WO1997030730A1 - Vecteurs a grain fin et composition medicinale preparee avec ce type de vecteurs - Google Patents

Vecteurs a grain fin et composition medicinale preparee avec ce type de vecteurs Download PDF

Info

Publication number
WO1997030730A1
WO1997030730A1 PCT/JP1997/000463 JP9700463W WO9730730A1 WO 1997030730 A1 WO1997030730 A1 WO 1997030730A1 JP 9700463 W JP9700463 W JP 9700463W WO 9730730 A1 WO9730730 A1 WO 9730730A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
graft copolymer
carbon atoms
hydrogen atom
drug
Prior art date
Application number
PCT/JP1997/000463
Other languages
English (en)
French (fr)
Inventor
Mitsuru Akashi
Akio Kishida
Shinji Sakuma
Hiroshi Kikuchi
Original Assignee
Daiichi Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Pharmaceutical Co., Ltd. filed Critical Daiichi Pharmaceutical Co., Ltd.
Priority to AU17337/97A priority Critical patent/AU708586B2/en
Priority to US09/101,804 priority patent/US6100338A/en
Priority to EP97904584A priority patent/EP0893125A1/en
Publication of WO1997030730A1 publication Critical patent/WO1997030730A1/ja
Priority to NO983824A priority patent/NO983824L/no

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1635Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates

Definitions

  • the present invention relates to a fine particle carrier useful as a drug carrier in a drug delivery system (DDS) and a pharmaceutical composition using the same.
  • DDS drug delivery system
  • a drug carrier refers to a carrier for transporting a drug to a target organ or cell
  • a particle-shaped carrier is referred to as a particulate carrier.
  • the particulate carrier can be divided into microcapsules, microspheres, nanoparticles, and the like according to the size, shape, and function.
  • lipids and polymers are used as the material of the particulate carrier.
  • Microcapsules and microspheres usually have a particle size of several meters. Generally, microcapsules are used in a broad sense, but in recent years, it is often the case that microparticles that are composed of polymers up to the inside of a particle are distinguished from microphone mouth spurs.
  • Nanoparticles is a term that has been conventionally used to describe these colloids because the size of the dispersed phase of the polymer latex prepared by the emulsion polymerization method is several hundred nm. However, recently, even those prepared by other manufacturing methods are composed of natural or synthetic polymers as their constituent components, and are generally referred to as nanoparticles if the particle size is about the same size as nanometers.
  • Nanoparticles as fine-particle carriers have been studied as carriers for the targeting of anticancer drugs and the like, and were mainly targeted at injections (L. LJ ris 1 aineta 1. Interna tiona l Jou rna lof Pha rma eutics, J_5_, 335 (1 984)). From the mid-1980s, we have been trying to use nanoparticles as oral dosages Studies are being reported.
  • a drug When a drug is nanoparticled and used as an orally administered drug, its main purpose is to improve the absorption of poorly absorbable drugs (P. Mainec en teta 1. Jonar narof Ph a rmac e eu tical ci ences, Oralization of peptide drugs such as C. D amgeeta 1. International Journal of Pharmaceutics, 3_, 121 U 987)), insulin, etc. (C . Dam eeta l. D i ab etes,
  • One "" ⁇ is a method of preparing nanoparticle using a typical microencapsulation method such as a phase separation method or a submerged drying method.
  • polylactic acid AM Ray eta l. Jorunal of Pharmaceutical Sciences, 83, 845 (1994)
  • cellulose derivative H. I brahimeta 1.
  • polyacrylic acid ester derivatives E.A llemanneta 1 .International J ournalof Pharmaceutics, SJ_, 247 (1 992)
  • other hydrophobic polymers already used as excipients for pharmaceuticals are widely used.
  • Another method is to prepare nanoparticles using an emulsion polymerization method (L. V ansnicketa 1. Pharmaceutical Research, ⁇ , 36 (1 895); N. A 1 K houri F a 1 1 ouheta 1. Inte rna tiona l Journa lof Pharmaceutics, _2 _, 125 (1 986)).
  • a hydrophobic polyvinyl compound such as polystyrene, polyacrylate, or polymethacrylate can be used as a material for the nanoparticle.
  • polycyanacrylic acid esters particularly isobutyl polycyanacrylic acid, which is an adhesive for surgical operations.
  • the target drug is often a fat-soluble compound. This is because the nanoparticle production method is not suitable for water-soluble compounds.
  • the nanoparticle production method is not suitable for water-soluble compounds.
  • there have been reports of cases where water-soluble compounds are converted into nanoparticles, but are limited to compounds that have the property of not dissolving in water at a certain pH (eg, peptides) (Yoshiaki Kawashima, 11th Pharmaceutical Association of Japan)
  • the current state of the matter is the 4th Annual Meeting Abstracts, p. 4, p. 9, 1994, Tokyo).
  • an object of the present invention is to provide a microparticle carrier excellent in a drug absorption promoting effect, and a pharmaceutical composition using the same. Disclosure of the invention
  • the present inventors have focused on the graft copolymer and have studied variously its drug delivery performance, particularly the ability to promote oral absorption.
  • the graft copolymer having a polyvinylamine compound as a graft chain has an excellent oral absorption promoting action.
  • Japanese Patent Application Laid-Open No. H8-268916 Japanese Patent Application Laid-Open No. H8-268916.
  • one or two or more graft copolymers having a poly (N-alkylacrylamide) -poly (N-alkylmethacrylamide) graft chain as shown in the following formula are obtained.
  • the present inventors have found that the combination has an extremely excellent effect of promoting oral absorption as compared with the conventional graft copolymer, and have completed the present invention.
  • Q 1 represents a hydrogen atom, a methyl group or a cyano group
  • Q 2 is a hydrogen atom
  • R 1 represents a hydrogen atom or a halogenomethyl group
  • R 2 represents an alkyl group having 1 to 10 carbon atoms
  • R 3 represents a hydrogen atom or an alkyl group having 10 to 10 carbon atoms
  • R 4 represents Represents an alkyl group having 1 to 10 carbon atoms (provided that the total carbon number of R 3 and R 4 is 3 to 20)
  • Q 3 represents a hydrogen atom or a methyl group
  • a 1 represents an alkylene group having from 10 to 10 carbon atoms
  • -Q 5 represents an oxygen atom or -NH-
  • Q 6 represents an alkylene group having 1 to 10 carbon atoms
  • Q 7 represents an oxygen atom or a sulfur atom
  • X 1 represents an oxygen atom or two hydrogen atoms
  • R 5 , R 7 and R 8 represent a hydrogen atom or a methyl group
  • R 6 represents an alkyl group having 1 to 10 carbon atoms
  • n each represent a number from 0 to 100
  • the present invention provides a fine particle carrier containing a graft copolymer (A) having a structural unit represented by the following formula:
  • the present invention also provides a particulate carrier composition containing a composition (graft cobolimer composition) in which the following components (a) and (b) are combined.
  • graft copolymers selected from the following graft copolymers (B-1) and graft copolymers (B-2):
  • Q 1 represents a hydrogen atom, a methyl group or a cyano group
  • Q 2 is a hydrogen atom
  • R ′ represents a hydrogen atom or a halogenomethyl group
  • R 2 represents an alkyl group having 1 to 0 carbon atoms
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 4 represents a carbon atom. Represents an alkyl group of the number 1 to 10 (however, the total number of carbon atoms of R 3 and R 4 is 3 to 20))
  • Q 8 represents a hydrogen atom or a methyl group
  • a 2 represents an alkylene group having 1 to 10 carbon atoms
  • Q ′ 0 represents an oxygen atom or —NH—
  • Q 12 represents an oxygen atom or a sulfur atom
  • X 2 represents an oxygen atom or two hydrogen atoms
  • R 9 and R 1 () represent a hydrogen atom or a methyl group
  • R 11 represents an alkyl group having 1 to 10 carbon atoms
  • Q 1 represents a hydrogen atom, a methyl group or a cyano group
  • R 1 represents a hydrogen atom or a halogenomethyl group
  • R 2 represents an alkyl group having 1 to 10 carbon atoms
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 4 represents Represents an alkyl group having 1 to 10 carbon atoms (provided that the total carbon number of R 3 and R 4 is 3 to 20)
  • Q 13 represents a hydrogen atom or a methyl group
  • Q ' 4 is ⁇ ) ⁇ CH 2 -or one COO-A2-CHCH 2 ⁇
  • a 3 represents an alkylene group having 1 to 10 carbon atoms
  • Q ′ 5 represents an oxygen atom or —NH—
  • ⁇ 3 16 represents an alkylene group having 1 to 1 0 carbon atoms
  • Q ′ 7 represents an oxygen atom or a sulfur atom
  • X 3 represents an oxygen atom or two hydrogen atoms
  • R 12 and R ′ 3 represent a hydrogen atom or a methyl group
  • R 14 represents an alkanoyl group having 2 to 11 carbon atoms
  • the present invention provides a pharmaceutical composition containing the above-mentioned graft copolymer (A) or a graft copolymer composition containing the components (a) and (b) and a drug.
  • FIG. 1 shows a proton NMR chart of the N-isopropylacrylamide macromonomer synthesized in Reference Example 1-2.
  • FIG. 2 shows a proton NMR chart of a graft copolymer synthesized using polystyrene as a hydrophobic base and poly (N-isopropylacrylamide) as a hydrophilic material synthesized in Reference Examples 13 to 13.
  • FIG. 3 shows a proton NMR chart of a macromonomer of a random copolymer composed of N-isopropylacrylamide and acrylamide synthesized in Reference Example 2-2.
  • FIG. 1 shows a proton NMR chart of the N-isopropylacrylamide macromonomer synthesized in Reference Example 1-2.
  • FIG. 2 shows a proton NMR chart of a graft copolymer synthesized using polystyrene as a hydrophobic base and poly (N-isopropylacrylamide) as a hydrophilic material synth
  • FIG. 4 shows a proton NMR chart of a macromonomer of a random copolymer composed of N-isopropylacrylamide and acrylamide synthesized in Reference Example 42.
  • FIG. 5 shows a p-ton NMR chart of a random copolymer macromonomer composed of N-isopropylacrylamide and acrylamide synthesized in Reference Example 6-2.
  • Figure 6 shows the plasma concentration profiles of phenolsulfonephthalein over time and phenolsulfonephthalein administered to rats in Example 2.
  • FIG. 7 is a graph showing the time course (mean soil S.E.) of blood calcium ion concentration when salmon calcitonin was orally administered to rats in Example 4.
  • Figure 8 shows the time course of pain activity when orally administered obioide peptide to mice in Example 6.
  • FIG. 9 is a graph showing the time course (mean soil SE) of blood calcium ion concentration when salmon calcitonin was orally administered to rats in Example 8.
  • FIG. 10 is a graph showing the time course (means ⁇ SE) of blood serum concentration of salmon calcitonin administered orally in Example 10;
  • FIG. 11 is a graph showing the time course of serum calcium ion concentration (means soil SE) when salmon calcitonin was orally administered in parts in Example 11; BEST MODE FOR CARRYING OUT THE INVENTION
  • the graft copolymer used in the fine particle carrier and the pharmaceutical composition of the present invention includes a graft copolymer (A) [a graft copolymer having a structural unit (1) and a structural unit (2)], a graft copolymer (B- 1) [Graft Copolymer Having Structural Unit (1) and Structural Unit (3)], and Graph Tocopolymer (B-2) [Graft Copolymer Having Structural Unit (1) and Structural Unit (4)] There are seeds.
  • the ratio of the graft chains in these graft copolymers is not particularly limited, but from the viewpoint of the drug absorption promoting effect, the formulas (2),
  • a graft copolymer in which the molar fraction of the structural unit represented by (3) or (4) is in the range of 0.001 to 1 is preferred.
  • examples of the halogenomethyl group represented by R ′ include a chloromethyl group, a bromomethyl group, and a pseudomethyl group.
  • examples of the alkyl group having 1 to 10 carbon atoms represented by R 2 , R 3 and R 4 include a linear or branched alkyl group having 1 to 10 carbon atoms, and a specific example is a methyl group.
  • R 2 is more preferably an alkyl group having 1 to 5 carbon atoms, and particularly preferably a methyl group, an ethyl group and an isopropyl group.
  • R 3 is a hydrogen atom and R 4 is an alkyl group, or when both are alkyl groups, the total carbon number of both is 3 to 20.
  • R 4 is an alkyl group having 3 to 10 carbon atoms, and when R 3 and are alkyl groups, the alkyl groups of R 3 and R 4 have 3 to 20 carbon atoms.
  • the structural unit represented by is particularly preferable.
  • the alkylene group having 1 to 10 examples include a linear or branched alkylene group having 1 to 10 carbon atoms, specifically, a methylene group, an ethylene group, a trimethylene group, a hexamethylene group, a propylene group, (Ethyl) ethylene group, (dimethyl) ethylene group and the like. Among them, a linear or branched alkylene group having 1 to 5 carbon atoms is more preferable.
  • Examples of the alkyl group having 1 to 10 carbon atoms represented by R 6 and R 11 include a linear or branched alkyl group having 1 to 10 carbon atoms, and specific examples include a methyl group and an ethyl group. And n-propyl, isopropyl, n-butyl, t-butyl, n-pentyl, n-hexyl and the like. Among them, R 6 is more preferably a branched alkyl group having 3 to 10 carbon atoms, and particularly preferably an isopropyl group.
  • a linear or branched alkyl group of 1 to 8 carbon atoms as R 11, methylcarbamoyl group, Echiru group, an isopropyl group, t- butyl group, n - hexyl group and the like are particularly preferable to correct .
  • the Arukanoiru groups from 2 to 1 1 carbon atoms represented by R 14, linear or branched Alkanoyl groups having 2 to 6 carbon atoms are more preferable, and acetyl, propionyl, and butyryl groups are particularly preferable.
  • the structural unit represented by is particularly preferable.
  • Equation (3a) Since p and q may each be 0 in the structural unit of the formula (3), the structural units of the following formulas (3a), (3b) and (3c) may be obtained. Equation (3a)
  • the structural unit represented by is particularly preferable.
  • the structural unit represented by is particularly preferable.
  • a repeating unit in a graft chain (N-alkylacrylamide, N-alkylmethylacrylamide, acrylamide, methylacrylamide, acrylic acid, vinylamine, N-alkanolylvinylamine, etc.) May be either a random type or a block type.
  • the form of bonding with the structural unit of (2), (3) or (4) may be random or block.
  • graft copolymer (A) a graft copolymer having a structural unit of the formula (1) and a structural unit of the formula (2b), a structural unit of the formula (1) and a structural unit of the formula (2c) And a graft copolymer having a structural unit of the formula (1) and a structural unit of the formula (2d) are novel.
  • the above graft copolymer synthesizes, for example, a macromonomer corresponding to the structural unit of the formula (2), (3) or (4), and then obtains the obtained macromonomer and a vinyl compound corresponding to the formula (1). It can be produced by copolymerization.
  • the manufacturing method will be described in detail.
  • the macromonomer corresponding to the structural unit of the formula (2), (3) or (4) is a repeating unit of the structures of the formulas (2) to (4) such as an alkylacrylamide derivative and an alkylmethacrylamide derivative.
  • One or more of the corresponding monomers undergo radical polymerization in the presence of a chain transfer agent having an amino, hydroxyl or carboxyl group in the molecule, and have an alkyl, amino or hydroxyl group at the terminal. Easily manufactured by synthesizing one or more polymers or copolymers such as amide derivatives and alkyl methacrylamide derivatives, and then reacting with vinyl monomers such as vinylbenzyl halide and alkyl esterdioxide methacrylate. it can.
  • Polymerization of one or more monomers such as alkylacrylamide derivatives and alkylmethacrylamide derivatives is performed in the presence of a chain transfer agent and a radical polymerization initiator. You don't have to. From the viewpoint of reaction control and operation, it is preferable that the solvent is present.
  • the solvent water, alcohols, dimethylformamide, benzene and the like can be used, but the type of the solvent is not particularly limited.
  • a chain transfer agent mercaptoalkylamines, mercaptoalkanols, ⁇ -mercaptocarboxylic acids, alkylene glycols, etc. can be used.
  • 2-mercaptoethylamine, 2-mercaptoethanol, monomercaptopropionic acid Is preferred.
  • radical polymerization initiator azobisisobutyronitrile, benzoyl peroxide, ammonium persulfate and the like can be used, but azobisisobutyric nitrile and benzoyl peroxide are preferred.
  • the reaction of one or more polymers or copolymers such as alkyl acrylamide derivatives or alkyl methacrylamide derivatives containing an amino, hydroxyl or carboxyl group at the terminal with a vinyl monomer is a general method. It can be easily achieved by acid amide reaction, etherification reaction or esterification reaction.
  • the vinyl monomer chloromethylstyrene / propylene methacrylate propylene dioxide is preferred.
  • reaction of a random copolymer comprising an alkyl acrylamide derivative or an alkyl methacrylamide derivative having a hydroxyl group at the terminal with an acrylamide or methacrylamide and chloromethylstyrene is performed in a solvent such as dimethylformamide.
  • the reaction is carried out at a reaction temperature of 0 to 100 in the presence of a 0% aqueous solution of aqueous hydration power and if necessary a phase transfer catalyst.
  • the macromonomer corresponding to the structural unit of the formula (2), (3) or (4) obtained as described above is copolymerized with a vinyl compound corresponding to the formula (1) capable of homopolymerization and radical polymerization. By doing so, the above graft copolymer can be produced.
  • copolymerizable copolymer examples include styrene, halomethylstyrene, methyl acrylate, methyl methacrylate, isobutyl cyanoacrylate, acrylonitrile, acrylamide, and vinyl acetate. Styrene, halomethylstyrene, methyl acrylate and methyl methacrylate are preferred.
  • the graft copolymer having an acid amide group, a carboxyl group or a primary amino group in the graft chain is a macromonomer having a structural unit of the formula (2a), the formula (3c) and Z or the formula (4c).
  • Homopolymerization and copolymerization with a vinyl compound corresponding to the formula (1) capable of radical polymerization Then, it can also be produced by appropriately hydrolyzing by a known method.
  • Fine particles using these graft copolymers as a material are obtained by dispersion-polymerizing a water-soluble macromonomer corresponding to the structural unit represented by the formula (2), (3) or (4) and a hydrophobic monomer, and if necessary, It is obtained by hydrolysis, and water-soluble macromonomer is localized on the surface, and the inside becomes fine particles composed of hydrophobic polymer.
  • these fine particles have a water-soluble surface, they can efficiently hold a water-soluble drug.
  • lipid-soluble drugs are thought to be retained by hydrophobic interaction with the internal hydrophobic polymer.
  • amphipathic property of the surface it is possible to retain a fat-soluble drug on the surface of the fine particles.
  • the microparticles are considered to be able to efficiently hold the drug without depending on the physical properties of the drug, and thus are useful as a particulate carrier.
  • the graft copolymer (A) [component (a)] and one or more selected from the graph copolymer (B-1) and the graft copolymer (B-2) [component (b) is preferred as a drug carrier. Since this graft copolymer composition has two or more types of graft chains derived from a water-soluble macromonomer, it is considered that the drug retention performance, protection performance, and intestinal absorption promotion effect are improved.
  • the graft copolymer may be microencapsulated, microsphered, or nanoparticled.
  • Microencapsulation and microsphere formation can be performed by a conventional method.
  • the nanoparticle method is based on the macromonomer method developed by Akashi et al. For J (Die Ange wandte Macromolecule lare Chemie, 1 32, 81 (1 985); Polymer r Jou r na l, 24, 959 (1992); Chemical 'Engineering, p. 505, 1994), which can be achieved by preparing nanoparticles in which a water-soluble macromonomer is localized on the surface by dispersion polymerization and the inside of which is composed of a hydrophobic polymer.
  • the particle size of the nanoparticles changes depending on the molecular weight of the macromonomer, the reaction conditions when the macromonomer is prepared, and the like. Furthermore, by selecting appropriate setting conditions, it is possible to prepare microspheres having a particle size on the order of m.
  • a pharmaceutical composition having good oral absorbability can be obtained by mixing the drug with the graft copolymer or the graft copolymer composition. .
  • the graft copolymer or the graft copolymer composition and the drug form a complex (hereinafter, referred to as a complex) by some action. It is thought that there is.
  • Possible effects of the complex formation include electrostatic interaction, hydrogen bonding (interaction with a water-soluble functional group present on the surface), and hydrophobic interaction (incorporation into the inside of fine particles).
  • the drug that can be used in the pharmaceutical composition of the present invention is not particularly limited, and may be a water-soluble drug or a fat-soluble drug.
  • examples of such a drug include both a drug that is expected to be sustained-release and a drug that promotes absorption.
  • Drugs that are expected to have sustained release include 1) drugs that have a short half-life in blood concentration, and 2) drugs that have a narrow optimal therapeutic range of blood concentration, and drugs that are expected to promote absorption (poorly absorbable drugs). Examples of such drugs include 3) drugs having low membrane affinity due to high water solubility, 4) drugs in which the onset of efficacy is hindered by degradation in the gastrointestinal tract and low absorption, and 5) vaccines.
  • Drugs that have a short half-life in blood include isosorbide, no, paverine, nitroglycerin, ketoprofen, diltiazem, propranolol, isopreterenol, itchpenzil, aspirin, pindolol, nifedipine, acetazolamide, and cephalexin. , Cefaclor, quinidine, pro-inamide, etc. I can do it.
  • Drugs that have a narrow therapeutic range with optimal blood concentration include pilocarpine, theophylline, scopolamine, methyl scopolamine, chlorpheniramine, feneryphrine, trihexyfenidil, carbefine penten, perfenadine, nospinpine. Thioridazine, dimethindene, pyridostigmine and triprolidine.
  • Drugs with low membrane affinity due to high water solubility include phenol sulfonic acids, salicylic acid and its derivatives, barbituric acid and its derivatives, quaternary amines such as tubocularin and suxametonium, and sulfanilic acid.
  • Sulfinyl agents such as sulfanyl acetoamide, sulfaguanidine, quinine, ephedrine, tolazoline, procarinamide, atenolol, and clothiazide.
  • Peptide drugs are examples of drugs that prevent the onset of drug efficacy due to degradation in the gastrointestinal tract and low absorption. Specific examples include interferon, inter-D-kin, erythropoietin, insulin, neocarzinostatin, paratormon, obioid peptides, and boribeptides such as calcitonin.
  • Vaccines include vaccines that would be useful if given orally. Specific examples include influenza HA vaccine, hepatitis B vaccine, and polio vaccine.
  • Influenza virus A influenza virus B, influenza virus C, rotavirus, cytomegalovirus, RS virus, adenovirus, AIDS virus (HIV), hepatitis A virus, hepatitis B virus , Hepatitis C virus, varicella-zoster virus, herpes simplex virus (types 1 and 2), adult T-cell leukemia virus (ATLV), coxsackievirus, enterovirus, sudden rash virus, measles virus , Rubella virus, mumps virus (mumps virus), poliovirus, Japanese encephalitis virus, rabies virus, and other viruses, carious streptococci, cholera, influenza, pneumococcus, pertussis, diphtheria, and Fungi such as tetanus bacteria, Chlamydia And proteins of protozoa such as malaria parasites. Furthermore, the pathogenicity of these viruses, fungi, rickettsiae and protozoa themselves Can be an antigen.
  • a drug that is expected to promote absorption (poorly absorbable drug)
  • a peptide drug is more preferable, and among these, opioid peptides and calcitonin are particularly preferable.
  • the graft copolymer used in the present invention has a high affinity for the gastrointestinal membrane due to the presence of a water-soluble functional group on the surface.
  • the particulate carrier of the graft copolymer and the graft copolymer composition of the present invention can accumulate the drug at a high concentration near the membrane. As a result, the absorption of poorly absorbable drugs can be improved.
  • the blending ratio of the graft copolymer or the graft copolymer composition and the drug in the pharmaceutical composition of the present invention may be appropriately adjusted according to the drug.
  • the graft copolymer or the mixture or complex of the graft copolymer composition and the drug may be formulated and orally administered by a known method.
  • a mixture or complex of the above-mentioned graft copolymer or graft copolymer composition and a drug is placed in a soft capsule or the like.
  • the preparation is not particularly limited, and includes solid preparations such as tablets, granules, fine granules, powders, and capsules, and liquid preparations such as syrups, elixirs, suspensions, and emulsions.
  • solid preparations such as tablets, granules, fine granules, powders, and capsules
  • liquid preparations such as syrups, elixirs, suspensions, and emulsions.
  • ordinary additives for example, excipients, binders, lubricants, disintegrants and the like can be blended.
  • the pharmaceutical composition of the present invention has no decrease in its drug absorption promoting effect even under low pH conditions, such as pH 1.2, and under conditions of body temperature of 40. Since the promoting effect does not decrease at all, it is particularly useful as a preparation for oral administration. Further, as shown in the Examples below, the pharmaceutical composition of the present invention is further divided and administered at regular intervals to further enhance the effect of promoting the absorption of a drug. Therefore, the dosage of the drug can be further improved by devising administration means or formulation means such as two or more divided doses in a single dose, or a combination of an immediate release preparation and a slow release preparation. Absorption can be promoted.
  • Example 1 Example 1
  • FIG. 2 shows a proton NMR chart of the thus obtained graft copolymer in DMS 0 ⁇ .
  • step 3 The nanoparticles obtained in step 3 were dispersed in 2N-HC and hydrolyzed at 95 ° C for 12 hours to induce the acrylamide portion of the macromonomer chain to acrylic acid. After completion of the reaction, purification was performed by dialysis. By IR, it was confirmed that the acrylamide present on the nanoparticle surface was hydrolyzed, and the title graft copolymer was obtained. As a result of measurement by the light scattering method, the average particle diameter was 31 lnm.
  • Reference Example 4 A graft copolymer in which a random copolymer composed of N-isopropylacrylamide and acrylamide is a graft chain (the ratio of N-isopropylacrylamide in the graft chain is 25%) Graph Tocopolymer (A-4))
  • the nanoparticles obtained in 4-3 were dispersed in 2N-HC and hydrolyzed for 128 hours at 95 to induce the acrylamide portion of the macromonomer chain to acrylic acid. After completion of the reaction, purification was performed by dialysis. By IR, it was confirmed that the acrylamide present on the nanoparticle surface was hydrolyzed, and the title graft copolymer was obtained. As a result of measurement by the light scattering method, the average particle diameter was 482 nm.
  • Reference Example 6 A graft copolymer comprising a random copolymer consisting of N-isopropylacrylamide and acrylamide as a graft chain (a ratio of N-isopropylacrylamide in the graft chain is 68%) (graft copolymer (A — 6)) 6-1. Synthesis of oligo copolymer of N-isopropylacrylamide and random copolymer consisting of acrylamide N-Isopropylacrylamide monomer 1 2.75 g (1 12.7 s o ⁇ ) and acrylamide monomer 1.82 g (16.1 concealed) are dissolved in ethanol 5 ⁇ ⁇ , and chain transfer is performed.
  • Reference Example 7 A graft copolymer having a random copolymer composed of N-isopropylacrylamide and acrylic acid as a graft chain (the ratio of N-isopropylacrylamide in the graft chain is 68%) A— 7))
  • the nanoparticles obtained in 6-3 were dispersed in 2N-HC £, and hydrolyzed with 95 for 12 hours to derive the acrylamide part of the macromonomer chain into acrylic acid. After completion of the reaction, purification was performed by dialysis. By IR, it was confirmed that the acrylamide present on the nanoparticle surface was hydrolyzed, and the title graft copolymer was obtained. As a result of measurement by the light scattering method, the average particle diameter was 769 nm.
  • the nanoparticles obtained in 8-3 were dispersed in 2N-HC1 ethanol and hydrolyzed at 80 ° C for 12 hours to convert the macromonomeric single-chain ester into a carboxyl group. After completion of the reaction, dialysis was performed and purification was performed. As a result of measurement by the light scattering method, the average particle diameter was 835 nm. Hydrolysis
  • N-vinylacetamide (NVA) monomer 11.76 country 0
  • 2-mercaptoethanol 2-mercaptoethanol
  • the nanoparticles obtained in 1 0-3 are dispersed in 2N-HC and 100 ° (:,
  • the amide binding portion of the macromonomer chain was hydrolyzed. After completion of the reaction, the obtained nanoparticle was purified by dialysis. The average particle size of the nanoparticles was 273nm as a result of the light scattering method.
  • the PSP concentration in plasma was measured according to the method of K. Higaki (Journal of Pharmaceutical Science, 79, 334, 1990).
  • the collected blood was centrifuged to obtain plasma 0.3 ⁇ , purified water 0, and 0.1 N sodium hydroxide aqueous solution 0.
  • This mixed solution was filtered using an ultrafiltration membrane having a molecular weight cut off of 10,000 to remove proteins and the like, and then used as a sample solution.
  • an aqueous solution of PSP-Na of known concentration two-fold dilution series from 9.4 mg Z7 ⁇ as PSP
  • 0.3 m blank plasma collected from rat 0.3 ⁇ and 0.1 aqueous sodium hydroxide 0. After mixing 9, ultrafiltration was performed to obtain a standard solution.
  • the absorbance of the sample solution and the standard solution was measured at a wavelength of 56 Onm using a spectrophotometer.
  • a calibration curve was created based on the results obtained from the standard solution, and the plasma concentration of PSP was measured. Based on the obtained time-PSP plasma concentration profiles, pharmacokinetic parameters were calculated overnight.
  • Figure 6 shows the time profile of PSP plasma concentration and Table 1 shows the calculated pharmacokinetic parameters.
  • MRT average residence time
  • a sCT aqueous solution having a concentration of 200 and a nanoparticle (graft copolymer (A-1)) dispersion liquid (dispersion medium was water) obtained in 1-3 of Reference Example 1 having a concentration of 6 OmgZra were prepared. . The two were mixed in equal amounts to uniformly disperse the nanoparticles and obtain a nanoparticle formulation. Separately, an aqueous sCT solution in which nanoparticles were not dispersed was prepared in the same manner to prepare a control formulation.
  • the concentration of calcium ions in the collected blood was measured using a 634 Ca ++ ZpH analyzer (Chipa Corning). The difference between the calcium ion concentration at time 0 and the concentration at each time was calculated, and from the transition, it was determined whether or not there was an absorption promoting effect by nanoparticle formation.
  • Fig. 7 shows the results. As is evident from Fig. 7, s CT aqueous solution administration (control Slightly reduced the blood calcium concentration of the sCT, but the administration of the nanoparticle preparation (complex of nanoparticles and sCT) obtained in Example 3 reduced the effect of sCT. Significantly enhanced. The effect lasted up to 8 hours after administration. From the above, it was concluded that the nanoparticulate preparation using the graft copolymer of the present invention can improve the gastrointestinal absorption of sCT.
  • the aqueous solution of the obioid peptide at a concentration of 200 ⁇ and the dispersion of nanoparticles (graft copolymer (A-1)) obtained in 1-3 of Reference Example 1 (water as the dispersion medium) with the concentration of 2 Prepared.
  • the two were mixed in equal amounts to uniformly disperse the nanoparticles and produce a nanoparticle preparation (complex of nanoparticles and opioid peptide).
  • an aqueous solution of an obioid peptide in which no nanoparticles were dispersed was prepared in the same manner, and used as a control preparation (100 g / ⁇ Obioid peptide).
  • the chemical structural formula of the used obioid peptide is shown below.
  • a ddy male mouse (3 to 4 weeks old, about 20 to 25 g) was fed orally with the nanoparticulate preparation or the control preparation obtained in Example 5 under satiation (Obioid peptide 1 mg / 10 mH / Yi).
  • a Radall & Selitto-type pressurizing device (MK-300, manufactured by Muromachi Kikai)
  • Pain threshold (g) was measured over time (1, 2, 3, 4, 5, 6, 8, and 24 hours) using behavior as an index.
  • 500 g be the cut-0 ff value, and calculate the pain activity (% 0 f MPE) according to the following formula.
  • Pain activity (%) ⁇ (post-dose pain threshold-pre-dose pain threshold) 7 (500-pre-dose pain) Pain threshold) ⁇ x 100
  • Fig. 8 shows the results. As is clear from FIG. 8, it was confirmed that the pain activity (% 0 f MPE) was increased by converting the obioid peptide into nanoparticles.
  • the nanoparticle-forming agent complex of the nanoparticle and the obioid peptide
  • the graft copolymer of the present invention can improve the gastrointestinal absorption of the obioid peptide.
  • Example 9 Preparation of a complex (nanoparticle preparation) of a mixture of two kinds of nanoparticles and salmon calcitonin (sCT)
  • sCT aqueous solution 0.1 mg of sCT aqueous solution and 5 mgZ of nanopa —Ticle (dispersion medium (A-1)) dispersion (dispersion medium is water) and 5 mg / of nanoparticles (graft copolymer (B—2-2)) dispersion obtained in Reference Example 11 (dispersion medium) Was water).
  • the three components were mixed in equal amounts to uniformly disperse each nanoparticle to obtain a nanoparticle preparation.
  • an aqueous sCT solution in which no nanoparticles were dispersed was prepared in the same manner to obtain a control formulation.
  • Example 9 Using the nanoparticulate preparation and the control preparation obtained in Example 9, it was determined in the same manner as in Example 4 whether or not salmon calcitonin had an absorption-promoting effect due to nanoparticulation. The results are shown in FIG.
  • Example 9 a slight decrease in blood calcium ion concentration was observed after administration of the s-C aqueous solution (control), but the nanoparticulate preparation (two types of nanoparticle) obtained in Example 9 was observed. (A complex of sCT and a mixture of sCT) significantly enhanced the effect of sCT. The effect lasted up to 5 hours after administration. Moreover, the effect was further enhanced than when one type of nanoparticle was used.
  • An aqueous solution of sCT with a concentration of 100Ag £ and a dispersion of nanoparticles (graft copolymer (A-1)) obtained in 13-1 in Reference Example 1 with a concentration of 100 HigZ (dispersion medium is water) was prepared. The two were mixed in equal amounts to uniformly disperse the nanoparticles and obtain a nanoparticle formulation. Separately, an aqueous solution of sCT in which no nanoparticles were dispersed was prepared in the same manner to obtain a control formulation.
  • the pharmaceutical composition using the fine particle carrier of the present invention is particularly useful as a DDS for a poorly absorbable drug because it has an excellent effect of promoting oral absorption of the compounded drug.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)

Description

明 細 書 微粒子性運搬体及びこれを用いた医薬組成物 技術分野
本発明はドラッグ ·デリバリ一 · システム (Drug Delivery System:DDS) にお ける薬物運搬体として有用な微粒子性運搬体及びこれを用いた医薬組成物に関す 。 背景技術
DDS分野において薬物運搬体とは、 薬物を標的臓器や細胞に運ぶためのキヤ リャ一を意味し、 その形態が粒子状であるものを微粒子性運搬体という。 微粒子 性運搬体は、 その大きさ、 形態及び機能などからマイクロカプセル、 マイクロス フェアー及びナノパーティクル等に分けることができる。 また、 微粒子性運搬体 の材料としては、 脂質や高分子などが用いられる。
マイクロカプセルとマイクロスフェア一は、 通常、 粒子径数 m程度のものを 言う。 一般的には、 マイクロカプセルが広義の概念で用いられるが、 最近では粒 子内部まで高分子で構成されたものをマイク口スフヱァ一と区別して呼ぶこと力く 多い。
ナノパーティクルとは、 乳化重合法により調製された高分子ラテックスの分散 相の大きさが数 100 nmであることから、 従来これらのコロイ ドを表すときに 用いられていた言葉である。 しかし、 最近では、 その他の製法で調製されたもの であっても、 天然あるいは合成高分子をその構成成分とし、 粒子径がナノメ一夕 一サイズであればナノパーティクルと総称されている。
微粒子性運搬体としてのナノパーティクルは、 抗癌剤などの夕一ゲティング用 キヤリャ一として研究されはじめ、 主に注射剤が対象とされていた (L. LJ r i s 1 a i n e t a 1. I n t e rna t i ona l Jou rna l o f Pha rma c eu t i c s, J_5_, 335 ( 1 984 ) ) 。 しカヽし、 1 980年代中頃から、 ナノパーティクルを経口投与剤として利用しょうとする 研究が、 報告されるようになってきた。
薬物をナノパーティ クル化し、 経口投与剤として利用する場合、 主 な目的としては難吸収性薬物の吸収改善 (P. Ma i nc en t e t a 1. Jou r na l o f Ph a rma c eu t i c a l c i en c e s, 7 5 , 9 5 5 ( 1 9 8 6 ) ; C . D a m g e e t a 1 . I n t e r n a t i o n a l J o u r n a l o f Pha rma c eu t i c s, 3 _, 1 21 U 987 ) )、 インシュリンなど のペプチド性医薬品の経口化 (C. Dam e e t a l. D i ab e t e s,
3 7 , 2 4 6 ( 1 9 8 8 ) ; P. C o u v r e u r a n d F . P u i s i e υ x , A d v a n c e d D r u g D e l i v e r y R e v i e w s , 1 0, 1 1 ( 1 9 93) ) 、 経口ワクチン (J. H. E l d r i dge e t a 1. Journa l o f Con t r o l l ed Re l e a s e, 1 1, 205 ( 1 990 ) ; P. U. J a n i e t a l. I n t e r n a t i o n a l J o u r n a l o f Pha rma c eu t i c s, _8_6^, 239 ( 1 992) ) 又は薬物の放出制御
(B. Hu b e r t e t a 1. P h a r m a c e u t i c a l Re s e ar ch, _8^, 734 ( 1 99 1 ) ) などが挙げられている。
ま た、 マ イ ク ロ カ プセ ル と 同様、 薬物の消化管内での安定 性確保 (M. R o g u e s e t a l . D i a b e t e s , 4 1 ,
4 5 1 ( 1 9 9 2 ) ) 又は刺激性の強い薬物の消化管への刺激性の低 減 (N. Ammo u r y e t a 1. Ph a rma c e u t i c a l Re s ea r ch, _8_, 1 01 (1 991) )などの目的で利用される場合もあ る。
医薬用ナノパーティクルの製造方法としては、 主に以下の 2種類の方法が用い られている。一"" ^は、 代表的なマイクロカプセル化法である相分離法あるいは液 中乾燥法を用いてナノパーテイクルを調製する方法である。
この場合、 ポリ乳酸 (A. M. Ray e t a l. Jou r na l o f P h a r m a c e u t i c a l S c i e n c e s , 8 3 , 8 4 5 ( 1 9 94 ) ) 、 セルロース誘導体 (H. I b r a h i m e t a 1. I n t e r n a t i o n a l J o u r n a l o f Pha rma c eu t i c s, 8 _, 239 ( 1 992 ) ) 又はポリアクリル 酸エ ス テ ル誘導体 ( E . A l l e m a n n e t a 1 . I n t e r n a t i o n a l J o u r n a l o f Pha rma c eu t i c s, SJ_, 247 ( 1 992 ) ) など、 医薬品の添加 剤として既に使用されている疎水性の高分子が繁用されている。
他の方法は、 乳化重合法を用いてナノパーティクルを調製する方法である (L. V a n s n i c k e t a 1 . P h a r m a c e u t i c a l R e s e a r c h, 丄, 3 6 ( 1 9 8 5 ) ; N. A 1 K h o u r i F a 1 1 o u h e t a 1. I n t e rna t i ona l Journa l o f Pha rmac eu t i c s, _2 _, 125 (1 986) ) 。 この場合、 ポリスチレン、 ポリアクリル酸エステル、 ポリメ夕タリル酸エステルなどの疎水 性のポリビニル化合物がナノパーティクルの材料となりうると考えられる。 中で も、 ポリシァノアクリル酸エステル、 特に外科手術用の接着剤であるポリシァノ ァクリル酸ィソブチルを用いた例が多い。
これらのナノパーティクルに薬物を保持させて製剤とする力 対象となる薬物 は脂溶性化合物が多い。 これは、 ナノパーティクルの製法が水溶性化合物に不向 きなのが原因である。 また、 水溶性化合物をナノパーティクル化した例も報告さ れているが、 ある pHで水に溶解しないような性質を有する化合物 (例えばぺプ チド) に限定 (川島 嘉明、 日本薬学会第 1 1 4年会講演要旨集 4、 9頁、 1 994年、 東京) されているのが現状である。
このようにして調製されたナノパーティクルと薬物のコンプレツタスを用いた 難吸収性薬物の吸収改善、 ペプチド性医薬品の経口化、 薬物の放出制御などを目 的とした報告としては以下の様なものがある。
例えば、 P. Ma i n c e n tらは、 難吸収性薬物として降圧剤ビン力ミンを 用い、 ポリ シァノアク リル酸へキシルでナノパーティ クル化した製剤 の吸収促進効果を検討していた。 しかし、 ビンカ ミ ンの吸収率はナ ノパーティクル化により 1. 6倍増加した程度である ( J 0 u r n a】 o f P h a rm a c e u t i c a 1 S c i e n c e s, 7 5 , 9 5 5 ( 1 986 ) ) o
また、 C. Damg eは、 インシュリンをポリシァノアクリル酸イソブチルに よりナノパ一テイクル化した製剤を用し、てべプチドの経口化を検討しているが、 糖尿病を惹起させたラッ 卜に絶食下、 かなり多量のインシュリンを含むナノパー テイ クルを投与した時だけ血中グルコース濃度がやや低下する程度であつた (D i a b e t e s, 3 _, 24 6 ( 1 988 ) ) 。
更に、 薬物の放出制御についても B. Hub e r tらが降圧剤ダロジピンを用 いて検討している力 ナノパーティクル化により初期の薬物放出が抑えられたの みで血中濃度を持続さ せた と い う 報告は未だな さ れて いない
( P h a r m a c e u t i c a l R e s e a r c h, _8_, 7 3 4
( 1 9 9 1 ) ) o
上記の如く、 従来微粒子性運搬体を利用した薬物の D D Sは未だその吸収促進 効果が充分でない。 従って、 本発明の目的は、 薬物の吸収促進効果に優れた微粒 子性運搬体、 及びこれを用いた医薬組成物を提供することにある。 発明の開示
そこで本発明者は、 グラフトコポリマーに着目してその薬物運搬性能、 特に経 口吸収促進能について種々検討してきたところ、 ポリビニルアミン化合物をグラ フト鎖とするグラフトコポリマーに優れた経口吸収促進作用があることを見出し 、 先に特許出願した (特開平 8— 2689 1 6号) 。 そして更に研究を続けたと ころ、 意外にも後記式で示されるようなポリ N—アルキルアクリルアミ ドゃポリ N—アルキルメタクリルァミ ドをグラフト鎖とするグラフトコポリマーの 1種又 は 2種以上の組み合せが、 従来のグラフトコポリマーに比べて極めて優れた経口 吸収促進効果を有することを見出し、 本発明を完成するに至った。
すなわち、 本発明は下記の式 ( 1 ) 、
Q1
+ CH2-C~^~ ( 1 )
Q2 〔式 (1) 中、 Q1 は水素原子、 メチル基又はシァノ基を示し、
Q2 は水素原子、
Ri 、 -C00R2、一 0C0R2又は一 C0<
\R4
(R1 は水素原子又はハロゲノメチル基を示し、 R2 は炭素数 1〜1 0のァ ルキル基を示し、 R3 は水素原子又は炭素数!〜 1 0のアルキル基を示し、 R4 は炭素数 1〜1 0のアルキル基を示す (ただし R3 及び R4 の総炭素数 は 3〜20である) ) を示す〕
で表される構造単位と、 下記式 (2)、
Figure imgf000007_0001
〔式 (2) 中、 Q3 は水素原子又はメチル基を示し、
Q4
<^)~CH2—又は一 C00 - A1 - CHCH2 -
0H
(A1 は炭素数】〜 1 0のアルキレン基を示す) を示し- Q5 は酸素原子又は- NH-を示し、
Q6 は炭素数 1〜1 0のアルキレン基を示し、
Q7 は酸素原子又は硫黄原子を示し、
X1 は酸素原子又は 2個の水素原子を示し、
R5、 R7 及び R8 は水素原子又はメチル基を示し、 R6 は炭素数 1〜1 0のアルキル基を示し、
は 1〜 1 0 0の数を示し、
m及び nはそれぞれ 0〜1 0 0の数を示す〕
で表される構造単位とを有するグラフトコポリマ一 (A) を含有する微粒子性運 搬体を提供するものである。
また、 本発明は、 次の成分 (a) 及び (b) とを組み合せた組成物 (グラフト コボリマー組成物) を含有する微粒子性運搬体組成物を提供するものである。
(a) 前記のグラフトコポリマー (A) ;
(b) 次のグラフトコポリマー (B— 1 ) 及びグラフトコポリマー (B— 2) 力、 ら選ばれる 1種又は 2種以上のグラフトコポリマー。
(B 1 ) 下記の式 ( 1 ) 、
Figure imgf000008_0001
〔式 ( 1 ) 中、 Q1 は水素原子、 メチル基又はシァノ基を示し、
Q2 は水素原子、
R1 、 -C00R2、一 0C0R2又は一 CON
(R' は水素原子又はハロゲノメチル基を示し、 R2 は炭素数 1〜 0のァ ルキル基を示し、 R3 は水素原子又は炭素数 1〜 1 0のアルキル基を示し、 R4 は炭素数 1〜1 0のアルキル基を示す (ただし R3 及び R4 の総炭素数 は 3〜2 0である) ) を示す〕
で表される構造単位と、 下記式 (3) 、 4CH2— C
X2 R9 Rio
II I I
Q9_Qio_C-Qii-Qi2_ CH2-C )p ( CH2-C -H
COOH COOR"
(3)
〔式 (3) 中、 Q8 は水素原子又はメチル基を示し、
Q9 は CH2
Figure imgf000009_0001
(A2 は炭素数 1〜1 0のアルキレン基を示す) を示し、
Q ' 0は酸素原子又は- NH-を示し、
。',は炭素数 〜! 0のアルキレン基を示し、
Q 12は酸素原子又は硫黄原子を示し、
X2 は酸素原子又は 2個の水素原子を示し、
R9 及び R1 ()は水素原子又はメチル基を示し、
R 11は炭素数 1〜 1 0のアルキル基を示し、
P及び qはそれぞれ 0〜 0 0であって p + qが 1以上となる数を示す〕 で表される構造単位とを有するグラフトコポリマー;
(B- 2) 下記の式 (1 )、
Figure imgf000009_0002
〔式 ( 1 ) 中、 Q1 は水素原子、 メチル基又はシァノ基を示し、
Q2 は水素原子、 R3
i 、一画2、一 OCOR2又は一 CON /
Figure imgf000010_0001
(R 1 は水素原子又はハロゲノメチル基を示し、 R2 は炭素数 1〜1 0のァ ルキル基を示し、 R3 は水素原子又は炭素数 1〜 1 0のアルキル基を示し、 R4 は炭素数 1〜1 0のアルキル基を示す (ただし R3 及び R4 の総炭素数 は 3〜2 0である) ) を示す〕
で表される構造単位と、 下記式 (4)、
Figure imgf000010_0002
〔式 (4) 中、 Q13は水素原子又はメチル基を示し、
Q'4は ^)■ CH2 -又は一 COO - A2 - CHCH2
0H
(A3 は炭素数 1〜1 0のアルキレン基を示す) を示し、
Q ' 5は酸素原子又は- NH-を示し、
<316は炭素数 1〜1 0のアルキレン基を示し、
Q ' 7は酸素原子又は硫黄原子を示し、
X3 は酸素原子又は 2個の水素原子を示し、
R 12及び R ' 3は水素原子又はメチル基を示し、
R 14は炭素数 2〜1 1のアルカノィル基を示し、
s及び tはそれぞれ 0〜 1 00であって s + tが 1以上となる数を示す〕 で表される構造単位とを有するグラフトコポリマー。
更にまた、 本発明は、 前記のグラフトコポリマ一 (A) 、 又は成分 (a) 及び (b) を含有するグラフトコポリマー組成物と薬物とを含有する医薬組成物を提 供するものである。 図面の簡単な説明
図 1は、 参考例 1— 2で合成した N—イソプロピルアクリルアミ ドマクロモノ マ一のプロトン NMRのチャートを示す。 図 2は、 参考例 1一 3で合成したポリ スチレンを疎水性幹、 ポリ N—イソプロピルアクリルアミ ドを親水性技とするグ ラフトコポリマーのプロトン NMRのチャートを示す。 図 3は、 参考例 2— 2で 合成した N—イソプロピルアクリルアミ ドとアクリルアミ ドからなるランダム共 重合体のマクロモノマーのプロトン NMRのチャートを示す。 図 4は、 参考例 4 一 2で合成した N—イソプロピルアクリルアミ ドとアクリルアミ ドからなるラン ダム共重合体のマクロモノマーのプロトン NMRのチャートを示す。 図 5は、 参 考例 6— 2で合成した N—イソプロピルァクリルアミ ドとァクリルァミ ドからな るランダム共重合体のマクロモノマーのプ π卜ン NMRのチヤ一卜を示す。 図 6 は、 実施例 2において、 ラッ トにフエノールスルフォンフタレインを十二指腸内 投与した際の時間一フヱノ一ルスルホンフタレイン血漿中濃度プロファイル
(me a n土 S. D. ) を示すグラフである。 図 7は、 実施例 4においてラッ ト にサーモン ·カルシトニンを経口投与した際の血中のカルシウムイオン濃度の時 間的推移 (me an土 S. E. ) を示すグラフである。 図 8は、 実施例 6におい てマウスにオビオイ ドぺプチドを経口投与した際の疼痛活性の時間的推移
(me an土 S. E. ) を示すグラフである。 図 9は、 実施例 8においてラッ ト にサーモン ·カルシトニンを経口投与した際の血中のカルシウムイオン濃度の時 間的推移 (me a n土 S. E. ) を示すグラフである。 図 1 0は、 実施例 1 0に おいてサ一モンカルシトニンを経口投与した際の血中のカルシゥ厶ィォン濃度の 時間的推移 (me a n s ±S. E. ) を示すグラフである。 図 1 1は、 実施例 1 1においてサーモンカルシトニンを分割経口投与した際の血中のカルシウムィ オン濃度の時間的推移 (me a n s土 S. E. ) を示すグラフである。 発明を実施するための最良の形態
本発明の微粒子性運搬体及び医薬組成物に用いられるグラフトコポリマーには、 グラフトコポリマー (A) 〔構造単位 ( 1 ) と構造単位 (2) とを有するグラフ トコポリマ一〕 、 グラフ トコポリマー (B— 1 ) 〔構造単位 ( 1 ) と構造単位 (3) とを有するグラフトコポリマー〕 、 及びグラフ トコポリマ一 (B— 2) 〔構造単位 ( 1 ) と構造単位 (4) とを有するグラフトコポリマー〕 の 3種があ る。
これらのグラフトコポリマーにおけるグラフト鎖の比率は特に制限されないが、 薬物吸収促進効果の観点から、 これらのグラフトコポリマーにおける式 (2) 、
(3) 又は (4) で表される構造単位のモル分率が、 0. 00 〜 1の範囲であ るグラフトコポリマーが好ましレ、。
本発明に用いられるグラフトコポリマ一を構成する構造単位を示す式 ( 1 ) 、 (2) 、 (3) 及び (4) における各記号について説明する。
まず、 式 ( 1 ) 中、 R' で示されるハロゲノメチル基としては、 クロロメチル 基、 ブロモメチル基、 ョードメチル基等を挙げることができる。 R2 、 R3 及び R4 で示される炭素数 1〜1 0のアルキル基としては、 直鎖又は分枝状の炭素数 1〜1 0のアルキル基が挙げられ、 具体例としては、 メチル基、 ェチル基、 n— プロピル基、 イソプロピル基、 n—ブチル基、 t一ブチル基、 n—ペンチル基、 n—へキシル基等が挙げられる。 このうち、 R2 としては炭素数 1〜5のアルキ ル基がより好ましく、 メチル基、 ェチル基、 イソプ πピル基が特に好ましい。 ま た R3 が水素原子で R4 がアルキル基の場合、 及び両者がアルキル基の場合があ る力、 両者の総炭素数が 3〜20である。 例えば R3 が水素原子の場合、 R4 は 炭素数 3〜1 0のアルキル基であり、 R3 及び がアルキル基の場合には R 3 及び R4 のアルキル基の炭素数が 3〜20となる組合せである。
式 ( 1 ) の構造単位中、 次の式 ( l a)
式 ( 1 a)
Figure imgf000013_0001
(式中、 Q' 及び R1 は前記と同じ)
である構造単位がより好ましく、 次の式 ( l b)
式 ( 1 b)
Figure imgf000013_0002
(式中、 R1 は前記と同じ)
で表される構造単位が特に好ましい。
式 (2) 、 (3) 及び (4) 中、 A1 、 A2 、 A3 、 Q6 、 Q1'及び で示 される炭素数!〜 1 0のアルキレン基としては、 炭素数 1〜1 0の直鎖又は分技 状のアルキレン基が挙げられ、 具体的にはメチレン基、 エチレン基、 トリメチレ ン基、 へキサメチレン基、 プロピレン基、 (ェチル) エチレン基、 (ジメチル) エチレン基等が挙げられる。 このうち、 炭素数 1〜5の直鎖又は分枝状のアルキ レン基がより好ましい。
R6 及び R 11で示される炭素数 1〜1 0のアルキル基としては、 炭素数 1〜1 0の直鎖又は分枝状のアルキル基が挙げられ、 具体例としては、 メチル基、 ェチ ル基、 n—プロピル基、 イソプロピル基、 n—ブチル基、 t一ブチル基、 n—ぺ ンチル基、 n—へキシル基等が挙げられる。 このうち、 R6 としては炭素数 3〜 1 0の分枝状のアルキル基がより好ましく、 イソプロピル基が特に好ましい。 ま た、 R11としては炭素数 1〜8の直鎖又は分技状のアルキル基が好ましく、 メチ ル基、 ェチル基、 イソプロピル基、 t—ブチル基、 n -へキシル基等が特に好ま しい。
R14で示される炭素数 2〜 1 1のアルカノィル基としては、 直鎖又は分枝状の ものが挙げられる力 炭素数 2〜 6のアルカノィル基がより好ましく、 ァセチル 基、 プロピオニル基、 プチリル基等が特に好ましい。
式 (2) の構造単位は、 m及び nがそれぞれ 0となる場合があるので、 次の式 (2 a) , (2b) 、 (2 c) 及び (2 d) の構造となる場合がある。 式 (
Figure imgf000014_0001
式 (2 b)
式 (
Figure imgf000014_0002
式 (2 d)
Figure imgf000014_0003
(式中、 Q3 、 Q4 、 Q5 、 Qe 、 Qマ 、 X1 、 R5 、 R6 、 R7 、 R8 及び^ は前記と同じ)
式 (2) の構造単位のうち、 次の式 (2 e)
式 (2 e)
Figure imgf000015_0001
(式中、 Q5、 Q6 、 Q7 、 χ' 、 R 5 、 R6R7R8 、 、 m 及び n は前 記と同じ)
で表される構造単位がより好ましく、 次の式 (2 f ) 、 式 (2 g)
式 (2 f )
Figure imgf000015_0002
式 (2 g)
Figure imgf000015_0003
(式中、 Rs、 ί、 m及び nは前記と同じ)
で表される構造単位が特に好ましい。
式 (3) の構造単位は、 p及び qがそれぞれ 0となる場合があるので、 次の式 (3 a) . (3 b) 及び (3 c) の構造となる場合がある。 式 (3 a)
式 (
Figure imgf000016_0001
式 (3 c)
Figure imgf000016_0002
(式中、 Q8 、 Q9 、 Q' Q''、 Q12、 X2 、 R9 、 R1。及び R1'は前記と同 じ)
式 (3) の構造単位のうち、 次の式 (3 d) 式 (3 d)
Figure imgf000017_0001
(式中、 Q1(>、 Ql Ql X2 、 R9 、 R10、 R''、 P及び qは前記と同じ) で表される構造単位がより好ましく、 次の式 (3 e) 、 式 (3 f )
式 (3 e)
Figure imgf000018_0001
式 (3 f )
Figure imgf000018_0002
(式中、 R'e、 p及び qは前記と同じ)
で表される構造単位が特に好ましい。
式 (4) の構造単位は、 s及び tがぞれぞれ 0となる場合があるので、 次の式 (4 a) , (4 b) 及び (4 c) の構造となる場合がある。
式 (4 a)
Figure imgf000018_0003
式 (4 b)
Figure imgf000018_0004
式 (4 c)
Q13
■ CH2— C
X3 R】3
II
Q14-Q15-C-Q16-Q17 CH2-C 卜 100
顏】 4
(式中、 Q'3、 Q14、 Q15、 Q'6、 Q] X3 、 R'2、 R'3及び R14は前記と同 じ)
式 (4) の構造単位のうち、 次の式 (4 d)
式 (4 d)
Figure imgf000019_0001
(式中、 Q15、 Ql6、 Q'7、 X3 、 R12. Rl3、 R'4、 s及び tは前記と同じ) で表される構造単位がより好ましく、 次の式(4 e) 、 (4 f )
式 (4 e)
- CH2 - CH -) r- - CH2 - CH- ~ H
Figure imgf000019_0002
NH214 式 (4 f )
Figure imgf000019_0003
(式中、 R 1 3、 s及び tは前記と同じ)
で表される構造単位が特に好ましい。
前記のグラフトコポリマーにおいて、 グラフト鎖中の繰り返し単位 (N—アル キルアクリルアミ ド、 N—アルキルメ夕クリルアミ ド、 アクリルアミ ド、 メ夕ク リルアミ ド、 アクリル酸、 ビニルァミン、 N—アルカノィルビ二ルァミン等) は、 ランダム型及びブロック型のいずれでもよい。 また、 式 ( 1 ) の構造単位と式
( 2 ) 、 (3 ) 又は (4 ) の構造単位との結合形式もランダム型でも、 ブロック 型でもよい。
前記のグラフトコポリマー (A) のうち、 式 ( 1 ) の構造単位と式 (2 b ) の 構造単位とを有するグラフトコポリマー、 式 ( 1 ) の構造単位と式 (2 c ) の構 造単位とを有するグラフトコポリマー、 及び式 ( 1 ) の構造単位と式 (2 d ) の 構造単位とを有するグラフトコポリマ—は、 新規である。
前記のグラフトコポリマーは、 例えば式 (2 ) 、 ( 3 ) 又は (4 ) の構造単位 に相当するマクロモノマーを合成し、 次いで得られたマクロモノマーと、 式 ( 1 ) に相当するビニル化合物とを共重合させることにより製造することができる。 以下にその製造方法を詳しく説明する。
式 (2 ) 、 ( 3 ) 又は (4 ) の構造単位に相当するマクロモノマーは、 アルキ ルァクリルァミ ド誘導体、 アルキルメ夕クリルァミ ド誘導体等の式 ( 2 ) 〜 ( 4 ) の構造のうちの繰り返し単位に相当するモノマーの 1種又は 2種以上をァミノ基、 水酸基又はカルボキシル基を分子内に有する連鎖移動剤の存在下、 ラジカル重合 させ、 末端にアミノ基、 水酸基又はカルボキシル基を持つ、 アルキルアクリルァ ミ ド誘導体、 アルキルメタクリルアミ ド誘導体等の 1種又は 2種以上の重合体又 は共重合体を合成した後、 ビニルベンジルハライド、 メタクリル酸アルキルエス テルジォキシド等のビニルモノマーと反応させることにより容易に製造できる。 アルキルアクリルアミ ド誘導体、 アルキルメ夕クリルアミ ド誘導体等の 1種又 は 2種以上のモノマーの重合は、 連鎖移動剤、 ラジカル重合開始剤の存在下で行 う力 \ その際、 溶媒は存在してもしなくてもよい。 反応の制御、 操作面から、 溶 媒が存在した方が好ましい。 溶媒としては、 水、 アルコール類、 ジメチルホルム アミ ド、 ベンゼン等が使用可能であるが、 溶媒の種類に特に限定はない。 また、 連鎖移動剤としてはメルカプトアルキルァミン類、 メルカプトアル力ノール類、 ω—メルカプトカルボン酸類、 アルキレングリコール類等が使用できる力 2— メルカプトェチルァミン、 2—メルカプトエタノール、 一メルカプトプロピオ ン酸が好ましい。 ラジカル重合開始剤としては、 ァゾビスイソプチロニトリル、 過酸化べンブイル、 過硫酸ァンモニゥム等が使用できるが、 了ゾビスィソプチ口 二トリル、 過酸化べンゾィルが好ましレ、。
末端にァミノ基、 水酸基あるいはカルボキシル基の入ったアルキルァクリルァ ミ ド誘導体又はアルキルメタクリルァミ ド誘導体等の 1種又は 2種以上の重合体 又は共重合体とビニルモノマーの反応は、 一般の酸アミ ド反応、 エーテル化反応 あるいはエステル化反応などにより容易に達成しうる。 ビニルモノマーとしては、 クロロメチルスチレンゃメタクリル酸プロピレンジォキシドが好ましレ、。
例えば、 末端に水酸基を有する、 アルキルアクリルアミ ド誘導体又はアルキル メタクリルァミ ド誘導体とァクリルァミ ド又はメタクリルァミ ドからなるランダ ム共重合体とクロロメチルスチレンとの反応は、 ジメチルホルムアミ ド等の溶媒 中、 5 0 %水酸化力リゥム水溶液及び必要であれば相間移動触媒の存在下、 0〜 1 00での反応温度で行なわれる。
上記の如く して得られた式 (2) 、 (3) 又は (4) の構造単位に相当するマ クロモノマーを、 単独重合およびラジカル重合可能な式 ( 1 ) に相当するビニル 化合物と共重合することにより、 前記のグラフトコポリマーを製造することがで きる。
共重合し得るビュル化合物としては、 スチレン、 ハロメチルスチレン、 メチル ァクリレート、 メチルメタクリレート、 イソブチルシアノアクリレート、 ァクリ ロニトリル、 アクリルアミ ド、 酢酸ビニル等を挙げることができる。 スチレン、 ハロメチルスチレン、 メチルァクリレ一ト及びメチルメタクリレー卜が好ましい。 また、 前記のグラフ トコポリマーのうち、 前記式 ( 2 b) 、 ( 2 c ) , (2 d) 、 (3 a) 、 (3 b) 、 ( 4 a ) 又は ( 4 b ) のように、 グラフ卜鎖中 に酸アミ ド基、 カルボキシル基又は 1級アミノ基を有するグラフトコポリマーは、 式 (2 a) 、 式 (3 c) 及び Z又は式 (4 c) の構造単位を有するマクロモノマ 一を単独重合及びラジカル重合可能な式 ( 1 ) に相当するビニル化合物と共重合 し、 次いで公知の方法により適度に加水分解することによつても製造することが できる。
重合度を変えることにより、 水、 アルコール、 クロ口ホルムおよびジメチルス ルホキシドなどに可溶な両親媒性を有するものを作ることができる。
これらのグラフトコポリマーを材料とする微粒子は、 式 (2) 、 (3) 又は (4) で表される構造単位に相当する水溶性マクロモノマーと疎水性モノマーと を分散重合し、 必要に応じて加水分解することにより得られ、 表面に水溶性マク 口モノマーが局在し、 内部が疎水性ポリマ一からなる微粒子となる。
この微粒子は表面が水溶性であるため、 水溶性薬物を効率良く保持することが できる。 一方、 脂溶性薬物については内部の疎水性ポリマー部分との疎水的相互 作用により保持できると考えられる。 また、 表面の両親媒性を利用することによ り、 微粒子表面に脂溶性薬物を保持することも可能である。 言い換えると、 本微 粒子は特に薬物の物性に依存することなく、 薬物を効率良く保持できると考えら れることから、 微粒子性運搬体として有用である。
また、 本発明においては、 グラフトコポリマー (A) 〔成分 (a) 〕 と、 グラ フトコポリマー ( B— 1 ) 及びグラフトコポリマー ( B— 2 ) から選ばれる 1種 又は 2種以上 〔成分 (b) 〕 とを組み合せた組成物 (以下、 「グラフトコポリ一 マ組成物」 ということがある) が薬物の運搬体として好ましい。 このグラフトコ ポリマー組成物は、 水溶性マクロモノマーに由来するグラフト鎖を 2種以上有す ることから、 薬物の保持性能、 保護性能及び腸管における吸収促進効果が向上す るものと考えられる。
当該薬物運搬体における成分 (a) と成分 (b) との配合比率は、 重量比で (a) : (b) = 1 000 : 1〜1 : 1 000、 特に 1 00 : 1〜 1 : 1 00力 好ましい。
前記のグラフトコポリマーを、 微粒子性運搬体として利用するには、 該グラフ トコポリマーを、 マイクロカプセル化、 マイクロスフェアー化又はナノパーティ クル化すればよい。
マイクロカプセル化及びマイクロスフェアー化は常法により行うことができる。 また、 ナノパーティ クル化等は、 明石らが開発したマクロモノマー法 を禾 (J用し (D i e An g e wa n d t e Ma c r omo l eku l a r e Chemi e, 1 32, 8 1 ( 1 985 ) ; Po l yme r Jou r na l, 24, 959 ( 1 992 ) ; ケミカル 'ェンジニヤリング、 505頁、 1 994 年) 、 分散重合により表面に水溶性マクロモノマーが局在し、 内部が疎水性ポリ マ一からなるナノパーティクルを調製することで達成できる。
なお、 ナノパーティクルの粒子径はマクロモノマーの分子量、 マクロモノマ一 作成時の反応条件等に依存して変化する。 更に、 適当な設定条件を選ぶことによ り、 粒子径が mオーダーとなるマイクロスフェアーの調製も可能である。
前記のグラフトコポリマー又はグラフトコポリマー組成物は上記の如く薬物の 運搬体として有用であることから、 当該グラフトコポリマー又はグラフトコポリ マー組成物と薬物を配合すれば、 経口吸収性の良好な医薬組成物となる。 該グラ フトコポリマー又はグラフトコボリマ一組成物と薬物とを配合した組成物におい ては、 グラフトコポリマー又はグラフトコポリマー組成物と薬物とは何らかの作 用で複合体 (以下、 コンプレックスという) を形成しているものと考えられる。 当該コンプレックス形成の作用としては、 静電的相互作用、 水素結合 (表面に存 在する水溶性官能基との相互作用) 、 疎水的相互作用 (微粒子内部への取り込み) などが考えられる。
本発明の医薬組成物に用いることのできる薬物は、 特に制限がなく、 水溶性薬 物でも脂溶性薬物でもよい。 このような薬物としては徐放性を期待する薬物及び 吸収促進性薬物のいずれも挙げることができる。
徐放性を期待する薬物としては、 1 )血中濃度半減期の短い薬物、 2)血中濃 度の最適治療域の狭い薬物が挙げられ、 吸収促進を期待する薬物 (難吸収性薬物) としては、 3)水溶性が高いために膜親和性が低い薬物、 4)消化管内での分解、 低吸収性等により薬効発現が妨げられている薬物や 5 ) ワクチンなどが挙げられ る。
1)血中濃度半減期の短い薬物としては、 イソソルビド、 ノ、'パベリン、 ニトロ グリセリン、 ケトプロフヱン、 ジルチアゼ厶、 プロプラノロール、 イソプレテレ ノール、 イッチペンジル、 アスピリン、 ピンドロール、 二フエジピン、 ァセ夕ゾ ラミ ド、 セファレキシン、 セファクロル、 キニジン及びプロ力インアミ ド等が挙 げられる。
2 ) 血中濃度の最適治療域の狭い薬物としては、 ピロカルピン、 テオフィ リン、 スコポラミン、 メチルスコポラミン、 クロルフエ二ラミン、 フエ二レフリン、 ト リへキシフエ二ジル、 カルべ夕ペンテン、 ペルフヱナジン、 ノス力ピン、 チオリ ダジン、 ジメチンデン、 ピリ ドスチグミン及びトリプロリジン等が挙げられる。
3 ) 水溶性が高いために膜親和性が低い薬物としては、 フヱノ一ルスルホンフ 夕レイン、 サリチル酸及びその誘導体、 バルビッ一ル酸及びその誘導体、 ッボク ラリン、 スキサメ トニゥムなどの 4級ァミン類、 スルファニル酸、 スルファニル ァセトアミ ド、 スルファグァ二ジンなどのサルファ剤、 キニン、 エフヱドリン、 トラゾリン、 プロ力インアミ ド、 ァテノロール及びクロ口チアジド等が挙げられ る。
4 ) 消化管内での分解、 低吸収性等により薬効発現を妨げている薬物としては、 ペプチド性薬物が挙げられる。 具体的には、 インタ一フヱロン、 インター Dィキ ン、 エリスロポエチン、 インシュリン、 ネオカルチノスタチン、 パラトルモン、 オビオイドぺプチド及びカルシトニン等のボリべプチドが挙げられる。
5 ) ワクチンとしては、 経口で供されることが有用と考えられるワクチンなど が挙げられる。 具体的には、 インフルエンザ H Aワクチン、 B型肝炎ワクチン及 びポリオワクチンなどが挙げられる。
ワクチンの抗原としては、 インフルエンザウイルス A型、 インフルエンザウイ ルス B型、 インフルエンザウイルス C型、 ロタウィルス、 サイトメガロウィルス、 R Sウィルス、 アデノウイルス、 エイズウイルス (H I V) 、 A型肝炎ウィルス、 B型肝炎ウィルス、 C型肝炎ウイルス、 水痘帯状疱疹ウィルス、 単純ヘルぺスゥ ィルス ( 1型及び 2型) 、 成人型 T細胞白血病ウィルス (AT L V) 、 コクサッ キーウィルス、 ェンテロウィルス、 突発性発疹ウィルス、 麻疹ウィルス、 風疹ゥ ィルス、 ムンプスウィルス (おたふく風邪ウィルス) 、 ポリオウイルス、 日本脳 炎ウィルス及び狂犬病ウィルスなどのウィルス類、 虫歯連鎖球菌、 コレラ菌、 ィ ンフルェンザ菌、 肺炎球菌、 百日せき菌、 ジフテリア菌及び破傷風菌などの菌類、 クラミジァなどのリケッチア類、 マラリャ原虫などの原虫類の蛋白質が挙げられ る。 更に、 これらウィルス類、 菌類、 リケッチア類及び原虫類そのものの病原性 を弱めたものも抗原となり得る。
本発明においては上記の薬物のうち、 吸収促進を期待する薬物 (難吸収性薬物) を用いるのが好ましく、 ペプチド性薬物がより好ましく、 中でもォピオイ ドぺプ チド及びカルシトニンが特に好ましい。
上記の コ ン プ レ ッ ク ス を経 口投与 し た場合、 粒子が微小で あるため、 大部分の薬物をコ ンプレ ッ クスのまま、 消化管の微絨毛の 近くにまで送達させることができると考えられる。 (J. K r e u t e r e t a 1. I n t e rna t i ona l Jou r na l o f
Pha rma c eu t i c s, 55, 39 (1 989) ) 。 また、 本発明に用い るグラフトコポリマ一は表面に水溶性の官能基が存在するため、 消化管膜への親 和性も高い。
つまり、 本発明のグラフトコポリマ一及びグラフトコポリマ一組成物の微粒子 性運搬体、 特にナノパーティクルと薬物のコンプレックスは、 膜近傍に高濃度で 薬物を蓄積させることができると考えられる。 その結果、 難吸収性薬物の吸収性 を改善することができる。
更に、 ぺプチドのように消化管内において消化酵素により分解されやすい薬物 については、 微粒子化することにより、 消化酵素からの攻撃を防ぐことができる。 また、 この微粒子と薬物のコンプレックスは、 膜への高親和性ゆえに、 薬物の 消化管内移動速度を遅延させることができると考えられる。 その結果、 薬物が長 時間に渡って吸収部位である消化管に滞留するため、 薬物の徐放効果も期待され 。
本発明医薬組成物におけるグラフトコポリマー又はグラフトコポリマー組成物 と薬物との配合比は、 適宜薬物に応じて調整すればよい。
実際の投与剤形としては、 前記グラフトコポリマー又はグラフトコポリマー組 成物と薬物の混合物又はコンプレックスを、 公知の方法により、 製剤化して経口 投与すればよい。 また、 軟カプセル等に前記グラフトコポリマー又はグラフトコ ポリマー組成物と薬物の混合物又はコンプレックスを入れる方法もある。
当該製剤としては特に制限されず、 錠剤、 顆粒剤、 細粒剤、 散剤、 カプセル剤 等の固形製剤、 シロップ剤、 エリキシル剤、 懸濁剤、 乳剤等の液体製剤等が挙げ られる。 これらの製剤を調製するにあたり、 通常の添加剤、 例えば、 賦形剤、 結 合剤、 滑沢剤、 崩壊剤等を配合することができることは言うまでもない。
また、 本発明の医薬組成物は、 例えば pH 1. 2等の pHが低レ、条件下においても その薬物吸収促進効果は何ら低下せず、 また 4 0でという体温条件下でもその薬 物吸収促進効果は何ら低下しないので、 特に経口投与用製剤として有用である。 また、 本発明の医薬組成物は、 後記実施例に示すように、 一定間隔をあけて分 割投与することにより、 薬物の吸収促進効果が更に増強される。 従って、 1回投 与量を 2回以上の分割投与とするか、 又は速放性製剤と遅放性製剤との組合せ製 剤とする等の投与手段又は製剤化手段の工夫により、 更にその薬物の吸収を促進 させることができる。 実施例
以下に、 参考例、 実施例および試験例を挙げて本発明を具体的に説明するが、 本発明はこれらに限定されるものではない。
参考例 1 ポリ N—イソプロピルアクリルアミ ドをグラフト鎖とするグラフトコ ポリマー (グラフトコポリマー (A— 1 ) )
1一 1. N—イッブ口ピルァクリルァミ ドォリゴマーの合成
N—イソプロピルアクリルアミ ド (興人株式会社製) 20 g、 2, 2 ' —ァゾ ビスイソブチロニトリル (A I BN) 0. 6 g及び 2—メルカプトエタノール 0. 20 gをエタノール 8 に溶かし、 窒素気流下、 6 0°C、 7時間で重合を 行なった。 重合後、 反応液中に含まれる溶媒をエバポレーターにより除去した。 更に、 プレボリマーを蒸留水に再溶解させ、 加熱し、 6 0°C以上で遠心分離して 精製した後、 凍結乾燥した。 ポリマーの収率は 83%であった。 ポリマーの数平 均分子量をゲルパーミエーシヨンクロマトグラフィー (GPC) により求めると、 Mn = 34 0 0であった。
1 - 2. N—イソプロピルァクリルァミ ドマクロモノマーの合成
1 - 1. で得た N—ィソプロピルァクリルァミ ドォリゴマー 8 gをジメチルホ ルムアミ ド (DMF) に溶かし、 5 0%水酸化カリウム 3. 3 gを加え、
30°Cで 30分間攪拌した。 次に、 臭化テ卜ラブチルリン酸 5 0 Omgを加えた後、 クロロメチルスチレン 4. 6 5 gを加えて、 30°Cで 72時間反応させた。 反応 後の沈殿物をろ過により除去した後、 反応液を透析し、 凍結乾燥した。 マクロモ ノマ一の収率は 8 2%であった。 マクロモノマーの数平均分子量を G PCにより 求めると、 Mn = 350 0であった。 このマクロモノマーは水とエタノールに可 溶であった。
こうして得られた N—イソプロピルァクリルアミ ドマクロモノマーの DMSO — D6 中におけるプロトン NMRのチヤ一トを図 1に示す。
5 = 5. 3〜6. Oppm及び 6. 6〜7. 0 ppm にスチレン基のビニルフロト ン、 7. 5 ppm付近にベンゼン核のプロトンのピークがみられた。
1 - 3. N—イソプロピルァクリルァミ ドマクロモノマーとスチレンの共重合 (グラフトコポリマ一 (A— 1 ) の合成;ナノパーティクルの作成)
1 - 2. で得た Mn= 3 5 0 0のマクロモノマ一 6 35mg、 スチレン 5 2 Omg 及び A I BN8. 5mgをエタノール に溶かし、 6 0 °Cで 24時間反応させた。 重合終了後、 未反応物と溶媒は透析により除去し、 ついで凍結乾燥した。 このポ リマ一はクロ口ホルム、 DMSOに可溶であった。 このグラフトコポリマーの粒 子径を動的光散乱法により測定した結果、 直径は 4 3 Onmであった。
こうして得られたグラフ トコポリマーの DMS 0— 中におけるプロトン NMRのチャートを図 2に示す。
マクロモノマ一においてみられた 5= 5. 3〜6. Oppm 及び 6. 6〜7. 0 ppm のスチレン基のビニルプロトンが消失し、 代わりに 1. 8〜2. 6 ppm にス チレンのメチレン基のプロトンのピーク及び 7. 5 ppm付近にベンゼン核のプロ トンのピークがみられた。
参考例 2 N—イソプロピルァクリルァミ ド及びァクリルァミ ドからなるランダ 厶共重合体をグラフ ト鎮 (グラフ ト鎖中に占める N—イソプロピルァク リルアミ ドの比率が 5 3%) とするグラフトコポリマー (グラフトコポリマー (A- 2) )
2— 1. N—イソプロピルァクリルァミ ド及びァクリルァミ ドからなるランダム 共重合体のォリゴマーの合成
N—イソプロピルァクリルアミ ドモノマ一 8. 7 0 g ( 7 5mmo ) 、 ァクリ ルァミ ドモノマー 1. 4 4 g (25翻 ο£) をエタノール 5 Owに溶解させ、 連 鎖移動剤として 2—メルカプトエタノール 0. 273 g (3. 5 0國0^ ) 及び ラジカル重合開始剤としてァゾビスイソプチロニトリル 0. 1 64 g ( 1. 0 0 mmoi) を加え、 窒素気流下 6 0°Cで 6時間重合を行ない、 標題のオリゴマーを 合成した。 反応終了後、 溶媒を留去し、 アセトンに溶解させ、 へキサン中に沈殿 させて生成物を回収した。 更に再沈殿を数回行ない、 精製した。 得られたオリゴ 一マの分子量は GPCにより測定した結果、 Mn= 3 1 00であった。
2 - 2. N—イソプロピルァクリルァミ ド及びァクリルアミ ドからなるランダム 共重合体のマクロモノマーの合成
2— 1. で得たオリゴマー 4 g ( 1. 2 9圆 0 ) をジメチルホルムアミ ド 5 に溶解させ、 水素化ナトリウム 0. 0 62 g (2. 5 8圆 oi?) 及び相間 移動触媒としてテトラブチルホスホニゥムブロマイ ド 2. 1 8 9 g ( 6. 4 5 mmo ) を加え、 6 0分間攪拌した後、 パラクロロメチルスチレン 4. 1 0 g (2 6. 7隱 0 ) を加え、 30°Cで 4 8時間攪拌した。 境拌終了後、 溶媒を留 去し、 アセトンに溶解させ、 へキサン中に沈殿させて生成物を回収した。 更に再 沈殿を数回行ない、 精製した。 'H— NMRにより、 ビニルベンジル基の導入率 を算出し、 ほぼ定量的に導入されていることを確認した (図 3) 。 得られたマク □モノマーの分子量を GPCにより測定した結果、 Mn = 4 6 0 0であった。 2 - 3. N—イソプロピルァクリルァミ ド及びァクリルァミ ドからなるランダム 共重合体のマクロモノマーとスチレンの共重合 (グラフトコポリマ一 (A— 2) の合成;ナノパーティクルの作成)
2— 2. で得たマクロモノマー 0. 30 0 g ( 0. 0 6 5讓0^) とスチレン 0. 5 0 0 g (4. 8 0画 0 ) をエタノール 5 に溶解させ、 ラジカル重合開 始剤としてアブビスイソプチロニトリル 0. 008 g ( 0. 04 9國 o^) を加 え、 脱気封管中、 6 0°Cで 4 8時間共重合を行なった。 反応終了後、 遠心分離、 エタノールへの再分散を数回繰り返し、 最後に水に分散させることで精製した。 光散乱法による測定の結果、 平均粒子径は 4 9 4nmであった。
参考例 3 N—イソプロピルァクリルァミ ド及びァクリル酸からなるランダム共 重合体をグラフト鎮 (グラフ卜鎖中に占める N—イソプロピルアクリルアミ ドの 比率が 53%) とするグラフトコポリマー (グラフトコポリマー (A— 3) )
2- 3. で得たナノパーティクルを 2N— HC に分散させ、 95°Cで 1 2時 間加水分解を行ない、 マクロモノマー鎖のァクリルァミ ド部分をァクリル酸に誘 導した。 反応終了後、 透析によって精製した。 I Rにより、 ナノパーティクル表 面に存在するアクリルアミ ドが加水分解されていることを確認し、 標題のグラフ トコポリマーを得た。 光錯乱法による測定の結果、 平均粒子径は 3 1 lnmであつ た。
参考例 4 N—イソプロピルァクリルァミ ド及びァクリルァミ ドからなるランダ ム共重合体をグラフト鎖 (グラフト鎖中に占める N—イソプロピルァクリルアミ ドの比率が 2 5 %) とするグラフ トコポリマー (グラフ トコポリマ一 (A - 4) )
4 - 1. N—イソプロピルァクリルァミ ド及びァクリルァミ ドからなるランダム 共重合体のォリゴマーの合成
N—イソプロピルァクリルア ミ ドモノマー 3. 4 8 g (30画 0 ) 、 ァクリ ルアミ ドモノマー 4. 03 g (7 Ommo ) をエタノール:水 = 1 : 1 (V/V) の混合溶媒 5 に溶解させ、 連鎖移動剤として 2—メルカプトエタノール 0. 273 g (3. 50画 0 ) とラジカル重合開始剤としてアブビスイソプチ ロニトリル 0. 1 64 g ( l. 00圃 o£) を加え、 窒素気流下 60°Cで 6時間 重合を行ない、 標題のオリゴマーを合成した。 反応終了後に、 溶媒を留去し、 ァ セトンに溶解させへキサン中に沈殿させて生成物を回収した。 更に再沈殿を数回 行ない、 精製した。 得られたオリゴマーの分子量は GPCにより測定した結果、 Mn= 2 1 00であった。
4 - 2. N—イソプロピルァクリルアミ ド及びァクリルァミ ドからなるランダム 共重合体のマクロモノマーの合成
4一 1. で得たオリゴマー 3. 5 g ( 1. 66腿 o£) をジメチルホルムアミ ド 50 に溶解させ、 水素化ナトリウム 0. 080 g (3. 32 mmo ^ ) と相間 移動触媒としてテトラブチルホスホニゥムブロマイ ド 2. 8 2 g ( 8. 3 0 議 o ) を加え、 60分間攪拌した後、 ノ ラクロロメチルスチレン 3. 5 8 g
(23. 3隱 o^) を加え、 30°Cで 48時間攪拌を行なった。 攪拌終了後、 溶 媒を留去し、 アセトンに溶解させ、 へキサン中に沈殿させて生成物を回収した。 更に再沈殿を数回行ない、 精製した。 'Η— NMRにより、 ビニルベンジル基の 導入率を算出し、 ほぼ定量的に導入されていることを確認した (図 4) 。 得られ た標題のマクロモノマーの分子量は G PCにより測定した結果、 Mn = 2 1 00 であった。
4 - 3. N—イソプロピルアクリルアミ ド及びァクリルアミ ドからなるランダム 共重合体のマクロモノマーとスチレンの共重合 (グラフトコポリマー (A— 4) の合成;ナノパーティクルの作成)
4 - 2. で得たマクロモノマ一 0. 300 g ( 0. 065mmo ) とスチレン
0. 550 g (5. 28mmoi) をエタノール:水 = 1 : 1 (VZV) の混合溶 液 5 に溶解させ、 ラジカル重合開始剤としてアブビスイソプチロニトリル
0. 008 9 g ( 0. 0542mmo ) を加え、 脱気封管中、 60 °Cで 48時間 共重合を行なった。 反応終了後、 遠心分離、 エタノールへの再分散を数回繰り返 し、 最後に水に分散させることで精製した。 光散乱法による測定の結果、 平均粒 子径は 347nmであった。
参考例 5 N—イソプロピルァクリルアミ ド及びァクリル酸からなるランダム共 重合体をグラフト鎖 (グラフト鎖中に占める N—イソプロピルアクリルアミ ドの 比率が 25%) とするグラフトコポリマ一 (グラフ卜コポリマー ( A— 5 ) )
4— 3. で得たナノパーティクルを 2N— HC に分散させ、 95でで1 28寺 間加水分解を行ない、 マクロモノマー鎖のァクリルァミ ド部分をァクリル酸に誘 導した。 反応終了後、 透析によって精製した。 I Rにより、 ナノパーティクル表 面に存在するアクリルアミ ドが加水分解されていることを確認し、 標題のグラフ トコポリマーを得た。 光錯乱法による測定の結果、 平均粒子径は 482nmであつ た。
参考例 6 N—イソプロピルアクリルアミ ド及びァクリルァミ ドからなるランダ 厶共重合体をグラフト鎖 (グラフト鎖中に占める N—イソプロピルァクリルアミ ドの比率が 68%) とするグラフトコポリマー (グラフトコポリマー (A— 6) ) 6 - 1. N—イソプロピルァクリルァミ ド及びァクリルァミ ドからなるランダム 共重合体のォリゴマーの合成 N—イソプロピルアクリルアミ ドモノマー 1 2. 75 g ( 1 1 2. 7薩 o^) 、 アクリルアミ ドモノマ一 1. 8 2 g ( 1 6. 1隱 ) をエタノール 5 Οττ^に溶 解させ、 連鎖移動剤として 2—メルカプトエタノール 0. 3 5 1 g (4. 5 0 隱 οί) とラジカル重合開始剤としてァゾビスイソプチロニトリル 0. 2 1 1 g ( 1. 2 9mmo ) を加え、 窒素気流下 6 0 °Cで 6時間重合を行ない、 標題の オリゴマーを合成した。 反応終了後に、 溶媒を留去し、 アセトンに溶解させへキ サン中に沈殿させて生成物を回収した。 更に再沈殿を数回行ない、 精製した。 得 られたオリゴマーの分子量は GPCにより測定した結果、 Mn== 4 4 0 0であつ た。
6 - 2. N—イソプロピルァクリルァミ ド及びァクリルァミ ドからなるランダム 共重合体のマクロモノマーの合成
6 - 1. で得たオリゴマー 3 g ( 0. 6 6 mmo ) をジメチルホルムアミ ド
5 に溶解させ、 水素化ナトリウム 0. 0 32 g ( l. 3 2圆 0 ) 、 相間移 動触媒としてテトラブチルホスホニゥムブロマイ ド 1. 1 2 g (3. 3 0mo£ を加え、 6 0分間攪拌した後、 ノ、。ラクロロメチルスチレン 2. 9 7 g ( 1 9. 3 mio£) を加え、 30°Cで 4 8時間攪拌を行なった。 所定時間終了後、 溶媒を留 去し、 アセトンに溶解させへキサン中に沈殿させて生成物を回収した。 更に再沈 殿を数回行ない、 精製した。 'H— NMRにより、 ビ二ルベンゼン基の導入率を 計算し、 ほぼ定量的に導入されていることを確認した (図 5) 。 得られたポリマ —の分子量は GPCにより測定した結果、 Mn= 72 0 0であった。
6 - 3. N—イソプロピルァクリルアミ ド及びァクリルァミ ドからなるランダム 共重合体のマクロモノマーとスチレンの共重合 (グラフトコポリマ一 (A— 6) ; ナノパーティクルの作成)
6 - 2. で得たマクロモノマー 0. 374 g (0. 0 5 2隱 ο_ί) とスチレン
0. 6 5 0 g (6. 2 5 mmo ) をエタノール 5; ^に溶解させ、 ラジカル重合開 始剤としてァゾビスイソブチロニトリル 0. 0 1 0 g ( 0. 0 6 3隱 0 ) を加 え、 脱気封管中、 6 0°Cで 4 8時間共重合を行なった。 反応終了後、 遠心分離、 エタノールへの再分散を数回繰り返し、 最後に水に分散させることで精製した。 光散乱法による測定の結果、 平均粒子径は 25 3nmであった。 参考例 7 N—イソプロピルァクリルァミ ド及びァクリル酸からなるランダム共 重合体をグラフト鎖 (グラフ卜鎖中に占める N—イソプロピルアクリルアミ ドの 比率が 68 %) とするグラフトコポリマー (グラフトコポリマー (A— 7) )
6 - 3. で得られたナノパーティクルを 2 N— HC £に分散させ、 9 5でで 1 2時間加水分解を行ない、 マクロモノマー鎖のアクリルアミ ド部分をアクリル 酸に誘導した。 反応終了後、 透析によって精製した。 I Rにより、 ナノパーティ クル表面に存在するアクリルアミ ドが加水分解されていることを確認し、 標題の グラフトコポリマーを得た。 光錯乱法による測定の結果、 平均粒子径は 769nm であった。
以下に、 参考例 3、 5及び 7で合成したグラフトコポリマーの構造を示す。
Figure imgf000032_0001
参考例 8 ポリ t e r t—プチルメ夕クリレートをグラフト鎖とするグラフトコ ポリマー (グラフトコポリマー (B— 1— 1 ) )
8 - 1. t e r t—プチルメタクリレート ( t -BMA) オリゴマーの合成 t—ブチルメタクリレートモノマー 25. 02 g ( 1 75. 8國 o^) をテ卜 ラヒドロフラン (THF) 50 に溶解させ、 連鎖移動剤に 2—メルカプトエタ ノール 0. 34 5 g (4. 42画 0 ) とラジカル重合開始剤にァゾビスイソブ チロニトリル (A I BN) 0. 288 g ( 1. 76隱 ) を加え、 窒素気流下 60°Cで 6時間重合を行ない、 t—BMAオリゴマーを合成した。 反応終了後に メタノール:水 = 1 : 1に対して、 再沈殿を数回行ない、 精製した。 得られたポ リマーの分子量は G PCにより測定し Mn= 3620であった。
Figure imgf000033_0001
8 - 2. t一 BMAマクロモノマーの合成
8— 1. で得た t—BMAオリゴマー 5. 0 0 g ( 1. 38mmo ) をジメチ ルホルムアミ ド (DMF) 5 に溶解させ、 5 0 %水酸化カ リ ウム水溶液 0. 7 7 4 g、 相間移動触媒としてテトラブチルホスホニゥ厶ブロマイ ド
(TBPB) 0. 4 6 8 g ( 1. 38 mmo ) を加え、 30°Cで 24時間攪拌し た後、 クロルメチルスチレン 4. 2 4 g ( 2 7. 6mmo ) を加え、 3 0 °Cで 4 8時間攪拌を行なった。 所定時間終了後、 メタノール:水 = 1 : 1に対して再 沈殿を行ない精製した。 'H— NMRによりビニルベンジル基の導入率を計算し、 ほぼ定量的に導入されていることを確認した。 G PCによる分子量測定の結果、 Mn = 4 0 7 0であった。
Figure imgf000033_0002
8 - 3. t — BMAマクロモノマーとスチレンの共重合 (グラフ トコポリマ' (B- 1 - 1 ) の合成;ナノパーティクルの作成)
8— 2. で得た t一 BMAマクロモノマー 0. 3 0 0 g ( 0. 0 8 3mmo^) とスチレン 0. 34 5 g (3. 32mo£) をエタノール 5 に溶解させ、 ラ ジカル重合開始剤に A I BNを 5. 8 8 mg ( 0. 0 3 6 mmo £ ) を加え、 脱気封 管中 6 0°Cで 4 8時間共重合を行なった。 反応終了後に透析を行ない精製した。 光錯乱法による測定の結果、 平均粒子径は 6 79nmであった。
Figure imgf000034_0001
Figure imgf000034_0002
参考例 9 ポリメ夕クリル酸をグラフ卜鎖とするグラフトコポリマー (グラフ ト コポリマー (B - 1一 2) )
8 - 3. で得たナノパーティクルを 2N— HC エタノールに分散させ、 8 0 °Cで 1 2時間加水分解を行ない、 マクロモノマ一鎖のエステルをカルボキシル基 に変換した。 反応終了後、 透析を行ない精製した。 光錯乱法による測定の結果、 平均粒子径は 8 3 5 nmであつた。 加水分解
Figure imgf000035_0001
-^
Figure imgf000035_0002
参考例 1 0 ポリ N—ビニルァセトアミ ドをグラフト鎮とするグラフトコポリマ ― (グラフトコポリマー (B— 2— 1 ) )
1 0 - 1. N—ビニルァセトアミ ドォリゴマ一の合成
N—ビニルァセトアミ ド (NVA) モノマ一 1 0 g ( 1 1 7. 6國 0 ) をェ 夕ノール 5 に溶解し、 連鎖移動剤として 2—メルカプトエタノール 2. 3 g
( 2 9. 4 4 mmo ) とラジカル重合開始剤にァゾビスィソブチロニト リル 0. 1 9 7 g ( 1. 2謹 0 ) を加え、 窒素気流下 6 0°C, 6時間、 重合を行な い NVAオリゴマーを合成した。 反応終了後、 ジェチルエーテルを用いて再沈殿 を数回行ない精製した。 分子量は、 G PCにより測定し、 Mn = 2 5 0 0であつ た。
1 0 - 2. NVAマクロモノマーの合成
1 0— 1. で得た NVAオリゴマー 1. 8 7 5 g (0. 7 5國 o^) をジメチ ルホルムアミ ド 5 0 に溶解し、 5 0 %水酸化カリウム水溶液 0. 8 4 g (7. 5國 o^) 、 相間移動触媒としてテトラブチルホスホニゥ厶ブロマイ ド 0. 1 27 g ( 0. 3 74圆 o^) を加え 3 0分間攪拌し、 クロルメチルスチレ ン 1. 1 5 2 g (7. 5國 0 ) を加え 30°C、 4 8時間、 反応し、 NVAマク 口モノマーを得た。 反応終了後、 ジェチルェ一テルを用いて数回再沈殿を行なつ て精製し、 'Η— NMRによりビニルベンゼン基の導入率を計算し、 ほぼ定量的 に導入されていることを確認した。 G PCによる分子量測定の結果、 Mn二 2 6 0 0であった。
1 0 - 3. NV Aマクロモノマーとスチレンの共重合 (グラフ トコポリマー (B- 2 - 1 ) の合成;ナノパーティ クルの作成)
1 0— 2. で得た NVAマクロモノマー 0. 25 g ( 0. 0 9 6國 o ) とス チレン 0. 23τ^ ( 1. 99mmo^) をエタノール 5ττιに溶解し、 開始剤にァゾ ビスイソプチロニ卜リル 3. 34 mg ( 0. 0 2 mmo £ ) を用い、 脱気封管中で、 60°C、 4 8時間、 共重合反応を行なった。 反応終了後、 透析処理を行ない未反 応物質を除去した。 光錯乱法による測定の結果、 グラフトコポリマーの平均粒子 径は 257nmであった。
参考例 1 1 ポリビニルァミンをグラフト鎮とするグラフトコポリマ一 (グラフ トコポリマー (B— 2 - 2) )
1 0 - 3. で得たナノパーティクルを、 2N— HC 中に分散し、 1 0 0° (:、
1 2時間、 マクロモノマー鎖のアミ ド結合部分を加水分解した。 得られたナノパ 一ティクルは、 反応終了後、 透析処理で精製した。 光錯乱法による測定の結果、 ナノパーティクルの平均粒子径は 273nmであった。
実施例 1 ナノパーティ クルとフエノールスルホンフタレイン (PSP) とのコ ンプレックス (ナノパーティクル化製剤) の調製
3. 1 5 wZv%の濃度でショ糖を含有するリ ン酸緩衝液 (pH7. 0、 0. 5 OmM) に PS Pのモノナトリゥム塩 (PSP— Na) を 2 OmgZwの濃度 で溶解させた。 次に、 この液に参考例 1の 1— 3. で得られた凍結乾燥物 (グラ フトコポリマー (A— 1 ) ) を 2
Figure imgf000036_0001
均一分散させてナノパ 一ティクル化製剤を調製した。 別にナノパーティクルを分散させていない PSP 一 N a水溶液を同様に調製し、 コントロール製剤とした。 実施例 2 ナノパーティ クルとフエノールスルホンフタレイン (PSP) とのコ ンプレックスの i n v i vo評価
2- 1. 方法
SD系雄性ラッ ト (7週令、 約 200 g) を 24時間絶食した。 エーテル麻酔 下、 開腹し、 胃幽門部より注射針を挿入し、 実施例 1で得たナノパーティクル化 製剤あるいはコン トロール製剤 0.
Figure imgf000037_0001
た (PSPとして ラッ トー匹当たり 9. 4mg投与。 n= 6 ) 。 投与後直ちに閉腹し、 投与後、 0. 5、 1、 2、 4、 8、 1 2及び 24時間に頸静脈より 0. 採血した。
K. H i g a k iの方法 (Journal of Pharmaceutical Science, 79, 334, 1990) に準拠して血漿中の PSP濃度を測定した。 採取した血液を遠心分離して 得られた血漿 0. 3^、 精製水 0. 及び 0. 1 N水酸化ナトリウム水溶液 0. を混合した。 この混合液を分画分子量 1 0000の限外ろ過膜を用いて ろ過し、 タンパク等を除いた後、 試料溶液とした。 別に、 既知濃度の PSP— Na水溶液 (PSPとして 9. 4mgZ7 ^から 2倍稀釈系列) 0. 3m、 ラッ トよ り採取したブランクの血漿 0. 3 τηβ及び 0. 1 Ν水酸化ナトリゥム水溶液 0. 9 を混合した後、 限外ろ過し、 標準溶液とした。 試料溶液及び標準溶液につき、 分光光度計を用いて波長 5 6 Onmにおける吸光度を測定した。 標準溶液から得ら れた結果に基づき検量線を作成し、 PSPの血漿中濃度を測定した。 得られた時 間— P S P血漿中濃度プロファイルをもとに、 薬物動態学的パラメ一夕一を算出 した。
2- 2. 結果
時間一 P S P血漿中濃度プロフアイルを図 6に、 算出した薬物動態学的パラメ 一夕一を表 1に示す。 表 1から明らかなように、 PSPの平均滞留時間 (MRT) は、 ナノパーティクル化することにより有意に増加しており (危険率 1 %で有 意) 、 本発明のグラフトコポリマ一を用いたナノパーティクル化製剤 (ナノパー ティクルと PSPとのコンプレックス) には徐放効果のあることが確認された。 表 1
(mean土 S. D. )
Figure imgf000038_0001
実施例 3 ナノパーティクルとサーモンカルシトニン ( s CT) とのコンプレツ クス (ナノパーティクル化製剤) の調製
2 0 0 の濃度の s CT水溶液と、 6 OmgZra の濃度の参考例 1の 1— 3. で得られたナノパーティクル (グラフトコポリマー (A— 1 ) ) 分散液 (分散媒は水) を調製した。 両者を等量ずつ混合し、 ナノパーティクルを均一に 分散させ、 ナノパーティクル化製剤とした。 別に、 ナノパーティクルを分散させ ていない s CT水溶液を同様に調製し、 コン卜ロール製剤とした。
実施例 4 ナノパーティ クルとサーモンカルシトニン (s CT) とのコンプレツ クスの i n V i v o評価
4 - 1. 方法
SD系雄性ラット (7週令、 約 20 0 g) を 24時間絶食した後、 実施例 3で 得たナノパーティクル化製剤あるいはコントロール製剤 0. 5 を経口投与した (n= 5) 。 投与後、 40分、 80分、 2、 3、 4、 6及び 8時間に尾静脈より 約 6 0 //^採血した。
634 C a ++ZpHアナライザー (チパコーニング) を用いて、 採血した血液中 に含まれるカルシウムイオン濃度を測定した。 0時点のカルシウムイオン濃度と 各時点の濃度との差を計算し、 その推移からナノパーティ クル化による吸収促進 効果の有無を判断した。
なお、 s CTは薬効として血中のカルシウムイオン濃度を低下させることが知 られている。
4— 2. 結果
結果を図 7に示す。 図 7から明らかなように、 s C T水溶液投与 (コントロー ル製剤) で血中カルシゥ厶ィォン濃度の低下が若干認められたが、 実施例 3で得 たナノパーティクル化製剤 (ナノパーティクルと s CTとのコンプレックス) を 投与することにより、 s CTの効果は著しく増強された。 また、 その効果は投与 後 8時間まで持続した。 以上のことから、 本発明のグラフトコポリマーを用い たナノパーティクル化製剤は、 s CTの消化管吸収性を向上することができると 判断できた。
実施例 5 ナノパーティクルとォピオイ ドペプチド (〇P) とのコンプレックス (ナノパーティクル化製剤) の調製
20 0〃 の濃度でオビオイドぺプチド水溶液と、 2 の濃度の参 考例 1の 1— 3. で得られたナノパーティクル (グラフトコポリマ一 (A— 1 ) ) 分散液 (分散媒は水) を調製した。 両者を等量ずつ混合し、 ナノパーティクル を均一に分散させ、 ナノパーティクル化製剤とした (ナノパーティクルとォピオ イドペプチドとのコンプレックス) 。 別に、 ナノパーティクルを分散させていな いオビオイ ドペプチド水溶液を同様に調製し、 コントロール製剤 ( 1 0 0〃 g/ ^オビオイドぺプチド) とした。 使用したオビオイ ドぺプチドの化学構造式を以 下に示す。
H3CC (NH) -Ty r -D-Ar g-Ph e -N (CH3) 一 yS— A l a 実施例 6 ナノパーティクルとォピオイドペプチド (OP) とのコンプレックス © i n v i v o評価
6- 1. 方法
d d y系雄性マウス (3〜4週令、 約 20〜25 g) を飽食下、 実施例 5で得 たナノパーティクル化製剤あるいはコントロール製剤を経口投与した (オビオイ ドぺプチド 1 mg/ 1 0 mH/Yi)。 Ra n d a l l & S e l i t t o式加圧装 置 (MK - 3 0 0、 室町機械製) を用いて、 マウス尾根部に 32 gZ秒の割合で 圧刺激を加えて、 もがき、 刺激部位へのかみつきなどの行動を指標として疼痛閾 値 (g) を経時的 ( 1、 2、 3、 4、 5、 6、 8及び 24時間) に測定した。 5 0 0 gを c u t - 0 f f値とし、 下式に従って、 疼痛活性 (% 0 f MPE
(maximum possible effect) ) を算出した。
疼痛活性 (%) = { (投与後疼痛閾値一投与前疼痛閾値) 7 ( 5 0 0 -投与前疼 痛閾値) } x 1 00
6- 2. 結果
結果を図 8に示す。 図 8から明らかなように、 疼痛活性 (% 0 f MPE) はオビオイ ドぺプチドをナノパーティクル化することにより大きくなることが確 認された。
以上のことから、 本発明のグラフトコポリマーを用いたナノパーティクル化製 剤 (ナノパーティクルとオビオイ ドペプチドのコンプレックス) は、 オビオイ ド ぺプチドの消化管吸収性を向上することができると判断できた。
実施例 7 ナノパーティクルとサーモンカルシ卜ニン (s CT) とのコンプレツ クス (ナノパーティクル化製剤) の調製
200 gZm の濃度の s CT水溶液と、 20 mg/½の濃度の参考例 2及び参 考例 4で得たナノパーティクル (グラフトコポリマー (A— 2) 及び (A— 4) ) 分散液 (分散媒は水) を調製した。 両者を等量ずつ混合し、 ナノパーティクル を均一に分散させ、 ナノパーティクル化製剤とした。 別に、 ナノパーティクルを 分散させていない s CT水溶液を同様に調製し、 コントロール製剤とした。
実施例 8 ナノパーティクルとサーモンカルシトニン (s CT) とのコンプレツ タスの i n V i v o評価
実施例 7で得たナノパーティクル化製剤及びコントロール製剤を用いて、 実施 例 4と同様にして、 サーモンカルシトニンのナノパーティクル化による吸収促進 効果の有無を判断した。 その結果を図 9に示す。
図 9から明らかなように、 s CT水溶液投与 (コントロール) で血中カルシゥ ムイオン濃度の低下が若干認められたが、 実施例 7で得たナノパーティクル化製 剤 (ナノパーティ クルと s CTとのコンプレックス) を投与することにより、 s CTの効果は著しく増強された。 また、 その効果は投与後 6時間まで持続した。 以上のことから、 本発明のグラフトコポリマ一によりナノパーティクル化した 製剤は、 s CTの消化管吸収性を向上することができると判断できた。
実施例 9 2種のナノパーティクルの混合物とサーモンカルシトニン (s CT) とのコンプレックス (ナノパーティクル化製剤) の調製
0. lmgZ の s CT水溶液と、 5mgZ の参考例 1の 1一 3. で得たナノパ —ティクル (グラフトコポリマー (A— 1 ) ) 分散液 (分散媒は水) と、 5 mg/ の参考例 1 1で得たナノパーティクル (グラフトコポリマー (B— 2— 2 ) ) 分散液 (分散媒は水) を調製した。 三者を等量ずつ混合し、 各ナノパーティクル を均一に分散させ、 ナノパーティクル化製剤とした。 別に、 ナノパーティクルを 分散させていない s C T水溶液を同様に調製し、 コント口一ル製剤とした。
実施例 1 0 2種のナノパーティ クルの混合物とサーモンカルシトニン ( s C T) とのコンプレックスの i n v i v o評価
実施例 9で得たナノパーティクル化製剤及びコントロール製剤を用いて、 実施 例 4と同様にして、 サーモンカルシ卜ニンのナノパーティクル化による吸収促進 効果の有無を判断した。 その結果を図 1 0に示す。
図 1 0から明らかなように、 s C丁水溶液投与 (コントロール) で血中カルシ ゥ厶イオン濃度の低下が若干認められたが、 実施例 9で得たナノパーティクル化 製剤 (2種のナノパーティクルの混合物と s C Tとのコンプレックス) を投与す ることにより、 s C Tの効果は著しく増強された。 また、 その効果は投与後 5時 間まで持続した。 また、 その効果は 1種のナノパーティクルを用いた場合よりも 更に増強されていた。
以上のことから、 本発明の 2種以上のグラフトコポリマーによりナノパーティ クル化した製剤は、 s C Tの消化管吸収性を向上することができると判断できた。 実施例 1 1 ナノパーテイクル化製剤の分割投与
ナノパーティクル化製剤を 4 0分間の間隔をあけて 2回に分けて投与したとき のサーモンカルシトニンの吸収促進効果につし、て検討した。
1 0 0〃 g £の濃度の s C T水溶液と、 1 0 HigZ の濃度の参考例 1の 1 一 3 . で得たナノパーティクル (グラフトコポリマー (A— 1 ) ) 分散液 (分散媒 は水) を調製した。 両者を等量ずつ混合し、 ナノパーティクルを均一に分散させ、 ナノパーティクル化製剤とした。 別に、 ナノパーティクルを分散させていない s C T水溶液を同様に調製し、 コント o—ル製剤とした。
これらの製剤を 0時点と 4 0分後に 0 . 2 5 m fつ 2回に分けて計 0 . 5 投 与する以外は、 実施例 4と同様にしてサーモンカルシトニンの吸収促進効果を検 討した。 その結果、 図 1 1から明らかなように、 本発明のナノパーティクル製剤は、 一 定間隔をあけて分割投与すると、 その吸収促進効果が更に増強されることが判明 した。 産業上の利用可能性
本発明の微粒子性運搬体を用いた医薬組成物は、 配合した薬物の経口吸収促進 効果に優れることから、 特に難吸収性薬物の D D Sとして有用である。

Claims

請 求 の 範 囲
1. 下記の式 ( 1 )、
Q1
- CH2-C ( 1 )
Q2
〔式 ( 1 ) 中、 Q 1 は水素原子、 メチル基又はシァノ基を示し、 Q2 は水素原子、 3
C00R2、一 0C0R2又は一 CON / R
Figure imgf000043_0001
(R 1 は水素原子又はハロゲノメチル基を示し、 R2 は炭素数 1〜1 0のァ ルキル基を示し、 R3 は水素原子又は炭素数 1〜 1 0のアルキル基を示し、 R4 は炭素数 1〜1 0のアルキル基を示す (ただし R3 及び R 4 の総炭素数 は 3〜2 0である) ) を示す〕
で表される構造単位と、 下記式 (2)、
Figure imgf000043_0002
( 2 )
〔式 (2 ) 中、 Q3 は水素原子又はメチル基を示し、
Q4
Figure imgf000044_0001
(A1 は炭素数 1〜1 0のアルキレン基を示す) を示し、
Q5 は酸素原子又は- NH-を示し、
Q6 は炭素数 1〜1 0のアルキレン基を示し、
Q7 は酸素原子又は硫黄原子を示し、
X1 は酸素原子又は 2個の水素原子を示し、
R5 、 R7 及び R8 は水素原子又はメチル基を示し、
R6 は炭素数 1〜1 0のアルキル基を示し、
は 1〜 1 0 0の数を示し、
m及び nはそれぞれ 0〜 1 0 0の数を示す〕
で表される構造単位とを有するグラフトコポリマー (A) を含有する微粒子性運 搬 。
2. グラフトコポリマ一 (A) における式 (2) で表される構造単位のモル分率 が、 0. 0 0 1〜 1の範囲である請求項 1記載の微粒子性運搬体。
3. 次の成分 (a) 及び (b) を含有する微粒子性運搬体組成物。
(a) 請求項 1又は 2記載のグラフトコポリマ一 (A) ;
( b ) 次のグラフトコボリマー ( B— 1 ) 及びグラフトコボリマ一 ( B 2) 力、 ら選ばれる 1種又は 2種以上のグラフトコポリマ一。
(B- 1 ) 下記の式 ( 1 ) 、
Q1
CH2-C-^- ( 1 )
Q2
〔式 ( 1 ) 中、 Q1 は水素原子、 メチル基又はシァノ基を示し、
Q2 は水素原子、
Figure imgf000045_0001
(R1 は水素原子又はハロゲノメチル基を示し、 R2 は炭素数 1〜 1 0のァ ルキル基を示し、 R3 は水素原子又は炭素数 1〜 1 0のアルキル基を示し、 R4 は炭素数 1〜 1 0のアルキル基を示す (ただし R3 及び R4 の総炭素数 は 3〜2 0である) ) を示す〕
で表される構造単位と、 下記式 (3) 、
Figure imgf000045_0002
〔式 (3) 中、 Q8 は水素原子又はメチル基を示し、
Q9 は 一 CH2—又は— C00-A2 - CHCH2
OH
(A2 は炭素数 1〜 1 0のアルキレン基を示す) を示し、
Q 10は酸素原子又は- NH-を示し、
は炭素数 〜〗 0のアルキレン基を示し、
Q 12は酸素原子又は硫黄原子を示し、
X2 は酸素原子又は 2個の水素原子を示し、
R9 及び Ri eは水素原子又はメチル基を示し、
1^'は炭素数1〜 1 0のアルキル基を示し、 p及び qはそれぞれ 0〜 1 0 0であって p + qが 1以上となる数を示す〕 で表される構造単位とを有するグラフトコポリマー;
(B- 2) 下記の式 ( 1 )、
4CH2— ( 1 )
Q2
〔式 ( 1 ) 中、 Q1 は水素原子、 メチル基又はシァノ基を示し,
Q2 は水素原子、
R3
R〗、 -C00R2、一 0C0R2又は一 CON /
(R1 は水素原子又はハロゲノメチル基を示し、 R2 は炭素数 1〜1 0のァ ルキル基を示し、 R3 は水素原子又は炭素数 1〜 1 0のアルキル基を示し、 R4 は炭素数 1〜1 0のアルキル基を示す (ただし R3 及び R4 の総炭素数 は 3〜2 0である) ) を示す〕
で表される構造単位と、 下記式 (4)、
Figure imgf000046_0001
〔式 (4) 中、 Q 13は水素原子又はメチル基を示し、
Q'4
>~ CH2—又は- C00 - A3— lj;HCH 2 - (A3 は炭素数 1〜 0のアルキレン基を示す) を示し、 Q 15は酸素原子又は- NH-を示し、
<316は炭素数1〜1 0のアルキレン基を示し、
Q 17は酸素原子又は硫黄原子を示し、
X3 は酸素原子又は 2個の水素原子を示し、
R 12及び R 13は水素原子又はメチル基を示し、
尺"は炭素数2〜 1 1のアルカノィル基を示し、
s及び tはそれぞれ 0〜1 0 0であって s十 tが 1以上となる数を示す〕 で表される構造単位とを有するグラフトコポリマー。
4. グラフトコポリマー (A) における式 (2) で表される構造単位のモル分 率; グラフトコポリマ一 (B— 1 ) における式 (3) で表される構造単位のモル 分率;及びグラフトコポリマー (B— 2) における式 (4) で表される構造単位 のモル分率が、 0. 0 0 1〜 1の範囲である請求項 3記載の微粒子性運搬体組成 物。
5. 請求項 1又は 2記載のグラフトコボリマ一と薬物とを含有する医薬組成物。
6. 請求項 3又は 4記載の成分 (a) 及び (b) を含有するグラフトコポリマ一 組成物と薬物とを含有する医薬組成物。
7. 請求項 1又は 2記載のグラフトコポリマーと薬物とのコンプレックスを含有 する医薬組成物。
8. 請求項 3又は 4記載の成分 (a) 及び (b) を含有するグラフトコポリマー 組成物と薬物とのコンプレックスを含有する医薬組成物。
9. 薬物が、 難吸収性薬物である請求項 5〜 8のいずれか 1項に記載の医薬組成 物。
1 0. 薬物が、 ペプチド性薬物である請求項 5〜 8のいずれか 1項記載の医薬組 成物。
1 1. ペプチド性薬物が、 ォピオイドペプチド又はカルシトニンである請求項 1 0記載の医薬組成物。
PCT/JP1997/000463 1996-02-21 1997-02-20 Vecteurs a grain fin et composition medicinale preparee avec ce type de vecteurs WO1997030730A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU17337/97A AU708586B2 (en) 1996-02-21 1997-02-20 Particulate carriers and pharmaceutical compositions containing the same
US09/101,804 US6100338A (en) 1996-02-21 1997-02-20 Fine grain carriers and medicinal composition prepared with the use of the same
EP97904584A EP0893125A1 (en) 1996-02-21 1997-02-20 Fine grain carriers and medicinal composition prepared with the use of the same
NO983824A NO983824L (no) 1996-02-21 1998-08-20 Partikkelformige bµrere og farmas°ytiske blandinger inneholdende disse

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/33200 1996-02-21
JP3320096 1996-02-21
JP12613796 1996-05-21
JP8/126137 1996-05-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/452,371 Division US6368631B1 (en) 1996-02-21 1999-12-01 Fine grain carriers and medicinal composition prepared with the use of the same

Publications (1)

Publication Number Publication Date
WO1997030730A1 true WO1997030730A1 (fr) 1997-08-28

Family

ID=26371848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000463 WO1997030730A1 (fr) 1996-02-21 1997-02-20 Vecteurs a grain fin et composition medicinale preparee avec ce type de vecteurs

Country Status (10)

Country Link
US (2) US6100338A (ja)
EP (1) EP0893125A1 (ja)
KR (1) KR100451019B1 (ja)
CN (1) CN1137729C (ja)
AU (1) AU708586B2 (ja)
CA (1) CA2245522A1 (ja)
NO (1) NO983824L (ja)
RU (1) RU2172326C2 (ja)
TW (1) TW430559B (ja)
WO (1) WO1997030730A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030008395A (ko) * 2001-07-18 2003-01-29 (주)에이치비메디컬스 약제 전달 시스템 및 그것을 이용한 치료 방법
ATE480573T1 (de) * 2002-07-29 2010-09-15 Life Technologies Corp Pfropfcopolymere, deren herstellung und verwendung bei der kapillarelektrophorese
US20060078534A1 (en) * 2004-10-13 2006-04-13 Dominique Charmot Toxin binding compositions
WO2006044577A1 (en) * 2004-10-13 2006-04-27 Ilypsa, Inc. Pharmaceutical compositions comprising a toxin-binding oligosaccharide and a polymeric particle
CN101583379B (zh) * 2006-10-05 2013-04-03 约翰斯霍普金斯大学 使用优良聚合物纳米粒子的水溶性差药物的水可分散性口服,肠胃外和局部制剂
US9949928B2 (en) 2013-05-01 2018-04-24 The Regents Of The University Of Colorado, A Body Corporate Biodegradable copolymers, systems including the copolymers, and methods of forming and using same
CN113604965B (zh) * 2021-08-25 2022-08-23 辽宁洁花环保科技装备有限公司 一种无纺布及其制备方法
CN114350781A (zh) * 2021-12-24 2022-04-15 廊坊诺道中科医学检验实验室有限公司 检测coqr2基因多态性位点snp分型的引物探针组合、试剂盒及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210027A (ja) * 1985-03-13 1986-09-18 Sekisui Chem Co Ltd 外用貼付剤
JPH08268916A (ja) * 1995-03-28 1996-10-15 Dai Ichi Seiyaku Co Ltd 微粒子性運搬体−薬物コンプレックス

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2811507A (en) * 1954-10-20 1957-10-29 Koppers Co Inc Alkenylaryloxyacetamides
US4008202A (en) * 1972-06-29 1977-02-15 The Dow Chemical Company Aqueous thickening agents derived from vinyl benzyl ether polymers
US4011201A (en) * 1974-08-15 1977-03-08 Eastman Kodak Company Polymers of monomers containing active methylene groups and other ethylenically unsaturated monomers
US5061761A (en) * 1989-09-29 1991-10-29 Kuraray Co., Ltd. Polyvinyl ester macromonomer and its uses
EP0490269B1 (en) * 1990-12-10 1996-02-28 Idemitsu Kosan Company Limited Graft copolymer and process for producing the same
US5753248A (en) * 1993-07-02 1998-05-19 The Dow Chemical Company Amphipathic graft copolymer pesticide formulation compositions and methods of their use
US5770627A (en) * 1995-08-16 1998-06-23 University Of Washington Hydrophobically-modified bioadhesive polyelectrolytes and methods relating thereto

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210027A (ja) * 1985-03-13 1986-09-18 Sekisui Chem Co Ltd 外用貼付剤
JPH08268916A (ja) * 1995-03-28 1996-10-15 Dai Ichi Seiyaku Co Ltd 微粒子性運搬体−薬物コンプレックス

Also Published As

Publication number Publication date
TW430559B (en) 2001-04-21
NO983824D0 (no) 1998-08-20
US6100338A (en) 2000-08-08
NO983824L (no) 1998-10-21
KR19990082280A (ko) 1999-11-25
EP0893125A1 (en) 1999-01-27
US6368631B1 (en) 2002-04-09
CN1211927A (zh) 1999-03-24
AU708586B2 (en) 1999-08-05
KR100451019B1 (ko) 2004-12-04
CN1137729C (zh) 2004-02-11
RU2172326C2 (ru) 2001-08-20
AU1733797A (en) 1997-09-10
CA2245522A1 (en) 1997-08-28

Similar Documents

Publication Publication Date Title
CN101583379B (zh) 使用优良聚合物纳米粒子的水溶性差药物的水可分散性口服,肠胃外和局部制剂
US7056901B2 (en) Microgel particles for the delivery of bioactive materials
Kang et al. Tailoring the stealth properties of biocompatible polysaccharide nanocontainers
US20080095810A1 (en) Nanoparticles Of Chitosan And Polyethyleneglycol As A System For The Administration Of Biologically-Active Molecules
JP2007505029A (ja) pH感受性ブロックコポリマーおよび疎水性薬物を含む医薬品組成物
EP1499358A1 (en) Ph-sensitive polymer
NZ220323A (en) 3-dimensional network of microspheres containing biologically active macromolecular agents
US10967039B2 (en) Process for preparing stealth nanoparticles
EA021741B1 (ru) Мультивалентная адъювантная конструкция
WO1997030730A1 (fr) Vecteurs a grain fin et composition medicinale preparee avec ce type de vecteurs
WO2008007932A1 (en) Chitosan complex containing ph sensitive imidazole group and preparation method thereof
JP2022502531A (ja) 薬剤を送達するための小型ポリマー担体
EP2167554A1 (en) Biocompatible microgels and applications thereof
CN107106693B (zh) 用于活性剂递送的两亲性嵌段共聚物
CN105535982A (zh) 端基被硫化氢荧光探针修饰的药物载体及其制备和应用
JP3664822B2 (ja) 微粒子性運搬体
WO2016043620A1 (ru) Амфифильные полимеры и системы доставки на их основе
JP3372408B2 (ja) 微粒子性運搬体・薬物−コンプレックス
WO2017046602A1 (en) Tetrazine as a trigger to release caged cargo
JPH08268916A (ja) 微粒子性運搬体−薬物コンプレックス
CN111388453B (zh) 一种具有pH和还原级联双响应的舒尼替尼纳米药物胶囊的制备方法
CN110339161B (zh) 一种囊泡状胶束金属氧化物及其制备方法和应用
CN107744503A (zh) 酶敏感性两亲性聚酯MePEG‑Peptide‑PER‑CL给药纳米粒的制备方法
JP3066510B2 (ja) 生理活性ペプチドの安定化方法
EP1280560A1 (en) Cationic polymer-nucleic acid complexes and methods of making them

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97192504.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2245522

Country of ref document: CA

Ref document number: 2245522

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019980706009

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1997904584

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09101804

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1997904584

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980706009

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09452371

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1019980706009

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997904584

Country of ref document: EP