WO1997033302A2 - FARBSELEKTIVES Si-DETEKTORARRAY - Google Patents

FARBSELEKTIVES Si-DETEKTORARRAY Download PDF

Info

Publication number
WO1997033302A2
WO1997033302A2 PCT/DE1997/000457 DE9700457W WO9733302A2 WO 1997033302 A2 WO1997033302 A2 WO 1997033302A2 DE 9700457 W DE9700457 W DE 9700457W WO 9733302 A2 WO9733302 A2 WO 9733302A2
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
layer
etching
array
components
Prior art date
Application number
PCT/DE1997/000457
Other languages
English (en)
French (fr)
Other versions
WO1997033302A3 (de
Inventor
Michel Marso
Michael Krüger
Michael Berger
Markus THÖNISSEN
Hans LÜTH
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Priority to US09/142,295 priority Critical patent/US6255709B1/en
Publication of WO1997033302A2 publication Critical patent/WO1997033302A2/de
Publication of WO1997033302A3 publication Critical patent/WO1997033302A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/96Porous semiconductor

Definitions

  • the invention relates to a color-selective silicon detector array with individually producible color filters made of porous silicon. Furthermore, the invention relates to a method for its production.
  • Porous silicon is very simple and inexpensive to produce by anodic etching of single-crystal silicon in a hydrofluoric acid solution.
  • the porosity and microstructure of the porous silicon and thus also the optical refractive index depend, among other things, on the doping of the starting material and the etching current density. Therefore, by changing the etching current density over time or by using a material with a suitable doping profile, it is possible to produce porosity superlattices which are used as optical filters e.g. function as a Bragg reflector or Fabry-Perot filter (M.G. Berger el al., J.Phys. D: Appl. Phys. 27, 1333, (1994)).
  • Attaching such a filter to an optical detector changes the spectral sensitivity of the detector.
  • an optical detector for example a pn diode
  • the use of a large number of detectors with different filters enables, for example, the color recognition or the detection of the Energy spectrum of the incident light, with spatial resolution.
  • the aim of the invention is to create a detector array or to provide a production method in which each individual detector is or is provided with an individual filter.
  • the object is achieved by an array according to the entirety of the features according to claim 1.
  • the object is further achieved by a method according to the entirety of the features according to claim 10. Further expedient or advantageous embodiments or variants can be found in each of these Claims subordinate claims.
  • the invention includes a plurality of pnp transistors on an insulating or undoped or n-doped substrate.
  • the layer closest to the substrate serves as an emitter
  • the n-layer serves as a base
  • the p-layer on the surface serves as a collector.
  • the individual transistors are electrically isolated from one another by suitable insulation (e.g. mesa etching, insulation implantation or the like).
  • An array of cells can advantageously be produced, in which each cell contains pixel detectors for different colors, for example red, green, blue. Except- the array can be controlled for reading out row by row and column by column.
  • Fig. 2 Array with two pn photodetectors shown with different filters
  • the etching process for producing the porous silicon essentially only the p-collector layer is etched through (completely or partially) if the etching is carried out in the absence of light.
  • the negligible porosidization of n-doped material can be used as an etch stop to the base layer.
  • the n-layer can also be partially etched.
  • the collector current of the pnp transistor with suitable emitter and base voltages is used as the etching current.
  • the collector layer is biased over the electrolyte.
  • the etching current has to flow from the silicon into the electrolyte. This is exactly the case with the pnp transistor if the upper layer is switched as a collector.
  • the desired porosity superlattice is etched into the collector layer of the transistor by suitable modulation of emitter and / or base voltages and currents.
  • the transistors When producing a plurality of detector elements, the transistors can be switched on or off or modulated individually or in groups.
  • the anodic etching takes place only on the current-carrying collector layers (FIG. 1). To this
  • An advantageous electrical connection of the transistors consists in connecting the emitter contacts in columns and the base contacts in rows, or vice versa. By applying suitable voltages to rows and columns, the transistors can be controlled individually or in rows or columns.
  • the light passes through the layer system made of porous silicon into the emitter-base pn diode, which is used as a pn detector.
  • the electrical signal generated is tapped between the emitter and base contacts (FIG. 2).
  • the electrical trical signal of each individual pn diode can be tapped at the corresponding row and column contact.
  • the dopants lie in the range between, for example, 1 * 10 1 cm “ 3 and 1 * 10 cm " , the layer thicknesses are, for example, 10 to 100 ⁇ m, so that the layer sequence has a transistor function.
  • the layer sequence can be generated with the aid of epitaxy or implantation or diffusion or a combination of the methods mentioned.
  • Isolation etching can also be replaced by suitable implants. 5.
  • the component array can also be produced in a different order.
  • the inventive method combines the advantages of conventional silicon technology with the very inexpensive process for the production of porous silicon. It is possible in a captivatingly simple and inexpensive way to produce a photodetector array with row and columnar control with individual spectral sensitivity for each individual detector. This enables the simple production of an integrated color camera.
  • the pnp structure used can be used for the production of a readout logic and an electronic further processing. It is also possible to carry out MOS technology on the substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

Die Erfindung betrifft ein farbselektives Si-Detektorarray. Es ist auf bestechend einfache und billige Weise möglich, ein Photodetektorarray mit zeilen- und spaltenförmiger Ansteuerung herzustellen und dabei eine individuelle, spektrale Empfindlichkeit für jeden einzelnen Detektor im Array zu realisieren. Dies ermöglicht die einfache Herstellung einer integrierten Farbkamera. Die erfindungsgemäße pnp-Struktur kann für die Herstellung einer Ausleselogik und einer elektronischen Weiterverarbeitung genutzt werden. Ebenso ist die Ausführung einer MOS-Technologie auf dem Substrat möglich.

Description

Beschreibung
Farbselektives Si-Detektorarray
Die Erfindung betrifft ein farbselektives Silizium- Detektor-array mit individuell herstellbaren Farbfil¬ tern aus porösem Silicium. Desweiteren betrifft die Er- findung ein Verfahren zu seiner Herstellung.
Poröses Silicium ist sehr einfach und billig herstell¬ bar durch anodisches Ätzen von einkristallinem Silicium in einer Flußsäurelösung. Die Porosität und Mikrostruk- tur des porösen Siliciums und damit auch der optische Brechungsindex hängen unter anderem ab von der Dotie¬ rung des Ausgangsmaterials und der Ätzstromdichte. Des¬ halb ist es durch zeitliche Änderung der Ätzstromdichte oder durch Verwenden eines Materials mit geeignetem Do- tierprofil möglich, Porositäts-Übergitter herzustellen, welche als optische Filter z.B. als Bragg-Reflektor oder Fabry-Perot-Filter funktionieren (M.G. Berger el al., J.Phys. D: Appl. Phys. 27, 1333, (1994)) .
Das Anbringen eines solchen Filters auf einem optischen Detektor, z.B. einer pn-Diode, verändert die spektrale Empfindlichkeit des Detektors. Die Verwendung einer Vielzahl von Detektoren mit unterschiedlichen Filtern ermöglicht z.B. das Farberkennen oder die Detektion des Energiespektrums des einfallenden Lichtes, mit räumli¬ cher Auflösung.
Ziel der Erfindung ist es ein Detektorarray zu schaffen bzw. ein Herstellungsverfahren bereitzustellen, bei dem jeder einzelne Detektor mit einem individuellen Filter versehen ist bzw. wird.
Die Aufgabe wird gelöst durch ein Array gemäß der Ge- samtheit der Merkmale nach Anspruch 1. Die Aufgabe wird ferner gelöst durch ein Verfahren gemäß der Gesamtheit der Merkmale nach Anspruch 10. Weitere zweckmäßige oder vorteilhafte Ausführungsformen oder Varianten finden sich in den auf jeweils einen dieser Ansprüche rückbe- zogenen Unteransprüchen.
Die Erfindung beinhaltet eine Mehrzahl von pnp-Transis- toren auf isolierendem oder undotiertem oder n-dotier- tem Substrat. Die dem Substrat am nächsten liegende Schicht dient als Emitter, die n-Schicht dient als Ba¬ sis und die an der Oberfläche liegende p-Schicht dient als Collector. Die einzelnen Transistoren sind durch eine geeignete Isolation elektrisch gegeneinander ge¬ trennt (z.B. Mesa-Ätzung, Isolations-Implantation o.a. ) .
Es kann vorteilhaft ein Array aus Zellen hergestellt werden, bei dem jede Zelle Pixeldetektoren für ver¬ schiedene Farben, z.B. Rot, Grün, Blau, enthält. Außer- dem kann das Array zum Auslesen zeilen- und spalten¬ weise angesteuert werden.
Die Erfindung ist im weiteren an Hand von Figur und Ausführungsbeispiel näher erläutert. Es zeigt:
Fig. 1: Anodisches Ätzen eines erfindungsgemäßes Ar¬ ray in einer Ätzzelle;
Fig. 2: Array mit zwei sichtbar dargestellten pn-Pho- todetektoren mit unterschiedlichen Filtern
Ausführungsbeispiel
Bei dem Ätzprozeß zur Herstellung des porösen Siliciums wird im wesentlichen nur die p-Collector-Schicht durch¬ geätzt (ganz oder teilweise) , wenn das Ätzen unter Aus- schluß von Licht durchgeführt wird. In diesem Fall kann die vernachlässigbare Porösidierung von n-dotiertem Ma¬ terial als Ätzstop zur Basisschicht ausgenutzt werden. Bei Ätzen unter Lichteinfluß kann die n-Schicht auch teilweise mitgeätzt werden. Als Ätzstrom wird der Col- lectorstrom des pnp-Transistors bei geeigneten Emitter- und Basisspannungen ausgenutzt. Die Collectorschicht wird über den Elektrolyten vorgespannt. Zum Ätzen muß der Ätzstrom vom Silicium in den Elektrolyten fließen. Dies ist genau der Fall beim pnp-Transistor, wenn die obere Schicht als Collector geschaltet wird. Durch ge¬ eignete Modulation von Emitter- und/oder Basisspannun¬ gen und -Strömen wird das gewünsche Porositäts-Über¬ gitter in die Collectorschicht des Transistors geätzt.
Bei der Herstellung einer Mehrzahl von Detektorelemen¬ ten können die Transistoren einzeln oder in Gruppen ein- oder ausgeschaltet oder moduliert werden. Das an¬ odische Ätzen findet nur an den jeweils stromdurchflos- senen Collectorschichten statt (Figur 1) . Auf diese
Weise ist es zum Beispiel möglich, je ein Drittel der Bauelemente mit Rot-, Blau- und Grünfilter zu versehen.
Eine vorteilhafte elektrische Verbindung der Transisto- ren besteht darin, die Emitterkontakte spaltenweise und die Basiskontakte zeilenweise miteinander zu verbinden (oder umgekehrt) . Durch Anlegen geeigneter Spannungen an Zeilen und Spalten können die Transistoren einzeln oder zeilen- oder spaltenweise angesteuert werden.
Bei der Benutzung der erzeugten Struktur als optischer Detektor gelangt das Licht durch das Schichtsystem aus porösem Silicium in die Emitter-Basis-pn-Diode, welche als pn-Detektor benutzt wird. Das erzeugte elektrische Signal wird zwischen Emitter- und Basis-Kontakt abge¬ griffen (Figur 2) .
Bei der oben erwähnten zeilen- und spaltenweise Kontak¬ tierung der Basis- und Emitterelektroden kann das elek- trische Signal jeder einzelnen pn-Diode an dem entspre¬ chenden Zeilen- und Spaltenkontakt abgegriffen werden.
Zur Bildung einer Anordnung mit mehreren Transistor- funktionen mit unterschiedlichen Filtern kann im ein¬ zelnen verfahrensmäßig wie folgt vorgegangen werden:
1. Erzeugung einer pnp-Schichtfolge auf isolierendem oder undotiertem oder n-dotiertem Silicium-Substrat oder auf Substrat eines anderen Materials. Die Dotie¬ rungen liegen im Bereich zwischen zum Beispiel 1*101 cm" 3 und 1*10 cm" , die Schichtdicken betragen zum Bei¬ spiel lOnirt bis lOOμm, so daß die Schichtfolge Transis¬ torfunktion hat. Die Erzeugung der Schichtfolge kann mit Hilfe der Epitaxie oder Implantation oder Diffusion oder einer Kombination der genannten Verfahren erfol¬ gen.
2. Ätzung zum Freilegen der Basisschicht.
3. Ätzung zum Freilegen der Emitterschicht
4. Ätzung zur Isolation der Einzeltransistoren Anmerkung: Anstelle der Ätzungen zum Freilegen der Transistorschichten sind auch KontaktImplantationen möglich, z.B. eine n-Implantation zum Kontaktieren der Basisschicht .
Isolationsätzungen können auch durch geeignete Implan¬ tationen ersetzt werden. 5. Metallisierungen für die Kontaktierung von Emitter- und Basisschicht
6. Zeilen- bzw. spaltenmäßiges Verbinden der Emitter- resp. Collectoranschlüsse. Überkreuzungen und Mesaflan- ken werden durch Isolationsschichten elektrisch iso¬ liert.
7. Definition der Ätzflächen durch eine Isolations¬ schicht. Diese wird vorteilhaft lichtundurchlässig aus¬ geführt, damit das zu detektierende Licht nicht durch die unterätzten Randbezirke des Porositatsfilter in den Detektor gelangt.
Anmerkung: Die Herstellung des Bauelementearrays kann auch in anderer Reihenfolge erfolgen.
8. Anodisches Ätzen der oberen p-Schicht. Die Transi- stören werden einzeln oder in Gruppen angesteuert, um individuelle Porositäts-Übergitter zu erzeugen.
9. Einsatz als Detektorarray mit zeilen- und spalten- förmig ablesbaren pn-Dioden, wobei die einzelnen Dioden individuelle spektrale Empfindlichkeit besitzen.
Das erfindungsgemäße Verfahren kombiniert die Vorteile der konventionellen Silicium-Technologie mit dem sehr preiswerten Verfahren zur Herstellung von porösem Sili¬ cium. Es ist auf bestechend einfache und billige Weise möglich, ein Photodetektorarray mit zeilen- und spal- tenförmiger Ansteuerung herzustellen mit individueller spektraler Empfindlichkeit für jeden einzelnen Detek¬ tor. Dies ermöglicht die einfache Herstellung einer in¬ tegrierten Farbkamera. Die benutzte pnp-Struktur kann für die Herstellung einer Ausleselogik und einer elek¬ tronischen Weiterverarbeitung genutzt werden. Ebenso ist die Ausführung einer MOS-Technologie auf dem Substrat möglich.

Claims

Patentansprüche
Transistor, insbesondere pnp-Transistor, dessen oberste Schicht (Collectorschicht) durch anodisches Ätzen wenigstens teilweise in poröses Silicium um¬ gewandelt ist.
2. Transistor nach Anspruch 1, wobei die poröse
Schicht durch Dotierungsmodulation in der oberen p- Schicht und/oder durch Modulation des Ätzstromes so ausgebildet ist, daß sie eine optische Filterwir¬ kung bewirkt.
3. Array, insbesondere Detektorarray, mit mehreren Transistoren nach Anspruch 1 oder 2.
4. Array nach einem der Ansprüche 1 bis 3, wobei durch jeweils unterschiedliche elektrische Ansteuerung jeweiliger Transistorelektroden und damit jeweils unterschiedliche Ätzströmen während der Ätzung der jeweilige Transistor eine poröse Siliciumschicht mit individuell optischer Eigenschaft aufweist.
Array nach Anspruch 3 oder 4, wobei die Emitter der Einzeltransistoren spaltenweise und die Basisan¬ schlüsse zeilenweise so zusammengeschaltet sind, oder umgekehrt, daß mit Hilfe geeigneter Zeilen- und Spaltenspannungen einzelne Transistoren oder Transistorgruppen steuerbar sind.
6. Bauelement nach einem der Ansprüche 1 bis 5, bei dem nicht anodisch geätzte p und/oder n- Schichten als pn-Fotodetektor so ausgebildet sind, daß die poröse Schicht als optischer Filter wirkt.
7. Mehrzahl von Bauelementen nach einem der Ansprüche 1 bis 6, bei denen nicht anodisch geätzte p- Schicht(en) einzelner Bauelemente zeilenweise und die n-Schicht (en) spaltenweise elektrisch so ver- bunden sind, daß ein durch optische Anregung er¬ zeugtes, elektrisches Signal in den einzelnen pn- Dioden zwischen der zugehörigen Zeilen- und Spal¬ tenleitung abgegriffen werden kann.
8. Mehrzahl von Bauelementen nach einem der Ansprüche 1 bis 7, wobei als Farbfilter, insbesondere für die Ausbildung einer Farbkamera, mehrere, insbesondere drei Filter mit den Farben Rot, Blau und Grün, ent¬ halten sind.
9. Mehrzahl von Bauelementen nach einem der Ansprüche 1 bis 8, wobei ein oder mehrere Bauelemente zur Bildung einer Referenz für die anderen Farb-filter- bauelemente oder zur Auswertung der Hell-Dunkel-In¬ formation des einfallenden Lichtes nicht geätzt ist bzw. sind.
10. Verfahren zur Herstellung eines Bauelement oder ei¬ ner Mehrzahl von Bauelementen nach einem der An- sprüche 1 bis 9 mit beliebiger Schichtenfolge, wo¬ bei die Schichtenfolge Transistor-funktion hat, z.B. npn-Transistor, Heterobipolar-transistor, pnp- Transistor mit niedrig dotierter Zwischenschicht zur Erzielung einer verbesserten Photodetektorwir- kung, wobei
die obere Schicht oder Schichtfolge porösidiert wird,
ein über der Schichtenfolge befindlicher Elektrolyt als einer der Transistoranschlüsse dient,
die, insbesondere beiden, anderen Transis-toran- schlüsse geeignet vorgespannt werden, so daß jeder Einzeltransistor den zur Bildung einer erwünschten Filterausbildung gewünschten Ätzstrom liefert.
11. Bauelement oder Mehrzahl von Bauelementen nach ei¬ nem der Ansprüche 1 bis 10, mit einer Schichtfolge der Reihenfolge Substrat-n-p-n-p, wobei der obere pnp-Transistor für die Steuerung des anodischen Ät¬ zens und der untere npn-Transistor als Phototransi- stör Einsatz findet.
12. Verfahren, bei dem die Collectorschicht eines pnp- Transistors durch anodisches Ätzen wenigstens teil- weise in poröses Silicium umgewandelt wird, wobei der Ätzstrom durch die Transistorfunktion bei Anle¬ gen geeigneter Vorspannungen an den Elektro-lyten und an die nicht mit dem Elektrolyten in direktem Kontakt stehenden Elektroden (Basis, Emitter) ge- steuert wird.
PCT/DE1997/000457 1996-03-08 1997-03-08 FARBSELEKTIVES Si-DETEKTORARRAY WO1997033302A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/142,295 US6255709B1 (en) 1996-03-08 1997-03-08 Color-selective SI detector array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19609073A DE19609073A1 (de) 1996-03-08 1996-03-08 Farbselektives Si-Detektorarray
DE19609073.3 1996-03-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/704,407 Division US6632699B1 (en) 1996-03-08 2000-11-02 Process for making a color selective Si detector array

Publications (2)

Publication Number Publication Date
WO1997033302A2 true WO1997033302A2 (de) 1997-09-12
WO1997033302A3 WO1997033302A3 (de) 1997-10-30

Family

ID=7787675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/000457 WO1997033302A2 (de) 1996-03-08 1997-03-08 FARBSELEKTIVES Si-DETEKTORARRAY

Country Status (3)

Country Link
US (2) US6255709B1 (de)
DE (1) DE19609073A1 (de)
WO (1) WO1997033302A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10128654B4 (de) * 2001-06-15 2008-04-10 Forschungszentrum Jülich GmbH Beidseitig mikrostrukturierter, ortsempfindlicher Detektor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19609073A1 (de) * 1996-03-08 1997-09-11 Forschungszentrum Juelich Gmbh Farbselektives Si-Detektorarray
DE19837126B4 (de) * 1998-08-17 2004-02-05 Forschungszentrum Jülich GmbH Verfahren und Vorrichtung zur elektrischen oder elektrochemischen Manipulation von Proben
DE19900879A1 (de) * 1999-01-12 2000-08-17 Forschungszentrum Juelich Gmbh Optischer Detektor mit einer Filterschicht aus porösem Silizium und Herstellungsverfahren dazu
DE10018444B4 (de) * 1999-05-04 2006-01-26 Soft Imaging System Gmbh Halbleitersystem zur Registrierung von Spektren, Farbsignalen, Farbbildern und dergleichen
US6518080B2 (en) 2001-06-19 2003-02-11 Sensors Unlimited, Inc. Method of fabricating low dark current photodiode arrays
WO2003067231A1 (en) * 2002-02-07 2003-08-14 The Regents Of The University Of California Optically encoded particles
DE10346362B4 (de) * 2003-09-30 2007-11-29 Siemens Ag Verfahren zum Herstellen eines Bauteils unter Trennung vom Herstellungssubstrat
US8308066B2 (en) * 2003-12-22 2012-11-13 The Regents Of The University Of California Method for forming optically encoded thin films and particles with grey scale spectra
DE102006039073A1 (de) * 2006-08-09 2008-02-14 Opsolution Gmbh Vorrichtung zur Untersuchung der spektralen und örtlichen Verteilung einer elektromagnetischen, von einem Gegenstand ausgehenden Strahlung
US8629986B2 (en) * 2006-08-09 2014-01-14 Biozoom Technologies, Inc. Optical filter and method for the production of the same, and device for the examination of electromagnetic radiation
US10553633B2 (en) * 2014-05-30 2020-02-04 Klaus Y.J. Hsu Phototransistor with body-strapped base

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911269A (en) * 1971-03-20 1975-10-07 Philips Corp Circuit arrangement having at least one circuit element which is energised by means of radiation and semiconductor device suitable for use in such a circuit arrangement
JP3216153B2 (ja) 1991-07-30 2001-10-09 株式会社デンソー 光検出器
DE4231310C1 (de) * 1992-09-18 1994-03-24 Siemens Ag Verfahren zur Herstellung eines Bauelementes mit porösem Silizium
DE4319413C2 (de) * 1993-06-14 1999-06-10 Forschungszentrum Juelich Gmbh Interferenzfilter oder dielektrischer Spiegel
JPH07181318A (ja) * 1993-12-22 1995-07-21 Nippon Steel Corp 光学フィルター
JPH07230983A (ja) * 1994-02-15 1995-08-29 Sony Corp 多孔質状シリコンの形成方法およびその多孔質状シリコンを用いた光半導体装置
US5478757A (en) * 1994-08-12 1995-12-26 National Science Council Method for manufacturing photodetector using a porous layer
DE4444620C1 (de) * 1994-12-14 1996-01-25 Siemens Ag Sensor zum Nachweis elektromagnetischer Strahlung und Verfahren zu dessen Herstellung
DE19609073A1 (de) * 1996-03-08 1997-09-11 Forschungszentrum Juelich Gmbh Farbselektives Si-Detektorarray
US6103546A (en) * 1998-03-13 2000-08-15 National Science Council Method to improve the short circuit current of the porous silicon photodetector

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BERGER ET AL.: "POROSITY SUPERLATTICES: A NEW CLASS OF SI HETEROSTRUCTURES" JOURNAL OF APPLIED PHYSICS., Bd. 27, 1994, NEW YORK US, Seiten 1333-1336, XP000677258 in der Anmeldung erw{hnt *
FABES B D ET AL: "POROSITY AND COMPOSITION EFFECTS IN SOL-GEL DERIVED INTERFERENCE FILTERS" THIN SOLID FILMS, Bd. 254, Nr. 1/02, 1.Januar 1995, Seiten 175-180, XP000481506 *
FROHNHOFF S ET AL: "POROUS SILICON SUPERLATTICES" ADVANCED MATERIALS, Bd. 6, Nr. 12, Dezember 1994, Seiten 963-965, XP000480052 *
KRUGER M ET AL: "Color-sensitive Si-photodiode using porous silicon interference filters" JAPANESE JOURNAL OF APPLIED PHYSICS, PART 2 (LETTERS), 15 JAN. 1997, PUBLICATION OFFICE, JAPANESE JOURNAL APPL. PHYS, JAPAN, Bd. 36, Nr. 1A-B, ISSN 0021-4922, Seiten L24-L26, XP002038000 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10128654B4 (de) * 2001-06-15 2008-04-10 Forschungszentrum Jülich GmbH Beidseitig mikrostrukturierter, ortsempfindlicher Detektor
EP2276073A2 (de) 2001-06-15 2011-01-19 Forschungszentrum Jülich GmbH Beidseitig mikrostrukturierter, ortsempfindlicher Detektor

Also Published As

Publication number Publication date
WO1997033302A3 (de) 1997-10-30
US6632699B1 (en) 2003-10-14
DE19609073A1 (de) 1997-09-11
US6255709B1 (en) 2001-07-03

Similar Documents

Publication Publication Date Title
DE3615515C2 (de)
DE69434745T2 (de) Verfahren zur Herstellung eines Aggregats von Mikro-Nadeln aus Halbleitermaterial und Verfahren zur Herstellung eines Halbleiterbauelements mit einem solchen Aggregat
CA1138081A (en) Multi-spectrum photodiode devices
DE69721112T2 (de) Drei- oder Vier-Band-multispektrale Strukturen mit zwei gleichzeitigen Ausgangssignalen
DE69732862T2 (de) Halbleiteranordnung zur aufnahme von infrarotbildern
EP0001586B1 (de) Integrierte Halbleiteranordnung mit vertikalen NPN- und PNP-Strukturen und Verfahren zur Herstellung
WO1997033302A2 (de) FARBSELEKTIVES Si-DETEKTORARRAY
WO1997023897A2 (de) Optoelektronisches sensor-bauelement
DE102019108757B4 (de) Halbleitervorrichtung und Sensor, enthaltend eine Einzel-Photon Avalanche-Dioden (SPAD)-Struktur
DE102010043822B4 (de) Fotodiode und Fotodiodenfeld sowie Verfahren zu deren Betrieb
WO1999012205A9 (de) Mehrfarbensensor
DE102005025937B4 (de) Lichtempfindliches Bauelement mit erhöhter Blauempfindlichkeit, Verfahren zur Herstellung und Betriebsverfahren
DE3637817C2 (de)
DE2313254A1 (de) Photoelektrisches umsetzungselement fuer farbbildaufnahme- bzw. -abtastroehren und verfahren zu dessen herstellung
CN101866932B (zh) 电压调制型中长波双色量子阱红外探测器及其制作方法
DE102008002231A1 (de) Monolithisch integrierte Photodetektor-Array-Vorrichtung mit ROIC für Laserradar-Bildsignal und Verfahren zu ihrer Herstellung
DE2752704A1 (de) Infrarotdetektoranordnung
DE112014000624T5 (de) Fotodioden-Anordnung mit einer ladungsabsorbierenden dotierten Zone
DE2355626A1 (de) Verfahren zur herstellung integrierter schaltkreise mit hoher packungsdichte in einem einkristall-substrat
WO1998047184A1 (de) Verfahren zur herstellung einer anordnung und anordnung von in serie bzw. reihe geschalteten einzel-solarzellen
WO1998047184A9 (de) Verfahren zur herstellung einer anordnung und anordnung von in serie bzw. reihe geschalteten einzel-solarzellen
EP0638940B1 (de) Halbleiter-Photodetektor
DE19512493A1 (de) Farbsensoranordnung
DE10357135B4 (de) Fotodetektor mit Transimpendanzverstärker und Auswerteelektronik in monolithischer Integration und Herstellungsverfahren
JPS60182764A (ja) 半導体受光装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09142295

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97531355

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA