WO1997032161A1 - Procede et appareil de production de vapeur surchauffee utilisant la chaleur generee par l'incineration de dechets - Google Patents

Procede et appareil de production de vapeur surchauffee utilisant la chaleur generee par l'incineration de dechets Download PDF

Info

Publication number
WO1997032161A1
WO1997032161A1 PCT/JP1997/000573 JP9700573W WO9732161A1 WO 1997032161 A1 WO1997032161 A1 WO 1997032161A1 JP 9700573 W JP9700573 W JP 9700573W WO 9732161 A1 WO9732161 A1 WO 9732161A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrolysis
combustion
waste
heat
char
Prior art date
Application number
PCT/JP1997/000573
Other languages
English (en)
French (fr)
Inventor
Hirotoshi Horizoe
Yoshihito Shimizu
Jun Sato
Shizuo Yasuda
Yuji Kaihara
Yoshimasa Kawami
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP06909096A external-priority patent/JP3285752B2/ja
Priority claimed from JP06938896A external-priority patent/JP3310853B2/ja
Priority claimed from JP06906796A external-priority patent/JP3276286B2/ja
Priority claimed from JP06938396A external-priority patent/JP3322557B2/ja
Priority claimed from JP06939396A external-priority patent/JP3408686B2/ja
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to EP97903617A priority Critical patent/EP0823590B1/en
Priority to DE69732394T priority patent/DE69732394T2/de
Priority to KR1019970707702A priority patent/KR100264723B1/ko
Priority to US08/945,591 priority patent/US6133499A/en
Publication of WO1997032161A1 publication Critical patent/WO1997032161A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/16Steam superheating characterised by heating method by using a separate heat source independent from heat supply of the steam boiler, e.g. by electricity, by auxiliary combustion of fuel oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/04Heat supply by installation of two or more combustion apparatus, e.g. of separate combustion apparatus for the boiler and the superheater respectively
    • F22B31/045Steam generators specially adapted for burning refuse
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/303Burning pyrogases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/304Burning pyrosolids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/18Treating trash or garbage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S588/00Hazardous or toxic waste destruction or containment
    • Y10S588/90Apparatus

Definitions

  • the wood invention refers to an invention in which municipal waste and industrial waste vegetables are incinerated, steam is produced by the heat of the combustion exhaust gas, and for example, superheated steam is produced using the steam for a power generation plant. Furthermore, the present invention relates to an invention in which incinerated ash is melted by utilizing its heat and turned into resources.
  • fluidized bed incinerators have often been used for incinerators to incinerate waste such as municipal solid waste, and kagaru units are sand contained on dispersion plates (for example, perforated plates) in fluidized bed incinerators.
  • dispersion plates for example, perforated plates
  • waste such as municipal waste is injected into the fluidized bed thus formed.
  • the combustion gas generated by this combustion is returned to the boiler via a combustion gas output line, and in the boiler, steam is raised by thermal contact with 7K, and the steam is used as a turbine drive source for a power generation plant or the like. Things.
  • the waste such as municipal solid waste contains chlorinated organic compounds such as PVC and is contained in combustibles at about 0.2 to 0.5% as C1. Chlorine contained in PVC and other materials mixed into municipal solid waste is converted to HC1 by combustion. (Usually, HC1 of municipal solid waste combustion exhaust gas width is about 500 to 1 OOO.) ppm), which acts on and corrodes the tubes of the steam boiler installed downstream of the incinerator. In particular, when the tube surface temperature is about 350 ° C or more, high corrosion becomes remarkable as the temperature increases.
  • the tube surface temperature had to be kept at 350 ° C or lower, and the temperature of the produced steam was limited to about 300 ° C.
  • the efficiency of conventional waste incineration is less than about 15%, and the boiler tube temperature can be raised to 500 to 600 ° C using fuel such as LNG, which contains almost no chlorine. It is significantly lower than the power efficiency of the plant, which is about 40%.
  • the present invention has been made in view of the above technical problems, and it is an object of the present invention to provide a method and apparatus for producing superheated steam capable of efficiently obtaining high-temperature and high-pressure superheated steam while preventing boiler tubes from being corroded by chlorine. is there.
  • Another object of the present invention is to provide a superheated steam capable of efficiently reducing chlorine and obtaining a superheated steam at a high temperature without using expensive high-grade materials as a boiler tube.
  • the pyrolysis-thermal decomposition in the T 'stage is efficiently performed while preventing tar adhesion and coking of the pyrolysis gas, reducing dioxin, and reducing NOX. It is an object of the present invention to provide a superheated steam production device capable of efficiently obtaining a superheated steam having a high temperature and a high temperature while reducing chlorine.
  • Another object of the present invention is to provide an apparatus for producing superheated steam that enables the steam to be produced stably over a long period of time and that further improves the efficiency m of the pyrolysis gas.
  • Another object of the present invention is to provide an apparatus for producing a superheated steam that can produce an aggregate or the like by melting ash obtained by separating the pyrolysis gas or the combustion gas. . Configuration>
  • the present invention uses boiler water pressurized so as to have a boiling point of approximately 200 ° to 320 °°, and heating the boiler water in at least two stages. Of multiple stages,
  • the heating up to the substantially boiling point temperature is performed with chlorine-containing heat energy
  • the method is characterized in that superheating for obtaining superheated steam at a predetermined temperature from the above-mentioned approximate boiling point is performed by using dechlorination heat energy containing no chlorine.
  • the boiling point of the boiler water is set to about 200 T: to about 320 ° C. by pressurization, the application of thermal energy to the boiler water by the chlorine-containing pyrolysis gas varies. However, it can be used to absorb the latent heat of the boiler water (in other words, it is used only for the phase conversion from fc to steam and does not act as a rise), so the boiler water heat exchange tube The boiler water or steam with a stable heating temperature can be obtained without the surface temperature of the boiler rising above the chlorine corrosion temperature.
  • the heating with the chlorine-containing heat energy is performed by a pyrolysis unit obtained by a pyrolysis unit that supplies waste into a space containing a fluid medium of about 300 ° C. or more to perform a pyrolysis reaction. Heating is performed using the combustion heat energy of the gas, and the heating with the dechlorination heat energy is performed by flowing a mixture of undecomposed residue and flowing sand extracted by the pyrolysis means with air. The thermal energy obtained by the char-combustion hand-killing of burning the undecomposed residue while heating is performed.
  • a waste is supplied into a space having a temperature of 30 (TC or higher, preferably, a temperature of 350 to 500 ° C., and a thermal decomposition reaction is performed. Separation of the pyrolysis gas generated by the reaction, the undecomposed residue and the char mixture consisting of the fluidized medium and the incombustibles from each other, for example, pyrolysis using a fluidized bed, one-way kiln, or a mixing tank Means,
  • a non-decomposed residue removed by the pyrolysis means and a mixture of medium and a medium composed of a medium are re-flowed by air to burn the un-decomposed residue.
  • second steam producing means for converting hot water or steam produced by the first steam producing means into superheated steam by the heat of the combustion gas obtained by the charcoal condensation means. It is.
  • the steam heated in the first or second steam production stage or the hot water or steam that is guided to any one of the above means for observation is placed on the high temperature side of the char-combustion means. It is better to introduce it appropriately to the arranged heat exchange means.
  • An exchange means is preferably provided.
  • a heat medium 7 such as heat exchange hand killing is provided in the fluid medium path block for returning the heated fluid medium to the pyrolysis means, which has been heated by the J-fuel Jft. It is better to interpose a second char combustion means.
  • the present invention provides a method for effectively removing non-combustible substances from the pyrolysis means and the char-combustion step.
  • a first method for separating the large-sized waste 3 from other wastes by taking out the discharged wastes of the pyrolysis means, and feeding the other wastes to the bottom side of the combustion means. Filter means;
  • the discharge discharged from the non-removal outlet of the means is regarded as small incombustible. »Second filter means for separating the J medium and feeding the flowing medium to the combustion chamber 3 ⁇ 4 side;
  • a third filter means for separating ash and feeding the fluid medium after the ash separation to the bottom of the purifying means
  • the first filter means needs to have a mesh size larger than at least the second filter means.
  • the first filter means is 5 mm depending on the size of the waste to be charged.
  • the second filter means is set to about 2 mm, which is larger than the maximum diameter of the fluid medium (about 1.0 mm).
  • the third filter means is preferably set to about 0.1 mm which is smaller than the minimum value of the flow book (about 0.2 mm).
  • a vibrating sieve can be supplied to the front filter stage.
  • the mixture of tea separated by the pyrolysis means is substantially free of ⁇ by means of a sword, it is used as a superheat source for the second steam production means. Even if it is configured to obtain superheated steam of ° C or higher, high-temperature corrosion of equipment does not occur.
  • the combustion exhaust gas of the pyrolysis gas containing chlorine is used as the heating source for the steam production-final stage of ⁇ 1, but the heat is used to reduce the temperature to about 400 "C or less. 0 0 to 3 2 (Because it manufactures hot water or steam below TC, it heats only below the temperature of hot corrosion, so there is no danger of boiler tube corrosion, and expensive expensive materials are used. No need to use.
  • the steam heated by the first or second steam producing means or a part of the hot water or steam introduced into the laser producing means is used in the step (1): It may be appropriate to introduce it to the heat exchange means arranged on the side (hereinafter referred to as the first heat exchange means). That is, the char combustion means burns the undecomposed residue while flowing the char mixture by air, so that the combustion gas block is at a high temperature, specifically, at 700 ° C. to 950 ° C. Become.
  • the hot gas is used to heat the steam heated by the first or second steam producing means or the hot water introduced into any of the producing means (heat exchange with a part of the steam).
  • hot water introduced into the first steam producing means may be introduced into the heat exchanging means to raise the temperature to a certain extent, and hot water or steam introduced into the second steam producing means may be used.
  • the amount of heating of the second steam production means can be increased, and a large amount of superheated steam can be obtained.
  • the superheated steam heated by the second steam production means is used as the pre-heat exchange means because it is heated to 800 to 950 ° C. in the high temperature range of the above-mentioned char burning means.
  • a superheated steam of, for example, 400-520 ° C. which is further heated, and it is possible to obtain a superheated steam which is sufficiently heated.
  • the provision of heat exchange means on the high-temperature area side of the above-mentioned char combustion means means that the high-temperature area side, which has become unnecessarily high at 950 to 130 ° C., is passed through the output line as it is.
  • the refractory material does not have a temperature, it is 800 to 95 (by dropping it to TC, it is possible to use a normal refractory line. As mentioned above, 800 to 95 (Even if it is dropped to TC, there is no hindrance in maintaining the steam temperature in the second steam production stage-400 to 500 "C.
  • the present invention utilizes the high-temperature fluidized medium, and interposes a second charged medium in the circulation of the fluidized medium that has been heated in the above-mentioned char-combustion stage.
  • the heat exchange means provided on the first or second steam producing means side is preferably disposed in the combustion medium of the means.
  • the heat exchangers installed in the first steam production stage, the second steam production stage, etc. are arranged in series and parallel to increase the temperature by multi-step heating. This makes it possible to obtain a superheated steam that is sufficiently heated, and the fluid medium has a large heat capacity and a stable high temperature can be obtained by its thermal contact.
  • the fluid medium in the T 'stage circulates between the pyrolysis stage
  • the temperature of the fluidized medium of the char combustion means is approximately 700 to 800 "C, while the temperature of the fluidized medium of the pyrolysis means is 350 to 500 ° C, and the heat drop between the two Therefore, when the fluid medium of the combustion means is directly introduced into the pyrolysis means, there is a possibility that the heat decomposition temperature in the pyrolysis means is locally increased and the heat fluctuation occurs. Therefore, the adjustment of the amount of the fluid medium returned is complicated.
  • the present invention provides a second chamber provided with a means for reducing heat exchange-stage heat, etc., in a path of the medium flowing through the fluid medium heated by the chamber combustion means to the thermal decomposition means. ⁇ It's better to let them go through the potato stage.
  • the fluid medium heated to 700 to 850 C by the second char combustion means for example, by the first char combustion means, is heated by the heat exchange means by the second char combustion means.
  • the temperature of the fluid medium dropped to 500 to 700 CTC by the heat deprived can be returned to the pyrolysis means because the fluid medium dropped to 500 to 700 ° C.
  • the thermal decomposition temperature in the thermal decomposition stage is controlled from 35 (TC to 50 (TC around the TC) and the uj ability is stably controlled.
  • thermal decomposition means The large-sized non-combustible materials are separated from the discharged materials from the outlet by the first filter means, and only the large-sized non-combustible materials are discharged.
  • the material is to be fed to the bottom of the combustion means and used for combustion.
  • the waste discharged from the noncombustible material outlet is regarded as small incombustible substance. It is only necessary to separate the fluid medium by the second filter means, and the fluid medium separated by this is fed to the bottom of the stage. Becomes possible.
  • the third filter stage is not always necessary, the second filter Only the ash is discharged to the outside while supplementing the liquid sand that has not been caught by the step, which facilitates efficient ash removal and collection of the liquid sand.
  • a mixture of undissolved m and the fluid medium flows from the pyrolysis stage side to the rich combustion means side, and a high temperature flows from the first combustion hand-stage side to the pyrolysis means side. Are sent (returned).
  • the temperature on the side of the pyrolysis stage is 350 to 50 (TC, while the temperature on the side of the char-combustion means is 700 to 850, so that the temperature difference
  • TC temperature on the side of the char-combustion means
  • the temperature difference When a fluid medium with a large amount of heat circulates from one side to the other, the temperature fluctuates in each fluidized tank due to the fluctuation of the circulation amount, and the thermal decomposition power on the thermal decomposition killing side.
  • the combustion means on the side of the Aya-chamber does not completely burn.
  • the boiler water is heated to approximately the boiling point by the pyrolysis of 3 "'salt.
  • the thermal energy of the pyrolysis gas obtained in the pyrolysis stage is used in order to perform the superheating to obtain the superheated steam of a predetermined temperature from the above-mentioned boiling point temperature by the dechlorination heat energy obtained by the char combustion means. It is necessary to set the calorie ratio of the heat energy of dechlorination obtained by the combustion means to be about 7: 3 for practical purposes. Les, fluid medium etc. such to maintain the reflux Then the force opening Li ratio.
  • a char-passage connecting the thermal decomposition means and the char-combustion means, or a means for preventing backflow of the char or 'J medium is provided on the side of the pyrolysis means and / or the char-combustion means. are doing.
  • Such a backflow prevention means may be constituted by a pressure stage: forming stage, or may be constituted by a target conveying means.
  • the backflow prevention means is a force difference forming means provided on at least one side of the first combustion stage for returning the fluid medium to the pyrolysis means. It is more preferable to form a pressure difference larger than the pressure difference (PP 2 ) between the pressure P on the pyrolysis means side and the pressure P 2 of the char combustion means.
  • the backflow prevention means is constituted by mechanical conveyance means for forcibly conveying the char to the pyrolysis means side or the char combustion means side, preferably from the entrance side of the mechanical conveyance means. It is good to arrange it with the difference of ffi force 11 by inclining upward toward the output 1 side.
  • the present invention particularly provides a flow medium path for returning the fluid medium heated by the first combustion stage to the re-pyrolysis means in a fluid medium path, and a means for alleviating heat exchange heat or the like to reduce heat. It is preferable to provide a heat exchange means in the char combustion means, and to provide the above-mentioned backflow prevention means at the outlet of the heat exchange stage.
  • the backflow preventing means for preventing the backflow of the flow medium or the flow medium is disposed between the pyrolysis means and the combustion means, the flow having the temperature difference and the large heat capacity is provided. It is possible to prevent a temperature fluctuation, a thermal decomposition, a deterioration of a combustion strip, and the like in the two fluidized tanks caused by the medium and the like without erroneously flowing back between the two fluidized tanks.
  • the thermal action of the pyrolysis-stage and the char-combustion stage and the stage-side fluid flow are performed smoothly, respectively, and the thermal energy of the pyrolysis gas obtained by the pyrolysis means and the char-
  • Pressure difference ( ⁇ ⁇ ⁇ ⁇ ⁇ ) formation stage which forms a large difference (( ⁇ ,- ⁇ 2 ) between the pressure P t on the pyrolysis means side and the H; force I ⁇ of the char combustion stage Pressure on the pyrolysis means side!
  • the pressure of the combustion stage can be automatically adjusted to the set pressure lid ( ⁇ ⁇ ⁇ ⁇ ) when the power exceeds ⁇ 2 units //. +11 Contrary to the combustion means side and the pyrolysis furnace side ⁇ : Force difference is roughly set. J. Force difference ( ⁇ ⁇ .p) can be maintained, which is preferable.
  • the invention also specifically specifies the char combustion means.
  • air flow the air supplied from below the dispersion plate (hereinafter referred to as air flow) is divided into two parts, or the inside of the fluidized bed is partitioned by an il J plate.
  • a fluid tank formed with a circulating means for circulating and flowing the char mixture in the fluidized bed; and a pyrolysis means power supplied to the lower part of the circulating fluid area or the lower part of the upstream area. I have been established for the supply of
  • the circulating means may be divided into a plurality of parts so that the inside of the fluidized bed can be circulated, and the circulating means is supplied from below the dispersing plate.
  • the plurality of air streams may be used to control the flow rate of the char mixture in the fluidized bed so that the mixture can be circulated.
  • is as follows.
  • the above-mentioned effect is further increased because the floats on the front of the fluidized bed are moved to the bottom of the fluidized bed by the downstream flow.
  • the air in the outlet line This prevents the temperature from dropping and prevents the temperature from rising excessively, preventing tar adhesion and caulking, thus enabling stable operation.
  • the pyrolysis gas after the primary combustion is further introduced into the pyrolysis gas to burn the pyrolysis gas in a reduced state, thereby reducing the temperature to 0x.
  • the wood invention narrows the passage area between the two spaces, promotes mixing with air, and reverses the radiant heat. It has an ih function.
  • the thermal decomposition means is constituted by a fluidized bed
  • the fluidized bed is mainly fluidized by blowing air or combustion exhaust gas from below the dispersion plate containing a fluidized fluid medium.
  • the lower side wall of the main fluidized bed may be widened, and a conveying means may be provided at the bottom for conveying solids from the waste input side to the char-mixture extraction side.
  • the transporting means functions as a sub-pyrolyzing section, in which thermal decomposition is performed while forcibly transporting non- ⁇ in the direction of the remaining charcoal. It is possible to prevent frustration from remaining, and to substantially completely decompose and gasify and remove chlorine in waste.
  • the flow length of the fluidized bed is improved by the partition plate provided in the fluidized bed. Therefore, the waste mixture is mixed with the waste medium and the medium is discharged. The effluent does not blow through to the extraction of the tea mixture 1.1, so the pyrolysis is uniformly performed for more than a predetermined time. Will be retained.
  • the power S ′ for performing the thermal decomposition uniformly and sufficiently, and the power i ′ for substantially completely decomposing and gasifying and removing the chlorine in the waste bubble can be obtained.
  • the invention provides a method in which between the pyrolysis means and the first steam production means, the primary combustion fuel of the pyrolysis gas removes the heat from the first combustion stage or the fifth heat stage, respectively. It is preferable to provide ash fusion separation means for performing melt separation of ash separated from the above gas, and preferably to provide secondary combustion means for performing secondary combustion of the pyrolysis gas from which the ash has been separated.
  • the molten ash can be used to produce aggregate and the like.
  • водородн ⁇ е кар ⁇ е кактрол ⁇ ество is performed using pyrolysis gas, and a first steam production stage such as a boiler is disposed in the secondary combustion means, so that secondary heating of boiler water can be performed more efficiently. is there.
  • the ash contained in the pyrolysis gas width and the ash contained in the combustion gas are converted into waste. However, it is not necessary to use all of the pyrolysis gas supplied to melt it. Rather, it becomes excessive heat energy.
  • the pyrolysis gas obtained by the pyrolysis means be configured to be partly branched and supplied to the secondary combustion means together with the ash melt separation means.
  • the present invention preferably provides a pyrolysis reaction by supplying waste to an oxygen-poor space having a temperature of 30 (TC or more) and subjecting the pyrolysis gas generated by the reaction to secondary combustion means or heat.
  • a throttle section is provided in the path width, and an air flow through which a small amount of air flows appropriately to the pressure outlets provided respectively on the artificial side and the outlet side of the throttle section.
  • An entry means is preferably provided.
  • the flow rate of the pyrolysis gas required for melting the ash is measured and, in order to control the pyrolysis gas, a differential pressure gauge such as an orifice is provided in the path of the pyrolysis gas. It is necessary to measure the flow rate (flow velocity).
  • a differential pressure gauge such as an orifice in the outlet path from the pyrolysis means, and to measure the flow rate. Since the mouth temperature is around 350 to 500 "C, gas containing tar may come out, and the tar may be confined to the throttle or pressure tap (porous ⁇ Mouth), making smooth flow measurement difficult.
  • the air is used as an air-suspension gas containing a supporting gas.
  • a portion of the pyrolysis gas obtained in the pyrolysis stage be branched and supplied to the inlet side of the pyrolysis rare.
  • the thermal decomposition means is not limited to a fluidized bed only, and is a mechanical transport Z for transporting solids in the thermal decomposition means from the waste input side to the char-mixture removal side.
  • a pyrolysis furnace having a stirring function may be used.
  • the thermal decomposition means is configured not as a fluidized bed but as the mechanical transport stirring means described above, the thermal decomposition time and the amount of thermal decomposition can be secured on a regular and regular basis as compared with a fluidized bed. And stable pyrolysis can be performed.
  • the pyrolysis gas is not released because the fluidizing gas required in the fluidized bed (N 2 as Byeon, an inert gas mainly composed of CO ⁇ H 20 ) is unnecessary. Therefore, it has a high calorific value per unit volume, and can easily generate a high temperature of more than 130 ° C by air or oxygen-enriched gas, as described later for melting ash in gas. It can be used effectively as an energy source.
  • N 2 as Byeon, an inert gas mainly composed of CO ⁇ H 20
  • the gas is discharged from the char combustion means in a state containing ash, it is preferable that the gas is separated by a cyclone or the like and then introduced into a steam production stage such as a superheater / boiler.
  • the ash separated from the gas is melted and granulated, so that the use of aggregate and the like becomes acceptable.
  • a pyrolysis gas which is generally a flammable gas, is / ⁇
  • the ash contained in the pyrolysis gas and the ash contained in the combustion gas is about 10% of the waste, so it is not always necessary to melt it using all the pyrolysis gas supplied. No, it is rather easy to generate excess heat energy.
  • the amount of oxygen-enriched air required to burn all the pyrolysis gas at a high temperature until the ash can be melted increases.
  • the thermal decomposition means is to extract only chlorine from waste such as municipal waste. Since the dechlorinated char mixture can be supplied to the char combustion means, there is no need to raise the temperature in particular, and a sufficient force at a temperature of about 250 to 450 ° C.
  • ash melting In order to melt the ash, the furnace must be set to a temperature of around 130 ° C. Therefore, the pyrolysis gas used in the ash melting furnace has a higher temperature, in practice 450 to 7 It is preferable to thermally decompose at a temperature around 0 CTC and to actively generate pyrolysis gas instead of simply dechlorinating.
  • the present invention provides the above-mentioned pyrolysis means, which comprises a plurality of pyrolysis furnaces appropriately combining a fluidized bed or a mechanical stirrer, and sets the pyrolysis temperature of one pyrolysis furnace to that of another pyrolysis furnace. It may be configured differently for 'decomposition'.
  • the temperature is set to about 250 to 45 (TC) to actively produce a dechlorinated char mixture, while the other pyrolysis furnace on the high-temperature side
  • the temperature may be set to about 450 to 70 (TC), for example, to generate a pyrolysis gas used in an ash melting furnace.
  • the pyrolysis gas generated by the pyrolysis furnace on the high-temperature side is subjected to melting and separation of ash separated from the respective gases extracted by the char-combustion stage or the pyrolysis means.
  • Ash melt-separation configured to be fed to a stage.
  • the function of the pyrolysis gas is separated, and in one pyrolysis furnace, it is possible to actively produce a dechlorinated tea mixture.
  • the pyrolysis gas to be used in the furnace can be generated, and this functional separation makes it possible to generate a more effective and effective char-mixture and to generate the pyrolysis gas.
  • FIG. 1 is a system diagram showing a superheated steam production apparatus utilizing waste incineration heat according to a first embodiment of the present invention, in which a subcharging combustion furnace is provided between a cha-fe furnace and a pyrolysis furnace. I have.
  • FIG. 2 is a system diagram showing a superheated steam production apparatus utilizing waste heat of incineration according to a second embodiment of the present invention, in which a subcharging combustion furnace is provided independently.
  • FIG. 3 shows the procedure for producing superheated steam using the heat of incineration of waste related to this configuration of the present sword.
  • FIG. 4 is a system diagram showing an apparatus for producing a superheated steam using waste incineration heat according to a third embodiment of the present invention.
  • Finoleta power is attached to each take-out line.
  • FIG. 5 is a system diagram showing an apparatus for producing superheated steam using waste incineration heat according to a fourth embodiment of the present invention, in which the sub-charging combustion furnace shown in FIG. It is divided into backflow prevention I means.
  • Fig. 6 is a system diagram showing a superheated steam production system using the heat of waste incineration according to the fifth embodiment of the present invention. It is configured as possible.
  • FIG. 7 is a schematic diagram in which the backflow prevention means is constituted by mechanical transport means for forcibly transporting the channel from the pyrolysis means side to the char-combustion means side.
  • Fig. 8 shows the char-combustion means, sub-char-combustion means and pyrolysis furnace applied to Fig. 5,
  • (A) is a plan view
  • (B) is a plan view
  • FIG. 9 shows the configuration of a fluidized bed obtained by improving the char-firing furnace suitable for each of the above embodiments, (A) is a front view, (B) is a side view, and (C) is an instep figure. is there.
  • FIGS. 10A and 10B are three views showing the internal structure of a pyrolysis furnace according to a modification of the pyrolysis furnace suitable for each of the above-described embodiments, where (A) is a metaphysical
  • FIG. 11 relates to another improvement of the pyrolysis furnace in which the pyrolysis gas combustion furnace including the combustion ducts shown in each of the above-mentioned embodiments is suspended, and (A) shows the results of the pyrolysis furnace of FIG. ⁇ E duct viewed from the side Figure, (beta) modification of the diaphragm portion, (C) is a positive ⁇ u
  • FIG. 12 is a system diagram showing an apparatus for producing a superheated steam using waste incineration heat according to a sixth embodiment of the present invention.
  • the apparatus shown in FIG. And a ash melting furnace is provided.
  • Fig. 13 is a system diagram showing a superheated steam production system using the heat of waste incineration according to the seventh embodiment of the present invention.
  • a part of the pyrolysis gas is branched.
  • the gas is supplied to a pyrolysis gas combustion furnace.
  • Fig. 14 shows the differential pressure measuring means provided in the pyrolysis gas outlet line shown in Fig. 13.
  • (A) uses an orifice, a differential pressure measuring means formed by using an orifice, and
  • (B) uses a flap-shaped throttle. This is a differential pressure measuring means formed by:
  • FIG. 15 is a system diagram showing an apparatus for producing superheated steam using the heat of waste incineration according to the eighth embodiment of the present invention, wherein the-part of the pyrolysis gas obtained by the pyrolysis furnace is ashed. It is configured to circulate to the lower part of the pyrolysis furnace through a branch line on the upstream side of the melting furnace.
  • FIG. 16 is a system diagram showing a superheated steam production apparatus utilizing waste incineration heat according to a ninth embodiment of the present invention, in which a pyrolysis furnace is constituted not by a fluidized bed but by mechanical transfer stirring means. ing.
  • FIG. 17 is a system diagram showing a superheated steam production apparatus using the heat of waste incineration according to the tenth embodiment of the present invention, which is constituted by a plurality of pyrolysis furnaces.
  • FIG. 18 shows a system ⁇ showing a modified example of the superheated steam production apparatus utilizing the heat of incineration of waste according to the first embodiment, in which pyrolysis is performed by a fluidized bed and a mechanical conveying means. Reconfigured.
  • Fig. 1 shows a superheated steam production apparatus utilizing the heat of waste incineration according to the first embodiment of the wood invention.
  • reference numeral 1 denotes a pyrolysis furnace comprising a fluidized bed, and a dispersion plate such as a perforated plate.
  • Fluid medium 2-1 such as flowing sand is stored on the top, and waste supply line 4 Waste such as municipal solid waste is supplied from the sand ring (return) line 5.
  • gas inlet 1-1 line 6 (Wood pyrolysis furnace (3 ⁇ 4When wood is not combustion, it is pyrolysis, so the supplied gas is combustion gas that consumes oxygen.)
  • air is introduced as needed to control the temperature) to create a fluidized bed space at a temperature of 300 ° C or more, and to carry out the thermal decomposition reaction of waste,
  • the pyrolysis gas generated by the reaction is supplied to the pyrolysis gas output line 7 through the pyrolysis gas output line 7, which is composed of unreacted azalea and fluid sand.
  • the fuel mixture is separated and taken out from the char mixture take-out line 9 and the non- ⁇ is taken out from the non-combustible material take-out line 8, respectively.
  • the pyrolysis gas outlet line 7 on the outlet side of pyrolysis furnace 1 is provided with an air inlet line 21 and the pyrolysis gas extracted from pyrolysis furnace 1 is empty 51 population line 21. If necessary, it is possible to prevent tar adhesion and coking prevention
  • a pyrolysis gas incinerator 34 composed of a combustion duct is provided, and from the line 2 ⁇ , the pyrolysis gas is supplied to the pyrolysis gas by Perform complete combustion.
  • Reference numeral 10 denotes a char-burning furnace composed of a bubble furnace and a bottom furnace.
  • the char-mixture is supplied to the dispersing plate 11 disposed at the bottom of the charcoal-combustion line 9 and the char-mixture supplied from the bottom, and the ⁇ -ring line 19-2 /
  • the liquid sand circulated through the subcharging furnace 10B via 19-1 is stored.
  • air is supplied from the air supply line 12 below the dispersion plate 11 and heated to 650 to 800 ° C in the fluidized bed 2-3 to burn the undecomposed residue, and further, the fuel is burned in a 10-width region.
  • Air is introduced from the air supply line 13 and completely burns, producing fuel gas at about 800 to 1300 ° C, and a second superheater 29-1 in the I-.
  • ifi 2 steam production-stage first superheater 20
  • superheated superheated steam introduced via line 28-1 together with unnecessarily high combustion around 950-1300 ° C Drop gas to 800-950 ° C.
  • the combustion gas temperature is 800 to 95 There is no hindrance in maintaining the steam temperature in the tank 20 at 200-32 O'C. Small incombustibles that are not burned in the char combustion furnace 10 are taken out from the non- ⁇ taking-out line 14.
  • the auxiliary combustion furnace 10 is provided with an auxiliary fluid combustion furnace 10 as a sub-fluidized bed in the auxiliary combustion furnace 10, and as shown in FIGS. 1 and 2, a sand circulation line 19-1 2Z19-1 is provided.
  • the third superheater 29-2 is arranged in the fluid medium 2-2 of the sub-charging furnace 10 # so as to move with the sand force between the sub-charging combustion furnace 10 # and the second superheater 29-2. Connected to the outlet [:] side of superheater 29-1 via line 28-2.
  • the auxiliary charging furnace 10 ⁇ may be provided independently, but as shown in FIG.
  • the fluid medium reheated by the charging furnace 10 is supplied to the pyrolysis furnace 1. It is preferable to interpose a sub-charging fiber furnace 10 provided with a ⁇ 3 superheater 29-2 ⁇ in the fluid medium path 191-1-5 returning to the reactor.
  • the combustion gas heat-exchanged by the second superheater 29-1 is supplied to the combustion gas outlet line 15 as needed.
  • the pyrolysis gas taken from the pyrolysis gas outlet line 7 is a water-cooled boiler 36 power ⁇ inside the built-in pyrolysis gas furnace 34
  • the boiler water is also introduced into the water-cooled boiler 36 in the combustion gas combustion furnace 34 via the branch line 26 ', and supplies steam or heated water to the first superheater 20 via the branch line 27'.
  • the boiler water C is set around the water-cooled 3 ⁇ 4 boiler 36, 36-2 and the first boiler 24
  • the first stage of heating is performed, and the amount is controlled so that the heating temperature is about 309 ° C., which is near the boiling point.
  • the tube plastic surface temperature of the water-cooled wall boiler 36 and the first boiler 24 can be maintained at 350 or less following the heated water. Or corrosion does not occur even if it contains HC1.
  • the steam / heated water extracted from the outlet line 27 of the first boiler 24 and the steam heated by the water boiler 36 and extracted through the branch steam line 27 ′ Z heating water is injected into the furnace and heated by the combustion gas supplied through the combustion gas line 17 to produce superheated steam, and the steam outlet line 28 1 1 and the second superheater 29 1 Further, the superheated steam superheated to 400 ° C. to 52 ° C. is taken out from the line 282-2 to the third superheater 29-2 in series, respectively, and taken out.
  • the waste such as municipal solid waste supplied to the pyrolysis furnace 1 contains chlorine-containing organic compounds such as PVC.
  • the combustible width is about 0.2 to 0.5 ° / C1. It is contained.
  • municipal solid waste is supplied from the waste supply line 4 and high-temperature circulating fluidized sand is supplied to the pyrolysis furnace 1 from the fluidized sand circulation line 5, and the air in the tank or the combustion gas is supplied to the combustion exhaust gas from the population line 6.
  • the temperature was raised to 350 to 50 (by ⁇ tiffl in TC, From the 9 delivery lines, a raw undecomposed residue containing substantially no element is obtained.
  • the chlorine contained in the waste is substantially contained in the pyrolysis gas and is discharged to the pyrolysis gas output line 7.
  • the large-sized waste separated by the thermal decomposition reaction in the thermal decomposition furnace 1 is taken out of the furnace through a non-takeout line 8.
  • the pyrolysis time and the pyrolysis temperature are set so that the thermal calorie ratio of the pyrolysis gas and the char mixture becomes about 7: 3.
  • the pyrolysis gas extracted from the pyrolysis gas outlet line 7 of the pyrolysis furnace 1 includes: Power containing gas, oil, tar and HC 1 Outlet line 7 Upstream air Inlet line 21 Partial combustion with a small amount of air supplied from 1 prevents the temperature from dropping in the P direction, and outlet line 7 In addition to preventing tar adhesion and coking in the furnace, air is further introduced into the pyrolysis-gas baking furnace 34 from the line 2 and complete combustion is performed in the pyrolysis gas baking furnace 34.
  • the pyrolysis gas was introduced into the water-cooled wall boilers 36, 36-2 and the second boiler 24 to have a boiling point of 200 to 320. Steam to start up to near ° C Can produce a large amount of boiler water.
  • the pyrolysis gas combustion exhaust gas that has exchanged heat with the water-cooled wall boiler 36 in the pyrolysis gas combustion furnace 34 flows from the first boiler gas inlet 23 together with the combustion exhaust gas from the first superheater gas outlet line 22. Supply to the first boiler 24.
  • the gas introduced into the pyrolysis combustion furnace 34 and the first boiler 24 contains HC1 at about 500 to 100 ppm, water flow is controlled by adjusting the flow rate of the boiler water.
  • the tube temperature of the plastic boiler 36 and the first boiler 24 is about 35 (TC or less, which is the same level as that of the conventional one, and high corrosion is suppressed. For this reason, the water-cooled plastic boilers 36, 36
  • the first boiler 24 cannot generate high-temperature superheated steam. Since it can be heated to about 300 to 320 "C, it can be further heated by the superheaters 29-1, 1, and 2 after the first superheater 20. By heating at 9-12, it is possible to obtain high-temperature superheated steam of about 500-700 "C.
  • the tea mixture removal line in the pyrolysis furnace 1 9 One mixture is composed of fluidized sand and undecomposed residue, and a substantially chlorine-free char mixture is supplied to the lower part of the combustion furnace 10 in the char-combustion furnace 10, and the gas supply line 1
  • the fuel is heated by air supplied from the dispersing plate 11 through the dispersing plate 11.
  • the amount of air supplied from the air supply line 12 is adjusted so that the fluidized sand flows and the undecomposed residue is removed. In some cases, more air may be supplied from the air supply lines 13 and 19-13 for complete combustion.
  • the temperature of the flaming furnace 10 rises due to the combustion and exothermic reaction.
  • the temperature may be as high as about 100 "to about 1200" C.
  • the second superheater 29-1 exchanges heat with the superheated steam of the first superheater 20 through line 28-1 to reduce the combustion gas to 800 to 950. Is easy.
  • the water 26 is used to heat the boiler water that is recirculated through the lines 26 ", 27" that branch off the lines 26, 27.
  • a wall boiler 36-2 may be provided.
  • Incombustibles that have been miniaturized by melting glass, cans, etc. are extracted from the incombustibles take-out line 14.
  • the auxiliary combustion furnace 10 B may be provided independently as shown in FIG. 2, but the fluid medium of the combustion furnace 10 circulates with the pyrolysis furnace 1.
  • the temperature of the fluidized medium in the charcoal combustion furnace 10 is approximately 700 to 850 ° C, while the temperature of the fluidized medium in the pyrolysis furnace 1 is 350 to 5001:
  • the heat drop ⁇ ⁇ ⁇ is large, and therefore, if the fluid medium of the chamber 10 is guided directly to the pyrolysis furnace 1 side, the heat drop will cause the thermal decomposition temperature in the pyrolysis furnace 1 in the part where the pyrolysis temperature is high. If the temperature rises, heat fluctuation may occur, and accordingly, the adjustment of the amount of the returned fluid medium becomes complicated.
  • a third superheater 29-2 is placed in the fluid medium path 19-] Z5 for returning the fluid medium reheated by the char combustion furnace 10 to the pyrolysis furnace 1.
  • the fluid medium heated to 700 to 800 in the first char-burning furnace 10 is removed from the sub-charging furnace 10B. Then, the temperature of the fluid medium dropped to 500 to 700 ° C.
  • the combustion gas formed in the char combustion furnace 10 and having a high temperature of 800 to 95 CTC and containing substantially no chlorine is introduced into the cyclone 16 through the combustion gas outlet line 15 as required, Ash and ash are separated from the outlet line 18, and hakai gas is separated from the gas outlet line 17.
  • the high-temperature exhaust gas at 50 ° C is introduced into the first superheater 20 and heats steam Z boiler water at around 200 to 320 ° C produced by the first boiler 24 and water-cooled wall boiler 36. It is then used to produce superheated steam. Since the exhaust gas passing through the gas outlet line 17 does not substantially contain chlorine, even when the surface of the boiler tube of the first superheater 20 is set to 350 ° C or more, high-temperature corrosion is significantly reduced; Therefore, the temperature of the tube inside stream can be set at about 400 to 52 (TC, and it can be set to TC, and the first super boiler boiler steam is output. Is obtained.
  • the flow rate of the gas supplied from the fiber exhaust gas input I line 6 is adjusted.
  • the auxiliary sand—combustion is performed at a high temperature of about 500 to 700 ”C, which is higher than that of the 10B.
  • the part is supplied from the sand circulation line 5 and used as a heat source.
  • the air or combustion exhaust gas supplied to the pyrolysis furnace 1 through the exhaust gas inlet line 6 has a low oxygen content in order to efficiently perform pyrolysis in the range of 350 to 500 "C ffl.
  • the temperature of the exhaust gas is 150-200 (the exhaust gas that maintains the temperature of TC, specifically, the output of the first boiler 24 [ It is a good idea to use the exhaust gas obtained by removing dust and chlorine from the exhaust gas.
  • 3-1, 1 and 3-2 are dispersion plates, and 2-1, 2-2 and 2-3 are fluidized beds.
  • FIG. 4 is a system diagram showing a superheated steam production apparatus according to the third embodiment of the present invention, which utilizes the heat of incineration of waste according to the third embodiment of the present invention, and explains the differences from the embodiment of FIG.
  • a first filter 291 such as a vibrating sieve having a mesh diameter of about 5 mm, is provided in the refining furnace removal line 8 of the pyrolysis furnace 1, and a large amount of waste discharged from the line 8 is provided. ⁇ and other effluents are separated, and the other effluents are fed via lines 50 and 54 to the bottom of the fluidized bed above the distribution plate 11 of the charcoal combustion furnace 10 It is configured as follows. 51 is a large non- ⁇ extraction line.
  • the incombustibles removal line 14 is provided with a second filter 292 having a mesh of about 2 mm, and the small amount 1 and the fluidized sand ash of the discharge discharged from the line 14 are removed. Separate and feed the fluidized sand to the bottom of the fluidized bed above the dispersing plate 11 of the yah furnace 10 via the line 52, the third filter 293, the lines 55 and 54. It is configured as follows. Small incombustibles are discharged outside through line 53.
  • the third filter 293 is not necessarily required, but only drains ash to the outside while supplementing the fluid sand not supplemented by the second filter 292;
  • the mesh size is set to around 0.1 mm, which is smaller than the minimum diameter (about 0.2 mm).
  • the third filter 293 allows the ash alone to be discharged to the outside through the line 56 while being supplemented by the moving sand that has not been supplemented by the second filter 292. This facilitates efficient ash removal and liquid sand recovery.
  • the large incombustibles separated by the pyrolysis reaction in the pyrolysis furnace 1 are taken out of the furnace from the incombustibles take-out line 8.
  • the power of waste that has been crushed to about 200 mm mfi! As waste The power that is input into the pyrolysis furnace 1 Therefore, the size of the incombustibles removal line 8 of the pyrolysis furnace 1 must be increased to some extent. Therefore, in addition to the large non-combustible material from the above-mentioned I, I line 8, the residual charge flow iM ⁇ and the small non-combustible material are removed.
  • the first filter 291 which separates the large amount of non-combustibles from the other substances discharged from the non- ⁇ extraction line 8 of the pyrolysis furnace 1, and discharges only large non-combustible substances, Other emissions can be fed to the bottom of the combustion chamber 10 and used for fuel lamps.
  • Fig. 5 is a system diagram showing an apparatus for producing superheated steam using waste incineration heat according to the fourth embodiment of the present invention. And constitute the backflow prevention means.
  • the sub-charging combustion furnace 10 B is provided with a partition line between the upper part of the fluidized bed and the lower part of the dispersion plate 3-2 facing the return line (fiT circulation line) 5 for returning the flow medium to the pyrolysis furnace 1. 1 0 0, 1 0 0 Divide by '.
  • the lower part of the fluidized bed above the dispersion plate 3-2 is opened, and the fluid in the fluidized bed provided with the third superheater 29-2 (hereinafter referred to as the main fluidized bed 2-2A) is provided.
  • the medium is configured to be supplied to the partition (a partition fluidized bed 2-2B partitioned by the plate 100) through the partition plate lower opening I110.
  • the partitioning fluidized bed 2-2 B has a dispersion plate 3-2, so that the fuel gas flows through the branch line 6 ′ of the I line 6.
  • the return line (sand circulation line) 5 should also be inclined in the direction of the pyrolysis furnace 1 Les ,.
  • the fluid medium after the heat is removed by the third superheater 29-2 in the main fluidized bed 2-2A of the sub-chamber combustion furnace 100B passes through the partition plate 100.
  • the fluid is introduced into the fluidized bed 2-2 B and then returned to the pyrolysis furnace 1 via the return line (sand circulation line) 5 while being moved by the flue gas in the branch line 6 ′.
  • FIG. 6 shows a configuration in which a sand storage tank 120 is provided in the above-described char combustion furnace 10 in the system of FIG.
  • the pyrolysis time needs to be changed according to the refuse quality, supply sand from the shellfish tank 120 to increase the number of sand held in the pyrolysis furnace, Increasing the time and extracting more sand from line 14 will reduce the amount of sand retained in the pyrolysis furnace and shorten the pyrolysis time.
  • FIG. 7 shows an embodiment of a backflow prevention stage disposed on the above-mentioned char mixture removal line 9, wherein the power of the pyrolysis furnace 1 is larger than the pressure of the char combustion furnace 10 side.
  • the mechanical transport stage 50 mm with the backflow prevention I function is shown by setting to.
  • 5 5 is a cutting board.
  • FIG. 8 shows a detailed configuration of the sub-charging furnace 10 used in FIGS. 5 and 6, and the sub-charging furnace 10B is, as shown in FIG. From 10 Take in fluid medium i 9-1 and return line to return fluid medium to pyrolysis furnace 1 side Circulation line) 5 Power sub-chamber 1 Furnace 10 Arranged so as to be on the diagonal of B The fluid medium moves from the base side of the third superheater 29-2 to the front side, and is disposed so as to be in sufficient thermal contact. As shown in FIG.
  • the pressure difference forming means 50 is formed in the form of a so-called small fluidized bed, and is composed of a sub-charging combustion furnace 10, a fluidized bed 2-2 at the outlet side of B 2, an upper part and a dispersing plate 3-2, a partition plate 10 0, 1 below. Partition at 0 0 '.
  • the fluidized bed space on the upper side of the dispersion plate 3-2 has an opening 101, and the flow medium in the sub-charging combustion furnace 10B is opened via the partition plate opening 101. It is configured to be fed to the fluidized bed 51 on the pressure difference forming means 50 side partitioned by the partition plate 100.
  • a flow is caused by the combustion exhaust gas and the like supplied from the branch line 6 'of the exhaust gas inlet line 6 from below the dispersion plate 2-2.
  • the fluid I The height up to the lower end of 100 (partition plate opening ⁇ 100 1 upper end) should be set to the height of ⁇ ⁇ ⁇ so that no backflow force is generated.
  • the flow path for taking in the fluid medium into the sub-charging furnace 10 ⁇ side from the sub-charging furnace 10 0, and the flow from the sub-charging furnace 10 ⁇ side to the pyrolysis furnace 1 side The return lines 5 for returning the medium breaks are formed with slopes ⁇ ⁇ ⁇ ⁇ , each of which is inclined downward toward the I side, and each fluidized bed is gradually lowered in accordance with the inclined surface. ⁇ ! ⁇ (Liquid bed interface of combustion chamber 10 ⁇ !
  • Fluid bed interface of combustion furnace 10 2 2 Force ax forming means 50 Partitioning fluidized bed of 50 side 5 1 interface) ⁇ Pyrolysis
  • the fluidized bed of each fluidized bed is gradually lowered so as to form a fluidized bed 2-1 in the furnace 1.
  • the line 9 for supplying the char mixture from the pyrolysis furnace 1 to the char combustion furnace 10 be constituted by a mechanical conveying means such as a screw feeder.
  • Figure 9 shows the configuration of a fluidized bed improved from the char-firing furnace applied to each of the above embodiments.
  • (A) is a front view
  • (B) is a side view
  • (C) is a plan view.
  • Such a fluidized bed forms a fluidized bed 2-3 by accumulating a mixture of charcoal on the upper part of the dispersion plate 11 and the three fluidized areas of the left, right, and center 2-3 A so as to be able to circulate in the fluidized bed 2-3.
  • / 2—3 BZ2—3 C is provided with an upper partitioning plate 61 A / 62 A, which is divided into 3 C, and the seven-part dividing plate 61 A / 62 A is a fluidized bed 2-3 parts. And the bottom are each questioned.
  • a line 9 and a line 19-12 for supplying a char mixture and a fluid medium to the combustion furnace 10 are connected.
  • the dispersion plate 11 is downwardly directed toward the incombustible removal line 14.
  • a lower partitioning plate 61 B / 62 B is arranged at the same interval as the upper partitioning plate 6 1 AZ62 ⁇ , and is sandwiched between the divided partitioning plates 6 1 B and 62 B. It is more effective if the central part 11-2 of the dispersion plate is formed in a shape.
  • Dispersion plates 1 1-1/1 1 1 1 2 1 1 1 1 3 provided by the lower release plates 61 B and 62 B, respectively, are connected to the air supply lines 12 at the bottom of the lower space.
  • Lines 12—1 / 12—2—12—3 are connected, and the branch lines 1 2—1 / 1—2—2 / 1—2—3 are each provided with a 64 ⁇ control valve, and are provided with a The air flow supplied to each of the flow areas divided into three by the ⁇ 1 split plate 6 1 ⁇ 62 ⁇ can be controlled.
  • the line 19-1 for supplying the fluid medium to the sub-charging furnace 10B is on the fluidized bed 2-3 interface, and the line 19-13 for supplying the combustion gas from the sub-charging furnace 10B is It is located above it.
  • the supply port of the line 9 for supplying the mixture of the supplied pyrolysis furnace and the supply of the mixture of the pyrolysis furnace is divided into the three-divided flow area subsection 2-3B (downflow area) or both right and left sides.
  • the char mixture supplied from line 9 to the lower part of, for example, the central part of the flow area 2-3B (downflow area) or the flow area 2-3AZ2-3C (h upflow area) is a mountain-shaped dispersion plate 1 1 1 2
  • the air flow flows in the flow area 2-3 A 2-3 C on the left and right sides of the central part 2-3 B, and the downward flow force of the flow medium 2-3 B in the central part of the flow area can be generated.
  • Due to the upward flow, the char mixture and the fluid medium in the fluidized bed are as shown by the arrows in (A). Circulates.
  • the lighter specific gravity always moves to the bottom of the bed due to the descending flow area of 2-3 B in the center of the flow area, and circulates through the flow areas 2-3A / 2-3C located on the left and right sides. Therefore, mixing with air is sufficiently performed, and sufficient combustion is possible with an air flow that is smaller by J1 (for example, 0: ⁇ : 1.2 to 1.3).
  • the incombustibles not combusted in the fluidized bed move along the direction of the dispersing plate 11 as shown in (B) and (C), and are taken out through the guide plate 14 1 1 1 14 2. Discharged outside line 14.
  • FIGS. 10A and 10B are three Ifii diagrams showing the internal construction of a pyrolysis furnace according to the improvement of the pyrolysis furnace applied to each of the above-described embodiments.
  • FIG. (C) is a side view.
  • the fluidized bed 2-1 such as flowing sand, stored in the pyrolysis furnace 1, specifically, on the dispersion plate 3-1, is fed from the waste input side (the waste supply line 4 side).
  • the partition 80 is divided into a plurality of steps by a partition plate 80, and the partition plate 80 is alternately connected between the left and right side walls.
  • the openings 81 are formed apart from each other, and the openings 81 are alternately provided at different positions.
  • the main fluidized bed 1A is
  • the width of the lower side wall of the main fluidized bed 1A is widened, and conveying means for conveying solid rest from the waste input side to the discharge side of the mixture at the bottom of the main fluidized bed 1A.
  • conveying means for conveying solid rest from the waste input side to the discharge side of the mixture at the bottom of the main fluidized bed 1A.
  • an air or flue gas artificial line 82 that blows air or flue gas directly below the conveying means 1 C, and a sub-fluidized bed section 1 B that fluidizes fluid sand etc. It is equipped with.
  • the combustion can be performed while forcibly transporting the unburned material adhering to the incombustible material by the transporting means 1C in the auxiliary fluidized bed portion 1B in the direction of the charcoal.
  • unburned matter can be discharged without remaining in the air.
  • the actual flow length of the fluidized bed, and more specifically, a mixture of waste and fluidized medium while mixing the waste with the fluidized medium can be long, and the waste does not flow through to the char-mixture removal line 9. be able to.
  • the thermal decomposition can be sufficiently performed in a negative manner, and the chlorine in the waste bubble can be substantially completely decomposed and removed by gasification.
  • FIG. 11 shows another modification of the pyrolysis furnace in which the pyrolysis gas combustion furnace composed of the combustion ducts shown in the respective embodiments was deactivated, and (A) shows the thermal decomposition furnace of ⁇ 1.
  • a combustion duct 40 is formed above a fluidized bed furnace block constituting the pyrolysis furnace 1 through a throttle section 4 11 1 and a diffuser nozzle 4 2 is formed in the throttle section 4 1. Further, an air inlet 43 for guiding air is provided above the combustion duct 40. As shown in FIGS. 11 (A) and 11 (C), the constricted portion 4 1 1 has an air diffuser nozzle 4 2 extending horizontally in the central area of the constricted portion 4 1 1 along the extending direction. Alternatively, the outlet may be formed with a narrower width, and as shown in ( ⁇ ), the intersecting portion 411 may be reduced in diameter to a circle, and the reduced portion may be formed.
  • the air inlets 21 and 21 may be provided at vertically symmetric positions so that a swirling air flow can be introduced into the air inlet.
  • the pyrolysis gas generated in the pyrolysis furnace 1 is guided into the duct 40 through the throttle section 4 1 1, introduced through the ⁇ air introduction line 2 1, and rejected by the diffuser nozzle 4 2.
  • Primary combustion of pyrolysis gas in a reducing atmosphere with air (excess air ratio 0.6 to 0.
  • the throttle section 4 11 is provided between the duct 40 and the pyrolysis furnace 1, the mixing with air is promoted, and the flow of heat below the thermal power at the time of reburning in the fuel duct 40 is improved.
  • the preferred thermal decomposition can be achieved in the thermal furnace 1 without radiation between the floors and, as a result, without burning of the charcoal.
  • FIG. 12 is a system diagram showing a superheated steam production apparatus using waste heat of incineration according to a sixth embodiment of the present invention, in which the char-burner of FIG. 2 is divided into two fluidized beds via a partition plate. It is divided to form backflow prevention means, and an ash melting furnace is provided.
  • FIG. 13 is a system diagram showing an apparatus for producing superheated steam using incineration heat of waste vegetables according to the seventh embodiment of the present invention.
  • a part of the pyrolysis gas is branched.
  • the pyrolysis gas is supplied to the fiber furnace.
  • Fig. 14 shows the differential pressure gauge installed in the pyrolysis gas outlet line shown in Fig. 13: a measuring means, (A) a differential pressure measuring stage formed using an orifice, and (B) a The formed differential pressure measurement stage.
  • the pyrolysis gas from the pyrolysis gas ili I 1 line 7 is introduced into the ash melting furnace 31.
  • the pyrolysis gas from the pyrolysis gas outlet line 7 is branched and then introduced into the ash melter 31.
  • the ash melting furnace 31 introduces, for example, a swirling stream, dust or ash from the line 29, air or oxygen-enriched air together with the pyrolysis gas from the line 30, and Dust and ash are melted by heat at a temperature of 1300 ° C. or more, and the melted dust and ash are dropped into the water storage section 32 A via the molten ash outlet line 32 to reduce the size of several mm A water-cooled slag is generated, and the slag is configured to be used as building aggregate.
  • Ash is guided to the ash melting furnace 31 via an output II line 18 dust line 29 of a cyclone 16 and an incombustible material and / or a bubble filter of a line 14. These can also be lysed, such as — and ash collected by an electric dust collector.
  • pyrolysis gas 'fibre furnaces' composed of fuel ducts, and a line 21 A for supplying air which is small to the pyrolysis gas. And complete combustion of the pyrolysis gas.
  • the pyrolysis gas extracted from the pyrolysis gas outlet line 7 of the pyrolysis furnace 1 is introduced into the ash melting furnace 31 before being introduced into the fuel 34.
  • the ash separated by the bag filter provided in the downstream of the cyclone 16 ⁇ ⁇ ⁇ exhaust gas line 25 and the incombustibles of Z or line 14 should be introduced into the ash melter 31 described above. This makes it possible to produce aggregates and the like using the molten ash.
  • the pyrolysis gas outlet line 7 is branched as lines 7 ′ and 7-1 as shown in FIG. 13, it is necessary to measure the branch flow rate by the differential pressure measuring means 100.
  • This differential pressure measuring means 100 is used to measure the flow rate of the pyrolysis gas removed from the pyrolysis furnace 1.
  • FIG. 14 (A) shows the orifice formed by ⁇ 3 ⁇ ⁇ : measurement means, 101, 101 'is the pipe forming the outlet line 7, 102 is the flange, 103 is the orifice plate , 104 is a differential pressure gauge, 105, 106, 107, 108 is an air inlet pipe, 109 is a pressure tap as a pressure outlet, 110 is a throttle part, 1 1 1 is an air-conditioning valve, and 1 1 2 is a flow meter or other flow meter.
  • four pressure tubs 109 are provided at positions that are changed by 90 ”in the circumferential direction.
  • FIG. 14 (B) shows a difference measuring means 100 formed by using a trumpet-shaped narrowing portion 110, and its configuration is the same as that of FIG. 14 (A).
  • FIG. 15 is a system diagram showing an apparatus for producing a superheated steam using the heat of incineration of waste according to the eighth embodiment of the present invention, wherein part of the pyrolysis gas obtained by the pyrolysis furnace 1 is ash-melted.
  • a configuration may also be adopted in which the upstream side of the furnace 31 is supplied through a branch line 7-2 to the lower inlet side of the dispersion plate 31-1 of the pyrolysis furnace.
  • This I reline 7-1 pyrolysis gas force ⁇ fluidizing gas because they are not diluted with (N 2, C 0 2, H 2 0 principal component of the inert gas) becomes high power port Rigas, Hai ⁇ ifc ⁇ 3
  • the temperature of 1 can be easily adjusted to 130 to 150 ° C.
  • FIG. 16 is a system diagram showing a superheated steam production apparatus utilizing waste incineration heat according to the ninth embodiment of the present invention. Has formed.
  • 1A is a mechanical transport for transporting the solid content in the pyrolysis means from the waste input side to the char mixture removal side.
  • a means for performing a stirring function for example, a rotary kiln or a horizontal screw stirring tank is provided.
  • a fluid medium such as sand is discharged, and waste such as sand and municipal waste is fed into the waste supply line 4 and the T-ring line 5 to enter air or fuel exhaust gas. Agitated at a temperature of 300 ° C or more by air or combustion exhaust gas supplied from 1 line 6.
  • the thermal decomposition be performed so that the thermal calorie ratio of the pyrolysis gas and the char mixture becomes “about 7 (pyrolysis gas): about 3 (char mixture) J”. is there.
  • an empty line iA port 21 is attached to line 1 for the pyrolysis gas output from the pyrolysis furnace 1A exit side, and the pyrolysis gas extracted from the pyrolysis furnace 1A is an air population line. 2 Introduce air from 1 to partially burn the tar and the like contained in the pyrolysis gas block, and to prevent tar adhesion and coking prevention at the outlet line 7, and then expand the pyrolysis gas. It is introduced into the ash melting furnace 31 before being introduced into the furnace 34.
  • Figure 17 shows the superheated steam produced by using the heat of incineration of waste according to the tenth embodiment of Honshu.
  • Fig. 3 is a system diagram showing a manufacturing apparatus, which is composed of a plurality of pyrolysis furnaces.
  • a plurality of the thermal decomposition furnaces are provided, and the thermal decomposition furnace is constituted by a fluidized thermal decomposition furnace having a fluidized bed with a V ⁇ deviation.
  • Each of the fluidized-bed pyrolysis furnaces 1 and 2 has a fluidized medium 2-1 and 2-1 'such as fluidized sand stored on a dispersion plate 3-1 and 3-1' such as a perforated plate. Wastes such as municipal waste and fluidized sand are supplied from the waste supply lines 4 and 4 'and the 3 ⁇ 4Ht ring (return) lines 5 and 5', and the waste gas is supplied from the flue gas inlet lines 6 and 6 '.
  • the fluidized-bed pyrolysis furnace 1 (first pyrolysis furnace) actively generates a tea mixture by performing the pyrolysis reaction of waste in a fluidized bed space of a temperature of 250 to 45 (TC). The mixture is taken out from the removal line 9 and supplied to the furnace 10.
  • the pyrolysis gas generated by the reaction is sent to the pyrolysis gas outlet line 7 to the pyrolysis gas combustion furnace 34 and non-flammable. The object is not!
  • the other fluidized pyrolysis furnace ⁇ (second pyrolysis furnace) performs the pyrolysis reaction of waste in a fluidized bed space with a temperature of about 450 to 700 ”C, and actively heats it together with dechlorination.
  • the cracked gas is fed to the ash melting furnace 3 1 from the pyrolysis gas outlet line 7 ′, while the unreacted char — mixture (the char-burning furnace 10, non-flammable ash from the iii ii ⁇ The object is separated into _, respectively, from the unloading line 8 'and taken out.
  • the temperature range of the fluidized bed can be widened to 250 to 450 ° C, and as a result, the amount of char mixture can be increased. I can do it.
  • the ash melting furnace 31 since a high-temperature gas of 450-700 ° C. and sufficiently thermally decomposed and high in calories is introduced, it is introduced into the ash melting furnace 31. oxygen A high temperature of 130 ° C. can be maintained even if the enriched air is reduced.
  • FIG. 18 is a system diagram showing a modified example of the superheated steam production apparatus using the heat of incineration of waste according to the eleventh embodiment, in which a pyrolysis furnace is constituted by a fluidized bed and mechanical conveying means. are doing.
  • one of the fluidized pyrolysis furnaces 1 (first pyrolysis furnace) in FIG. 17 is left as it is, and the other fluidized pyrolysis furnace ⁇ (first pyrolysis furnace) is mechanically heated as shown in ⁇ 16.
  • Cracking furnace 1 A, ⁇ a stirrer with a mechanical transport / stirring function, such as a rotary kiln or a horizontal screw, which moves the rest in the pyrolysis furnace from the waste input side to the char-mixture removal side. It consists of pyrolysis with one agitation.
  • a is the gas for fluidization (main and to N 2, C 0 2, H 2 0 main component of I ⁇ : gas) it is not Therefore, since the pyrolysis gas is not released, the heat per unit volume is high. It can be effectively used as an energy source for melting the ash content of gas bubbles, and is more preferable than the fluidized bed pyrolysis furnace 1.
  • a low-temperature pyrolysis furnace for producing a char mixture is formed in a fluidized bed ⁇ , and a high-temperature pyrolysis furnace 1 ′ for producing high-calorie pyrolysis gas is mechanically transported.
  • the ⁇ gas introduced into the ash melting furnace 31 can be enriched with oxygen.
  • a part of the pyrolysis gas obtained by the other pyrolysis furnace 1 ′ is supplied to the pyrolysis gas combustion furnace 34 via the branch line 7 ′ on the upstream side of the ash melting furnace 31. are doing.
  • the amount of ash contained in the pyrolysis gas or the combustion gas is about 10% of the waste, and it is not always necessary to use the entire pyrolysis gas supplied to melt it.
  • the ash melting furnace 31 branched from the pyrolysis gas outlet line 7 and the upstream / branch line ⁇ ′ are placed before the ⁇ / K measurement ⁇ stage 100 shown in Fig. 14 Then, it is necessary to adjust the owl.
  • the present invention particularly employs a backflow prevention step for preventing a backflow of a fluid or a fluid medium and gas between the pyrolysis means and the char combustion-stage, so that the flow having the temperature ⁇ and a large heat capacity is provided.
  • Medium strength s' Prevents temperature fluctuations, thermal decomposition, deterioration of combustion conditions, etc. in both fluidized tanks due to these without erroneous backflow in both fluidized tanks.
  • the PJ lubrication function is performed on the pyrolysis means side and the char combustion means side, respectively, and the thermal energy of the pyrolysis gas obtained by the pyrolysis means and the chlorine obtained by the char
  • the calorie ratio and the chlorine content of the combustion gas (dechlorination heat energy) that is not contained can be obtained according to the desired purpose without variation.
  • the thermal decomposition in the thermal decomposition means it is possible to prevent tar adhesion and coking of the pyrolysis gas, to reduce dioxin, to reduce C ⁇ , and to reduce NOx. In comparison with this, it is possible to obtain a superheated steam having a higher H level while reducing chlorine.
  • the thermal decomposition means is constituted not by a fluidized bed but by a mechanical conveyance stirring means, the thermal decomposition time and the amount of thermal decomposition are more timely compared to a fluidized bed.
  • the pyrolysis gas can be stably performed and the pyrolysis gas is not diluted, so that the calorific value per unit volume can be increased.
  • the pyrolysis means is constituted by a plurality of pyrolysis furnaces each having a fluidized bed or a combination of mechanical stirring tanks as appropriate, and the pyrolysis temperature of one pyrolysis furnace is reduced by another pyrolysis furnace. Since the pyrolysis temperature of the cracking furnace was made different, one of the pyrolysis furnaces on the low-temperature side The temperature is set to about crc, and i3 ⁇ 4s of the positively dechlorinated char mixture is performed, while the other pyrolysis furnace on the high temperature side is set to about 450 to 700 "C, For example, the pyrolysis gas used in the ash melting furnace

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

明 糸 HI
廃棄物の焼却熱を利用した過熱蒸^ 造方法とその装置
「技術分野」
木発明は、 都市ごみや産業廃菜物等を焼却し、 その燃焼排ガスの熱により蒸気 を製造して、 例えば該蒸気を発電ブラント等に用いる過熱蒸気製造する発明に閲 する。 更には、 焼却灰をその熱を利用して溶融し、 ^資源化する発明に関する。
「背景技術 j
従来よリ都市ごみ等の廃棄物を焼却する焼却装置には流動床焼却装置力多く用 いられ、 カゝかる装置は流動床焼却炉内の分散板 (例えば多孔板) 上に収容された 砂 の流動媒体に分散板下方よリ空気または焼却排ガス等を吹き込むことにより 流動媒休を流動化するとともに加熱し、 そのようにして形成された流動床内に都 市ごみ等の廃棄物を投入して ^½させる。
この燃焼にょリ発生した燃焼ガスは、 燃焼ガス出门ラインを経てボイラに至リ、 該ボイラ内で 7Kとの熱接触によリ蒸気を 上させ、 該蒸気を発電ブラント等の タービン駆動源として用いるものである。
さてかかる都市ごみ等の廃棄物中には塩ビブラスチック等の含塩素有機化合物 が混入しており、 可燃分中に C 1 として約 0. 2〜0. 5 % 有されている。 そ して都市ごみ等の廃棄物中に混入した塩ビブラスチック等に含まれる塩素は、 燃 焼によって H C 1 となリ (通常、 都市ごみ燃焼排ガス巾の H C 1は約 5 0 0〜 1 O O O ppm ) 、 焼却炉の後流に設置された蒸気発 川ボイラのチューブに作用し てこれを腐食させる。 特にチューブ表面温度が約 3 5 0°C以上では温度の増加と ともに高 食が顕著となる。
このため、 従来、 チューブ表面温度は 3 5 0 °C以卜にする必要があり、 製造さ れる蒸気の温度は約 3 0 0°Cが限界であった。 その結果、 従来のごみ焼却による ^効率は約 1 5 %以下であって、 塩素を殆ど含有しない重汕ゃ LN G等を燃料 とし、 ボイラチューブ温度を 5 0 0〜6 0 0°Cにできるプラントの 電効率約 4 0 %に比べて著しく低く、 その改善カ く望まれていた。 「発明の開示」
本発明はかかる技術的課題に鑑み、 塩素によるボイラチューブの高 食を防 止しながら高温 ·高圧の過熱蒸気を効率的に得ることのできる過熱蒸気の製造方 法とその裝置を提供する事にある。
本発明の他の目的は、 ボイラチューブとして高価な高級材料を用いることなく 効率良く塩素の低減ともに ϋつ高温度の過熱蒸気を得ることの出来る過熱蒸気の
|¾g方法とその装置を提供する事にある。
本発明の他の M的は後記するチヤ一燃焼手段におけるチヤ一燃焼と熱分解手段 における熱分解夫々を効率良く行レ、、 効率良く塩素の «ともに且つ高温度の過 熱蒸気を得ることの出来る過熱蒸気の製造方法とその装置を提供する事にある。 本発明の他の f:l的は、 効率よくチヤ一混合物の燃焼を行うことの出来る過熱蒸 気の製造装置を提供する事にある。
本発 II刀の他の Γ I的は前記熱分解- T'段における熱分解を効率良く行 、つつ、 その 熱分解ガスのタール付着やコーキング防止及び低ダイォキシン化、 低 N O X化を 図リ、 効率良く塩素の低減ともに ϋつ高温度高压の過熱蒸気を得ることの出来る 過熱蒸気の製造装^を提供する事にある。
本 明の他の fl的は、 長期に亙って安定して蒸 の製造を可能にしつつ、 前記 熱分解ガスの一層の効率利 mを図った過熱蒸気の製造装置を提供する事にある。 又本発明の他の m的は、 前記熱分解ガス若しくは燃焼ガスを分離して得られた 灰を溶融して骨材等の製造が可能となる過熱蒸 ίの製造装置を提供する事にある。 く構成〉
かかる課題を解決するために、 本¾明は、 略2 0 0〇〜3 2 0°〇前後に沸点を 有するように加圧させたボイラ水を用い、 該ボイラ水の加熱を少なくとも 2段階 以上の複数段階とし、
前記略沸点温度までの加熱を含塩素熱エネルギで行ない、
前記略沸点、 ^から所定温度の過熱蒸気を得る過熱を塩素を含まな ヽ脱塩素熱 エネルギで行なう事を特徴とするものである。
力かる発明によれば例えば闵 3に示すように、 都 i†iごみ等の廃棄物を、 例えば 熱分解してその熱分解ガス中に H C 1等が含有する含塩素熱分解ガスであっても、 該含塩素熱分解ガスの熱エネルギによるボイラ水の加熱は、 略 2 0 0 °C〜3 2 0 °C前後の略沸点温度としている為に、 含塩素熱分解ガスが蒸気発生用ボイラのチ ュ一ブに作用してもチューブ表面温度が約 3 5 (TC以上とならない為に、 これを 腐食させる事にならない。
この場合前記ボイラ水は加圧によリ沸点を略 2 0 0 T:〜 3 2 0 °C前後に設定し てある為に前記含塩素熱分解ガスのボイラ水への熱エネルギの付与にバラツキが ^じていてもそれは該ボイラ水の潛熱の吸収 (言い換えれ {fc から蒸気への相変 換にのみ使用され 上昇分として作用しない) に使用されるために、 ボイラ水 の熱交換チュ一ブの表面温度が塩素腐触温度以上に上昇する事なく、 安定した加 熱温度のボイラ水若しくは蒸気を得る事が出来る。
そして前記略 3 0 O t:〜 5 0 (TCの熱分解により分解されなかった未分解残渣 ί に脱塩素されているために、 これを燃焼させて得られる、 例えば 5 0 0〜9 5 (TC前後の熱エネルギを利用して前記略 2 0 O 〜 3 2 0 °C前後に '次加熱し たボイラ水若しくは蒸気を二次〜三次加熱して 4 0 0〜 5 0 0 'Cの過熱蒸気 (ボ イラチューブ温度を約 4 5 0〜5 5 (TC) を得ても通常の低級材、 低コストでも チューブ腐触が^!じる恐れがない。
これによリごみ焼却による発電を行なった場合においても、 塩素を殆ど含有し ない重油や L NG等を燃料としたブラントと同様な 3 0〜 4 0 %の発電効率を得 る事が出来る。
具体的には前記含塩素熱エネルギでの加熱は、 略 3 0 0 °C以上の流動媒体を含 む空間内に廃棄物を供給して熱分解反応を行なわせる熱分解手段で得た熱分解ガ スの燃焼熱エネルギを利用して行なうようにし、 脱塩素熱エネルギでの加熱は、 前記熱分解手段よリ取リ出された未分解残渣および流勁砂から成るチヤ一混合物 を空気によって流動させながら前記未分解残渣を燃焼させるチヤ一燃焼手殺によ リ得られた熱エネルギを利用して行なう。
そして前記発明を具体化させる装置として、 温度 3 0 (TC以上、 好ましくは温 度 3 5 0〜5 0 0 °Cの空問内に廃棄物を供給して熱分解反応を行なわせ、 その反 応によリ発生した熱分解ガスと未分解残渣ぉよび流動媒体から成るチヤ一混合物 と不燃物とを互いに分離する例えば流動床、 口一タリキルン、 機^!拌槽等を利 用した熱分解手段と、
前記熱分解手段よリ取リ出された未分解残渣および»媒体から成るチヤ一混 を、 空気によリ流動させながら前記未分解残渣を燃 させる例えば気泡流動 床や高速循環流勳床その他の流動床等からなるチヤ一燃焼手段と、
前記熱分解ガスの熱エネルギーを利用して約 4 0 (TC以下、 具体的には略 2 0 0〜 3 5 0°C以下の温水または蒸気を製造する第 1の蒸気製造手段と、
前記チヤ一燃凝手段により得られた燃焼ガスの熱により前記第 1の蒸気製造手 段で製造された温水または蒸気を過熱蒸気とする第 2の蒸気製造手段を含むこと を基本構成とするものである。
この場合、 前記第 1若しくは第 2の蒸気製造 段で加熱された蒸気若しくは前 記いずれかの觀手段に導人される温水 しくは蒸気の '部を、 前記チヤ一燃 手段の高温域側に配した熱交換手段に適 ¾導入するのがよい。
又、 前記チャ一燃焼手段より加熱された流動媒体の循環 iTO、 好ましくは熱分 解手段に戻入する流動媒体経路中に第 2のチヤ一燃 Ρ·段を介 させ、 該第 2の チヤ一燃焼手段の燃焼媒体巾に、 前記第 1 しくは第 2の蒸適造 段、 若しく は前記チヤ一燃 Τ殺の高温域側に配した熱交換 段で加熱された蒸気を加熱す る熱交換手段を設けるのがよい。
即ちよリ具体的には、 前記チャ一燃 Jft手殺よリ加熱された流動媒体を熱分解手 段に戻入する流動媒体経路屮に、 熱交換手殺等の熱^ 7緩和手段を設けた第 2の チヤ一燃焼手段を介在させるのがよ 、。
更に本発明は、 前記熱分解手段とチヤ一燃焼乎段よリ効果的に不燃物を取り出 す方法として、
前記熱分解手段の不燃物取リ出し Πよリ排出された排出物につレヽて大型不 ¾3 と他の排出物を分離し、 他の排出物を燃焼手段底部側に給送する第 1のフィルタ 手段と、
前記 手段の不»取り出し口より排出された排出物について小¾不燃物と »J媒体とを分離し、 流動媒体を燃焼手- ¾ 部側に給送する第 2のフィルタ手段 と、
更に必要に応じて前記第 2のフィルタ手段の出口側に、 灰分を分離し、 灰分分 離後の流動媒体を鮮究手段底部側に給送する第 3のフィルタ手段と、
を設けるのがよい。
尚、 前記第 1のフィルタ手段は少なくとも第 2のフィルタ手段より網目を大き くすることが必要で、 具体的には第 1のフィルタ手段は投入される廃棄物の大き さにもよるが 5 m m前後に、 又第 2のフィルタ手段は流動媒体の最大径 (約 1 . O mm ) より大きい 2 m m前後に設定するのが良い。 第 3のフィルタ手段は流動 本の最小伃 (約 0 . 2 mm) より小さい 0. 1 m m前後に設定するのが良い。 又、 前 フィルタ- 段には、 例えば振動篩等を川いること力出来る。
カゝかる発 Π刀によれぱ熱分解手段で分離されたチャ一混合物にはも^が実質的に 含まれないので、 これを第 2の蒸気製造手段の過熱源として; ¾い 5 0 0 °C以上の 過熱蒸気を得るように構成しても、 機器の高温腐食は生じない。
また^ 1の蒸気製造-了-段の加熱源には、 塩素を含む熱分解ガスの燃焼排ガスを 用いるも、 該熱を利用して約 4 0 0 "C以下、 具休的には略 2 0 0〜 3 2 (TC以下 の温水または蒸気を製造を製造するものである為に、 高温腐食の温度以下の温度 しか加熱しないために、 ボイラチューブ の腐食の恐れはなく、 高価な高級材料 を用いる必要はない。
又本発明においては、 前記第 1若しくは第 2の蒸気製造手段で加熱された蒸気 若しくは前記レヽずれかの製造手段に導入される温水 しくは蒸気の一部を、 前記 ¾¾1:充手段の高温域側に配した熱交換手段 (以下第 1の熱交換手段という) に適 導入するのもよい。 即ち、 前記チヤ一燃焼手段では' 気によってチヤ一混 物を 流動させながら未分解残渣を燃焼させるので、 その燃焼ガス屮は高温、 具体的に は 7 0 0 °C〜 9 5 0 °Cになる。
そこで該髙温ガスを利用して前記第 1 しくは第 2の蒸^ S造手段で加熱され た蒸気若しくは前記いずれかの製造手段に導入される温水若しく(ぉ 気の一部と 熱交換する事によリ、 後記する作川を営むことが出来る。 即ち、 前記第 1の蒸気製造手段に導入される温水を前記熱交換手段に導入して ある程度の昇温を図ってもよく、 乂、 前記第 2の蒸気製造手段に導入される温水 又は蒸気を前記第 1の蒸 造手段とともに、 前記熱交換手段にパラレルに導入 することにより、 第 2の蒸気製造手段の加熱量を多くする事が出来、 多量の過熱 蒸気を得ることが出来る。
更に前記チヤ一燃滅手段の高温域侧ま、 8 0 0〜9 5 0 °Cに加熱されているた めに、 第 2の蒸気製造手段で加熱後の過熱蒸気を前^熱交換手段に導入すること により、 一層加熱された例えば 4 0 0〜 5 2 0 °Cの過熱蒸気を得ることも出来、 十分加熱された過熱蒸気を得ることが,' I;来る。
従って第 1の蒸気製造手段、 第 2の蒸気製造手段、 及び前記、 第 1の熱交換手 段を利用して、 実質的に直列 Z並列の多段階界温を闵ることによリ多量 aつ十分 加熱された過熱蒸気を得ることが出来る。
又前記チヤ一燃焼手段の高温域側に熱交換手段を ¾設する事は、 9 5 0〜 1 3 0 0 °Cと無用に髙くなった高温域側をそのまま出门ラインに流すと通常の耐火材 では温度的に持たないが、 これを 8 0 0〜 9 5 (TCに落とすことによリ通常の耐 火材ラインの利用が可能となる。 乂前記のように 8 0 0〜 9 5 (TCに落としても 第 2の蒸気製造ず-段における蒸気温成を 4 0 0〜 5 2 0 "Cに維持する hで何の支 障もない。
一方、 前記チヤ一'膨 手段よリ加熱された流動媒休も同様に高温となる。 そこ で本発明は、 その高温の流動媒体を利用して、 前記チヤ一燃焼 Τ·段にょリ加熱さ れた流動媒体の循 中に第 2のチヤ一 手段を介在させ、 i 2のチヤ一 姆宪手段の燃焼媒体中に、 前記第 1 しくは第 2の蒸気製造手段側に設けた熱交 換手段を配設するのがよい。
これにより、 第 1の蒸気製造 段、 第 2の蒸気製造 殺等とに配設される熱交 換器を直列ノ並列に配設させて多段階昇温を冈ることによリ多量 10·つ十'分加熱さ れた過熱蒸気を得ることが出来、 これにより流動媒休は熱容量が大きくその熱接 触によリ安定した高温が得られる。
又、 前^チャ一燃焼! T'段の流動媒体は熱分解 Τ·段との問を循環する訳であるが、 チヤ一燃焼手段の流動媒体の温度は略 7 0 0〜 8 5 0 "C、 一方熱分解手段の流動 媒体の温度は 3 5 0〜 5 0 0 °Cであリ、 両者間の熱'落差が大きく、 この為チャ一 燃焼手段の流動媒体を熱分解手段側に直接導入すると、 前記熱落差にょリ熱分解 手段内の熱分解温度が局所的に高くなつたり熱変動が じる恐れがあリ、 従って 前記戻人される流動媒体の量の調整が煩雑化する。
そこで木発明は、 前記チヤ一燃焼手段より加熱された流動媒体を熱分解手段に 戾人する流動媒体経路中に、 熱交換- 段熱等の落 7 緩和手段を設けた第 2のチヤ —燃 έ芋段を介 £させるのがよレ、。
これにより、 該第 2のチヤ一燃焼手段で例えば第 1のチヤ一燃焼手段で 7 0 0 〜8 5 0 Cに加熱した流動媒体を、 前記第 2のチヤ一燃焼手段で熱交換手段によ る奪熱により 5 0 0〜7 0 CTCに落とし、 該 5 0 0〜7 0 0°Cに落とした流動媒 休を熱分解手段に戻入する事が出来るためになだらかな熱 钭が可能であり、 こ の結果前記熱分解 段内の熱分解温度を 3 5 (TCから 5 0 (TC前後に安定して制 御が uj能である。
さて、 木発 Π刀は、 廃棄物として一般に約 2 0 0 mm 度の鹿棄物が前記熱分解 手段に投入される 1 このため前記熱分解手段を構成する例えば Mi床炉の不燃 物取リ出し口の ί をある程度大きくせねばならず、 この為前記取リ出し口より不 'βの他に一部のチャ一残查ゃ砂等の流動媒体も取リ ,' I ίされてしまう。
そこで熱分解手段の不 '»取り! Uし口より排出された排出物にっ 、て前記第 1 のフィルタ手段により、 大型不 ¾ "勿と他の排 il}物を分離し、 大型の不燃物のみ排 出させ、 そして他の排出物については燃焼手段底部側に給送し燃焼の用に供しよ うとするものである。
更に前記チャ一燃焼手段に iiS¾に大型の不燃物力除去されているために、 又チ ヤー残査も十分燃焼されているために、 不燃物取り出し口より排出された排 物 については小型不 »と流動媒体のみを第 2のフィルタ手段で分離すればよく、 これによリ分離された流動媒休を燃焼 Τ·段底部側に給送すれば流動媒体の損失を Ρ方止して循環再使用が可能となる。
また第 3フィルタ 段は必ずしも必要とするものではないが、 第 2フィルタ手 段で補足されなかった流動砂を補足しながら灰分のみを外部に排出するもので、 これによリ効率的な灰分除去と流動砂の回収が容易になる。
さてかかる装置においては熱分解手段側では、 熱分解を完全に行うために、 又 チヤ一燃焼手段側では、 完全燃焼を可能にする為に、 夫々燃焼排ガス若しくは空 気の供給量、 流動媒体や廃棄物の投人 循環量、 更には温度管理や熱分解、 '燃焼 時間を厳しく制御する必要があリ、 この為必然的に熱分解手段側の流動槽とチヤ —燃焼手段側の流動槽の間で圧力差が生じるのは避けられない。
そして前記 2つの流動槽間では熱分解 段側よリチヤ一燃焼手段側へは、 未分 m および流動媒体から成るチヤ一混合物が、 又チヤ一燃焼手-段側から熱分解 手段側へは高温の流動媒体が夫々送給 (戻人) される。
一方、 熱分解 段側の温度は 3 5 0〜5 0 (TCであり、 一方チヤ一燃焼手段側 の温度は7 0 0〜8 5 0 でぁリ、 この為、 前記温度差を有し ϋ.つ熱^量の大き い流動媒体が一方から他方へ 他方から 方へ循環する事はその循環量の変動に より夫々の流動槽内で温度変動が じ、 熱分解 殺側では熱分解力 '分に、 乂チ ャ一燃焼手段側では完全燃焼力 じない事になる。 - 又木発明は、 前記ボイラ水の略沸点温度までの加熱を熱分解 3"'·段よリ得た含塩 素熱エネルギで行ない、 前記略沸点温度から所定温度の過熱蒸気を得る過熱をチ ャ一燃焼手段で得た脱塩素熱エネルギで行なう為に、 熱分解 段で得た熱分解ガ スの熱エネルギと、 チヤ一燃焼手段で得る脱塩素熱エネルギーのカロリ比を、 具 休的には約 7 : 3程度に設定する必耍があるが、 前, liiのように流動媒体等が逆流 すると前記力口リ比を維持できなレ、。
そこで本発明においては、 前記熱分解手段とチヤ一燃焼手段間を接続するチヤ —通路、 若しくは前記熱分解手段又は/及びチヤ一燃焼手段側にチヤ—若しくは '»J媒体の逆流防止手段を配している。
そしてこのような逆流防止手段は、 圧力 ?:形成 段により構成しても良く、 又 的搬送手段で構成してもよい。
例えば前記逆流防止手段として、 前, 熱分解手段に流動媒体を戻入する少なく とも一のチヤ一燃焼- ΐ·段側に設けた 力差形成手段であり、 該圧力差形成手段が、 前記熱分解手段側の圧力 P,とチヤ一燃焼手段の圧力 P2との差圧 (P P2) よ り大なる圧力差を形成するように構成するのがよレ、。
又、 前記逆流防止手段とし、 前記熱分解手段側若しくはチヤ一燃焼手段側へ強 制的にチヤ一の搬送を行う機械的搬送手段で構成し、 好ましくは該機械的搬送手 段の入口側よリ出 Γ1側に向け、 上向きに 斜させ、 ffi力差を持たせて配 11するの がよい。
そして本発明は、 特に前記チヤ一燃焼 段よリ熱分解手段に加熱された流動媒 休を戻入する流動媒体経路中に熱交換乎段熱等の落^緩和手段を設け、 好ましく は前記第 2のチヤ一燃焼手段中に熱交換手段を設けるとともに、 該熱交換 段配 設位置ょリ出口側に、 前記したような逆流防止手段を設けるのがよ 、。
力 >かる発明によれば特に前記熱分解手段とチヤ一燃焼手段問にチヤ一若しくは 流動媒体の逆流を防止する逆流防止手段を配した為に、 前記温度差を有し且つ熱 容量の大きい流動媒体等が前記両流動槽問で誤って逆流する事なくこれらに起 する両流動槽内での温度変動や熱分解、 燃焼条 の悪化等を防 il:出来る。
又、 熱分解 -段側とチヤ一燃焼 Τ·段側では夫々 Γ1的とする流動作用が円滑に行 われるとともに、 熱分解手段で得られる熱分解ガスの熱エネルギと、 チヤ一 ^¾
-τ·段で得る塩素を含有しない燃焼ガス (脱塩素熱エネルギー) のカロリ比を、 所 望目的に沿ってバラツキカ じる事なく得る事が可能となり、 かつチヤ一燃焼ガ ス中に塩素が混入することがなくなる。
前記熱分解手段側の圧力 Ptとチヤ一燃焼 段の H;力 I ^との差^ ( Ρ , - Ρ2) ょリ大なる圧力 ¾を形成する圧力差 (Δ Η · ρ ) 形成 段で構成する事により、 熱分解手段側の圧力 Ρ!が設定圧より低くなつた場合、 チャ一燃焼 段の; 力 Ρ 2 カ設定/ Εより高くなつた場合に自動的に設定圧力盖 ( Δ Η · ρ ) になるまで給送 出来、 結果としてチヤ一燃焼手段側と熱分解炉側の +11対的な ίί:力差を略設定 j. 力 差 (Δ Η . p ) に維持出来、 好ましい。
又木発明は、 前記チヤ一燃焼手段についても具体的に規定している。
即ち前記チヤ一燃焼- 段は、 分散板下方より供給される空気 (以下空気流とい う) を 2つに分割されるか、 若しくは該流動床内を il Jリ板により仕切る事によ リ、 前記チヤ一混合物を流動床内で循環流動させる循環手段を形成した流動槽で あり、 そして前記循環する流動域の下降流域苦しくは上流域の下部に熱分解手段 力 供給されるチャ一混合物の供給に Iを設けたことにある。
この場合前記循環手段は流動床内を回流可能に複数に分割してもよく、 又前記 循環手段を、 前記分散板下方よリ供給する ¾気流を複数に分割した分割流で構成 し、 該分割した複数の空気流により、 前記流動床内のチヤ一混合物が循環可能に その流量を制御するように構成してもよく、 更には両 #を組^てもよレ、。
る前記チヤ一燃 J¾手段の作; Πは、 次の通リである。
前記熱分解された後のチヤ一はほとんど炭化状態にある為に、 その密度 (比重) は 0. 2〜0 . 5と く、 この為前 ϋチヤ一燃焼 段を流動床で形成した場合、 流動砂の比重は約 2. 5である為に、 前記チヤ一は流動床の上部に浮きやすく空 気との混合が不卜分で燃焼性が悪くなり、 多扉:の空気を必要としていた。
そこで本発 Π刀は循環する流動域の下降流域に熱分解了-段から供給されるチヤ一 混合物の供給口を設けたために、 比- の 1¾ ヽチャ一は必ず流動床底部に移動し、 循環流動するために、 空気との混合が I·分に行われ J1.つ少ない'空気流 (例えば 空^ J;U = (所要空気量/现論 Φ気暈) = 1 . 2〜 1 . 3 ) で十分なる燃 が W となる。
特に前 流動床表而に浮レ、たチャ一も前 卜'降流によリ し流動床底部に移 動する為に、 前記した効果が一層増人する。
そこで、 前記熱分解手段を構成する流動床炉屮の 1:方¾間中に 1若しくは複数 段階的に ¾気を導入し、 熱分解ガスの燃焼を行うように構成する事により、 出口 ラインにおける温度低下を防止してかつ極度に温度が上昇しないようにしてター ル付着防止やコ一キング防止し、 安定した運 ¾が可能となる。
更に、 木発明は、 熱分解ガス 1次燃焼後の熱分解ガスに更に 気を導入して還 元状態にある熱分解ガスを燃やし、 低 Ν 0 X化を同るのが良い。
更に又、 前記上方空間における ^燃焼時の熱がその下方の流動床空間に輻射さ れるとチヤ一燃 έ等が生じ、 好ましい熱分解を生じない。 そこで木発明は前記 2 つの空間の間を狭通過面積化し、 空気との混合を促進させるとともに幅射熱の逆 流防 ih機能を持たせている。
又前記熱分解手段を流動床で構成した場合、 該流動床を、 流動 の流動媒体 が収容された分散板下方よリ空気または燃焼排ガス等を吹き込むことにより流動 ¾£ί本を流動化する主流動床と、
該主流動床の下方側壁側を拡幅化し、 その底部に廃棄物投入側からチヤ一混合 物取り出し側へ向かって固体分を搬送する搬送手段を設けて構成してもよい。 力かる発叨によれば、 前記搬送手段は副熱分解部として機能し、 その部分で未 βを強制的にチヤ一残查方向に搬送しながら熱分解を行うために、 不 β中に 来膽が残ることがないようにでき、 廃棄物中の塩素を実質的に完全に分解し、 ガス化して除去することができる。
この場合、 流動床内に設けた仕切板によリ^質的な流動床の流れ長さ、 爲休的 には廃棄物と、»媒体とを 合させながらチヤ一混合物抜 ί I ίし I Iに向かって押し 11 ίす流れ長さを多く取ることが出来、 而も糜棄物はチャ一混合物抜出し 1.1へ吹き 抜けることがない為に、 熱分解を一様に ilつ所定の時間以上に保持される。 した 力 て前記構成によリ更に熱分解を一様に十分行なうこと力 S 'でき、 廃棄物屮の塩 素を実質的に完全に分解し、 ガス化して除去すること力 i 'できる。
又発明は、 前記熱分解手段と第 1の蒸気製造手段との間に、 前記熱分解ガスの 第 1次燃 J £熱により、 チヤ一燃焼- 段若しくは熱分 ί5 段よリ取り出された夫々 のガスより分離された灰分の溶融分離を行う灰分 融分離手段を設け、 好ましく は前記灰分が分離:された熱分解ガスの 2次燃焼を行う 2次燃焼手段を設けるのが よい。
そこで前記必要に応じガス分離した後、 若しくはガス分離をしながら灰分の溶 融分離を行う灰分溶融分離 段を設けることにより、 前記溶融灰を利川して骨材 等の製造力可能となる。
更に、 熱分解ガスを利用して 2次 を行い、 該 2次燃焼手段内にボイラ等の 第 1の蒸気製造 段を配設する事により、 一層効率良くボイラ水の -次加熱が可 能である。
さて前記熱分解ガス巾に含まれる灰及び燃焼ガス中に含まれる灰は、 廃棄物に 対し 1割程度であり、 従ってこれを供給される熱分解ガス全てを使用して溶融す ることは必ずしも必要なく、 却って過剰熱エネルギになリやすレ、。
又前記熱分解ガスを灰が溶融出来るまでの高温燃焼させるために低カロリ一ご みの場合、 必要な酸素富化空気も多くなる。
そこで、 前記熱分解手段によリ得られた熱分解ガスを灰分溶融分離手段ととも に、 その一部を分岐して前記 2次燃焼手段に供給するように構成するのがよレ、。 又木発明は、 好ましくは温度 3 0 (TC以上の酸素過小空間内に廃棄物を供給し て熱分解反応を行なわせ、 その反応により発^した熱分解ガスを 2次燃焼手段若 しくは熱交換手段に供給するため熱分解ガス; 1 1籽路巾に絞り部を設け、 該絞リ 部の人口側と出口側に夫々設けた圧力取リ出し ΙΊに少獻の空気を適宜流す空気流 入手段を設けるのがよい。
この现由は次の通りである。
さて、 灰分溶融分離手段を設けた装 においては、 前記のように灰分の溶融に 必要な熱分解ガスの流量を計測して、 制御するために熱分解ガスの経路中にオリ フィス等の差圧計を配し、 その流量 (流速) 測定を行なう必要がある。
このため前記熱分解手段よりの出口経路中にオリフィス等の差圧計 (絞り) を 配し、 流量測定を行なう必要があるが、 前記熱分解丁' '段よリの出に Iガスはその出 口温度が 3 5 0〜 5 0 0 "C前後の為に、 タール分を んだガスが出てくる場合が あり、 そのタール分が絞り部や圧力タップ (細孔状の Π·:力取り出し口) に付着し、 円滑な流量測定が闲難になる。
そこで本発明は、 絞り部の人口側と出[ 1側に夫々設けた圧力取リ出し口に少量 の空気 (支燃性ガスを含む気休の意味で空気という^葉を用いている。 ) を適: [ 流す空気流入手段を設けることによリ、 前記タ一ル分を燃焼させて付着等を防止 して、 安定して圧力を測定できる。
又前記熱分解 T.段においては、 前記熱分解 段により得られた熱分解ガスの - 部を分岐して熱分解稀の入口側に供給するのがよい。
かかる構成によれば、 前記熱分解手段により得られた熱分解ガスの一部を分岐 して熱分解手段の入口側に供給するものであるために、 言換えれば 3 5 (TC〜5 0 o "cの高温の可燃性ガスを熱分解手段に循環供給する事が出来るために、 熱分 解ガス力空気又は ' t尭排ガス中の N2、 C O2、 H20 等の不活性ガスでの希釈を 最小限に抑えて、 単位容積当リの発熱量を高くし、 灰溶融炉の温度保持が容易に なる。
次に、 前記熱分解手段は、 流動床のみに限定される事なく、 該熱分解手段内の 固体分を廃棄物投入側からチヤ一混合物取リ出し側へ向かつて搬送する機械的搬 送 Z攪抻機能を有する熱分解炉で構成してもよい。
即ち、 前記熱分解手段を流動床ではなく、 前記した機械的搬送攪袢手段にょリ 構成したために、 流動床に比較して定時的且つ定最的に熱分解時問と熱分解量を 確保することが出来、 安定して熱分解を行うことが出来る。
更に、 重要な効果としては、 流動床で必要とされる流動化用のガス (卞として N2、 C O^ H20 主成分の不活性ガス) が不要なため、 熱分解ガスは 釈され ないので、 単位容積当リの発熱量が高く、 空気又は酸素富化 気によリ容易に 1 3 0 0 °C以上の高温を発生でき、 後記するようにガス中の灰分の溶融を行うため のエネルギー源として有効に使 /T]できる。 ·
そこで前記 ガスは灰分を含んだ状態でチャ一燃焼手段から排出されるため に、 これをサイクロン等で一 _a分離した後、 スーパヒータゃボイラ等の蒸気製造 段に導入するの力好ましい。
そして前記ガス分離した灰分は溶融して粒状化することにより骨材等の利用が 可肯 gとなる。
そして前記灰分を溶融化するには一般に可燃性ガスである熱分解ガスを/ πレ、て
«させれば 1 3 0 0 °C前後の高温度に燃焼させる事が容易である。
しかしながら前記熱分解ガス中に含まれる灰及び燃焼ガス中に含まれる灰は、 廃棄物に対し 1割程度であり、 従ってこれを供給される熱分解ガス全てを使用し て溶融することは必ずしも必要なく、 却って過剰熱エネルギになりやすい。
又前記熱分解ガス全てをを灰が溶融出来るまでの高温燃焼させるために必要な 酸素富化空気も多くなる。
又木来熱分解手段の 的は、 単に塩素のみを都市ごみ等の廃棄物よリ取り出し てその脱塩素されたチヤ一混合物をチヤ一燃焼手段に供給すればよい為に、 特に 高温化する必要はなく、 2 5 0〜 4 5 0 °C程度の温度で足リる力 一方灰溶融炉 は灰を溶融する為に、 1 3 0 0°C前後の温度にする必耍があり、 この為灰溶融炉 に使用する熱分解ガスは温度が高い方、 実際には 4 5 0〜 7 0 CTC前後の温度で 熱分解し、 単に脱塩素のみではなく積極的に熱分解ガスを生成する方が好ましい。 そこで本発明は、 前記熱分解手段を流動床若しくは機械的攪拌曹を適宜組合せ た複数の熱分解炉で構成するとともに、 一の熱分解炉の熱分解温度を、 他の熱分 解炉の熱分解' に対し異ならせて構成してもよい。
即ち低温側の ·の熱分解炉では 2 5 0〜4 5 (TC程度の温度に設定し、 積極的 に脱塩素されたチヤ一混合物の製造を行なうとともに、 一方高温側の他の熱分解 炉では 4 5 0〜7 0 (TC程度の温度に設定し、 例えば灰溶融炉に使用する熱分解 ガスを生成してもよい。
即ち前記高温側の熱分解炉ょリ生成された熱分解ガスを、 チヤ一燃焼 段若し くは熱分解手段よリ取リ出された夫々のガスより分離された灰分の溶融分離を行 う灰分溶融分離; 段に供給するように構成する。
この結果熱分解ガスの機能を分離し、 一の熱分解炉では積極的に脱塩素された チャ一混合物の製造を行なう事が ί I i来、 他の熱分解炉では積極的に例えば灰溶融 炉に使用する熱分解ガスを 成する事が出来、 この機能分離によリ効牢-的なチヤ —混合物の生成と、 熱分解ガスの 成が可能となる。
又 の熱分解炉では廃棄物の脱塩素だけで足りるために、 2 5 0 - 4 5 (TC 度と流動床の ^範刚を広く取れ、 結果としてチヤ一混合物の量を多くする事が 出来る。
「¾Ιί了 ιίの簡単な説明」
図 1は本発明の第 1実施例に係る廃棄物の焼却熱を利用した過熱蒸気製造装置 を示す系統図で、 チャ一 fe¾炉と熱分解炉との間に副チヤ一燃焼炉を設けている。 図 2は本発明の第 2実施例に係る廃棄物の焼却熱を利用した過熱蒸気製造装 ϋ を示す系統図で、 副チヤ一燃焼炉を独立して設けている。
図 3は本発 Π刀の ¾本構成に係る廃棄物の焼却熱を利川した過熱蒸気の製造手順 を示すグラフ図である。
図 4は本発明の第 3実施例に係る廃棄物の焼却熱を利用した過熱蒸気製造装置 を示す系統図で、 図 1の構成に加えて熱分解炉の不燃物取り出しライン及びチヤ 一燃焼炉の不;»取リ出しライン夫々に、 フイノレタ力取リ付けられている。
図 5は本発明の第 4実施例に係る廃棄物の焼却熱を利用した過熱蒸気製造装置 を示す系統図で、 図 4の副チヤ一燃焼炉を让 ¾板を介して 2つの流動床に分割し て逆流防 Iヒ手段を構成している。
図 6は木発明の第 5実施例に係る廃棄物の焼却熱を利用した過熱蒸気製造装置 を示す系統図で、 図 5の構成に加えて砂貯精よリ砂をチヤ一燃焼炉に補給可能に 構成している。
図 7は逆流防止手段を、 前記熱分解手段側よりチヤ一燃焼手段側へ強制的にチ ヤーの搬送を行う機械的搬送手段で構成した概略闵である。
図 8は図 5に適用されるチヤ一燃焼手段と副チヤ一燃焼手段と熱分解炉を示し、
(A) は- 面図、 (B) は. 面図である。
図 9は前記夫々の実施例に適 fflされるチヤ一燃焼炉を改良した流動床の構成を 示し、 (A) は正面図、 ( B) は側面図、 (C ) は甲'而図である。
図 1 0は、 前記夫々の実施例に適川される熱分解炉の改 に係る熱分解炉の内 部構造を示す三面図で、 (A) は正而断而 |¾、 ( B ) は平而断而図、 (C ) (お ί 側面図である。
図 1 1は、 前記夫々の実施例に示す燃焼ダクトからなる熱分解ガス燃焼炉を一 休化した熱分解炉の他の改良に係るもので、 ( A ) は図 1の熱分解炉と ' ^έダク トを側面から見た図、 (Β) は絞り部の変形例、 (C ) は正而図である u
図 1 2は本発明の第 6對沲例に係る廃棄物の焼却熱を利用した過熱蒸気製造装 置を示す系統図で、 図 2のチヤ一燃焼炉を仕切板を介して 2つの流動床に分割し て逆流防止手段を構成し、 更に灰溶融炉を設けている。
図 1 3は本 明の第 7実施例に係る廃棄物の焼却熱を利用した過熱蒸気製造装 置を示す系統図で、 図 1 2のネ冓成に加えて熱分解ガスの一部を分岐して熱分解ガ ス燃½炉へ供給している。 図 1 4は図 1 3に示す熱分解ガス出口ラインに配設した差圧計測手段で、 (A) はォリフィスを用レ、て形成した差圧計測手段、 ( B ) はラツバ状絞りを用いて形 成した差圧計測手段である。
図 1 5は、 本発明の第 8実施例に係る廃棄物の焼却熱を利用した過熱蒸気製造 装置を示す系統図で、 前記熱分解炉によリ得られた熱分解ガスの -部を灰溶融炉 の上流側で、 分岐ラインを介して熱分解炉の下部に循環するように構成している。 図 1 6は、 本発明の第 9実施例に係る廃棄物の焼却熱を利用した過熱蒸気製造 装置を示す系統図で、 熱分解炉を流動床ではなく、 機械的搬送攪拌手段により構 成している。
図 1 7は、 本発明の第 1 0 ¾¾¾例に係る廃棄物の焼却熱を利用した過熱蒸気製 造装置をボす系統図で、 複数の熱分解炉で構成している。
図 1 8は、 前記第 1 1実施例に係る廃棄物の焼却熱を利用した過熱蒸気製造装 置の変形例を示す系統^で、 熱分解' を流動床と機械的搬送攪抨手段によリ構成 している。
「発明を実施するための最良の形態」
以下、 図面に基づいて本発明の実施例を例示的に詳しく説明する。 ί¾しこの実 施例に記載されている構成部品の寸法、 材質、 その ffl対配 ίϋなどは特に特 定的な記戦がない限りは、 この発明の範 IJNをそれのみに限定する趣旨ではなく単 なる説明例に過ぎない。
図 1は木発明の第 1実施例に係る廃棄物の焼却熱を利用した過熱蒸気製造装置 を示し、 図中、 1は流動床からなる熱分解炉で、 多孔板等の分散板 3— 1上に流 動砂等の流動媒体 2― 1が収納されておリ、 廃棄物供給ライン 4ょリ都市ごみ等 の廃棄物が、 砂獮環 (戻入) ライン 5より流動砂が投入され 燃 非ガス入 1—1ラ イン 6よリ供給された燃焼排ガス等 (木熱分解炉 ( ¾木的には燃焼ではなく熱分 解の為に、 供給されるガスは酸素を消費した燃焼棑ガスが大部分であるが、 温度 制御を行なう為に必要に応じ空気を僳かに入れる) により温度 3 0 0 °C以上の流 動床空間を生成し、 廃棄物の熱分解反応を行なわせ、 その反応により発生した熱 分解ガスは熱分解ガス出 Πライン 7より、 乂未分解残濟および流動砂から成るチ ャ一混合物はチヤ一混合物取リ出しライン 9より、 不 βは不燃物取リ出しライ ン 8より、 夫々 Sレ、に分離して取り出す。
この際熱分解ガスとチヤ一混合物の熱カロリー比が 「約 7 (熱分解ガス) :約 3 (チヤ一混合物) 」 になるように熱分解を行うこと力望ましい。
これは、 加温すべきボイラ水を 1 OOKg fノ ern 前後に加圧した場 沸 点が 309 "C前後となり、 水冷壁ボイラ 36、 36-2及び第 1のボイラ 24で ボイラ水を常温よリ 「沸点 309°C+蒸 潜熱」 、 a換えれば 309 "Cで殆ど蒸 気化するまで立上げるカロリーと、 該立上げた蒸気を沸点 309°Cより 500°C まで過熱させるカロリーの比は、 約 7 : 3である事による。
又熱分解炉 1出口側の熱分解ガス出口ライン 7には空気入口ライン 21カ 乂付 けられており、 熱分解炉 1よリ取リ出された熱分解ガスは、 空 51人口ライン 21 よリ 気を導人して熱分解ガス中に含まれるタール等を一部燃焼させ、 出「Iライ ン 7におけるタール付着防止やコーキング防 ||:を闵ることも必要に応じて行う。 又前 d出口ライン 7の下流端には、 燃焼ダクトからなる熱分解ガス燃 炉 34 が配設され ライン 2 Γ より前記熱分解ガスに I·分なや:気を供給して該熱分解 ガスの完全燃焼を行う。
10は気泡«床炉からなるチヤ一燃焼炉で、 底部に配した分散板 1 1上にチ ャ一混合物取り出しライン 9よリ供給されたチヤ一混合物、 及び ¾-環ライン 1 9-2/19-1を介して副チヤ一燃焼炉 10 Bとの問で循環された流動砂が収 納される。
そして前記分散板 1 1下方の空気供給ライン 12より空気力 給されて流動床 2— 3内で 650〜 800°Cに加熱して未分解残渣の燃焼を行い、 更にチヤ一燃 10巾域の空 供給ライン 13より空気が導入されて完全燃焼し、 約 800 〜 1300°C前後の燃 ガスを生成すると共に、 そのチヤ一燃焼炉 10中の I-.方 域に第 2スーパヒータ 29— 1を配設し、 Ifi 2の蒸気製造 -段 (第 1スーパヒ一 タ 20) よリライン 28— 1を介して導入された過熱蒸気の過熱とともに、 95 0〜 1300 °C前後と無用に高くなつた燃焼ガスを 800〜 950 °Cに落とす。 尚前 ¾iのように燃焼ガス温度を 800〜 95 (TCに落としても第 1スーパヒー タ 20における蒸気温度を 200〜 32 O'Cに維持する上で何の支障もない。 そして前記チャ一燃焼炉 10で燃焼されな 、小型の不燃物は不 β取リ出しラ イン 14より取り出される。
一方、 チヤ一燃焼炉 10には副流動床としての副チヤ一燃 炉 10 Β力 [設さ れており、 図 1及び図 2に示すように、 砂循環ライン 19一 2Z19— 1を介し て副チヤ一燃焼炉 10Βとの間で流動砂力 動するように構成し、 そして前記副 チヤ一燃焼炉 10 Βの流動媒体 2— 2内に第 3スーパヒータ 29— 2を配設し、 第 2スーパヒータ 29— 1の出 [:]側とライン 28— 2を介して接続している。 尚、 副チヤ一燃焼炉 10Βは図 2に示すように、 独立して設けてもよいが、 図 1に示すように、 前記チヤ一燃焼炉 10よリ加熱された流動媒体を熱分解炉 1に 戻人する流動媒体籽路 1 9一 1ノ 5中に、 笫 3スーパヒータ 29— 2を設けた副 チヤー 纖炉 10 Βを介在させるのがよい。
さて前記第 2スーパヒータ 29— 1で熱交換された燃焼ガスは、 燃焼ガス出口 ライン 15より必要に応じて気 · |1分離装 ϋ例えばサイクロン 16に導入され ここでダストや灰と燃 J½ガスとを分離し、 燃焼ガスはガス出 1:1ライン 17より第 1スーパヒータ 20に導入される。
20は第 1スーパヒータ及び 24は第 1ボイラで、 第 1ボイラ 24では熱分解 ガス出口ライン 7より取り iされた熱分解ガスは、 水冷 ボイラ 36力 ^内装され ている燃分解ガス燃 炉 34内で完全燃焼されて^ 1スーパヒータ 20のボイラ ガス出口 22より排出された燃焼排ガスと共に、 i 1のボイラ 24に導入され、 ボイラ水入口 26より取込んだボイラ水を 200〜 32 (TC前後に加熱し、 第 1 ボイラ出 Πライン 27より第 1スーパヒータ 20に蒸気若しくは加熱水を供給す る。
ボイラ水は分岐ライン 26' を介して燃焼ガス燃焼炉 34内の水冷 ¾ボイラ 3 6にも導入され分岐ライン 27' を介して第 1スーパヒータ 20に蒸気若しくは 加熱水を供給する。
尚、 100Kg f/cmp 前後に加圧してその沸点を 309"C前後に設定して いる前記ボイラ水は水冷 ¾ボイラ 36、 36-2及び第 1のボイラ 24に導入さ れて第 1段階の加熱を行うわけであるが、 その加熱温度が前記沸点近くの 3 0 9 °C前後になるようにその 量を制御している。
この結果、 水冷壁ボイラ 3 6及び第 1のボイラ 2 4のチュ一ブ衷面塑温度は、 前記加温水に追従して 3 5 0以下に維持でき、 例え熱交換される熱分解ガスに塩 素若しくは H C 1を含んでいても腐食が生じる事はない。
第 1スーパヒータ 2 0では、 前記第 1ボイラ 2 4の出口ライン 2 7よリ取リ出 した蒸気/加熱水及び水泠 ボィラ 3 6により加熱され分岐蒸気ライン 2 7 ' を 介して取り出された蒸気 Z加熱水を獰入して、 前記燃焼ガスライン 1 7を介して 供給された燃焼ガスで加熱し、 過熱蒸気を製造し、 以下蒸気出口ライン 2 8一 1 ょリ第 2スーパヒータ 2 9— 1に、 更にライン 2 8— 2より第 3スーパヒータ 2 9 - 2に夫々直列に導人して 4 0 0 ~ 5 2 0°Cに過熱された過熱蒸気を取り出し、 に する。
既に前記実施例の作 は構成とともに、 説明したカ¾単に! ¾ し説明するに、 熱分解炉 1に供給される都市ごみ等の廃棄物中には塩ビブラスチック等の含塩素 有機化合物が混入しており、 可燃分巾に C 1として約 0. 2〜0. 5 °/。含有され ている。 そして、 廃棄物供給ライン 4から都市ごみ、 流動砂循環ライン 5から高 温の循環流動砂を、 それぞれ熱分解炉 1に供給し、 卜部の空気または燃焼俳ガス 人口ライン 6から燃焼排ガスに必要に応じて、 僅かな温成調整用空気を供給して 流動砂を流動させた流動床 2— 1内で、 温度 3 5 0〜 5 0 (TCで ^tifflすることに より、 チャ一混合物取リ出しライン 9カゝらは実質的に 素を含有しなレヽ未分解残 渣が得られる。
すなわち、 廃棄物中に含まれていた塩素は、 実質的に て熱分解ガスに含まれ て、 熱分解ガス出 Πライン 7に俳出されることになる。 なお、 熱分解炉 1内の熱 分解反応で分離された大型の不 は、 不 i取り出しライン 8から炉外に取り 出される。
この際前記熱分解ガスとチヤ一混合物の熱カロリ比カ約 7 : 3になるように熱 分解時間と熱分解温度を設定する。
熱分解炉 1の熱分解ガス出口ライン 7から取リ出された上記熱分解ガスには、 ガス、 油分、 タールおよび H C 1が含まれている力 出口ライン 7上流側の空気 入口ライン 2 1から供給される少量の空気で部分燃焼させることで温度の低下を P方止させ、 出口ライン 7におけるタール付着防止やコーキング防止と共に、 ライ ン 2 Γ より更に空気を熱分解-ガス 焼炉 3 4に導入して該熱分解ガス «¾¾¾炉 3 4内で完仝燃焼を行う。
この結粜熱分解ガス燃焼炉 3 4内の熱分解ガス温度を高く設定できるために、 水冷壁ボイラ 3 6、 3 6— 2及び第 -ボイラ 2 4に導入され沸点 2 0 0〜3 2 0 °C近くまで立上げる蒸気 Zボイラ水を多量に製造できる。
又熱分解ガス燃焼炉 3 4内で水冷壁ボイラ 3 6と熱交換した熱分解ガス燃焼排 ガスは、 第 1スーパヒータガス出口ライン 2 2よりの'燃焼排ガスとともに第 1ボ ィラガス入口 2 3から第 1ボイラ 2 4に供給する。
前記熱分解燃焼炉 3 4内及び第 1ボイラ 2 4内に導入されるガスには H C 1が 約 5 0 0〜 1 0 0 O ppm含まれているので、 ボイラ水の流量を調整して水冷塑ボ イラ 3 6及び第 1ボイラ 2 4のチューブ表而温度は従来並みの約 3 5 (TC以下と して、 高 ¾¾食を抑制する。 このため、 水冷塑ボイラ 3 6、 3 6 2及び第 1ボ イラ 2 4では高温の過熱蒸気は得られない力 約 3 0 0〜 3 2 0 "Cまでは加熱で きるので、 これを更に第 1スーパヒータ 2 0以降のスーパヒータ 2 9— 1、 2 9 一 2で加熱すれば、 約 5 0 0〜7 0 0"Cの高温の過熱蒸気を得ることができる。 熱分解炉 1でチャ一混合物取リ出しライン 9力ら取リ出されたチヤ一混合物は 流動砂と未分解残渣から成り、 実質的に塩素を含有しないチヤ一混合物を、 チヤ —燃焼炉 1 0では燃焼炉 1 0の下部に供給し、 ' 気供給ライン 1 2から分散板 1 1を介して供給される空気によって燃 J:尭させる。 この場合、 空気供給ライン 1 2 カゝら供給する空気量を調整して、 流動砂を流動させながら未分解残濟を燃焼させ る。 完佥燃 のために空気供給ライン 1 3及び 1 9一 3から更に 気を供給する こともある。 燃貌炉 1 0の温度は燃烧発熱反応によって上昇する。 この温度値 チヤ一混合物取り出しライン 9から供給される未分解残淹の発熱量と空気供給ラ イン 1 2、 1 3の空気および砂循環ライン 1 9一 1、 1 9— 2の、»砂の ¾と温 度によって決まるが、 1 0 0 0〜 1 2 0 0"C前後の高温になる場合がある。 そこで第 2スーパヒータ 2 9 - 1によりライン 2 8— 1を介して第 1スーパヒ ータ 2 0ょリの過熱蒸気と熱交換することによリ燃焼ガスを 8 0 0〜 9 5 0 に することは容易である。 尚必要に応じ第 1スーパヒータ 2 0の代りに又は第 1ス ーパヒータ 2 0とともにライン 2 6、 2 7を分岐したライン 2 6 "、 2 7 " によ リ循環されるボイラ水の加熱を行う水冷壁ボイラ 3 6— 2を設けてもよい。
又ガラスや缶類等の溶融により小型化された不燃物は不燃物取り出しライン 1 4から抜き出す。
尚、 副チヤ一燃焼炉 1 0 Bは図 2に示すように、 独立して設けてもよいが、 前 記チヤ一燃焼炉 1 0の流動媒体は熱分解炉 1との問を循環する為、 チヤ一燃焼炉 1 0の流動媒体の温度は略 7 0 0〜8 5 0 °C、 一方熱分解炉 1の流動媒体の温度 は3 5 0〜5 0 01:でぁリ、 両者問の熱落 ¾が大きく、 この為チヤ一;^ 戸 1 0 の流動媒休を熱分解炉 1側に直接導人すると、 前記熱落差によリ熱分解炉 1内の 熱分解温度がある部分で高くなつたり熱変動が ¾じる恐れがあり、 従つて前記戻 人される流動媒体の量の調整が煩雑化する。
そこで図 1に示すように、 前記チヤ一燃焼炉 1 0よリ加熱された流動媒体を熱 分解炉 1に戻入する流動媒体経路 1 9—】 Z 5中に、 第 3スーパヒータ 2 9— 2 を設けた副チヤ一燃 炉1 0 Bを介在させることにより、 第 1のチヤ一燃焼炉 1 0で7 0 0〜8 0 0 に加熱した流動媒休を、 前記副チヤ一燃焼炉 1 0 Bで第 3 スーパヒータ 2 9— 2による奪熱により 5 0 0〜7 0 0 "Cに落とし、 該 5 0 0〜 7 0 0 °Cに落とした流動媒休を熱分解炉 1に戻人する ί·が出来るためになだらか な熱傾斜が可能であリ、 この結果前記熱分解炉 1内の熱分解温度を 3 5 0でから 5 0 0 °C前後に安定して制御が可能である。 2 8— 3は過熱蒸気取り出しライン、 1 2 ' は空気供給ラインである。
一方チヤ一燃焼炉 1 0で 成し 8 0 0〜 9 5 CTCの高温でかつ塩素を実質的に 含有しない燃焼ガスは燃焼ガス出口ライン 1 5を経て必要に応じサイクロン 1 6 に導入され、 ダスト及び灰は出口ライン 1 8から、 俳ガスはガス出口ライン 1 7 からそれぞれ分離して取リ出される。
- '方、 上記サイクロン 1 6のガス出口ライン 1 7から取リ出された 8 0 0〜 9 5 0 °Cの高温排ガスは、 第 1スーパヒータ 2 0に導入され、 第 1ボイラ 2 4及び 水冷壁ボイラ 3 6で製造された 2 0 0〜 3 2 0 °C前後の蒸気 Zボイラ水を加熱し て過熱蒸気とするために用いられる。 ガス出口ライン 1 7を経て来た排ガスは実 質的に塩素を含有していないので、 第 1スーパヒータ 2 0のボイラチューブ表面 を 3 5 0 "C以上としても高温腐食は大幅に蛏減さ; Hる。 したがつてチューブ 内流休の温度を約 4 0 0〜 5 2 (TCとすることができ、 第 1スーパヒ一タボイラ 蒸気出 Π 2 8— 1からは安定して ^温の過熱蒸気が得られる。
前記熱分解炉 1で熱分解炉 1の温度を所定温度 3 0 0 °C以上に維持するには、 纖排ガス入 I」ライン 6から供給される流勳気休の^素晕.を調節、 言換えれば第 1ボイラ 2 4よりの 尭排ガスとともに ¾気を僳かに供給するとともに、 副チヤ —燃焼乎段 1 0 Bよりの高温約 5 0 0〜 7 0 0 "Cの流動砂の一部を砂循環ライン 5から供給して熱源としている。
例えば « 排ガス入口ライン 6よリ熱分解炉 1に供給される空気または燃焼排 ガスは、 3 5 0〜 5 0 0 "Cの範 fflで熱分解を効率的に行うために、 酸素の少ない
( 3〜 5 % 度) Π.つ温度が 1 5 0〜2 0 (TCの温度を維持している燃焼排ガス、 具体的には第 1のボイラ 2 4の出 [ 1ライン 2 5よリ取り出された ¾5¾排ガスから ダストや塩素部分を除去した排ガスを〗 I ヽるのが良レヽ。
尚、 各闵において】 1、 3— 1、 3— 2は分散板、 2 - 1 , 2— 2、 2— 3は 流動床である。
図 4は本発『リ〗の第 3実施例に係る廃棄物の焼却熱を利 fflした過熱蒸気製造装置 を示す系統図で、 前記図 1の実施例との相違点を説明するに、 前記熱分解炉 1の 不炉膽取リ出しライン 8には 5 m m程度の網径を有する振動篩等の第 1のフィル タ 2 9 1を設け、 前記ライン 8よリ排出された排出物について大型不^! ¾と他の 排出物を分離し、 他の排出物をライン 5 0及びライン 5 4を介して、 チヤ一燃焼 炉 1 0の分散板 1 1上方の流動床底部側に給送するように構成している。 5 1は 大型不' β取り出しラインである。
一方チャ一燃 j¾炉 1 0で燃焼されな、ヽ小型の不燃物等は不 取リ出しライン 1 4より取り出される。
— 11— 前記不燃物取リ出しライン 1 4には網目が 2 m m前後の第 2フィルタ 2 9 2が 介装され、 前記ライン 1 4より排出された排出物について小型不»1と流動砂' 灰分とを分離し、 流動砂をライン 5 2、 第 3フィルタ 2 9 3、 ライン 5 5及び 5 4を介してチヤ一燃 J:尭炉 1 0の分散板 1 1上方の流動床底部側に給送するように 構成している。 小型不燃物についてはライン 5 3より外部に排出される。
第 3フィルタ 2 9 3は、 必ずしも必要とするものではないが、 第 2フィルタ 2 9 2で補足されなかった流動砂を補 iilしながら灰分のみを外部に排; I·,するもので、 その網 ίΠは最小径 (約 0 . 2 mm ) より小さい 0. 1 mm前後に設定する。
これによリ第 3フィルタ 2 9 3で、 第 2フィルタ 2 9 2で補iiされなかつた流 動砂を補足しながら灰分のみをライン 5 6を介して外部に排 ,屮,する事ができ、 こ れにより効率的な灰分除去と流動砂の问収カ容易になる。
次に前記実施例の作用について詳述する。
熱分解炉 1内の熱分解反応で分離された大型の不燃物は、 不燃物取り出しライ ン 8から炉外に取リ出される。
廃棄物として一般に約 2 0 0 m mfi!度に破碎された廃棄物力前記熱分解炉 1に 投入される力 このため前記熱分解炉 1の不燃物取り出しライン 8の ¾をある程 度大きくせねばならず、 この為前記取リ ί I ·,しライン 8よリ大 の不燃物の他にチ ヤー残丧ゃ流 iM^、 更には小型の不燃物力取り される。
そこで熱分解炉 1の不 'β取り出しライン 8より排出された排 ίΐί物について前 記第 1フィルタ 2 9 1により、 大 不燃物と他の排出物を分離し、 大型の不» のみ排出させ、 そして他の排出物についてはチヤ一燃焼炉 1 0底部側に給送し燃 灯 έの用に供する事が出来る。
チャ一燃焼炉 1 0ではガラス片ゃ鉄くず等の小型化された不燃物は不燃物取リ 出しライン 1 4から抜き出す。 一方前記チヤ一燃焼炉 1 0には既に大型の不燃物 カ 去されており、 又チヤ一残査も I '分燃焼されているために、 不燃物取り出し ライン 1 4より排出された排出物については小型不燃物と流動砂のみを第 2フィ ルタ 2 9 2及び第 3フィルタ 2 9 3で分離すればよく、 これにより分離された流 勤砂をライン 5 2 5 5 / 5 4を介して燃 炉 1 0の流動床底部側に給送すれば 、»砂のみの循環再使用が可能となる。
図 5は木発明の第 4実施例に係る廃棄物の焼却熱を利用した過熱蒸気製造裝置 を示す系統図で、 図 4の副チヤ一燃焼炉を仕 t刀板を介して 2つの流動床に分割し て逆流防止手段を構成している。
即ち、 前記副チヤ一燃焼炉 1 0 Bは熱分解炉 1側に流勳媒休を戻入する戻入ラ イン (fiT循環ライン) 5と対面する流動床上部及び分散板 3— 2下方を仕切板 1 0 0、 1 0 0 ' にて仕'切る。 この場合、 分散板 3— 2上側の流動床下部空間は開 口 1 0 1されており、 第 3スーパヒータ 2 9— 2を設けた流動床 (以下主流動床 2— 2 Aという) 内の流動媒体が前記仕'切板下方開 I 1 1 0 1を介して、 仕 ¾ (板 1 0 0にて仕切られた仕切流動床 2— 2 Bに送給されるように構成する。
そしてこの仕切流動床 2— 2 Bには分散板 3 - 2ド方よリ、 燃; ガス人 [ Iラ イン 6の分岐ライン 6 ' より供給された燃焼排ガス^による流動作用を図ってい る。
そして前記仕ヒ刀板 1 0 0を設ける事により、 熱分解炉 1と副チヤ一 ¾:)¾炉 1 0 Bの上部空間ガスがお互 、に混合されるのを防 ll:しながら、 砂を移動させること が出来る。
即ち前記副チヤ一燃焼炉 1 0 Bの 1流動床 2— 2 A側の圧力を 1 、 仕切流勦 床 2— 2 Bの圧力を I3 、 熱分解炉 1の I I:力 I とした場合に、 と 1 は、 戻入ライン 循環ライン) 5で連通しているために同一 IE力である。
一方 P tと P t ' は、 仕し刃り板 1 0 0のその先端カ流動媒体カ堆積している流動 床内に位置しているために、 その流動床界而ょリ ¾1り板 1 0 0下端 (仕切板下 方閲ロ 1 0 1上端) までの高さを Δ Ηとし、 前 ¾熱分解炉 1側の圧力を P2 、 副 チヤ一 尭炉 1 0 Bの主流動床側圧力を とした場合に、
Δ Η - p + P2 ( Pt, ) > Pt
P :流動層密度 (比重)
にならなければ仕切り流動床 2—2 B側より主流動床 2— 2 A側へのガスの逆 流を生じない。
又戻人ライン (砂循環ライン) 5も熱分解炉 1側にド向きに傾斜させるのがよ レ、。
かかる雄例によれば、 前記副チャ一燃焼炉 1 0 Bの主流動床 2— 2 Aで第 3 スーパヒータ 2 9— 2により奪熱された後の流動媒体は前記仕切板 1 0 0を介し て仕切流動床 2—2 Bに導入され、 更に分岐ライン 6 ' の燃焼排ガスによって流 動されながら戻入ライン (砂循環ライン) 5を介して熱分解炉 1に戻入される。 この際主流動床 2— 2 A側の圧力 1 や熱分解炉 1の圧力 P2 ( Pt r ) に変動 カ じても、 1 と 間は、 仕切り板 1 0 0によリ厶 H · pだけの圧力段差を 有するために、 前記熱分解炉 1側より副チヤ一燃焼炉 1 0 Bの主流動床側 2— 2 Aにガスの逆流が ¾じる事なく正常な戻入が可能となる。
図 6は図 5のシステムにおける前記チヤ一燃焼炉 1 0に砂貯槽 1 2 0を設け、 ライン 1 2 1を介して適宜送給するように構成したものである。
力かる構成によれば、 ごみ質に応じて、 熱分解時間を変える必要がある場合 砂貝宁槽 1 2 0より砂を補給して、 熱分解炉内の砂保有歌を増大させ、 熱分解時間 を増加させ、 ライン 1 4よリ砂を多く抜くと、 熱分解炉内の砂保^量が少なくな リ、 熱分解時間を短くすることができる。
図 7は前記チヤ一混合物取リ出しライン 9上に配設された逆流防止 段の一実 施態様を示し、 前記熱分解炉 1側の ) 力をチヤ一燃焼炉 1 0側の圧力より大に設 定することによリ逆流防 Iヒ機能をもたせた機械的搬送 段 5 0 Βを示す。
これにより機械的搬送手段 5 0 Β内が流動砂により^密化され、 流動砂でのガ スシール効果力 曽大する。 5 5は 切板である。
図 8は前記図 5及び図 6に用いる副チヤ一燃焼炉 1 0 Βの, 細構成を示し、 この副チヤ一燃焼炉 1 0 Bは図 8 (A) に示すように、 チヤ一燃焼炉 1 0より 流動媒体を取込む i 9 - 1と熱分解炉 1側に流動媒体を戻入する戻入ライン 循環ライン) 5力副チヤ一燃焼炉 1 0 Bの対角線上に位置するように配設し、 第 3スーパヒータ 2 9— 2の基側よリ先側に向け流動媒体が移動し、 十分に熱接 触可能に配設するとともに、 図 8 ( B ) に示すように前記戻入ライン (砂循環ラ イン) 5の基側に、 前記熱分解炉 1側の圧力 1 と副チヤ一燃焼炉 1 0 Bの圧力 P2 との差圧 (Pt— P2) ょリ大なる圧力差を形成する圧力差形成手段 5 0を配 設している。
圧力差形成手段 5 0は、 いわゆる小型の流動床状に形成され、 副チヤ一燃焼炉 1 0 B出口側の流動床 2— 2上部及び分散板 3— 2下方を仕切板 1 0 0、 1 0 0 ' にて仕切る。 この場合、 分散板 3— 2上側の流動床ド部空間は開口 1 0 1されて おり、 副チヤ一燃焼炉 1 0 B内の流動媒体が前記仕切板ド方開 Π 1 0 1を介して、 仕切板 1 0 0にて仕切られた圧力差形成手段 5 0側の流動床 5 1に送給されるよ うに構成する。
そしてこの仕切流動床 5 1には分散板 3— 2下方より、 排ガス入口ライン 6の分岐ライン 6 ' より供給された燃焼排ガス等による流動を図っている。
そして前記汗:力 ¾形成 段 5 0を設ける事によりガス逆流防 it機能を有する点 は図 5及び図 6と同様であり、 前記副チヤ一燃焼炉 1 0 Bの流動床 2— 2側の圧 力を 仕切流動床 5 1の圧力を P 、 熱分解炉 1の圧力 I とした場合に、 Pt ' と P2は、 戻人ライン (砂循環ライン) 5で迎通しているために同-圧力で ある。
--方 1 と I は、 化 リ板 1 0 0がその先端カ¾¾動媒体が地積している流動 床 2— 2内に位置しているために、 その流動 I末界而ょリ仕切り板 1 0 0下端 (仕 切板卜方開 Π 1 0 1上端) までの高さを Δ Ηの高さを逆流力生じない高さに設定 すれば良い。
又チヤ一燃焼炉 1 0よリ副チヤ一燃焼炉 1 0 Β側へ流動媒休を取込む経路 1 9 一 1と、 副チヤ一燃焼炉 1 0 Β側よリ熱分解炉 1側に流動媒休を戻入する戻入ラ イン 5は夫々出に I側に向け下向きに傾斜させる傾斜 Ιίιίで形成するとともに、 夫々 の流動床の界而を前記傾斜面に合せて段々に低く、 換えればチヤ一燃焼炉 1 0 の流動床 2— 3の界 ί!ί≥ (副チヤ一燃焼炉 1 0の流動床界面 2— 2 = 力斧形成 手段 5 0側の仕切り流動床 5 1界面) 〉熱分解炉 1側流動床 2— 1界而になるよ うに夫々の流動床の界而を段階的に低くしている。
尚、 熱分解炉 1側よりチヤ一燃焼炉 1 0にチヤ一混合物を供給するライン 9は スクリュ一フィーダ等の機械的搬送手段で構成するのがよい。
図 9は前記夫々の実施例に適用されるチヤ一燃 炉を改良した流動床の構成を 示し、 (A) は正面図、 (B) は側面図、 (C) は平面図である。
かかる流動床は、 分散板 1 1上部にチヤ一混合物を堆積させて流動床 2— 3を 形成し、 該流動床 2-3内を回流可能に左右及び中央の三つの流動域 2-3 A/ 2— 3 BZ2— 3 Cに分割される上部仕切リ板 6 1 A/62 Aが配設され そし て前記七部仕刀り板 6 1 A/62 Aは流動床 2— 3 卜.部と底部が夫々問「Iされて いる。
そして _ト.部让切り板 6 1 AZ 62 Aによリ仆 ¾られる流動域の内中央の流動域 2— 3 Bに熱分解炉 1側及び副チヤ一燃焼炉 1 0B側より夫々チヤ一燃焼炉 10 にチヤ一混合物及び流動媒体を供給するライン 9及びライン 1 9一 2が接続され ている。
又、 分散板 1 1は不燃物取り出しライン 14側に向け下向きに ί職斗されている。 分散板 1 1下方空間は、 上部仕切り板 6 1 AZ62 Αと同問隔で下部仕切リ板 61 B/62 Bが配設されており、 そして該ド部化切り板 6 1 Bと 62Bに挟ま れる分散板中央部 1 1― 2は 状に形成されるとより効果的である。
又下部让¾り板 61 Bと 62Bにより夫々仕 ·¾)られる分散板 1 1 - 1/1 1一 2ノ 1 1一 3下方空間の底部には夫々空気供給ライン 1 2に接続された分岐ライ ン 12— 1 / 12— 2Ζ 12— 3が接続されており、 そして該分岐ライン 1 2一 1/1 2-2/1 2— 3には夫々流鼠調整弁 64力 ί設けられ 上部仕 ¾1り板 6 1 ΑΖ 62 Αにより三分割される夫々の流動域に供給される 気流を制御可能に構 成される。
又副チヤ一議炉 10 Bに流動媒休を供給するライン 1 9— 1は流動床 2— 3 界面上に、 又副チヤ一燃焼炉 10 Bより燃焼ガスを供給するライン 1 9一 3はそ の上部に設けられている。
かかる装置によれば、 熱分解炉 1力 ^供給されるチヤ一混合物を供給するライ ン 9の供給口を、 前記三分割された流動域屮央部 2— 3 B (下降流域) 若しくは 左右両側の流勋城 2— 3 AZ2— 3 C (上^流域) の下部に設け、 一方その下方 に位置する分散板 1 1 -2は前記中央部 2— 3 Bょリ左右両側の流動域 2— 3 A /2— 3 Cに空気流力流れるように山翻犬に形成される為、 乂 1 2— 2の ' 気流 量 12— 1 Z 12— 3より少なくすることにより、 又左右両側に位置する流 動域 2— 3AZ2— 3Cには夫々分散板 1 1 -3/1 1一 1下方の分岐ライン 1 2 _ 1 Z 12— 3よリ上方に向け空気流が供給されているために、 中央流動域部 2-3 B力下降流域となリ、 左右両側に位置する流動域 2-3 A/2-3Cは上 昇流域とすることができる。
この結果ライン 9より例えば流動域中央部 2— 3B (下降流域) 若しくは流動 域 2— 3AZ2— 3C ( h昇流域) の下部に供給されたチヤ一混合物は山型状の 分散板 1 1一 2により、 前記中央部 2— 3 Bより左右 側の流動域 2— 3 Aノ 2 — 3 Cに空気流が流れ、 流動域中央部 2— 3 B流動媒体の下降流力^成でき、 一 方左お両側に位置する流動域 2-3 A/2-3 Cは丄:昇流となっている為に、 前 記流動床内でチヤ一混合物及び流動媒体は (A) に示す矢印のように循環する。 この結果比重の軽いチヤ一は必ず流動域中央部 2— 3 Bの下降流域によリ流動 床底部に移動し、 左右両側に位置する流動域 2-3A/2-3Cを介して循環流 動するために、 空気との混合が十分に行われ、 J1つ少ない空気流 (例えば 0:匕 λ: 1. 2〜1. 3) で十分なる燃焼が可能となる。
又例え前記流動床表面に浮いたチヤ一も前,d下降流にょリ繰返し流動床底部に 移動する為に、 前記した効果が一層増大する。
一方前記流動床で燃焼されない不燃物は (B) 及び (C) に示すように分散板 1 1の卜'向き に沿って移動し、 ガイド板 14一 1ノ 14一 2を介して不膽 取り出しライン 14ょリ外部に排出される。
図 10は、 前記夫々の実施例に適用される熱分解炉の改良に係る熱分解炉の内 造を示す三 Ifii図で、 (A) は止面断面図、 (B) は平而断面図、 (C) 側面図である。
同図において、 熱分解炉 1内部、 具体的には分散板 3— 1の上に収容された流 動砂等の流動嫩本2— 1を廃棄物投入側 (廃棄物供給ライン 4側) からチヤ一混 合物取り出し側 (チヤ一混合物取り出しライン 9側) へ向かって、 仕切り板 80 によリ複数段状に区分するとともに、 該仕切り板 80を左右側壁との間で交互に 一側を離間させて開口部 81を形成し、 該開口部 81力交互に異なる位置に設け てなる主流動床部 1 Aを形成する。
又前記主流動床 1 Aの下方側壁側を拡幅化し、 その底部に廃棄物投入側からチ ヤー混合物取り出し側へ向かって固休分を搬送する搬送手段、 具体的にはスクリ ユー式排出機 1 Cを設け、 必要に応じて該搬送手段 1 Cの直下位置に空気または 燃减排ガス等を吹き込む空気または燃焼排ガス人口ライン 8 2を設けて流動砂等 を流動化する副流動床部 1 Bを具えたものである。
乂、 前記熱分解炉 1によれば、 副流動床部 1 Bで搬送手段 1 Cにより不燃物に 付着同伴した未燃物を強制的にチヤ一残杳方向に搬送しながら燃焼を行うことが できるので、 未-燃物が不 »中に残ることなく排出することができる。
又主流動床部 1 A内に設けた仕切板 8 0によリ実質的な流動床の流れ長さ、 具 休的には廃棄物と流動媒体とを混合させながらチヤ一混合物取り Hiしライン 9に 向かつて押し出す流れ長さを多く取ることが出来、 而も廃棄物はチヤ一混合物取 リ出しライン 9へ吹き抜けることがない為に、 熱分解を一様に且つ所定の時問以 上行うことができる。 これによリ更に熱分解を -様に十分行なうことができ、 廃 棄物屮の塩素を実質的に完全に分解し、 ガス化して除去することができる。
図 1 1は、 前記夫々の実施例に示す燃焼ダクトからなる熱分解ガス燃焼炉を -- 休化した熱分解炉の他の改良に係るもので、 ( A ) は闵 1の熱分解炉と燃焼ダク トを側面から見た図、 (B) ば晈リ部の変形例、 (C ) は正 ϊ ί である。
本実施例は熱分解炉 1を構成する流動床炉屮の上方には絞り部 4 1 1を介して その上方に燃焼ダクト 4 0を形成し、 前記絞り部 4】 1に散気管ノズル 4 2を、 更に前記燃焼ダクト 4 0の上方域に空気を導人する 気導入口 4 3を設ける。 前記絞り部 4 1 1は図 1 1 (A) (C) に示すように、 絞リ部 4 1 1中心域を 水平に延在する散気管ノズル 4 2延設方向に沿って I .方空間よリテ一パ状に形成 し、 その出口部を狹幅化して形成してもよく、 又 (Β ) に示すように、 前記交り 部 4 1 1を円形に縮径し、 その縮径部に旋回流の空気流が導入可能に、 上下対称 位置に空 入口 2 1 、 2 1を設けて構成してもよい。
熱分解炉 1で生成された熱分解ガスは、 絞り部 4 1 1を介して «ダクト 4 0 内に導人され、 Φ気導入ライン 2 1から導入され散気管ノズル 4 2より Π謝され る空気により、 熱分解ガスを還元雰囲気で 1次燃焼し (空気過剰率 0. 6〜0.
8 ) て低 NO x化を図り、 更にその上方域で空気導入口 4 3ょリ空気を導入し、 2次燃焼を行い、 完全燃焼による低 C O化と低ダイォキシン化を図ることが好ま しい。
更に、 前記 ½ダクト 4 0と熱分解炉 1間に絞リ部 4 1 1を設けたために、 空 気との混合を促進するとともに燃 ダクト 4 0における再燃焼時の熱力^の下方 の流勛床 ' 間に輻射される事なく、 この結果チャ一燃焼等が じる事なく、 熱分 角炉 1で好ましい熱分解を達成し得る。
図 1 2は本発明の第 6実施例に係る廃棄物の焼却熱を利用した過熱蒸気製造装 鬵を示す系統図で、 図 2のチヤ一燃焼炉を仕切板を介して 2つの流動床に分割し て逆流防止手段を構成し、 更に灰溶融炉を設けている。
図 1 3は本発明の第 7実施例に係る廃菜物の焼却熱を利用した過熱蒸気製造装 置を示す系統図で、 図 1 2の構成において、 熱分解ガスの一部を分岐して、 熱分 解ガス 纖炉へ供給して 、る。
図 1 4は図 1 3に示す熱分解ガス出口ラインに配設した差Γ:計測手段で、 (A) はオリフィスを用いて形成した差圧 測 段、 ( B ) はラッノ状絞りを用いて形 成した差圧計測 段である。
かかる構成において熱分解ガス ili I 1ライン 7よりの熱分解ガスは灰溶融炉 3 1 に導入される。
又闵 1 3に示すように熱分解ガス出口ライン 7よりの熱分解ガスは分岐された 後、 更に灰溶 戸 3 1に導入されるように構成される。
灰溶融炉 3 1は、 例えば旋回流にょリ、 ライン 2 9よりのダスト又は灰を、 空 気若しくは酸素富化空気を前記熱分解ガスと共にライン 3 0より導入し、 該熱分 解ガス'織熱によリ 1 3 0 0 °C以上としてダストゃ灰分を溶融し、 該溶融したダ ストや灰分を溶融灰出口ライン 3 2を介して水貯溜部 3 2 Aに落下させ、 数 mm 禾 の水冷スラッグを生成し、 該スラッグを建築 骨材として利用するように構 成する。 又前記灰溶融炉 3 1にはサイクロン 1 6の出 I Iライン 1 8 ダストライ ン 2 9を介して灰が導人され、 又、 ライン 1 4の不燃物又は/及びバブフィルタ —や電気集塵機の捕集灰など、 これらも溶醜理することができる。
又、 前記灰溶融炉 3 1の出口ライン 3 3の下流端には、 燃 ダクトからなる熱 分解ガス'繊炉 3 4カ¾設され、 前記熱分解ガスに卜分な空気をライン 2 1 Aよ リ供給して該熱分解ガスの完全燃焼を行う。
熱分解炉 1の熱分解ガス出口ライン 7から取り出された上記熱分解ガスは、 燃 Ρ 3 4に導入される前に灰溶融炉 3 1に導入される。
従って木実施例によれば前記サイクロン 1 6ゃ排ガスライン 2 5の後流に設け たバグフィルタで分離した灰分及び Z又はライン 1 4の不燃物は、 前記した灰溶 戸3 1に導入する事により、 前記溶融灰を利用して骨材等の製造が可能となる。 又図 1 3に示すように熱分解ガス出口ライン 7をライン 7 ' 、 7— 1として分 岐する場合は差圧計測手段 1 0 0により分岐流量を測定する必要がある。
この差圧計測手段 1 0 0は、 熱分解炉 1よリ取リ出された熱分解ガスの流量
(流速) を測定するとともに、 前記 ¾圧計測手段 1 0 0を形成する絞リ部 1 1 0 の入口側と出口側に夫々設けた圧力取り出し ΓΊ 1 0 9 , 1 0 9に少量の空気を適 宜流すことにより、 熱分解ガス中に含まれるタール等を燃焼させ、 絞リ部 1 1 0 及び ΓΗカ取リ出し口 1 0 9におけるタール付着防止やコーキング防止を図る。 図 1 4 (A) はオリフィスを Π3いて形成した^ ί:計測手段で、 1 0 1、 1 0 1 ' は出口ライン 7を形成する配管、 1 0 2はフランジ、 1 0 3はオリフィスブレー ト、 1 0 4は差圧計、 1 0 5、 1 0 6、 1 0 7、 1 0 8は空気導入管、 1 0 9は 圧力取リ出し口としての圧力タップ、 1 1 0は絞リ部、 1 1 1は空気 ¾調整弁、 1 1 2はフローメ一タその他の流量計である。 圧カタッブ 1 0 9は A— Α線断面 図で示すように、 周方向に 9 0" づっ変 ¾させた位^に、 4個設ける。
図 1 4 (B ) はラッパ状の絞リ部 1 1 0を用いて形成した差压計測手-段 1 0 0 で、 その構成は図 1 4 (A) と同様である。
図 1 5は、 本発明の第 8実施例に係る廃棄物の焼却熱を利用した過熱蒸気製造 装置を示す系統図で、 前記熱分解炉 1により得られた熱分解ガスの一部を灰溶融 炉 3 1の上流側で、 分岐ライン 7— 2を介して熱分解炉の分散板 3一 1下方の入 口側に供給するように構成してもよレ、。 これによリライン 7— 1の熱分解ガス力 ί流動化ガス (N2、 C 02、 H20 主成 分の不活性ガス) で希釈されないので高力口リガスとなり、 灰溶 ifc^ 3 1の温度 を容易に 1 3 0 0〜 1 5 0 0 °Cにすることが出来る。
図 1 6は、 本発明の第 9実施例に係る廃棄物の焼却熱を利用した過熱蒸気製造 装置を示す系統図で、 熱分解炉を流動床ではなく、 機械的搬送攪袢手段にょリ構 成している。
1 Aは前記熱分解手段内の固体分を廃棄物投入側からチヤ一混合物取り出し側 へ向かって搬送する機械的搬送 Z攪 機能を冇する攪 手段、 例えばロータリキ ルンや横型スクリュ一攪拌槽を設けた熱分解炉で、 砂等の流動媒体が ¾ ^されて おり、 廃棄物供給ライン 4及び T麵環ライン 5よリ砂と都市ごみ等の廃棄物力 入され、 空気または燃减排ガス入に 1ライン 6よリ供給された¾気または燃焼排ガ スにより温度 3 0 0°C以十.の攪拌 Φ問を z し、 ロータリキルンや横型スクリュ ー攪抨槽によリ砂や廃棄物等を混合攪 itしながら廃棄物の熱分解反応を行なわせ 且つ機械的に未分解残渣ぉよひ T少から成るチヤ一混合物をチヤ一混合物取リ出し ライン 9に向け搬送しながら該ライン 9より篩 9 0及びライン 9 1を介してチヤ
—燃焼炉 1 0へ、 又、 前記攪枰空間の熟分解反応にょリ発^した熱分解ガスは熱 分解ガス出 Uライン 7より、 又篩 9 0により分離された不膽は不燃物取り出し ライン 8ょリ、 夫々互いに分離して取り出す。
この際熱分解ガスとチヤ一混合物の熱カロリ一比が 「約 7 (熱分解ガス ) :約 3 (チヤ一混合物) J になるように熱分解を行うことが好ましいことは前記した 通リである。
又熱分解炉 1 A出口側の熱分解ガス出に 1ライン 7には空貪 iA口ライン 2 1が取 付けられており、 熱分解炉 1 Aより取り出された熱分解ガスは、 空気人口ライン 2 1より空気を導入して熱分解ガス屮に含まれるタール等を一部燃おさせ、 出口 ライン 7におけるタール付着防止ゃコ一キング防 ll:を図った後、 該熱分解ガス '膨宪炉 3 4に導入される前に灰溶融炉 3 1に導入される。
他の構成は図 1 5と同様である。
図 1 7は、 本 叨の第 1 0実施例に係る廃棄物の焼却熱を利用した過熱蒸気製 造装置を示す系統図で、 複数の熱分解炉で構成している。
前記図 1 5、 図 1 6の実施例との相違点を説明するに、
前記熱分解炉は複数設け、 Vヽずれも流動床からなる流動熱分解炉で構成されて いる。
そして該夫々の流動熱分解炉 1、 Γ は、 多孔板等の分散板 3— 1 , 3— 1 ' 上に流動砂等の流動媒体 2— 1、 2 - 1 ' が収納されており、 廃棄物供給ライン 4、 4 ' 及び ¾Ht環 (戻入) ライン 5、 5 ' より都市ごみ等の廃棄物と流動砂が 投入され 燃焼排ガス入口ライン 6、 6 ' より供給された燃焼排ガス等により、 一の流動熱分解炉 1 (第 1熱分解炉) は温度 2 5 0〜 4 5 (TC程度の流動床空間 で廃棄物の熱分解反応を行なわせて積極的にチャ一混合物を生成し、 チヤ一混合 物取リ出しライン 9よりチヤ一謹炉 1 0へ供給する。 一方その反応によリ発^ した熱分解ガスは熱分解ガス出口ライン 7ょリ熱分解ガス燃焼炉 3 4へ、 又不燃 物は不! β取り出しライン 8よリ夫々互いに分離して取り出す。
他の流動熱分解炉 Γ (第 2熱分解炉) は温度 4 5 0〜 7 0 0 "C程の流勛床空 間で廃棄物の熱分解反応を行なわせて脱塩素とともに積極的に熱分解ガスを牛 J« し、 熱分解ガス出口ライン 7 ' より灰溶融炉 3 1へ供給する。 一方未反応のチヤ —混合物 (iii乂リ出しライン 9 ' よりチヤ一燃焼炉 1 0、 乂不燃物は不^ |¾取リ出 しライン 8 ' より夫々 _ 、に分離して取リ出す。
この結果、 一の熱分解炉 Γ では積極的に脱塩素されたチヤ一混合物を多く取 リ出してチヤ一混合物の量を増やす事が出来、 方他の熱分解炉ではチヤ一混合 物の量を少なくしながら、 積極的に灰溶融炉 3 1に使TJする熱分解ガスを生成す る事が出来、 この機能分離により効率的なチヤ一混合物の^^と、 熱分解ガスの が可能となる。
又一の熱分解炉 1では廃棄物の脱塩素だけで足りるために、 2 5 0〜 4 5 0 °C と流動床の温度範囲を広く取れ、 結果としてチヤ一混合物の鼂を多くする事 が出来る。
又灰溶融炉 3 1においても 4 5 0〜 7 0 0°Cの高温の且つ充分に熱分解された カロリの高いガスが導入される事となるために、 灰溶融炉 3 1に導入される酸素 富化空気を少なくしても 1 3 0 0°Cの高温を維持できる。
図 1 8は、 前記第 1 1実施例に係る廃棄物の焼却熱を利用した過熱蒸気製造装 置の変形例を示す系統図で、 熱分解炉を流動床と機械的搬送撅袢手段により構成 している。
本実施例においては図 1 7の一の流動熱分解炉 1 (第 1熱分解炉) はそのまま で、 他の流動熱分解炉 Γ (第 1熱分解炉) を闵 1 6に示す機械的熱分解炉 1 A、 βϋち熱分解炉内の阇休分を廃棄物投入側からチヤ一混合物取り出し側へ向かって ■する機械的搬送/攪拌機能を有する攪袢手段、 例えばロータリキルンや横 ¾ スクリュ一攪 を設けた熱分解がで構成する。
機械攪抨熱分解炉 1 Αの場合、 流動床で必 :とされる流動化用のガス (主とし て N2、 C 02、 H20 主成分のィ沽件:ガス) が不 なため、 熱分解ガスは^釈さ れないので、 位容積当リの 熱鼂が高く、 や: $ί乂は酸素富化空気にょリ容易に 1 3 0 (TC以 I:の高温を ½生でき、 ガス屮の灰分の溶融を行うためのエネルギー 源として有効に使川でき、 流動床型熱分解炉 1より好ましい。
即ちチヤ一混合物を製造する為の低温の熱分解炉は流動床¾で形成し、 高カロ リ一の熱分解ガスを製造するための高温の熱分解炉 1 ' は機械的搬送 Z攪 it機能 を有する熱分解炉で構成する。
これによリ灰溶融炉 3 1に導入される Φ気に酸素富化 ¾気を;おいなくても 1 3 0 (TCの高温を維持できる。 結果として速 feコストが低減する。
さて前記他の熱分解炉 1 ' により得られた熱分解ガスの一部を灰溶融炉 3 1の 上流側で、 分岐ライン 7 ' を介して熱分解ガス燃焼炉 3 4に供給するように構成 している。 これにより前記熱分解ガスや燃 'έガス中に含まれる灰は、 廃棄物に対 し 1割程度であり、 従ってこれを供給される熱分解ガス全てを使用して溶融する ことは必ずしも必要なく、 却って過剰設 ί の熱エネルギになることを防 lLする。 この為前記した熱分解ガス出口ライン 7の分岐された灰溶融炉 3 1上流側若し くは分岐ライン Ί ' に前 , 図 1 4に示す ¾/K計測 Τ··段 1 0 0を配し、 その流梟調 整を行う必要がある。
「発 njjの効果 J 以上記載した如く木発明によれば、 廃棄物の熱分解手段とチヤ一燃焼手段にお ける不»の除去と流動媒体の分離を更に効率良く行 、、 安定した熱分解とチヤ —燃焼を行うことが出来る。 特に高価な高級材料を川いることなく、 塩素による 腐食を巧みに回避して、 約 5 0 0 °C X 1 0 0 k gZ c m2 Gの高温'高圧の蒸気 を大蠹に回収して、 発電効率 3 0 %以上とすることができ、 これにより廃棄物の 熱分解手段とチヤ一燃 手段における不' の除去と流動媒体の分離を更に効率 良ぐ行い、 安定した熱分解とチヤ一燃焼を行うことカ¾来る。
そして本発明は特に前記熱分解手段とチヤ一燃焼 -段間にチヤ一若しくは流動 媒体及びガスの逆流を防止する逆流防止 段を ffiした為に、 前記温度 ^を有し且 つ熱容量の大きい流動媒体等力 s '前記両流動槽問で誤って逆流する事なくこれらに 起因する両流動槽内での温度変動や熱分解、 燃焼条件の悪化等を防止 iJ来る。 又、 熱分解手段側とチヤ一燃焼手段側では夫々 ΙΊ的とする流動作用が PJ滑に行 われるとともに、 熱分解手段で得られる熱分解ガスの熱エネルギと、 チヤ一燃 手段で得る塩素を含有しない燃焼ガス (脱塩素熱エネルギー) のカロリ比及び塩 素含有濃度を、 所望目的に沿ってバラツキが じる事なく得る事が 能となる。 更に本発明によれば前記熱分解手段における熱分解を効率良く行いつつ、 その 熱分解ガスのタール付着やコーキング防止及び低ダイォキシン化、 低 C〇、 低 N O x化を図リ、 基木技術において比較して更に効率良く塩素の低減ともに H.つ高 の過熱蒸気を得ることができる。
又本発明によれば、 前記熱分解ガス若しくは燃焼ガスを分離して得られた灰を 溶融して骨材等の製造が可能となる。
又木発明によれば、 熱分解手段を流動床ではなく、 機械的搬送攪捋手段により 構成したために、 流動床に比較して定時的 Γ1.つ定霾的に熱分解時間と熱分解量を 確保することが出来、 安定して熱分解を行うことが出来るとともに、 熱分解ガス は希釈されないので、 単位容積当リの発熱量が高くする事が出来る。
更に木発明は、 前記熱分解手段を流動床若しく (お幾械的攪抨槽を適宜組合せた 複数の熱分解炉で構成するとともに、 一の熱分解炉の熱分解温度を、 他の熱分解 炉の熱分解温度に対し異ならせた為に、 低温側の一の熱分解炉では 2 5 0〜4 5 crc程度の温度に設定し、 積極的に脱塩素されたチヤ一混合物の i¾sを行なうと ともに、 一方高温側の他の熱分解炉では 4 5 0〜 7 0 0 "C程度の に設定し、 例えば灰溶融炉に使用する熱分解ガスを «する事カ¾来る、
等の種々の著効を有す。

Claims

請求の範囲
1 ) 略 2 0 (TC〜3 2 0 °C前後に沸点を有するように加圧させたボイラ水を用 い、 該ボイラ水の加熱を少なくとも 2段階以上の複数段階とし、
前記略沸点 L度までの加熱を含塩素熱エネルギで行ない、
前記略沸点湿 から所定温度の過熱蒸気を得る過熱を塩素を含まない脱塩素熱 エネルギで行なう事を特徴とする廃棄物の焼却熱を利 fflした過熱蒸気製造方法。
2 ) 含塩素熱エネルギでの加熱を略 3 0 (TC以 I.の流動媒休を含む 間内に廃 棄物を供給して熱分解反応を行なわせる熱分解手段で得た熱分解ガスの燃焼熱ェ ネルギを利用して ない、
脱塩素熱エネルギでの加熱を、 前記熱分解手段よリ取リ出された未分解残渣ぉ よび流動媒体から成るチヤ一混合物を空気または燃焼お I;ガスによって流動させな がら前記未分解残渣を燃焼させるチヤ一燃 J¾-!P.段により得られた熱エネルギを利 用して行なうことを特徴とする請求頃 1記載の廃棄物の焼却熱を利用した過熱蒸 造方法。
3 ) 温度 3 0 0 °C以上の 間内に廃棄物を供給して熱分解反応を行なわせ、 そ の反応によリ発 した熱分解ガスと未分解残渣および流動媒体から成るチヤ一混 と不«とを7 ΐいに分離する熱分解手段と、
前記前記熱分解手段よリ取リ出された来分解残濟ぉよび流動媒休から成るチヤ —混合物を、 空気によって流動させながら前記未分解残濟を燃焼させるチヤ一燃 焼手段と、
前記熱分解ガスの燃焼熱エネルギーを利川して約 4 0 0 °C以下の温水または蒸 気を製造する第 1の蒸気製造手段と、
前記チヤ一燃焼手段により得られた熱エネルギによリ前記第 1の蒸気製造 T-段 で製造された ] <または蒸気を過熱蒸気とする第 2の蒸気製造- Τ·段を含む、 ことを 徴とする廃棄物の焼却熱を利用した過熱蒸気製造装;!。
4 ) 前記第 1 ¾しくは第 2の蒸気製造手段で加熱された蒸気若しくは前記いず れかの製造手段に導入される 若しく { 気の一部を、 前記チャ一燃焼手段の 高温域側に配した熱交換 段に適宜導入することを特徴とすることを特徴とする 請求項 3記載の廃棄物の焼却熱を利用した過熱蒸気製造装置。
5 ) 前記チャ一燃焼手段よリ加熱された流動媒体の循環経路中に第 2のチヤ一 燃 手段を介在させ、 該第 2のチヤ一燃焼手段の燃焼謝本中に、 前記第 1若しく は第 2の蒸気 )g手段、 若しくは請求項 4の熱交換手段で加熱された蒸気を加熱 する熱交換手段を設けたことを特徴とする請求项 3記載の廃棄物の焼却熱を利用 した過熱蒸気纖装置。
6 ) 前記チヤ一燃焼手段よリ加熱された流動媒体を熱分解手段に戻入する流動 嫩本経路中に、 熱落差緩和手-段、 好ましくは熱交換手段を設けた第 2のチヤ一燃 焼手段を介在させたことを特徴とする請求琅 3記戦の廃棄物の焼却熱を利用した 過熱蒸気製造装置。
7 ) 前記熱分解手段の不燃物取り出し口より排出された排出物について大¾不 «Iと他の排出物を分離し、 他の排出物をチヤ一燃焼 段底部側に給送する第 1 のフィルタ手段と、
前記' ¾¾手段の不膽取リ出し Γ 1よリ排,' I!された排出物につ t、て小型不燃物と 'Ml媒体とを分離し、 流動媒体をチヤ一燃焼 段底部側に給送する第 2のフィル タ手段を設けたことを特徴とする廃棄物の焼如熱を利用した過熱蒸気製造装置。
8 ) 前記第 2のフィルタ手段の出 I I側に、 灰分を分離し、 灰分分離後の流動媒 体をチヤ一燃焼手段底部側に給送する第 3のフィルタ手段を設けたことを特徴と する請求項 7記載の廃棄物の焼却熱を利 fflした過熱蒸気製造装置
9 ) 温度 3 0 CTC以上の空間内に廃棄物を供給して熱分解反応を行なわせ、 そ の反応により発生した熱分解ガスと未分解残濟ぉよび流動嫩本から成るチヤ一混 と不 »とを互いに分離する熱分解手-段と、
前記熱分解手段よリ取リ出された未分解残 ½および流動媒休から成るチヤ一混 ^(を、 空気によって流動させながら前記未分解残濟を燃焼させる一又は複数の チヤ一燃焼手段とを含み、
前記熱分解手段とチヤ一燃焼手段問を接続するチヤ一通路、 若しくは前記熱分 解手段又は 及びとチヤ一燃焼 段側にチヤ一若しくは流動媒休及びガスの逆流 防止手段を配した事を特徴とする廃棄物の焼却熱を利 fflした過熱蒸気製造装置。 1 0 ) 前記逆流防止手段が、 前記熱分解手段に流動媒体を 入する少なくとも 一のチャ一燃焼手段側に設けた逆流防止手段であリ、
該逆流防止手段が、 前記熱分解手段側の圧力 Piとチヤ一燃焼手段の圧力 P2と の差 ( Pt - P2) より大なる圧力差を形成する压カ差形成 -段により構成した 事を特徴とする請求項 9 ¾載の廃棄物の焼却熱を利川した過熱蒸^造装置。
1 1 ) 前記逆流防止 段が、 前記熱分解 殺側若しくはチヤ一燃减手段側へ強 制的にチヤ一の搬送を行う機械的搬送手段で構成したことを特徴とする請求項 1 記載の廃棄物の焼却熱を利; TJした過熱蒸気製造装置。
1 2 ) 温度 3 0 (TC以上の空間内に廃棄物を供給して熱分解反応を行なわせ、 その反応によリ発 した熱分解ガスと未分解残液および流勳媒体から成るチヤ一 混合物と不燃物とを互 、に分離する熱分解す-段と、
前記熱分解手段よリ取り出された未分解残淹および流動媒体から成るチヤ一混 ^を、 空気または燃焼排ガスによって流動させながら前記未分解残渣を燃焼さ せる-一乂は複数のチヤ一燃 段とを含み、
前記チヤ一燃 ά手段より熱分解 段に加熱された流勁媒体を戻入する流動媒体 中に、 熱交換手段からなる熱落 緩和手段を設けた第 2のチヤ一燃焼手段を 介在させたことをキ機とする廃棄物の焼却熱を利川した過熱蒸気 装置。
1 3 ) 前記第 2のチヤ一'燃'焼 T殺巾に熱交換 Τ·段を設けるとともに、 該熱交換 手-段配設位置よリ出口側に、 逆流防止手段、 好ましくは前記熱分解 Τ·段側の圧力 ^とチヤ一燃焼 '段の圧力 Ρ2との差圧 (Pt— Ρ2) ょリ大なる圧力差を形成す る圧力差形成手段を配設した事を特徴とする請求 1 2記載の廃棄物の焼却熱を 利用した過熱蒸気製造装置。
1 4 ) 温度 3 0 (TC以上の ¾間内に廃棄物を供給して熱分解反応を行なわせ、 その反応によリ発生した熱分解ガスと未分解残濟ぉよび流動媒体から成るチヤ一 混合物と不燃物とを互レ、に分離する熱分解手段と、
前記熱分解手段よリ取り出された未分解残渣ぉよび流動媒体から成るチヤ一混 合物を、 空気によつて流動させながら前記未分解残液を燃焼させる一又は複数の チヤ一燃焼乎段とを含み、 前記チヤ一燃 J¾手段は、 分散板下方よリ供給される空気または燃焼排ガス流
(以下空気流という) を 2つに分割されるか、 若しくは該流動床内を仕切リ板に よリ仕切る事によリ、 前記チヤ一混合物を流動床内で循環流動させる循環手段を 形成した流動槽であり、 そして前記循環する流動域のド降流域若しくは上昇流域 の下部に熱分解手段から供給されるチヤ一混合物の供給口を設けたことを特徴と する廃棄物の焼却熱を利用した過熱蒸気製造装
1 5 ) 前記循環 段が、 前記分散板 F方より供給する空気流を複数に分割した 分割流であり、 該分割した複数の ' 気流により、 前記流動床内のチヤ一混合物が 循環可能にその流量制御をした事を特徴とする請求 ¾ 1記載の廃棄物の焼却熱を 利用した過熱蒸気製造装置。
1 6 ) 温度 3 0 0 °C以上の空間内に廃棄物を供給して熱分解反応を行なわせ, その反応により発^した熱分解ガスと未分解残渣ぉよび流動媒体から成るチャ一 混合物と不燃物とを互 、に分離する熱分解 Τ·段を ^み、
前 ¾熱分解手段を構成する流動床炉中の上方 問屮に 1若しくは複数段階的に 空気を導入し、 熱分解ガスの完全燃焼を行うことを特徴とし、 好ましくは前記上. 方空間とその下方の流動床空間間を狭通過 ΐίΠ積化し、 空気との混合促進及び輻射 熱の逆流防止機能を持たせたことを特徴とする廃苋物の焼却熱を利用した過熱蒸 ! 造装 ^0
1 7 ) 温度 3 0 0°C以上の空間内に廃棄物を供給して熱分解反応を行なわせ、 その反応によリ発^した熱分解ガスと未分解残渣および流動媒体から成るチヤ一 混合物と不燃物とを互いに分離する熱分解手段を含み、
前記熱分解手段を流動床で構成し、 該流動床内部を、 分散板の上に収容された «砂等の流勅媒体を具え、 分散板下方より¾気または燃焼排ガス等を吹き込む ことにより流動媒体を流動化する 流動床と、
該主流動床の下方側壁側を拡幅化し、 その底部に廃棄物投入側からチヤ一混合 物取り出し側へ向かって固休分を搬送する搬送 -段を設けたことを特徴とする廃 棄物の焼却熱を利用した過熱蒸気製造装置。
1 8 ) 温度 3 0 (TC以卜.の空間内に廃棄物を供給して熱分解反応を行なわせ、 その反応にょリ発生した熱分解ガスと未分解残渣ぉよび流動 から成るチヤ一 混合物と不燃物とを互いに分離する熱分解手段と、
前記前記熱分解手段よリ取リ出された未分解残濟ぉよび流動媒体から成るチヤ 一混合物を、 空気によって流動させながら前記未分解残濟を燃焼させるチヤ一燃 焼手段と、
前記熱分解ガスの燃焼熱エネルギーを利用して約 4 0 (TC以下の温水または蒸 気を製造する第 1の蒸気製造手段と、
前記チヤ一燃 Ϊ手段によリ得られた熱エネルギによリ前記第 1の蒸気製造 ΐ-段 で製造された または蒸気を過熱蒸気とする第 2の蒸気製造手段を含み、 前記熱分解手段と第 1の蒸気製造手段との間に、 βί /記熱分解ガスの第 1次燃焼 熱により、 チヤ一燃焼手段 しくは熱分解 Τ·段より取リ出された夫々のガスよリ 分離された灰分の溶融分離を行う灰分溶融分離 段を設けるとともに、 好ましく は前記灰分が分離された熱分解ガスの 2次燃 を行う 2次燃焼 -段を設けたこと を特徴とする廃棄物の焼却熱を利用した過熱蒸気製造装置。
1 9 ) 前記熱分解手段にょリ得られた熱分解ガスを灰分溶融分離手段とともに、 その 部を分岐して前記 2次燃焼手段に供給することを特徴とする請求項 1記載 の廃棄物の焼却熱を利用した過熱蒸気製造装置。
2 0 ) 温度 3 0 0 "C以ト.の酸素過小 問内に廃棄物を供給して熱分解反応を行 なわせ、 その反応により発 した熱分解ガスを 2次燃焼 段 しくは熱交換 -段 に供給するため熱分解ガス出口経路 111に絞リ部を設け、 該絞リ部の入口側と出 1 1 側に夫々設けた圧力取リ出し口に少量の空気 (支燃件-ガスを含む気休) を適¾流 す空気流入手段を設けて差庄を計測して熱分解ガスの流暈を計測する事を特徴と する廃棄物の焼却熱を利用した過熱蒸気製造装置。
2 1 ) 前記熱分解手段により得られた熱分解ガスの '部を分岐して熱分解 .段 の入口側に供給することを特徴とする請求項 1記載の廃棄物の焼如熱を利; ϋした 過熱蒸 造装置。
2 2 ) 温度 3 0 0°C以上の'空間内に廃棄物を供給して熱分解反応を行なわせ、 その反応によリ発 した熱分解ガスと未分解残淹および流動媒体から成るチヤ一 混合物と不燃物とを互いに分離する熱分解手段と、
前記前記熱分解手段より取り出された未分解残濟ぉよび流動媒体から成るチヤ
—混合物を、 空気によって流動させながら前 Hd未分解残渣を'纖させるチヤ一燃 焼手段と、
前記熱分解ガスの熱エネルギーを利用して 2 0 0〜 3 2 0 °C以 Tの温水または 蒸気を製造する第 1の蒸 造手段と、
前記チヤ一燃焼手段により得られた熱エネルギによリ前記第 1の蒸気製造手段 で製造された^ または蒸気を過熱蒸気とする第 2の蒸気製造手段を含み、 前記熱分解手段を、 該分解手段内の固休分を廃棄物投入側からチヤ一混合物取 リ出し側へ向かつて《3^する機械的搬送/攪 機能を する熱分解炉で構成した ことを特徴とする廃棄物の焼却熱を利用した過熱蒸気製造装置。
2 3 ) 温度 3 0 (TC以上の空間内に廃棄物を供給して熱分解反応を行なわせ、 その反応により発生した熱分解ガスと未分解残渣および流動媒体から成るチヤ一 混合物と不燃物とを ¾レ、に分離する熱分解手段と、
前記前記熱分解手段より取リ出された来分解残 ½および流動媒体から成るチヤ —混合物を、 空気または燃焼排ガスによって流動させながら前記未分解残濟を燃 焼させるチヤ一燃焼手段と、
前記熱分解ガスの熱エネルギーを利 rtiして 2 0 0〜 3 2 0 °C以ドの温水または 蒸気を製造する第 1の蒸気製造手段と、
前記チヤ一:^焼手段により得られた熱エネルギにより前記第 1の蒸気製造 段 で製造され,こ または蒸気を過熱蒸気とする第 2の蒸気製造手段を含み、 前記熱分解手段を流動床若しくは機械的攪忭槽を適宜組合せた複数の熱分解炉 で構成するとともに、 の熱分解炉の熱分解温度を、 他の熱分解炉の熱分解温度 に対し異ならせたことを特徴とする廃棄物の焼却熱を利用した過熱蒸気製造装置。
2 4 ) 前記高温側の熱分解炉ょリ された熱分解ガスを、 チヤ一燃焼乎段若 しくは熱分解手段より取り出された夬々のガスよリ分離された灰分の溶融分離を 行う灰分溶融分離乎段に供給するを特徴とする請求項 2記載の廃棄物の焼却熱を 利用した過熱蒸気製造装置。
PCT/JP1997/000573 1996-02-29 1997-02-27 Procede et appareil de production de vapeur surchauffee utilisant la chaleur generee par l'incineration de dechets WO1997032161A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP97903617A EP0823590B1 (en) 1996-02-29 1997-02-27 Method and apparatus for producing superheated steam using heat generated through incineration of wastes
DE69732394T DE69732394T2 (de) 1996-02-29 1997-02-27 Verfahren und vorrichtung zur erzeugung von überhitztem dampf mittels wärme von abfallverbrennung
KR1019970707702A KR100264723B1 (ko) 1996-02-29 1997-02-27 폐기물의소각열을이용한과열증기제조방법과그장치
US08/945,591 US6133499A (en) 1996-02-29 1997-02-27 Method and apparatus for producing superheated steam using heat from the incineration of waste material

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP8/69067 1996-02-29
JP06909096A JP3285752B2 (ja) 1996-02-29 1996-02-29 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP06938896A JP3310853B2 (ja) 1996-02-29 1996-02-29 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP8/69090 1996-02-29
JP8/69388 1996-02-29
JP8/69383 1996-02-29
JP8/69393 1996-02-29
JP06906796A JP3276286B2 (ja) 1996-02-29 1996-02-29 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP06938396A JP3322557B2 (ja) 1996-02-29 1996-02-29 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP06939396A JP3408686B2 (ja) 1996-02-29 1996-02-29 廃棄物の焼却熱を利用した過熱蒸気製造装置

Publications (1)

Publication Number Publication Date
WO1997032161A1 true WO1997032161A1 (fr) 1997-09-04

Family

ID=27524157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000573 WO1997032161A1 (fr) 1996-02-29 1997-02-27 Procede et appareil de production de vapeur surchauffee utilisant la chaleur generee par l'incineration de dechets

Country Status (6)

Country Link
US (1) US6133499A (ja)
EP (1) EP0823590B1 (ja)
KR (1) KR100264723B1 (ja)
DE (1) DE69732394T2 (ja)
SG (1) SG96183A1 (ja)
WO (1) WO1997032161A1 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI117574B (fi) * 2000-06-02 2006-11-30 Ron Zevenhoven Menetelmä ja laitteisto jätteen polttoa varten sekä jätteen käyttö energian tuottamiseksi
PL362718A1 (en) * 2000-09-29 2004-11-02 Federal Recycling Technologies, Inc. Apparatus and method for recovering marketable products from scrap rubber
AU2004320347B2 (en) * 2004-06-01 2009-08-13 Japan Science And Technology Agency Solid-fuel gasification system
DE102005036792A1 (de) * 2005-08-02 2007-02-08 Ecoenergy Gesellschaft Für Energie- Und Umwelttechnik Mbh Verfahren und Vorrichtung zur Erzeugung von überhitztem Dampf
EP3252128B1 (en) 2006-04-03 2019-01-02 Pharmatherm Chemicals Inc. Thermal extraction method for producing a taxane extract
EP2011972B1 (de) 2007-07-03 2013-07-31 clm technologie ag Anlage, Verfahren und Vorrichtung zur Erzeugung eines überhitzten Mediums
FI123180B (fi) * 2007-10-11 2012-12-14 Valtion Teknillinen Laitteisto pyrolyysituotteen valmistamiseksi
FI123455B (fi) * 2007-10-11 2013-05-15 Valtion Teknillinen Menetelmä pyrolysoinnin toteuttamiseksi
ITBO20080008A1 (it) * 2008-01-04 2009-07-05 Samaya S R L Impianto per il trattamento di rifiuti in discarica
DE102008014799A1 (de) * 2008-03-18 2009-09-24 Karl-Heinz Tetzlaff Verfahren und Vorrichtung zur Herstellung von Synthesegas aus Biomasse
DE102008054038B3 (de) * 2008-10-30 2010-04-29 Karlsruher Institut für Technologie Verfahren und Vorrichtung zur Reduzierung von Schadstoffemissionen in Verbrennungsanlagen
US20110284359A1 (en) 2010-05-20 2011-11-24 Uop Llc Processes for controlling afterburn in a reheater and for controlling loss of entrained solid particles in combustion product flue gas
US8499702B2 (en) 2010-07-15 2013-08-06 Ensyn Renewables, Inc. Char-handling processes in a pyrolysis system
US9011561B2 (en) * 2010-11-05 2015-04-21 Thermochem Recovery International, Inc. Solids circulation system and method for capture and conversion of reactive solids
US9441887B2 (en) 2011-02-22 2016-09-13 Ensyn Renewables, Inc. Heat removal and recovery in biomass pyrolysis
US9347005B2 (en) 2011-09-13 2016-05-24 Ensyn Renewables, Inc. Methods and apparatuses for rapid thermal processing of carbonaceous material
US10041667B2 (en) 2011-09-22 2018-08-07 Ensyn Renewables, Inc. Apparatuses for controlling heat for rapid thermal processing of carbonaceous material and methods for the same
US10400175B2 (en) 2011-09-22 2019-09-03 Ensyn Renewables, Inc. Apparatuses and methods for controlling heat for rapid thermal processing of carbonaceous material
US9044727B2 (en) 2011-09-22 2015-06-02 Ensyn Renewables, Inc. Apparatuses and methods for controlling heat for rapid thermal processing of carbonaceous material
US9499404B2 (en) 2011-09-27 2016-11-22 Thermochem Recovery International, Inc. System and method for syngas clean-up
US9109177B2 (en) 2011-12-12 2015-08-18 Ensyn Renewables, Inc. Systems and methods for renewable fuel
US9670413B2 (en) 2012-06-28 2017-06-06 Ensyn Renewables, Inc. Methods and apparatuses for thermally converting biomass
TWI645026B (zh) 2013-06-26 2018-12-21 安信再生公司 可再生燃料之系統及方法
CN103695015B (zh) * 2014-01-06 2015-08-12 中盈长江国际新能源投资有限公司 一种加快生物质热解产气速度并获得纳米级二氧化硅材料的装置及方法
WO2017034981A1 (en) 2015-08-21 2017-03-02 Ensyn Renewables, Inc. Liquid biomass heating system
CA3014874C (en) 2016-02-16 2019-03-19 Thermochem Recovery International, Inc. Two-stage energy-integrated product gas generation system and method
CN109153929B (zh) 2016-03-25 2019-12-20 国际热化学恢复股份有限公司 三阶段能量集成产物气体发生系统和方法
US10364398B2 (en) 2016-08-30 2019-07-30 Thermochem Recovery International, Inc. Method of producing product gas from multiple carbonaceous feedstock streams mixed with a reduced-pressure mixing gas
US10400176B2 (en) 2016-12-29 2019-09-03 Ensyn Renewables, Inc. Demetallization of liquid biomass
KR102021489B1 (ko) 2017-09-04 2019-09-16 (주)유성 과열기 효율관리 시스템이 적용된 폐열수관보일러
US10099200B1 (en) 2017-10-24 2018-10-16 Thermochem Recovery International, Inc. Liquid fuel production system having parallel product gas generation
CN107726327A (zh) * 2017-11-13 2018-02-23 南京凯盛开能环保能源有限公司 一种利用蒸汽预热空气的水泥窑协同处置生活垃圾系统
CN109207178B (zh) * 2018-08-08 2021-07-09 上海发电设备成套设计研究院有限责任公司 一种城市垃圾热解气化耦合燃煤电站发电系统
CN110701616A (zh) * 2019-11-05 2020-01-17 西安热工研究院有限公司 一种城市生活垃圾干燥热解焚烧发电系统及方法
US11555157B2 (en) 2020-03-10 2023-01-17 Thermochem Recovery International, Inc. System and method for liquid fuel production from carbonaceous materials using recycled conditioned syngas
US11466223B2 (en) 2020-09-04 2022-10-11 Thermochem Recovery International, Inc. Two-stage syngas production with separate char and product gas inputs into the second stage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215503A (ja) * 1983-05-20 1984-12-05 堺市 ごみ焼却炉
JPH05346204A (ja) * 1992-06-12 1993-12-27 Babcock Hitachi Kk 熱回収焼却炉
JPH0783421A (ja) * 1993-06-28 1995-03-28 Kawasaki Heavy Ind Ltd 塩化物除去機能を備えた流動層ごみ焼却炉
JPH08128601A (ja) * 1994-10-28 1996-05-21 Hitachi Ltd ごみ焼却発電方法及びその設備

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227550A3 (en) * 1985-12-18 1989-07-12 Wormser Engineering, Inc. Apparatus for combusting fuels and method of cumbusting wet fuels
US5327726A (en) * 1992-05-22 1994-07-12 Foster Wheeler Energy Corporation Staged furnaces for firing coal pyrolysis gas and char
DE69313415T2 (de) * 1992-12-11 1998-02-19 Kobe Steel Ltd Anlage und Verfahren zur Abfallverbrennung
JP3305172B2 (ja) * 1995-09-13 2002-07-22 三菱重工業株式会社 廃棄物の焼却熱を利用した過熱蒸気製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215503A (ja) * 1983-05-20 1984-12-05 堺市 ごみ焼却炉
JPH05346204A (ja) * 1992-06-12 1993-12-27 Babcock Hitachi Kk 熱回収焼却炉
JPH0783421A (ja) * 1993-06-28 1995-03-28 Kawasaki Heavy Ind Ltd 塩化物除去機能を備えた流動層ごみ焼却炉
JPH08128601A (ja) * 1994-10-28 1996-05-21 Hitachi Ltd ごみ焼却発電方法及びその設備

Also Published As

Publication number Publication date
EP0823590A4 (en) 2001-03-21
KR100264723B1 (ko) 2000-09-01
DE69732394D1 (de) 2005-03-10
DE69732394T2 (de) 2006-03-30
EP0823590A1 (en) 1998-02-11
SG96183A1 (en) 2003-05-23
EP0823590B1 (en) 2005-02-02
KR19990008177A (ko) 1999-01-25
US6133499A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
WO1997032161A1 (fr) Procede et appareil de production de vapeur surchauffee utilisant la chaleur generee par l&#39;incineration de dechets
KR20000076167A (ko) 연소 장치
JP3310853B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置
JPH11159719A (ja) 廃棄物焼却方法
JP3924285B2 (ja) 焼却装置
JP3276271B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP3272582B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP3285740B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP3442521B2 (ja) 複合式流動層廃棄物燃焼ボイラ
JP3534552B2 (ja) 廃棄物の焼却装置と該廃棄物の焼却熱を利用した過熱蒸気製造装置
JP3276274B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP3322557B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP3285752B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP3272583B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP3327749B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP3268214B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP3408686B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP3477327B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造方法とその装置
JP3408678B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP3276272B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP2991638B2 (ja) 廃棄物焼却装置
JPH0979542A (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP3276286B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP3272581B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置
JP3276273B2 (ja) 廃棄物の焼却熱を利用した過熱蒸気製造装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997903617

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970707702

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08945591

Country of ref document: US

ENP Entry into the national phase

Ref country code: US

Ref document number: 1998 945591

Date of ref document: 19980205

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997903617

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970707702

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970707702

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997903617

Country of ref document: EP