방법
EP1977816A2 (fr) 2003-09-26 2008-10-08 3M Innovative Properties Company Catalyseurs d'or de l'échelle nano, agents d'activation, moyen de support et méthodologies apparentées utiles pour la fabrication de systèmes catalyseurs lorsque le catalyseur est déposé sur le moyen de support par le dépôt de vapeur physique
WO2005030382A2 (fr) * 2003-09-26 2005-04-07 3M Innovative Properties Company Catalyseurs, agents d'activation, support et methodologies associees utilisees pour produire des systemes catalytiques notamment lorsque le catalyseur est depose sur le support par depot physique en phase vapeur
US7989384B2 (en) 2003-09-26 2011-08-02 3M Innovative Properties Company Catalysts, activating agents, support media, and related methodologies useful for making catalyst systems especially when the catalyst is deposited onto the support media using physical vapor deposition
WO2005030382A3 (fr) * 2003-09-26 2005-11-17 3M Innovative Properties Co Catalyseurs, agents d'activation, support et methodologies associees utilisees pour produire des systemes catalytiques notamment lorsque le catalyseur est depose sur le support par depot physique en phase vapeur
US8518854B2 (en) 2005-01-04 2013-08-27 3M Innovative Properties Company Heterogeneous, composite, carbonaceous catalyst system and methods that use catalytically active gold
US8664149B2 (en) 2005-01-04 2014-03-04 3M Innovative Properties Company Heterogeneous, composite, carbonaceous catalyst system and methods that use catalytically active gold
US8058202B2 (en) 2005-01-04 2011-11-15 3M Innovative Properties Company Heterogeneous, composite, carbonaceous catalyst system and methods that use catalytically active gold
US8314046B2 (en) 2005-01-04 2012-11-20 3M Innovative Properties Company Heterogeneous, composite, carbonaceous catalyst system and methods that use catalytically active gold
US7274458B2 (en) 2005-03-07 2007-09-25 3M Innovative Properties Company Thermoplastic film having metallic nanoparticle coating
US8137750B2 (en) 2006-02-15 2012-03-20 3M Innovative Properties Company Catalytically active gold supported on thermally treated nanoporous supports
WO2008118097A1 (fr) * 2007-03-23 2008-10-02 Agency For Science, Technology And Research Catalyseurs à base de palladium
US8227640B2 (en) 2007-03-23 2012-07-24 Institute Of Bioengineering And Nanotechnology Palladium catalysts
CN102362006A (zh) * 2009-02-10 2012-02-22 夸泰克工程公司 沉淀基板上的金属层的离子束处理方法
WO2010092297A1 (fr) * 2009-02-10 2010-08-19 Quertech Ingenierie Procede de traitement par un faisceau d'ions d'une couche metallique deposee sur un substrat
FR2941878A1 (fr) * 2009-02-10 2010-08-13 Quertech Ingenierie Procede de traitement par un faisceau d'ions d'une couche metallique deposee sur un substrat
EP2396447B1 (fr) * 2009-02-10 2018-10-31 Quertech Procede de traitement par un faisceau d'ions d'une couche metallique deposee sur un substrat et substrat obtenu
EP2794105A4 (fr) * 2011-12-21 2016-03-09 3M Innovative Properties Co Systèmes de catalyseurs
US9463428B2 (en) 2011-12-21 2016-10-11 3M Innovative Properties Company Palladium-based catalyst and support systems
WO2013160163A1 (fr) 2012-04-27 2013-10-31 Solvay Sa Catalyseurs d'hydrogénation, leur procédé de fabrication et leur utilisation pour la préparation de peroxyde d'hydrogène
WO2014001133A1 (fr) 2012-06-27 2014-01-03 Solvay Sa Catalyseur d'hydrogénation, procédé de fabrication de celui-ci et procédé pour préparer du peroxyde d'hydrogène
EP2705901A1 (fr) 2012-09-06 2014-03-12 Solvay SA Catalyseurs d'hydrogénation, procédé de fabrication associé et son utilisation pour préparer du peroxyde d'hydrogène
GB2544277A (en) * 2015-11-10 2017-05-17 Johnson Matthey Plc Catalysts

Also Published As

Publication number Publication date
JP2000510042A (ja) 2000-08-08
EP0902728A1 (fr) 1999-03-24
AU3715597A (en) 1997-12-05

Similar Documents

Publication Publication Date Title
WO1997043042A1 (fr) Compositions catalytiques a nanoparticules de metal sur support refractaire
Veith et al. Nanoparticles of gold on γ-Al2O3 produced by dc magnetron sputtering
Lai et al. Oxygen-induced morphological changes of Ag nanoclusters supported on TiO 2 (110)
JP2010535624A (ja) 支持体上にナノ粒子を付着するための方法
JP6976427B2 (ja) 担持された白金粒子の製造方法
JP2012505735A (ja) 酸化触媒を調製する方法及びその方法によって調製された触媒
Glassl et al. Electron microscopy of PtAl2O3 model catalysts: II. Sintering in atmospheres of H2, O2 and Ar
Tsai et al. Sputter deposition of multi-element nanoparticles as electrocatalysts for methanol oxidation
Yue et al. Alkaloid-induced asymmetric hydrogenation on bimetallic Pt@ Cu cathodes under electrochemical conditions
CN102105221A (zh) 高活性钴催化剂的制备方法、该催化剂及其用途
Sakthivel et al. Highly active and stable Pt3Cr/C alloy catalyst in H2-PEMFC
Guczi et al. Electronic Structure and Catalytic Properties of Transition Metal Nanoparticles: The Effect of Size Reduction.
Chamorro‐Coral et al. The role of oxygen on the growth of palladium clusters synthesized by gas aggregation source
Yang et al. Octahedral Pt-Ni nanoparticles prepared by pulse-like hydrothermal method for oxygen reduction reaction
Rickard et al. Redispersion of platinum on Pt/Al2O3 model catalyst in oxygen studied by transmission electron microscopy
Sebastian et al. Ga–Pt supported catalytically active liquid metal solutions (SCALMS) prepared by ultrasonication–influence of synthesis conditions on n-heptane dehydrogenation performance
JP2009506500A (ja) 白金、タングステン、およびニッケルまたはジルコニウムを含有する電極触媒
WO2011149912A1 (fr) Synthèse de nanoparticule cœur/couche, et procédé catalytique
CN107614101A (zh) 经由非均相气相合成构造高性能钯核氧化镁多孔壳纳米催化剂
Hiramatsu et al. Preparation of platinum nanoparticles on carbon nanostructures using metal-organic chemical fluid deposition employing supercritical carbon dioxide
WO2021251395A1 (fr) Corps chargé, appareil de production de corps chargé et procédé de production de corps chargé
Inoue et al. CO oxidation on non-alloyed Pt and Ru electrocatalysts prepared by the polygonal barrel-sputtering method
Fuchs et al. Three-dimensional transmission electron microscopy observations of supported palladium particles
Terry et al. In-Situ Electron Microscopy Studies of Catalyst Deactivation
Howells et al. Model systems in electrocatalysis: Electronic and structural characterization of vapor deposited platinum on the basal plane of highly oriented pyrolytic graphite

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU AZ BA BB BG BR BY CA CN CU CZ EE GE HU IL IS JP KG KP KR KZ LC LK LR LT LV MD MG MK MN MX NO NZ PL RO RU SG SI SK TJ TM TR TT UA US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997933987

Country of ref document: EP

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: PAT. BUL. 50/97 UNDER (30) REPLACE "60/019085" BY "60/062641"

WWP Wipo information: published in national office

Ref document number: 1997933987

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1997933987

Country of ref document: EP