WO1997021961A1 - Dispositif favorisant le passage en phase gazeuse pour appareil a gaz possedant une valeur de chauffage elevee - Google Patents

Dispositif favorisant le passage en phase gazeuse pour appareil a gaz possedant une valeur de chauffage elevee Download PDF

Info

Publication number
WO1997021961A1
WO1997021961A1 PCT/JP1996/002655 JP9602655W WO9721961A1 WO 1997021961 A1 WO1997021961 A1 WO 1997021961A1 JP 9602655 W JP9602655 W JP 9602655W WO 9721961 A1 WO9721961 A1 WO 9721961A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
gas
gas cylinder
heat transfer
transfer plate
Prior art date
Application number
PCT/JP1996/002655
Other languages
English (en)
French (fr)
Inventor
Hideo Mifune
Yasuaki Nakamura
Original Assignee
Tokai Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Corporation filed Critical Tokai Corporation
Priority to US09/091,201 priority Critical patent/US6089218A/en
Priority to EP96930420A priority patent/EP0866276A4/en
Priority to KR1019980704469A priority patent/KR19990072138A/ko
Publication of WO1997021961A1 publication Critical patent/WO1997021961A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0119Shape cylindrical with flat end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/035Orientation with substantially horizontal main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0103Exterior arrangements
    • F17C2205/0107Frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0103Exterior arrangements
    • F17C2205/0111Boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0376Localisation of heat exchange in or on a vessel in wall contact
    • F17C2227/0383Localisation of heat exchange in or on a vessel in wall contact outside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/025Reducing transfer time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/07Applications for household use
    • F17C2270/0709Camping gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/07Applications for household use
    • F17C2270/0745Gas bottles

Definitions

  • the present invention relates to a vaporization assisting device for a high calorific gas appliance in which a cassette type gas cylinder containing normal butane, isobutane or other liquefied gas can be set, and more particularly to a cassette type gas cylinder.
  • the supply of gas from the plant will be continued so that stable thermal power can be obtained, and the gas will be used up so that no liquefied gas remains in the gas cylinder.
  • cassette type gas cylinders for example, cassette type stoves
  • This cassette type stove needs to have a high heat capacity at the time of cooking, and it is not economically preferable that liquefied gas remains in a used gas cylinder.
  • the gas appliance using the cassette type gas cylinder is more widely used in addition to the convenience of the gas appliance.
  • the present invention corresponds to this.
  • the gas supply from the gas cylinder to the burner can continue burning without any trouble under normal temperature use conditions, and the liquefied gas in the gas cylinder can be maintained. Can easily be used up.
  • t liquefied gas supply amount of the gas to the burners one is to increase the vaporization amount of the liquefied gas in the gas cylinder by obtaining ⁇ If the latent heat of vaporization exceeds the heat capacity of the gas cylinder and the liquefied gas in the can and the amount of heat supplied from the surroundings, the temperature of the liquefied gas in the gas cylinder will decrease. However, the equilibrium gas pressure will decrease accordingly.
  • a part of the heat transfer plate is placed near the burner, receives the heat, and the other part is placed in contact with the gas cylinder set in the gas appliance, and the liquefied gas in the gas cylinder is liquefied by the latent heat of vaporization.
  • the reduction of gas temperature is suppressed by the amount of heat transfer by the heat transfer plate, and vaporization is assisted to secure the supply gas amount and to use up the liquefied gas.
  • the method of suppressing the temperature drop of the gas cylinder by supplying a part of the combustion heat of the burner by the heat transfer plate and supplying the heat to the gas cylinder can be achieved only under certain specific conditions. (See FIGS. 14 to 16 below). In other words, there is almost no heat supply to the gas cylinder by the heat transfer plate for a predetermined period after starting the combustion in the gas appliance, and the heat transfer amount can be obtained stably after a predetermined time (for example, 6 to 7 minutes). Yes, in the use of ordinary gas appliances, the main high heat during this initial period: 1 In many cases, the use is terminated.
  • a heat conductive plate is disposed in contact with the gas cylinder, and the heat conductive plate is surrounded by a heat conductive plate. It is also considered to absorb heat by exchanging heat with the atmosphere and supply heat to the gas cylinder whose temperature has decreased, thereby suppressing the temperature decrease.
  • the amount of heat supplied by the heat conducting plate depends significantly on the ambient temperature, Difficult to supply stable heat of 0 ⁇ during use.
  • heat is supplied to the gas cylinder by the heat transfer plate using the combustion heat of the burner, so that the gas cylinder is not overheated even when the operating atmosphere is at its temperature.
  • the amount of heat transfer is regulated within a range that does not become excessive. For this reason, it takes about 6 to 7 minutes for the temperature of each part of the heat transfer plate to reach equilibrium after igniting the burner and passing through the heat transfer plate. Supply is scarce (see Figure 20).
  • the latent heat material is used to supply heat to the gas cylinder, the sensible heat of the latent heat material and the latent heat of fusion can be supplied to the gas cylinder in the early stage of use, while good heat can be supplied. It was found that heat transfer from the interior of the latent heat material decreased and the temperature of the gas cylinder tended to decrease (see Figs. 14 to 16 described later). It is also considered that the heat exchange member has the same tendency.
  • the temperature of the cylinder decreases with the lapse of combustion, and the heating power also decreases. It must be maintained at a temperature of at least 6 ° C, preferably at least 8 ° C, to maintain thermal power. Even if the thermal power is changed, almost the same cylinder temperature is required, but if the thermal power is low, the thermal power can be maintained even if the temperature is slightly lower. From this point, it is necessary that the temperature of the gas cylinder be maintained at or above the above temperature in order to maintain the combustion at a high thermal power with the gas cylinder composed of the current butane gas.
  • a high heating power for example, 250 Okcal / hr
  • the present invention provides a heat transfer plate that transfers a part of combustion heat to supply heat to a gas cylinder, and a heat supply member or a heat exchange member that contacts a gas cylinder and supplies heat according to a temperature difference. Focusing on this, in both the operating temperature atmosphere and the initial use state, a good heat supply is performed to suppress the gas cylinder temperature from lowering and to assist in the gasification.
  • An object of the present invention is to provide a vaporization assisting device for a high-temperature S gas appliance that can easily use up liquefied gas.
  • the vaporization assisting device of the present invention is a heat-generating gas appliance equipped with a burner that sets a cassette type gas cylinder to an exchange capacity and burns a vaporized gas.
  • a heat transfer plate is provided, one end of which is disposed near the burner and the other end of which is in contact with the gas cylinder to supply a portion of the combustion heat to the gas cylinder and heat it, and a contact position between the heat transfer plate and the gas cylinder.
  • the heat storage member may be brought into contact with the heat transfer plate, or a part of the heat storage member may be brought into contact with the gas cylinder simultaneously with the heat transfer plate.
  • a contact portion between the heat transfer plate and the heat storage member be provided with a heat conduction member that contacts a surface of the heat storage member other than the surface that contacts the heat transfer plate and that contacts the heat transfer plate.
  • the heat storage member includes a liquid heat storage material accommodated in a container, and the liquid heat storage material includes a latent heat storage material having a melting point of 4 to 14 ° C and uses the melting latent heat thereof.
  • the liquid heat storage material includes a latent heat storage material having a melting point of 4 to 14 ° C and uses the melting latent heat thereof.
  • it is composed of a device that uses water and uses its sensible heat, and a device that uses the sensible heat as a heat storage member as a solid heat storage material.
  • the reason for setting the melting point of the latent heat storage material to 4 to 14 ° C. is to maintain the temperature of the gas cylinder and the liquefied gas and maintain the calorific value of the gas appliance as described above. Therefore, it is necessary to set and use the melting point of the latent heat storage material according to the calorific value of the gas appliance.
  • such latent heat storage materials should have a melting point higher than necessary in consideration of the possibility of supercooling during the cooling process.
  • the above melting point is required to be at least 4 ° C for the required temperature of 3 to 6 ° C in the case of 180 Okcal / hr, and to be the required temperature of 4 to 7 in the case of 220 Okcal / hr.
  • polyethylene glycol When polyethylene glycol is used as the latent heat storage material, it is desirable to contain a mixed solution having a melting point adjusted by blending polyethylene glycol having a different molecule a.
  • Heat storage material utilizing the latent heat is a material that performs heat emission in accordance with solidification such primary phase transition in the temperature range, c and the thermal emission is performed without causing a temperature change, the sensible heat
  • the heat storage material used releases heat by changing the temperature without changing the state of the substance, such as solidification, as described above.
  • sodium sulfate '10 hydrate can be used as inorganic salts.
  • Add supercooling inhibitor Used is sodium tetraborate ⁇ 10 hydrate and sodium chloride as a melting point modifier.
  • Another vaporization assisting device of the present invention includes:-a heat transfer plate for disposing an end near the burner and contacting the other end with a gas cylinder to supply a part of the combustion heat to the gas cylinder for heating; A heat exchange member for exchanging heat with the outside air is disposed in contact with the heat transfer plate and the gas cylinder in contact with the heat transfer plate.
  • the heat exchange member may be arranged so as to be in contact with the heat transfer plate and to be able to contact a part of the gas cylinder at a contact position between the heat transfer plate and the gas cylinder.
  • This heat exchange member is formed by bending a metal plate or metal LIN and fixing it to the surface of the heat transfer plate opposite to the surface in contact with the gas cylinder, or a honeycomb sandwich structure, or a fin-shaped It can be configured with a projection.
  • a heat exchange member for exchanging heat with air is provided so as to be in contact with the gas cylinder, and one end is disposed near the burner and the other end is connected to the heat exchange member. It is characterized by the provision of a heat transfer plate that supplies a part of the combustion heat by contact.
  • the temperature of the liquefied gas is increased by absorbing the latent heat of vaporization.
  • the supply of heat from the heat transfer plate is small, and in this initial stage, heat is supplied from the heat storage member whose temperature is higher than the lowered gas cylinder temperature based on the temperature difference, thereby suppressing the gas cylinder temperature from lowering.
  • the vaporization assist device equipped with a heat transfer plate and a heat exchange member
  • heat absorbed from the outside air is supplied from the heat exchange member to lower the gas cylinder temperature.
  • the heat exchange member the heat absorbed according to the temperature difference between the outside air temperature and the gas cylinder is quickly transmitted, and when the temperature difference is reduced, the amount of heat transfer is also reduced, so that the heat is not supplied more than the required amount of heat.
  • the heat exchange member is provided on a material or structure that has high thermal conductivity and a large surface area to enhance heat exchange, the heat supply rate will be high, and the latent heat rate of vaporization in high heat combustion can be supported. Necessary and sufficient vaporization assistance in combustion from a state in which the remaining amount of liquefied gas is low can be performed.
  • a predetermined amount of heat is supplied through the heat transfer plate to heat the gas cylinder, and in addition, heat is supplied to the gas cylinder from the surrounding atmosphere, and heat from the heat storage member or heat exchange member is supplied to the gas cylinder.
  • the heat by the transfer is supplied, the heat supply and the latent heat of vaporization are in an equilibrium state, the stable supply of the vaporized gas is performed, and the combustion by the predetermined thermal power is continued.
  • the amount of heat transferred by the heat transfer plate is almost constant, and a stable equilibrium state is maintained.
  • the liquefied gas in the gas cylinder is used up.
  • a latent heat storage material When a latent heat storage material is used for the heat storage member, it is initially in a liquid state, and the temperature drops according to the specific heat and the amount of the latent heat storage material due to heat absorption accompanying the latent heat of vaporization of the liquefied gas. When this temperature reaches the melting point of the latent heat storage material, the heat storage material starts to solidify and releases heat of solidification, and the heat is released without any change in temperature until the entire heat storage material solidifies.
  • the heat transfer plate when the ambient temperature rises, the heat supply from the external atmosphere increases, and the heat transfer plate also reduces the amount of heat dissipated in the middle, increasing the amount of heat transfer to the gas cylinder. Since the end is in contact with the gas cylinder and also with the heat storage member or heat exchange member, the negative part of the heat transfer by the heat transfer plate is absorbed by the heat storage member. Prevent the gas cylinder from overheating.
  • still another vaporization assisting device of the present invention is to allow a part of the gas cylinder to be brought into contact with a high calorific gas appliance equipped with a burner for burning a vaporized gas by setting a cassette type gas cylinder in a replaceable manner.
  • a heat storage member made of a metal material is provided to supply heat to the gas cylinder from the heat storage member in the initial state of combustion initiation, and one end is disposed near the burner and the other end is in non-contact with the gas cylinder in front. It is characterized in that a heat transfer plate for supplying a part of the combustion heat in contact with the heat storage member is provided.
  • Another vaporization assisting device is that a cassette type gas cylinder is set exchangeably and a high calorie gas appliance equipped with a burner for burning a vaporized gas is brought into contact with a part of the gas cylinder and made of a metal material.
  • a heat storage member is provided for combustion (in the initial state, heat is supplied from the heat storage member to the gas cylinder, and the heat storage member is disposed at one end near the burner and the other end is in non-contact with the self-heat storage member. It is characterized in that a heat transfer plate for supplying a part of combustion heat by contacting a gas cylinder in a portion not in contact with the member is provided.
  • the heat storage member has a circular arc surface in contact with the gas cylinder can along the shape of the can body, and a longitudinal groove is provided in a portion corresponding to a can body weld formed in the longitudinal direction of the can body on the contact surface.
  • the welded part is located inside the longitudinal groove, and the other surrounding cylinder walls have a large contact area with the heat storage member, and the heat transfer efficiency from the heat storage member to the gas cylinder is good, and the vaporization assisting effect is obtained as expected.
  • the heat storage member is formed by accommodating granular metal or powdery metal in a flexible container, and the heat storage member is installed such that the contact surface with the gas cylinder can has an arc surface along the ffi body shape.
  • the contact including the welded portion of the can body ensures a sufficient contact area to obtain a sufficient vaporization assisting effect.
  • the gas cylinder is supplied by heat from the heat transfer plate 6 to 7 minutes after ignition as described above.
  • the temperature drop is suppressed and vaporization is assisted, in the initial state of ignition of the partner before that, heat is supplied from the heat storage member in contact with the gas cylinder according to the temperature difference between the two to reduce the temperature of the gas cylinder. This will help the liquefied gas evaporate and continue the high calorific combustion.
  • the heat storage member it is necessary for the heat storage member to have a large amount of heat storage, but ⁇ Rapid heat supply corresponding to the cooling speed of the gas cylinder from the heat storage member is an important factor.
  • the heat storage member is formed by heat conduction, the heat transfer is performed from the inside of the heat storage member immediately in response to the temperature decrease of the gas cylinder. It is possible to effectively suppress the temperature drop of the gas cylinder until the heat supply is sufficiently performed.
  • the heat transfer plate does not contact the gas cylinder and the heating member at once, when a part of the combustion heat of the burner is transferred, the heat is directly supplied to the gas cylinder only. Or it is supplied to the gas cylinder via a heat storage member, and the heat to be supplied to the gas cylinder is transmitted to the heat storage member and released from the outer surface to the outside air, which is effectively used for heating the gas cylinder. It is possible to promote Nutrition well.
  • the gas cylinder has a can body welded portion protruding on the outer periphery. If the contact area with the heat storage member is reduced by this welded portion, the amount of heat transfer from the heat storage member is also reduced. Although the vaporization assisting function cannot be secured, the welding protrusion is absorbed to secure the contact area with the peripheral surface of the gas cylinder to improve the heat transfer efficiency.
  • the heat transfer plate when heat supply by the heat transfer plate in the initial stage of combustion is insufficient, heat is supplied more quickly than the heat storage member or the heat exchange member to suppress a temperature drop, and thereafter, the heat transfer is performed. Heat is supplied by the plate to assist vaporization, and even if the remaining amount of liquefied gas in the gas cylinder is reduced, combustion with a high calorie can be continued, and when the gas cylinder is replaced, all the liquefied gas inside the gas cylinder is used up be able to.
  • FIG. 1 is a plan view of a gas appliance showing a first embodiment of the present invention
  • FIG. 2 is a schematic sectional view of FIG. 1,
  • FIG. 3 is a perspective view of the heat transfer plate of FIG. 1,
  • FIG. 4 is a schematic cross-sectional view of a gas appliance showing a second embodiment
  • FIG. 5 is a schematic sectional view of a gas appliance showing a third embodiment
  • FIG. 6 is a schematic cross-sectional view of a gas appliance showing a fourth embodiment
  • FIG. 7 is a schematic sectional view of a gas appliance showing a fifth embodiment
  • FIG. 8 is a schematic cross-sectional view of only the main portion along the line X--X in FIG. 7,
  • FIG. 9 is a schematic cross-sectional view of a main part of a gas appliance showing a sixth embodiment
  • FIG. 10 is a schematic cross-sectional view of a main part of a gas appliance showing a seventh embodiment
  • FIG. 11 is a schematic cross-sectional view of a main part of a gas appliance showing an eighth embodiment
  • FIG. 12 is a schematic cross-sectional view of a main part of a gas appliance according to a ninth embodiment
  • FIG. 13 is a schematic cross-sectional view of a main part of a gas appliance showing the tenth embodiment
  • FIG. 14 is a diagram showing a case where the amount of liquefied gas at the start of combustion in the first experimental example is 250 g.
  • Fig. 15 shows the combustion results in the experimental example of 1!] 3
  • a graph showing the measurement results of the change in thermal power with respect to the combustion when the amount of liquefied gas at the start was 125 g
  • FIG. 16 is a graph showing the measurement results of the thermal power change with respect to the combustion time when the liquefied gas at the start of combustion in the first experimental example is 6 Og,
  • FIG. 17 is a graph showing a measurement result of a change in thermal power with respect to combustion when the liquefied gas S at the start of combustion in the second experimental example is 250 g,
  • FIG. 18 is a graph showing the measurement results of the change in thermal power with respect to the combustion time when the liquefied gas S at the start of combustion in the second experimental example was 125 g.
  • the 19th graph is a graph showing measurement results of the change in thermal power with respect to the combustion time when the amount of liquefied gas at the start of combustion in the second experimental example is 60 g,
  • FIG. 20 is a graph showing the measurement results of the heat transfer plate temperature with respect to the combustion time of the third experimental example.
  • FIG. 21 is a graph showing the measurement results of the temperature of each part of the heat transfer plate in the combustion of the third experimental example.
  • FIG. 22 is a graph showing the results of calculating the amount of heat passing through each part of the heat transfer plate according to the third experimental example.
  • FIG. 23 is a schematic cross-sectional view of a gas appliance showing a first embodiment of the present invention
  • FIG. 24 is a side view of a main part of a gas cylinder storage portion of FIG.
  • FIG. 25 is a perspective view of the heat storage member of FIG. 23,
  • FIG. 26 is a perspective view of the heat transfer plate of FIG. 23,
  • FIG. 27 is a schematic cross-sectional view of a gas appliance showing the second embodiment
  • Fig. 28 is a side view of the main part of the gas cylinder storage part of Fig. 27,
  • FIG. 29 is a perspective view of the heat storage member of FIG.
  • FIG. 30 is a perspective view of the heat transfer plate of FIG. 27,
  • FIG. 31 is a schematic sectional view of a gas appliance showing a thirteenth embodiment
  • FIG. 32 is a perspective view of the heat storage member of FIG. 31,
  • FIG. 33 is a perspective view of the heat transfer plate of FIG. 31;
  • FIG. 34 is a cross-sectional view of a main part of a gas appliance showing a 14th embodiment
  • FIG. 35 is a perspective view of the heat storage member of FIG. 34
  • FIG. 36 is a cross-sectional view of a main part of the gas appliance showing the embodiment of FIG. 15,
  • FIG. 37 is a perspective view of the heat storage member of FIG.
  • FIG. 38 is a cross-sectional view of a main part of a gas appliance showing the sixteenth embodiment
  • FIG. 39 is a perspective view of the heat storage member of FIG. 38.
  • FIG. 40 is a graph showing measurement results of thermal power change with respect to combustion time in the fourth experimental example.
  • FIG. 41 is a graph showing the result of determining the relationship between the gas consumption rate and the initial gas amount in the fourth experimental example.
  • FIG. 42 is a graph showing the results of determining the gas cylinder temperature with respect to the combustion time in the fifth experimental example.
  • FIG. 43 is a graph showing the results of heating ⁇ ⁇ ⁇ by the heat storage member or the heat transfer plate in the fifth experimental example.
  • FIG. 44 is a graph showing the relationship between the total amount of cooling heat and the combustion maintenance characteristics with respect to the combustion time in the fifth experimental example.
  • FIG. 45 is a graph showing a relationship between the initial gas g and the thermal power sustaining combustion time in the fifth experimental example.
  • FIG. 1 is a plan view showing the gas appliance of this example
  • FIG. 2 is a cross-sectional view
  • FIG. 3 is a perspective view of a heat transfer plate.
  • the appliance body 2 is divided into a combustion section 3 and a cylinder storage section 4 by a partition plate 5, and a burner 7 for burning the central fuel gas in the combustion section 3 is arranged.
  • the panner 7 is attached to the bottom surface of the instrument body 2 by a mixing tube 8.
  • a cover 11 that can be opened and closed is provided in the cylinder storage section 4 in which the cassette type gas cylinder 9 is set, and a governor device 12 is installed at one end.
  • the governor device 12 is connected to the gas supply section of the set gas cylinder 9, pushes in its stem to receive vaporized gas from the gas cylinder 9, and this vaporized gas is
  • the pressure adjusted by the pressure mechanism is adjusted to a predetermined pressure, and is supplied at a flow rate according to the opening / closing operation of the cock 13 to the mixing section 8 or less, mixed with air, and ejected from the crater of the burner 7.
  • a heat transfer plate 15 as shown in FIG. 3 is provided, and the heat transfer plate 15 is made of a plate member made of a material having a high thermal conductivity such as an aluminum plate.
  • the heat transfer plate 15 connects the burner 7 and the cylinder storage section 4.
  • a flat intermediate portion 15 b is provided along the bottom surface of the appliance body 2, and one end of the heat transfer plate 15 is connected to the burner 7. And the upper end is bent horizontally, and the end heat receiving portion 15a is fixed to the bottom of the burner-7.
  • the heat receiving portion 15a in contact with a part of the burner 7 receives a part of the heat generated by the gas combustion and transfers the heat to the gas cylinder 9 in contact with the heat radiating portion 15c at the other end.
  • the heat dissipating part 15c of the heat transfer plate 15 rises from the middle part 15b, passes through the lower part of the partition plate 5, extends into the cylinder storage part 4, and forms a gutter along the cylindrical peripheral surface of the gas cylinder 9. Have been.
  • the gas cylinder 9 is placed on the heat radiating portion 15c, and comes into direct contact with the container wall of the gas cylinder 9, and transfers the heat received from the burner 7 to the liquefied gas through the container wall of the gas cylinder 9.
  • a pure aluminum plate having a thickness of 0.8 is used as the heat transfer plate 15 and formed to have a width of 80 thighs and a length of 205 thighs.
  • the temperature of the burner itself increases with the combustion of the gas in the burner 7, and the heat heats the heat receiving portion 15 a of the heat transfer plate 15. The heat is transmitted to the other end, and the temperature of the heat radiating portion 15c rises to heat the gas cylinder 9.
  • the dimension entry from the heat receiving portion 15a on the burner side indicates the heat transfer distance in the measurement in FIGS. 21 and 22 described later.
  • a heat storage member 20 is provided below the heat radiating portion 15c of the heat transfer plate 15 at the bottom of the cylinder housing portion 4, and a heat conductive member 24 is provided below the heat storage member 20.
  • the heat storage member 20 is formed by housing a liquid heat storage material 21 in a packaging material 22.
  • the liquid heat storage material 21 polyethylene glycol # 400 having a freezing point range of 4 to 8 ° C. and a freezing point range
  • a latent heat storage material prepared by mixing polyethylene glycol # 600 at a temperature of 15 to 25 ° C with a ratio of 6: 4 and adjusting the melting point to about 10 ° C.
  • the solidification temperature characteristics can be set arbitrarily and other By selecting and using latent heat storage materials, it is possible to construct latent heat storage materials with different thermal characteristics.
  • the above-mentioned heat storage material 21 is, for example, 10 OmL: inside of a container 22 of a bag-like packaging material formed of a soft vinyl chloride film having a thickness of 0.2 mm, a width of 70 mm, and a good shape of 130. Then, the heat storage member 20 was obtained. The heat transfer member 20 is disposed so as to be in contact with the lower surface of the heat dissipating portion 15c of the heat transfer plate 15 and extend in front of and behind the heat transfer plate 15 so as to directly contact the gas cylinder 9.
  • the lower part of the heat storage member 20 and a part of the heat transfer plate 15 are made of aluminum foil with a thickness of 50 ⁇ m, a width of 80 mm, and a length of 100 mm. It is covered with a heat conducting member 24 composed of
  • the liquefied gas is supplied with the supply of the vaporized gas from the gas cylinder 9.
  • the temperature of the internal liquefied gas drops due to the latent heat of vaporization, but heat is supplied from the heat storage material 21 in accordance with the temperature difference with the heat storage member 20, and when the temperature of the heat storage material 21 decreases and reaches its freezing point, it solidifies.
  • the latent heat of fusion is released, and heat is supplied to the gas cylinder 9.
  • heat is also transferred from the bottom side of the heat storage member 20 by the heat conduction member 24, and an increase in the heat supply speed is obtained.
  • the gas cylinder temperature is maintained at a certain temperature, and the gas pressure of the gas cylinder 9 is increased to this temperature.
  • the gas pressure is maintained at a level corresponding to the temperature, and a stable supply of a predetermined amount of gas can be obtained. The effect of preventing lowering is obtained.
  • Fig. 14 to Fig. 16 show the results of a combustion experiment (Experimental Example 1 described below) in which the setting was adjusted and the combustion was measured until the gas was exhausted and the natural fire was extinguished. This is indicated by a two-dot chain line ⁇ .
  • a latent heat storage material such as polyethylene glycol and sodium sulfate 10-hydrate is used, and a container 22 using a sensible heat storage material such as water and oil.
  • a solid sensible heat storage material such as brick, concrete, viscosity, plastic, etc. may be encapsulated and used.
  • Short dashed line B The type of the heat storage material used is the same in the second and third embodiments described later.
  • FIG. 4 shows the vaporization assisting device of this example, and the heat transfer plate is the same as that of the first embodiment, and shows another example of the heat storage member.
  • the heat transfer plate 15 has the same shape as the previous example, and transfers a part of the combustion heat of the burner 7 to supply heat to the gas cylinder 9.
  • a heat storage member 25 in which a liquid heat storage material 21 made of polyethylene glycol is sealed in a container 22 made of a bag-like packaging material is brought into contact with the cylinder housing portion 4 on the lower surface of the heat radiating portion 15c of the heat transfer plate 15. At the same time, it is arranged so as to extend before and after the heat transfer plate 15 and directly contact the gas cylinder 9.
  • the same structures as those in the previous example are denoted by the same reference numerals, and description thereof is omitted.
  • the vaporization assisting device of this example is shown in FIG. 5, and the heat transfer plate 15 is the same as in the first embodiment. This shows another example of the heating member.
  • the heat storage member 28 is formed by enclosing a liquid heat storage material 21 in a metal container 29.
  • the metal container 29 is made of, for example, aluminum.
  • the upper surface is provided in a gutter shape along the peripheral shape of the gas cylinder 9, and a portion corresponding to the heat radiating portion 15c of the heat transfer plate 15 is heated by the heat.
  • the heat transfer plate 15 is provided so as to be in close contact with the plate 15, is provided below the heat radiating portion 15 c of the heat transfer plate 15, and is provided so as to hold it.
  • Other configurations are the same as those of the first embodiment.
  • the heat storage member 28 is formed of the metal container 29, the rigidity is high and the support strength of the gas cylinder 9 is increased, and the vaporization assisting effect is different from that of the first embodiment. Obtained similarly.
  • the container 29 may be made of other metals such as copper, iron, and stainless steel, or may be made of a molded plastic container.
  • the container 22 made of the packaging material according to the first and second embodiments may be made of a metal foil or a laminated material of a metal foil and a plastic film instead of the plastic film.
  • FIG. 6 shows the vaporization assisting device of this example, and the heat transfer plate 15 is the same as that of the first embodiment, and shows another example of the heat storage member.
  • the heat storage member 30 is made of a solid heat storage material such as brick, metal lump, paper clay, concrete, molding resin, and the like, and it is preferable to use a material having a large specific heat and a high thermal conductivity.
  • the shape of the heat storage member 30 is formed in the same manner as the outer shape of the metal container 29 in the third embodiment, and is disposed below the heat transfer plate 15 in close contact with the heat radiating portion 15c.
  • the heat storage member 30 is a sensible heat storage material corresponding to a heat capacity corresponding to the specific heat, and supplies heat according to a temperature difference from the gas cylinder 9 without phase change such as solidification. Therefore, substantially the same effects as in the first embodiment can be obtained.
  • FIGS. 7 and 8 show the vaporization assisting device of this example, in which the heat transfer plate 15 is the same as that of the first embodiment, and shows an example in which a heat exchange member is installed instead of the heat storage member. .
  • the heat exchange member 40 is made of a plate material having low thermal conductivity such as an aluminum plate.
  • a corrugated plate 40a having a bent material is fixed to the back surface of the heat radiating portion 15c, and a large surface area is provided in a honeycomb sandwich structure in which a back plate 40b is joined to the outside of the corrugated plate 40a.
  • the heat exchange member is fixed to the f surface of the heat radiating portion 15c of the heat transfer plate 15 and is provided to extend in front of and behind the heat transfer plate 15, and this extended portion is provided on the outer surface of the gas cylinder 9. May be directly contacted.
  • the corrugated sheet 40a is formed by processing a 0.2 mm thick aluminum plate into a corrugated shape with a wave number of 8 and a height of 5 mm, which is formed into a width of 55 mm and a length of 130 thighs.
  • the back plate 40b is made of a 0.2 mm thick aluminum plate having a width of 55 mm and a length of 130 mm.
  • the gas appliance 1 provided with the heat assisting device provided with the heat transfer plate 15 and the heat exchange member 40 as described above, the gas cylinder 9 filled with the liquefied gas is set, and the initial thermal power is reduced to 260,000. After setting to kcal / hr and igniting and burning, use the gas to exhaust The results of a combustion experiment (Experimental Example 2 described later) in which the change in thermal power was measured are shown by short broken lines G in FIGS. 17 to 19 1.
  • the heat exchange member is fixed to the heat transfer plate, and the force constituting the vaporization assist device is provided.
  • the heat exchange member is provided so as to be in contact with the gas cylinder. May be configured so that heat transfer can be performed by connecting the end portions.
  • the heat exchange member is provided in the form of a honeycomb sandwich consisting of a top plate, a corrugated plate and a ⁇ plate, so that the top plate supports the gas cylinder and makes thermal contact with it. What is necessary is just to comprise by connecting the edge part of the heat radiation side thermally. This relationship between the heat transfer plate and the heat exchange member can be similarly configured in sixth to tenth embodiments to be described later.
  • FIG. 9 shows another example of the heat exchange member with respect to the previous example.
  • the heat exchanging member 43 of this example includes a honeycomb structure having a surface outer shell 43a formed by extruding aluminum (alloy) or the like and a honeycomb portion 43b having a large number of holes therein. It is fixed to the back surface of the heat radiating portion 15c as in the previous example.
  • the heat exchange member 43 has a high heat exchange property with the outside air due to a material having a high heat conductivity and a structure having a large area, and supplies the heat absorbed from the outside air to assist in the vaporization. Excess heat is released to the outside to prevent the gas cylinder temperature from rising abnormally.
  • the other configuration is the same as that of the fifth embodiment.
  • the vaporization assisting device of this example is shown in FIG. 10 and shows another example of the heat exchange member with respect to the fifth embodiment.
  • the heat exchanging member 45 of this example is formed by extruding aluminum (alloy) or the like, and has an arc-shaped surface plate 45a fixed to the heat transfer plate 15 and a plate-shaped member formed in parallel to the lower surface.
  • the fin structure formed by the fin portion 45b is similarly fixed to the back surface of the heat transfer plate.
  • Others are configured similarly to the fifth embodiment and have similar functions.
  • FIG. 11 The vaporization assisting device of this example is shown in FIG. 11 and shows another example of the fin structure of the heat exchange member with respect to the fifth embodiment.
  • the fin structure of the heat exchange member 47 of the present embodiment includes an arc-shaped top plate 47a fixed to the back surface of the heat transfer plate 15 and a fin portion 47b having a T-shaped cross section projecting downward. It is formed.
  • the other configuration is the same as that of the fifth embodiment and has the same operation.
  • the vaporization assisting device of this example is shown in FIG. 12 and shows another example of the heat exchange member with respect to the fifth embodiment.
  • the heat exchange member 49 of the present example is formed by bonding a corrugated body 49a having a large surface area by bending a gold foil such as an aluminum foil into a triangular wave shape and fixing the corrugated body 49a to the back surface of the heat transfer plate 15. is there.
  • Other configurations are the same as those of the fifth embodiment and have the same functions.
  • the vaporization assisting device of this example is shown in Fig. 13 and shows another example in which the shape of the heat exchange member is different from the ninth embodiment.
  • the heat exchange member 51 of the present embodiment is formed by fixing a corrugated body 51a having a large surface area by bending a metal foil such as an aluminum foil into a pulse wave shape, on the back surface of the heat transfer plate.
  • Other configurations are the same as those of the fifth embodiment and have the same functions.
  • FIGS. 14 to 16 show the results of the comparative examples in which only the heat transfer plate was used, only the heat storage material was used, and the heat transfer plate and the heating member were not used.
  • Fig. 14 shows the amount of liquefied gas filled in the gas cylinder at the start of combustion is 250 g (full amount).
  • Fig. 15 shows the case where the filling amount is 125 g. In this case, the amount is 60 g.
  • the present invention 3 is indicated by a dashed-dotted line C representing a heat member.
  • a comparative example 1 indicated by a solid line D using only a heat transfer plate
  • a comparative example 2 indicated by a dotted line E using only a heating member made of polyethylene glycol
  • a long broken line F including neither a heat transfer plate nor a heat storage member.
  • the flame is shortened on the way as described above, and if the combustion is interrupted, the liquefied gas will remain in the gas cylinder. Furthermore, as shown in Fig. 16, when the charge a in the initial stage of combustion decreases, thermal equilibrium cannot be obtained with the heat transfer plate alone, and the thermal power rapidly decreases.
  • the heat storage member In the characteristics of the heat storage member, heat is supplied from the heat storage material promptly to the temperature drop of the gas cylinder and liquefied gas at the beginning of combustion, but the heat transfer is close to the contact surface of the heat storage member with the gas cylinder. The heat is transferred from the heat storage member to the contact area. The heat transfer due to heat conduction and convection from inside the heat storage member cannot follow the cooling of the gas cylinder and is delayed, and the temperature of the gas cylinder gradually decreases. Compared with the heat transfer plate of Comparative Example 1, the decrease in thermal power at the beginning of combustion is greater in the heat transfer plate of Comparative Example 1, and after a certain amount of combustion time has elapsed, it reverses and the heat power of the heat material decreases. I do. When sodium sulfate 10 hydrate was used as the heat storage material, although not shown, the tendency of the decrease in thermal power was similar to that of polyethylene glycol in Comparative Example 2. Shows the property that it is smaller than polyethylene glycol.
  • the liquid heat storage material is polyethylene glycol as a latent heat storage material, water as a sensible heat storage material, and water. Almost the same results were obtained with paper clay as a solid heat storage material.
  • the amount of water used is small because it is used in combination with the heat transfer plate, but when water is reduced to 25 mL.
  • the starting charge of combustion is reduced to 60 g, the decrease in thermal power in the initial stage of combustion increases slightly, In another experiment, it was confirmed that the liquefied gas could maintain a sufficient heating power.
  • the gas appliance 1 was burned in a normal temperature atmosphere, and when the environmental temperature was low, for example, 1 ° C or less, polyethylene glycol as a latent heat storage material solidified. In this case, the latent heat cannot be used, and the supply of heat using sensible heat suppresses the temperature drop of the gas cylinder.
  • the heat transfer plate and the heat storage member are used in combination, if the ambient temperature is high and the heat transfer plate excessively supplies heat to the gas cylinder, the heat transfer from the heat transfer plate will be By contacting both, it is performed by both, preventing the gas cylinder from overheating. From this point, even in the design of the heat transfer plate, the heat transfer amount can be increased as compared with the case of the heat transfer plate alone, and the performance guarantee at the low temperature side becomes easier.
  • FIGS. 17 to 19 show the results of the comparative example without the heat transfer plate and the heat exchange member when only the plate is used.
  • Fig. 17 shows the amount of liquefied gas filled in the gas cylinder at the start of combustion is 250 g (full amount).
  • Fig. 18 shows the case where the amount is 125 g. In this case, the amount is 60 g.
  • the product of the present invention is the present invention 4 indicated by a short broken line G provided with the heat transfer plate and the heat exchange member in the fifth embodiment.
  • Comparative examples are Comparative Example 1 indicated by a solid line D using only a heat transfer plate, and Comparative Example 3 indicated by a long broken line F having neither a heat transfer plate nor a heat exchange member.
  • Comparative Example 1 (Curve D) using only the heat transfer plate and Comparative Example 3 (Curve F) having nothing were compared with the results of Experimental Example 1 (FIGS. 14 to 16).
  • the time required to extinguish the fire is shortened due to the high heat setting, and the initial decrease in the thermal power is sharply accompanied by the dog with the latent heat of vaporization, but the overall tendency is similar. Is shown.
  • Experimental Example 1 the configuration of the present invention 1, in a state of mounting only removed heat transfer plate heat storage member, the front 0 performs combustion under the same conditions as himself first 4 figures, the heat transfer plate burner It dissipates heat during the heat transfer process, has a temperature gradient to the heat radiating section, and requires about 6 to 7 minutes to reach the equilibrium temperature.
  • FIG. 20 shows the progress of the combustion time since the start of combustion and the temperature change of the heat transfer plate.
  • the measurement point of the heat transfer plate temperature is transmitted from the heat receiving unit 15a in Fig. 3 ⁇ . This is the position where the heat distance is 140, which is slightly before the heat radiating part 15c.
  • FIG. 21 shows the heat transfer plate temperature at each point when the combustion time has elapsed for 45 minutes. According to this, the temperature of the heat transfer plate suddenly rises from the start of combustion and stabilizes after 7 minutes, and the temperature of each part of the heat transfer plate is radiated to the outside during the heat transfer process from the heat receiving part and varies according to the distance. It is falling.
  • Fig. 22 shows the amount of heat transferred to each part of the heat transfer plate based on the temperature measurement as described above.c From the results of Fig. 14 above, the actual amount of combustion heat is about 200 Okcal / hr. The amount of latent heat of vaporization of the liquefied gas required for this combustion is about 14.5 kcal / hr, whereas according to FIG. 22, according to FIG. 22, the radiating portion 15c of the heat transfer plate (heat transfer distance 1 The amount of heat passing through (50 to 200 mm), that is, the amount of heat released, is 3.5 to 4 kcal / hr, and the supply ratio is about 24 to 28%.
  • the problem with the heat supply by the heat transfer plate is that, as shown in Fig. 20, the time from the start of combustion until the temperature of the heat transfer plate reaches an equilibrium state (about 7 minutes). If there is no heat supply to the gas cylinder during this time, the temperature of the liquefied gas will drop sharply. However, in this region, heat is supplied by the heat storage member or heat exchange member and the temperature drops sharply. Suppress.
  • the amount of heat supplied by the heat storage member is determined by setting the heat capacity by the material of the heat storage material and ⁇ , the size of the contact area with the gas cylinder, and the heat transfer characteristics of the contact part It is provided so that a required amount of heat can be supplied in the initial stage until the heat transfer from the heat transfer plate becomes sufficient.
  • the setting of the amount of heat supplied by the heat exchange member is performed by setting the heat conductivity of the material and the heat exchange characteristics according to the shape and dimensions.
  • the vaporization assisting device in this example is shown in Fig. 23 to Fig. 26, and is an example in which a metal heat storage member is brought into direct contact with a gas cylinder.
  • the vaporization assisting device is provided with a metal heat storage member 55 as shown in FIG.
  • the heat storage member 55 is provided at the bottom of the cylinder storage section 4 and is die-cast with, for example, a zinc alloy (ZDC 2).
  • the contact surface 9a on the upper surface extends along the peripheral surface of the can body 9a of the gas cylinder 9.
  • the bottom surface 9b is a flat surface, and the length in the front-rear direction is slightly shorter than the length of the can body 9a of the gas cylinder 9.
  • the heat storage member 55 has an upper contact surface 9a in contact with the gas cylinder 9 to perform heat transfer, and a lower surface in contact with a heat transfer plate 56 described later.
  • the heat storage member 55 is formed to have a width of 50 mm, a length of 130, and a thickness of the thinnest portion at the center of 8. At this time, the volume is about 100 cm 3 and has a heat capacity of 100 O cal for a temperature change of 15 ° C.
  • the heat transfer plate 56 is shown in FIG. 26.
  • the heat transfer plate 56 is made of a plate member made of a material having high thermal conductivity such as an aluminum plate.
  • the heat transfer plate 56 connects the parner 7 and the heat storage member 55.
  • a flat middle portion 56b is provided along the bottom surface of the appliance body 2, and one end of the heat transfer plate 56 is connected to the burner 7. It stands upright and its upper end is bent horizontally, and the end heat receiving portion 56a is fixed to the bottom of the burner 7.
  • the heat receiving portion 56a in contact with a part of the burner 7 receives a part of the heat generated by the gas combustion, and transfers the heat to the heat storage member 55 in contact with the heat transfer portion 56c at the other end.
  • the heat transfer portion 56c of the heat transfer plate 56 extends flatly from the intermediate portion 55b to the bottom of the cylinder storage portion 4 through the lower portion of the partition plate 5, and is fixed to the bottom surface 55b of the heat storage member 55.
  • the heat transfer plate 56 As a specific example of the heat transfer plate 56, a pure aluminum plate having a thickness of 1.0 ram is used, and is formed in a width of 80 mm and a length of 200 band.
  • the temperature of the burner itself increases with the combustion of the gas in the burner 17, and the heat heats the heat receiving portion 56 a of the heat transfer plate 56, and this heat is transferred to the heat transfer plate 56.
  • the plate 56 is transmitted to the other end, and the temperature of the heat transfer section 56c rises Then, the gas cylinder 9 is heated via the heat storage member 55.
  • the gas cylinder 9 (gas cylinder can) is provided with a stem 9b of a valve mechanism at one end of a cylindrical can body 9a. By pushing the stem 9b, vaporized fuel gas can be supplied from the inside. 9 is set in the gas appliance 1 by engaging the notch 9d formed in the mounting force tub 9c with the claw (not shown) of the appliance main body 1 so that it is normally positioned upward. Things.
  • the liquefied gas is supplied with the supply of the vaporized gas from the gas cylinder 9.
  • the temperature of the internal liquefied gas decreases due to the latent heat of vaporization, but heat is supplied from the heat storage member 55 to the gas cylinder 9 in accordance with the temperature difference with the heat storage member 55.
  • the heat transfer from the heat storage member 55 to the gas cylinder 9 is made of a metal having high heat conductivity, so that the internal heat is also supplied quickly and well, and the gas temperature in the early stage of ignition is sharp.
  • the remaining amount of liquefied gas is small, the temperature is prevented from dropping rapidly, and the vaporization of liquefied gas is promoted to continue burning at a high calorific value.
  • the heat storage member 55c is transferred from the heat transfer section 56c. Heat is supplied to the gas cylinder 9 via the liquefied gas, and a decrease in the temperature of the liquefied gas is suppressed. That is, in the initial stage of ignition, heat is mainly supplied from the heat storage member 55, and heat is supplied from the heat transfer plate 56 after a certain period of combustion ⁇ has elapsed.
  • the gas cylinder temperature is maintained at a certain temperature, and the gas pressure of the gas cylinder 9 is reduced.
  • a predetermined amount of gas can be supplied stably, and a rapid decrease in gas pressure and a decrease in the gas supply amount can be prevented.
  • the vaporization assisting device of this embodiment is shown in FIGS. 27 to 30 and is an example in which the end of the heat transfer plate is brought into direct contact with the gas cylinder 9.
  • the heat storage member 58 is a metal die similar to that of the first embodiment. It is a cast molded product, the bottom surface 58b is a flat surface, the upper half is composed of an arc-shaped contact surface 58a that can contact the can body 9a of the gas cylinder 9, and the other front half is formed concavely low and has a gas cylinder. 9 and a portion 58c that is not in contact with the heat transfer plate 59 described later.
  • a heat transfer plate 59 is shown in FIG. 30.
  • One end of the heat transfer plate 59 is formed in a heat receiving portion 59a similar to that of the first embodiment, and is fixed to the burner 7, and the heat transfer plate 59 is bonded from the intermediate portion 59b.
  • the heat transfer portion 59c at the other end extending to the storage compartment 4 is formed on an arc surface along the can body 9a of the gas cylinder 9, and is configured to be able to contact the gas cylinder 9.
  • the heat transfer portion 59c is provided at a position corresponding to the concave portion 58c of the heat storage member 58, and is installed in non-contact with the heat storage member 58.
  • the heat storage member 58 and the heat transfer plate 59 are simultaneously in contact with the peripheral surface of the gas cylinder 9 to directly supply heat, and the initial ignition is performed.
  • the temperature of the gas cylinder 9 decreases, heat is quickly supplied from the heat storage member 58 through the contact surface 58a, and the heat conductivity is high.
  • the gas cylinder 9 is heated by the movement.
  • the heat receiving portion 59a of the heat transfer plate 59 is heated by the combustion heat of the burner 7, and is directly transferred to the gas cylinder 9 in contact with the heat transfer portion 59c at the other end.
  • the heat transfer portion 59 c of the heat transfer plate 59 reduces the amount of heat transmitted from the burner portion without being in contact with the heat storage member 58 and being supplied to the heat storage member 58 and radiated to the atmosphere as it is. Used efficiently for heating. Also in this example, in a normal use environment, the vaporization assisting effect in the continuous combustion by the burner 7 can be obtained almost in the same manner as in the eleventh embodiment.
  • the vaporization assisting device of this example is shown in FIGS. 31 to 33, and is an example in which the end of the heat transfer plate is brought into direct contact with the gas cylinder 9.
  • the heat storage member 61 is a gold-bend die-cast molded product similar to that of the first embodiment, the bottom surface 61b is a flat surface, and the upper half is a gas cylinder 9 in the lateral half and a gas cylinder 9 described later. It is formed in a concave portion 61 c that does not contact the heat transfer plate 62, and the other half is formed as an arc-shaped contact surface 61 a that can contact the can body 9 a of the gas cylinder 9.
  • the heat transfer plate 62 is shown in FIG. 33.
  • the heat transfer plate 62 has a negative end similar to that of the first embodiment.
  • the heat transfer portion 62c is formed on the heat receiving portion 62a of the gas cylinder 9 and fixed to the burner 7, and the heat transfer portion 62c at the other end extending from the intermediate portion 62b to the cylinder storage portion 4 is formed on an arc surface along the can body 9a of the gas cylinder 9.
  • its shape is formed in the front-rear direction, but its length in the arc direction is short, and it is cut off at the substantially end, and the area in contact with the gas cylinder 9 is the transfer in the first and second projection forms.
  • the area is almost the same as the area of the heating part 59c.
  • the heat transfer section 62c is provided at a position corresponding to the recess 6k of the heat storage member 61, and is installed in a non-contact manner with the heat storage member 61.
  • the heat storage member 61 and the heat transfer plate 62 simultaneously contact the peripheral surface of the gas cylinder 9 so that heat is directly supplied, and the heat is supplied directly in the early stage of ignition.
  • the temperature of the gas cylinder 9 drops, heat is quickly supplied from the heat storage member 61 via the contact surface 61a, and the heat conductivity is high, so that heat is transferred even from the part not in contact with the gas cylinder 9.
  • the heat receiving portion 62a of the heat transfer plate 62 is heated by the combustion heat of the burner 7, and is directly transferred to the gas cylinder 9 which contacts the heat transfer portion 62c at the other end.
  • the heat transfer portion 62 c of the heat transfer plate 62 reduces heat that is transmitted from the wrench portion without being in contact with the heat storage member 61 and supplied to the heat storage member 61 and radiated to the atmosphere as it is. Used efficiently. Also in this example, in a normal use environment, the vaporization assisting effect in the continuous combustion in the burner 7 can be obtained substantially in the same manner as in the first and second embodiments.
  • FIG. 34 shows a cutaway view of a main part of a gas cylinder storage unit
  • FIG. 35 shows a perspective view of a heat storage member.
  • the basic structure of the heat storage member 55 and the heat transfer plate 56 is the same as that of the first embodiment, and the heat storage member 55 has a vertical groove 55c formed on a contact surface 55a on the upper surface thereof.
  • the vertical length 55c is concealed corresponding to the position of the vertical welded portion 9e on the can body 9a of the gas cylinder 9.
  • the shape and position of the welded portion 9e of the can body 9a in the gas cylinder 9 are not specified, but the gas cylinder 9 of each company at present has a protrusion of 1.0 mm wide and 0.2 mm in length.
  • the position is located within a range of ⁇ 10 images around a position 17 ° from the diagonal of the notch 9d of the mounting cup 9c.
  • the vertical length 55c has a width of 20 mm and a depth of 0.5 mm centering on a position 17 ° from the contact center of the gas cylinder 9.
  • the can body welding portion 9e of the gas cylinder 9 is located in the vertical groove 55c of the contact hole 55a of the heat storage member 55.
  • the protrusion creates a gap around it, but escapes into the vertical groove 55c, the peripheral surface of the can body 9a comes into close contact with the contact surface 61a of the heat storage member 61, and the amount of heat transfer can be secured .
  • the area of the contact surface 55a of the heat storage member 55 is smaller than that of the first embodiment, but the heat transfer can be performed efficiently due to the low lift of the welded portion 9e, and the good vaporization can be achieved. An assisting effect is obtained.
  • the vaporization assisting device of this example is shown in FIGS. 36 and 37 and has a structure related to the 14th embodiment.
  • the basic structure of the heat storage member 55 and the heat transfer plate 56 of the present example is the same as that of the first embodiment, and a plurality of vertical lengths 55d are formed on the contact surface 55a of the heat storage member 55.
  • the vertical grooves 55d are, for example, 1.5 recitals in width, 0.5 mm in depth, and formed every 3.5 recitations.
  • the welding portion 9e is located in the vertical groove 55d even for the gas cylinder 9 in which the welding portion 9e of the can body 9a is provided at a position different from the normal position, and the heat storage member 55
  • the contact between the contact surface 55a of the gas cylinder 9 and the peripheral surface of the can 9a of the gas cylinder 9 is enhanced to improve the heat transfer effect.
  • the vaporization assisting device of this example is shown in FIGS. 38 and 39, and is another example of the welding portion 9e of the gas cylinder 9.
  • the heat storage member 65 of this example is made of a metal flexible container 65a, for example, a mesh mesh of stainless steel (mesh 350), a granular metal bag 65b (eg, granules of mesh 144 to 280). (Bronze).
  • the heat transfer plate 56 is formed in the same manner as in the previous example.
  • the heat storage member 65 is configured by filling 74 g of granular bronze in a stainless mesh bag having a width of 50 thighs, a length of 170 mm, and a height of 10 strokes. .
  • the heat storage member 65 is deformable, and when the gas cylinder 9 is set on the heat storage member 65, the protruding welded portion 9e is moved by the internal granular metal 65b and becomes flexible.
  • the container 65a deforms and escapes, and the surrounding can body 9a and the contact member of the heating member 65 come into close contact with each other.
  • a metal foil or the like can be used in addition to the reticulated metal, and a granular metal or a powdered metal can be filled inside.
  • a gas cylinder filled with liquefied butane gas (normal butane 70%, isobutane 30%) is used by using a gas appliance 1 having a heat storage member 55 and a heat transfer plate 56 as shown in the first embodiment.
  • Set 9 Flu types of 250 g, 125 g, 60 g, and 30 g
  • the initial heating power to 250 Okcal / hr
  • the results of a combustion experiment (outside air temperature: 16 to 17 ° C) in which the change in thermal power until the natural fire was extinguished using all of the gas are shown by the solid line in Fig. 40 and the filling fi of each.
  • the measurement results using only the heat transfer plate are also indicated by broken lines.
  • This heat transfer plate like the heat transfer plate in the first and second embodiments, has a curved end at the other end and directly contacts the gas cylinder 9 to transfer a part of the combustion heat to heat the gas cylinder. Structure.
  • Fig. 41 shows the result of determining the gas consumption rate by the ratio. Since the measurement is based on the theoretical value, the measurement consumption rate does not reach 100%, but practically it is possible to use up gas if it is 75% or more, and if it is less than 75%, it is possible to use up gas.
  • Fig. 41 shows that if only the heat transfer plate is used and the initial gas II is about 190 g or less, the above consumption rate will drop to 75% or less and gas will not be used up.
  • the gas consumption can be achieved regardless of the initial gas ⁇ without the consumption rate being less than 75%.
  • a gas cylinder 9 filled with 60 g of liquefied gas was set, and an initial state was set.
  • Fig. 42 shows the results of measuring the temperature change (outside air temperature of 22 ° C) at the bottom of the can body 9a of the gas cylinder 9 by setting the thermal power to 250 O kcal / hr and performing ignition combustion.
  • the first embodiment, the first comparative example in which only the above-described heat transfer plate is provided, and the second comparative example of the heat transfer plate contact portion of the gas cylinder are shown.
  • the temperature change during combustion was measured in the same way on a lower surface of a 0.2-mm-thick vinyl chloride bag with water as a heat storage material attached by hand.
  • Fig. 42 when only the heat transfer plate is used, there is no heat supply at the beginning of combustion, so the liquefied gas charge S in the gas cylinder 9 is as small as 60 g, so the heat of the liquefied gas is small.
  • the capacity is small, the temperature rapidly decreases in response to the vaporization of the liquefied gas accompanying the high calorific value combustion, and the heat supply by the heat transfer increases to reach an equilibrium state after 6-7 minutes. The temperature is low and the thermal power decreases.
  • the use of the metal heat storage member allows the heat storage member to rapidly heat from the gas cylinder and the heat storage member according to the temperature difference between the gas cylinder and the heat storage member due to the temperature decrease of the gas cylinder from the start of combustion.
  • the gas is supplied, and the temperature of the gas cylinder decreases slowly, which increases the amount of heat of combustion and increases the heat transfer ⁇ by the heat transfer plate. Temperature is low and is maintained at a high temperature.
  • the latent heat of vaporization of the liquefied gas in the gas cylinder is 300 cal per minute.
  • the thermal power By supplying heat to the gas cylinder from the outside, the combustion is maintained by the thermal power.However, at the time of the collision, the necessary heat M cannot be completely supplied by the heat storage member and the ripening plate.
  • the gas temperature decreases, and the gas- ⁇ equilibrium pressure also decreases.
  • Fig. 43 shows the change in the amount of heating heat of the metal heat storage member, the heat storage material by water, and the heat transfer plate with respect to the combustion time in the above experiment.
  • Fig. 44 shows the heating of these materials from the latent heat of vaporization.
  • Fig. 45 shows the change in the amount of cooling heat of the gas cylinder with the calorific value subtracted.
  • Fig. 45 shows the combustion time for maintaining the thermal power in the above high calorific value combustion with respect to the initial gas amount of the gas cylinder. The combustion time when liquefied gas is burned is also shown as the thermal power maintenance limit line.
  • the liquefied gas in the gas cylinder has thermal stars, and the heat capacity differs depending on the amount of residual gas. Therefore, when the remaining gas is small, the heat capacity is small and cooling by vaporization latent heat is rapid. From this, according to Fig. 44, for example, when the gas remaining amount is 60 g, the thermal power maintenance time of 250 O kcal / hr only for the heat transfer plate is 4 minutes, and 1 25 g Is 18 minutes for, and 90 minutes for 250 g. Furthermore, according to Fig. 45, in the case of only the heat transfer plate, when the initial gas 3 ⁇ 4 is 250 g, there is no problem because the combustion time is longer than the thermal power maintenance limit line.
  • the heat storage material using water has a small amount of heat per unit time, but continues during the time of agriculture.
  • the heat storage material made of metal has a large amount of heat per unit time, and the heating time is short.
  • the heating amount in FIG. The invention according to the invention has a stable heating amount from the beginning of combustion, and the combination of the heat storage member made of water of the comparative example shown by the broken line shows that the peak value is high but the heating amount in the initial state is low. I have.
  • the temperature drop immediately after the start of combustion can be reduced, thereby increasing the continuous combustion maintaining time.
  • the cylinder temperature in the process of reaching the equilibrium state is less reduced, the amount of combustion heat is increased, and a high-level equilibrium state is obtained. Those show good characteristics.
  • the thermal power maintenance time in Fig. 45 exceeds the thermal power maintenance limit line, and it is possible to use up gas while maintaining high calorific value combustion even in the state where the initial gas amount is small. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

日月 細 書 高熱帚ガス器具における気化助勢装置 技術分野
本発明は、 ノルマルブタン、 イソブタンその他の液化ガスを収容してなるカセ ッ ト式ガスボンベがセッ ト可能な高熱量のガス器具における気化助勢装置に関す るものであり、 詳しくは、 カセッ ト式ガスボンベからのガスの供給を安定した火 力が得られるように継続して行うとともに、 ガスボンベ内に液化ガスが残留しな いように使い切れるようにするものである。
上記カセッ 卜式ガスボンベを用いたガス器具、 例えばカセッ ト式こんろは携帯 用調理器として広く利用されている。 このカセッ ト式こんろでは調理の際の熱容 量の高いものが要望されるとともに、 使い終わったガスボンベに液化ガスが残留 することは絰済的に好ましいことではない。 これらの要望を満たすことにより、 カセッ 卜式ガスボンベを使用するガス器具の利便さに加えて、 さらに普及が広が るものであり、 本発明はこれに対応するものである。
背景技術
カセッ ト式ガスこんろ、 ガスストーブ等のガス器具において、 その燃焼熱量が
1 8 0 O kcal/hr未満の低熱量ガス器具であれば、 バーナーへのガスボンベより のガス供給は常温の使用条件においては、 特に支障なく燃焼を継続することがで き、 ガスボンベ内の液化ガスも容易に使い切れる。
これに対し、 燃焼熱量が 1 8 0 O kcal/hr以上の高熱量ガス器具の場合、 バー ナ一への供給ガス量が堦えることでガスボンベ中の液化ガスの気化量は増大する t 液化ガスの気化 ^の増大により気化潜熱も増大し、 この気化潜熱がガスボンベの ボンべ缶と缶中の液化ガスの熱容量および周囲よりの供給熱量を上回ると、 ガス ボンべ中の液化ガスの温度は低下し、 これに伴い平衡ガス圧も低下することにな る。 この平衡ガス圧の低下によりガスボンベ中より必要とされる気化ガス量の供 給が得られなくなり、 バーナーでの燃焼火力が低下し、 ガス器具の使用に支障を 来すことになるとともに、 ガスボンベ内の液化ガスの使い切りが面倒となる。 すなわち、 ガスボンベの温度が低下することでガス供給が低減し火力が弱くな つた際に、 使用者はガスが無くなつたとしてガスボンベを交換しょうとするが、 このガスボンベを振ってみると液化ガスが残留しているのが分かり、 ガスボンベ 温度が室温に上昇すると再度ガスの供給が行えるが、 すぐに温度が低下してガス 供給 Sが低下することになり、 完全に使い切るのが煩雑となる。 また、 液化ガス が残っているのに良好な燃焼が得られないのは、 ガス器具またはガスボンベに欠 陥があるのではないかと使用者に思われて商品の信頼性を損なう恐れがある。 上記のような点から、 ガス器具においては、 ガスボンベ中に液化ガスが供給さ れている間は所定の高熱量で燃焼が行われ、 液化ガスを使い切ったときに急激に 火力が低下して消火するような特性で燃焼するのが理想的な使い切り状態となる。 上記点につき、 特開昭 5 5— 2 5 7 5 7 S公報等に見られるように、 伝熱板を 設置してバーナーの燃焼熱を利用してガスボンベを加熱するようにした構造が知 られている。 すなわち、 伝熱板の一部をバーナーの近傍に配置してその熱を受け、 他部をガス器具にセッ 卜されたガスボンベに接触するように設置し、 ガスボンベ 中の液化ガスの気化潜熱による液化ガス温度の低下を伝熱板による伝熱量によつ て抑制し、 気化助勢を行って供給ガス量を確保するとともに液化ガスが使い切れ るようにするものである。
しかし、 上記のような伝熱板の熱伝導による熱供給 Sをどの程度にするかの設 計が闲難である。 ガス器具が夏場に卨温域で用いられる場合は、 外気よりのガス ボンベへの熱供給が大きくなるのと、 伝熱板における熱伝導途中での熱放散が少 なくなるため、 伝熱板による熱供給が多 t、とガスボンベが過熱状態となって内圧 が異常上昇することになることから、 このような ^温条件においてもガスボンベ の温度が過熱状態とならないようにこの条件を基準にして伝熱板の設計を行わな ければならない。
一方、 上記のような条件で設計された伝熱板を取り付けたガス器具を冬場の低 温条件で使用すると、 伝熱板によるガスボンベへの熱供給が不足状態となり、 液 化ガスが気化する際の気化潜熱によりガスボンベの温度が低下し、 前述のように ガス供給量が低下してバーナーでの燃焼火力が不足する問題を有する。 さらに、 ガスボンベ中の液化ガス M (残量) が少ない場合には、 ガス供給に伴う気化潜熱 によってガスボンベ中の液化ガスの熱容量が少ないため、 液化ガス量が少ないほ ど温度低下が大きくなる。
従って、 バーナーの燃焼熱の一部を伝熱板により伝熱してガスボンベに熱を供 給して、 ガスボンベの温度低下を抑制する方法は、 ある特定条件下においてのみ 目的が達成されることになる (後述の第 1 4図〜第 1 6図参照) 。 つまり、 ガス 器具での燃焼を開始してから所定期間は伝熱板によるガスボンベへの熱供給は殆 どなく、 所定時問 (例えば 6 ~ 7分) 後に伝熱量が安定して得られるものであり、 通常のガス器具の使用においてはこの初期の時間で主たる高熱: 1使用が終了する 場合も多く、 この問にガスボンベ中の液化ガス残量が少ないときには急激な温度 低下を生じて火力低下もしくは液化ガスの使い切りが困難となる問題を冇する。 次に、 バーナーへのガス供給に伴う液化ガスの気化潜熱による冷却を防止する 他の方法として、 特開昭 5 4 - 1 2 3 7 2 6号公報等に兒られるように、 ガスボ ンべ中またはガスボンベに接して潜熱材による気化補助剤を設け、 気化潜熱でガ スボンべ温度が低下するのを潜熱材から発生する凝固熱の供給によって抑制する ことも考えられている。
この場合、 潜熱材から長時間安定して熱を供給することが困難な問題がある。 つまり、 燃焼熱呈が高くガス消費量の大きなガス器具では、 ガスボンベでのガス 気化量が大きいことから気化潜熱による液化ガスの冷却速度が速く、 潜熱材から 容器材料を通しての熱供給が初期において十分であっても、 その後の経過で潜熱 材自身の内部における熱伝導と対流が十分でない場合は、 内部の熱が接触部分を 通して十分に供給されなくなり、 潜熱材全体の熱容量としては不足しないのにガ スボンベへの伝熱量が不足してガスボンベの温度低下を生じて、 的とする気化 助勢効果が十分に発揮されない恐れがある。 特に、 ガスボンベの液化ガス残量が 低減した状態からの燃焼では、 温度低下が急速で、 上記現象が顕著となる。
さらに他のガスボンベの加熱方法としては、 実開昭 5 4 - 1 0 0 8 8 0号公報 等に見られるように、 ガスボンベに接して熱伝導板を配設し、 この熱伝導板は周 囲の大気との熱交換によって吸熱し、 温度が低下したガスボンベに熱を供給し、 その温度低下を抑制することも考えられている。
この場合、 熱伝導板による熱供給量は、 雰囲気温度に顕著に依存し、 長時間の 使用での安定した熱 0Ϊの供給に難がある。
ヒ記のように、 バーナーの燃焼熱を利用して伝熱板によってガスボンベに熱を 供給するようにしたものでは、 使用雰囲気が its温条件の場合でもガスボンベを過 熱状態とすることがないように伝熱量が過剰とならない範囲に規制される。 この ためバーナーへ点火してから伝熱板を通して伝熱板の各部温度が平衡に逹するま でに 6 〜 7分程度の時問を要し、 この問は伝熱板よりのガスボンベへの熟供給は 不足する (第 2 0図参照) 。 一方、 潜熱材を使用してガスボンベに熱を供給する ようにしたものでは、 ガスボンベへ潜熱材の顕熱および融解潜熱の供給により使 用初期には良好な熱供給が行える反面、 時問の使用では潜熱材内部からの熱移 動が低減してガスボンベの温度が低下する傾向となることが判明した (後述の第 1 4図〜第 1 6図参照) 。 また、 熱交換部材においても同様の傾向を有するもの と考えられる。
ところで、 ガス器具にガスボンベをセッ トして燃焼熱量を高火力 (例えば 2 5 0 O kcal/hr) に設定して燃焼を開始すると、 燃焼の経過とともにボンべ温度が 低下して火力も低減するものであり、 火力を維持するには最低 6 °C以上、 好まし くは 8 °C以上の温度に保持する必要がある。 火力を変更してもほぼ同様のボンべ 温度を必要とするが、 火力が低いと多少温度が低くなつても火力維持は可能であ る。 この点から、 現用のブタンガスを組成とするガスボンベで高火力での燃焼を 維持するためには、 ガスボンベの温度が上記温度以上に保持されることが必要で ある。
そこで本発明は、 燃焼熱の一部を伝熱してガスボンベに熱を供給する伝熱板と、 ガスボンベに接触して温度差に応じて熱を供給する蓄熱部材または熱交換部材の 熱供給特性に着目し、 使用温度雰囲 および使用初期から継続使用状態のいずれ においても良好な熱供給を行ってガスボンベ温度の低下を抑制して ¾化助勢を行 い、 火力低下を来さないとともにガスボンベ内の液化ガスを簡 に使い切れるよ うにした高熱 Sガス器具における気化助勢装置を提供せんとするものである。
発明の開示
前記課題を解決するため、 本究明の気化助勢装置は、 カセッ ト式ガスボンベを 交換 nj能にセッ 卜し気化ガスを燃焼するバーナーを備えた 熱最ガス器具に、 一 端を前記バーナーの近傍に配設し他端を前記ガスボンベに接触させて燃焼熱の一 部をガスボンベに供給して加熱する伝熱板を設けるとともに、 前記伝熱板とガス ボンベとの接触位置に、 蓄熱部材を上記伝熱板に接触させるか、 あるいは伝熱板 に接触すると同時にその一部がガスボンベと接触可能に配設したことを特徴とす るものである。
前記伝熱板と蓄熱部材との接触部分に、 蓄熱部材の伝熱板と接触する面以外の 面に接触するとともに伝熱板に接触する熱伝導部材を設けるのが好ましい。
前記蓄熱部材は、 容器内に液状蓄熱材を収容してなるもの、 この液状蓄熱材と しては、 融点が 4〜 1 4 °Cの潜熱蓄熱材を収容しその融解潜熱を利用するもの、 または、 水を収容しその顕熱を利用するもの、 さらに、 蓄熱部材を固形蓄熱材と してその顕熱を利用するものなどで構成する。
上記潜熱蓄熱材の融点を 4 ~ 1 4 °Cとするのは、 前記した通りガスボンベおよ び液化ガスの温度を維持し、 ガス器具の熱量を維持させるためである。 このため 潜熱蓄熱材の融点はガス器具の熱量に応じて設定使用することが必要である。 ま た、 このような潜熱蓄熱材においては冷却過程で過冷却現象を起こすことを考慮 して必要以上の融点のものを使用する。 例えば、 上記融点としては、 1 8 0 O kc al/hrの場合には必要温度 3 ~ 6 °Cに対して最低 4 °C、 2 2 0 O kcal/hrの場合 には必要温度 4〜7 °Cに対して最低 6 °C、 2 5 0 O kcal/hrの場合には必要温度 6 ~ 8 °Cに対して ¾低 8 °C程度を利用し、 融点の高温側は 1 4 °C程度のものの使 用が実用的である。
潜熱蓄熱材としてポリエチレングリコールを使用する場合には、 分子 aの異な るボリエチレングリコールを配合して、 融点を調整した混合液を収容するのが望 ましい。
上記潜熱を利用する蓄熱材は、 その使用温度範囲において凝固など 1次の相転 移に伴う熱放出を行う材料で構成され、 温度変化を生じないで熱放出が行われる c また、 顕熱を利用する蓄熱材は、 ヒ記のような凝固等の物質の状態を変えずに、 温度変化によって熱の放出を行うものである。
前記潜熱を利用する蓄熱材としては、 ポリエチレングリコールのほかに、 無機 塩類として、 硫酸ナトリウム ' 1 0水塩が使用可能である。 これに過冷却防止剤 として四ホウ酸ナトリウム · 1 0水塩を、 融点調整材として塩化ナトリウムを加 えたものを使用する。 例えば、 N a 2 S O . - 10 H 2 0 / N a C 1 /N a 2 B ., O v - 10 H , 〇を、 7 8 % : 2 0 % : 2 %に混合した塩では、 融点が 1 3 °Cであ る。
本発明の他の気化助勢装置は、 -端をバーナーの近傍に配設し他端をガスボン べに接触させて燃焼熱の一部をガスボンベに供給して加熱する伝熱板を設けると ともに、 前記伝熱板とガスボンベとの接触位置に、 外気との熱交換を行う熱交換 部材を上記伝熱板に接触させて配設したことを特徴とするものである。
上記熱交換部材は、 前記伝熱板とガスボンベとの接触位置で、 伝熱板と接触す るとともにガスボンベの一部と接触可能に配設するようにしてもよい。 この熱交 換部材は、 金属板または金属笵を折曲加工して伝熱板のガスボンベとの接触面の 反対面に固着してなるもの、 または、 ハニカムサンドイッチ構造に構成したもの、 フィン状の突起を有するもので構成可能である。
さらに、 本発明の他の気化助勢装置は、 空気との熱交換を行う熱交換部材をガ スボンベと接触可能に設けるとともに、 一端を前記バーナーの近傍に配設し他端 を前記熱交換部材に接触させて燃焼熱の一部を供給する伝熱板を設けたことを特 徴とするものである。
上記のような伝熱板と蓄熱部材を備えた気化助勢装置では、 ガス器具での高熱 量燃焼に応じてガスボンベより気化した燃料ガスが供給されると、 その気化潜熱 の吸熱により液化ガス温度が低下するが、 燃焼初期においては伝熱板による熱の 供給は少なく、 この初期段階では低下したガスボンベ温度より温度が高くなつた 蓄熱部材より温度差に基づき熱が供給され、 ガスボンベ温度の低下を抑制して気 化助勢を行い火力低下を阻止する。 その際、 熱伝導部材を備えたものでは、 この 熱伝導部材を介しても蓄熱部材より熱が供給され、 熱供給 、 熱供給速度が高ま り、 より高熱量燃焼および液化ガス残虽の低下した状態からの燃焼における気化 助勢が" J能となる。
また、 伝熱板と熱交換部材を ϋえた気化助勢装置では、 同様に^熱板による熱 供給が少ない燃焼初期においては、 熱交換部材より外気から吸熱した熱が供給さ れ、 ガスボンベ温度の低下を抑制して気化助勢を行い火力低下を Pfl止する。 この 熱交換部材によるものは、 外気温度とガスボンベとの温度差に応じて吸収した熱 を速やかに伝達し、 かつ温度差が低減すると伝熱量も低减し必要熱量以上に供給 されることがない。 特に、 熱交換部材を、 熱伝導性が良く表面積の大きい材料お よび構造に設けて熱交換性を高めると、 熱量供給速度が速く高熱量燃焼における 気化潜熱速度に対応でき、 より高熱量燃焼および液化ガス残量の低下した状態か らの燃焼における必要十分な気化助勢が行える。
燃焼がある程度継続すると、 伝熱板を通して所定 2の熱量が供給されてガスボ ンベが加熱され、 その他、 このガスボンベには周囲の雰囲気からの熱の供給、 お よび蓄熱部材または熱交換部材からの熱伝達による熱が供給されて、 これらの熱 供給と気化潜熱とが平衡状態となり、 安定した気化ガスの供給が行われて所定の 火力による燃焼が継続される。 特に燃焼が継続された状態では、 伝熱板による伝 熱量がほぼ一定となって安定した平衡状態が維持され、 消火時にはガスボンベ内 の液化ガスを使い切った状態となる。
なお、 蓄熱部材に潜熱蓄熱材を使用している場合には、 初期は液体状態であり、 液化ガスの気化潜熱に伴う吸熱により潜熱蓄熱材の比熱と量に応じて温度が降下 する。 この温度が潜熱蓄熱材の融点に達すると該蓄熱材は凝固を開始して凝固熱 を放出し蓄熱材全体が凝固するまで、 温度変化がなく熱が放出される。
また、 環境温度のヒ昇時には外部雰囲気からの熱供給が増大するとともに、 伝 熱板も途中の放熱 mが低減して、 ガスボンベに対する伝熱量が増大する傾向とな るが、 この伝熱板の端部はガスボンベに接触するとともに蓄熱部材または熱交換 部材にも接触していることで、 伝熱板による伝熱の -部は蓄熱部材に吸熱される 力 熱交換部材を経て外気に放熱されてガスボンベが過熱状態となることを防止 する。
次に、 本発明のさらに他の気化助勢装置は、 カセッ ト式ガスボンベを交換可能 にセッ 卜し気化ガスを燃焼するバーナーを備えた高熱量ガス器具に、 前記ガスボ ンべに一部を接触させて金属材料による蓄熱部材を設け、 燃焼開始初期状態にお いて前記蓄熱部材からガスボンベに熱を供給するとともに、 一端を前記バーナー の近傍に配設し他端をガスボンベとは非接触状態で前 ffi蓄熱部材に接触させて燃 焼熱の一部を供給する伝熱板を設けたことを特徴とするものである。 また本 ¾明の他の気化助勢装置は、 カセッ ト式ガスボンベを交換可能にセッ ト し気化ガスを燃焼するバーナーを備えた高熱量ガス器具に、 前記ガスボンベに一 部を接触させて金属材料による蓄熱部材を設け、 燃焼 (¾始初期状態において前記 蓄熱部材からガスボンベに熱を供給するとともに、 -端を前記バーナーの近傍に 配設し他端を前 己蓄熱部材とは非接触状態で該蓄熱部材と接触していない部位の ガスボンベに接触させて燃焼熱の一部を供給する伝熱板を設けたことを特徴とす るものである。
前記蓄熱部材をガスボンベ缶との接触面が缶胴形状に沿った円弧面とし、 この 接触面に缶胴の縦方向に形成された缶胴溶接部に相当する部分に縦溝を設けると、 ガスボンベの溶接部は縱溝内に位 gし、 その他の周囲のボンべ壁面は蓄熱部材と の接触面積が大きく、 蓄熱部材からガスボンベへの伝熱効率が良好で、 気化助勢 効果が所期の通り得られる。
同様に、 前記蓄熱部材を可撓性容器に粒状金属あるいは粉体状金属を収容して なり、 この蓄熱部材をガスボンベ缶との接触面が ffi胴形状に沿つた円弧面となる ように設置し、 缶胴溶接部を含んで接触することで、 良好な接触面積の確保によ つて十分な気化助勢効果が得られる。
上記のような金属材料による蓄熱部材と伝熱板を備えた気化助勢装置では、 前 述のように、 着火してから 6〜 7分経過した後には伝熱板よりの熱供給によりガ スボンベの温度低下が抑制され気化助勢が行われるが、 それ以前のパーナ-一への 着火初期状態においては、 ガスボンベに接する蓄熱部材より両者の温度差に応じ て熱供給することで、 ガスボンベの温度低下を抑制するものであり、 液化ガスの 気化助勢を行って高熱量燃焼を継続することになる。 この場合、 蓄熱部材として は、 蓄熱量が大きいことも必要であるが、 崈熱部材よりのガスボンベの冷却速度 に対応した急速な熱供給が重要な要素となる。 この点、 熱伝導性の卨ぃ金屈で蓄 熱部材を構成していることで、 ガスボンベの温度低下に速やかに対応して蓄熱部 材の内部からも熱移動が行われ、 伝熱板による熱供給が十分に行われるまでのガ スボンベの温度低下を有効に抑制できる。
また、 伝熱板がガスボンベと莕熱部材とに冋時に接触していないものでは、 バ ーナ一の燃焼熱の一部が伝熱した際に、 その熱は直接ガスボンベにのみ供給され るか、 蓄熱部材を介してガスボンベに供給されるもので、 ガスボンベに供給され るべき熱が蓄熱部材に伝わってその外面から外気に放出されることが低减でき、 有効にガスボンベの加熱に利用できるものであり、 ヌ ί化助勢が良好に行える。 さらに、 ガスボンベには外周に缶胴溶接部が突出しているものであり、 この溶 接部によって蓄熱部材との接触面積が低減すると蓄熱部材からの伝熱量も低減す ることになつて、 良好な気化助勢機能が確保できないことになるが、 この溶接突 部を吸収してガスボンベの周面に対する接触面積を確保して、 伝熱効率が低下す るのを改善している。
上記のような本発明によれば、 燃焼初期の伝熱板による熱供給が不十分なとき には蓄熱部材または熱交換部材より速やかに熱供給を行って温度低下を抑制し、 その後は伝熱板による熱供給を行って気化助勢が得られ、 ガスボンベの液化ガス 残量が低減しても高熱量での燃焼が継続でき、 ガスボンベが交換される際にはそ の内部の液化ガスを全量使い切ることができる。
図面の簡単な説明
第 1図は、 本発明の第 1の実施の形態を示すガス器具の平面図、
第 2図は、 第 1図の概略断面図、
第 3図は、 第 1図の伝熱板の斜視図、
第 4図は、 第 2の実施の形態を示すガス器具の概略断面図、
第 5図は、 第 3の実施の形態を示すガス器具の概略断面図、
第 6図は、 第 4の実施の形態を示すガス器具の概略断面図、
第 7図は、 第 5の実施の形態を示すガス器具の概略断面図、
第 8図は、 第 7図の X— X線に沿う要部のみの概略断面図、
第 9図は、 第 6の実施の形態を示すガス器具の要部概略断面図、
第 1 0図は、 第 7の実施の形態を示すガス器具の要部概略断面図、
第 1 1図は、 第 8の実施の形態を示すガス器具の要部概略断面図、
第 1 2図は、 第 9の実施の形態を示すガス器具の要部概略断面図、
第 1 3図は、 第 1 0の実施の形態を示すガス器具の要部概略断面図、 第 1 4図は、 第 1の実験例における燃焼開始時の液化ガス量が 2 5 0 gでの燃 焼時問に対する火力変化の測定結果を示すグラフ、 第 1 5図は、 1の実験例における燃焼!] 3始時の液化ガス量が 1 2 5 gでの燃 焼時問に対する火力変化の測定結果を示すグラフ、
第 1 6図は、 第 1の実験例における燃焼開始時の液化ガス が 6 O gでの燃焼 時間に対する火力変化の測定結果を示すグラフ、
第 1 7図は、 第 2の実験例における燃焼開始時の液化ガス Sが 2 5 0 gでの燃 焼時問に対する火力変化の測定結果を示すグラフ、
第 1 8図は、 第 2の実験例における燃焼開始時の液化ガス Sが 1 2 5 gでの燃 焼時間に対する火力変化の測定結果を示すグラフ、
第 1 9は、 第 2の実験例における燃焼開始時の液化ガス量が 6 0 gでの燃焼時 間に対する火力変化の測定結柒を示すグラフ、
第 2 0図は、 第 3の実験例の燃焼時問に対する伝熱板温度の測定結果を示すグ ラフ、
第 2 1図は、 第 3の実験例の燃焼における伝熱板各部の温度の測定結果を示す グラフ、
第 2 2図は、 第 3の実験例による伝熱板の各部位の通過熱量を求めた結果を示 すグラフ、
第 2 3図は、 本発明の第 1 1の実施の形態を示すガス器具の概略断面図、 第 2 4図は、 第 2 3図のガスボンベ収納部分の要部側面図、
第 2 5図は、 第 2 3図の蓄熱部材の斜視図、
第 2 6図は、 第 2 3図の伝熱板の斜視図、
第 2 7図は、 第 1 2の実施の形態を示すガス器具の概略断面図、
第 2 8図は、 第 2 7図のガスボンベ収納部分の要部側面図、
第 2 9図は、 第 2 7冈の蓄熱部材の斜視図、
第 3 0図は、 第 2 7図の伝熱板の斜視図、
第 3 1図は、 第 1 3の実施の形態を示すガス器具の概略断面図、
第 3 2図は、 第 3 1図の蓄熱部材の斜視図、
第 3 3図は、 第 3 1図の伝熱板の斜視図、
第 3 4図は、 第 1 4の実施の形態を示すガス器具の要部断面図、
第 3 5図は、 第 3 4図の蓄熱部材の斜視図、 第 3 6図は、 ¾ 1 5の実施の形態を示すガス器具の要部断面図、
第 3 7図は、 第 3 6図の蓄熱部材の斜視図、
第 3 8図は、 第 1 6の実施の形態を示すガス器具の要部断面図、
第 3 9図は、 第 3 8図の蓄熱部材の斜視図、
第 4 0図は、 第 4の実験例における燃焼時問に対する火力変化の測定結果を示 すグラフ、
第 4 1図は、 第 4の実験例におけるガス消費率と初期ガス量との関係を求めた 結果を示すグラフ、
第 4 2図は、 第 5の実験例における燃焼時間に対するガスボンベ温度を求めた 結果を示すグラフ、
第 4 3図は、 第 5の実験例における蓄熱部材または伝熱板による加熱 ¾を求め たグラフ、
第 4 4図は、 第 5の実験例における燃焼時間に対する全体としての冷却熱量と 燃焼維持特性との関係を求めたグラフ、
第 4 5図は、 第 5の実験例における初期ガス gと火力維持燃焼時間との関係を 示すグラフである。
発明を実方包するための最良の形態 以下、 本発明の各実施の形態における気化助勢装;!を備えた高熱 ΰガス器具並 びにその効果を確認した実験例を図面に沿って説明する。
く第 1の実施の形態 >
第 1図は本例のガス器具を示す平面図、 第 2図は断面図、 第 3図は伝熱板の斜 視図である。
本例のガス器具 1 (簡易コン口) は、 器具本体 2が燃焼部 3とボンべ収納部 4 とに仕切り板 5によって区画され、 燃焼部 3の中央燃料ガスを燃焼するバーナー 7が配置され、 該パーナ一 7は混合管 8によって器具本体 2の底面に同着されて いる。 一方、 カセッ ト式ガスボンベ 9をセッ トする前記ボンべ収納部 4には開閉 可能なカバー 11が設けられるとともに、 一端部にはガバナ装置 12が設置されてい る。 このガバナ装置 12は、 セッ トされたガスボンベ 9のガス供給部と連結して、 そのステムを押し込んでガスボンベ 9より気化ガスを受け、 この気化ガスをガバ ナ機構によって調圧し所定圧力としたものを、 コック 13の開閉作動に応じた流量 で前記混合笆 8に送給して空気と混合し、 バーナー 7の火口から噴出するように 設けられている。
そして、 気化助勢装置としては、 まず、 第 3図に示すような伝熱板 15を備え、 この伝熱板 15はアルミニウム板等の熱伝導率の高い材料による板部材で構成され る。 該伝熱板 15は前記バーナー 7とボンべ収納部 4とを連結するものであって、 平坦状の中間部 15b が前記器具本体 2の底面に沿って設けられ、 その一端部がバ ーナー 7の近傍で起立して上端が水平に屈曲してなり、 先端受熱部 15a がバ一ナ —7の底部に固着されている。 このバーナー 7の一部に接触した受熱部 15a がガ ス燃焼による熱量の一部を受け取り、 他端の放熱部 15c に接触するガスボンベ 9 に伝熱する。 この伝熱板 15の放熱部 15c は、 中問部 15b から起き上がって仕切り 板 5の下部を通ってボンべ収納部 4内に延び、 ガスボンベ 9の円筒状の周面に沿 う樋状に形成されている。 この放熱部 15c にはガスボンベ 9が載置され、 ガスボ ンべ 9の容器壁面と直接接触し、 バーナー 7から受け取った熱量をガスボンベ 9 の容器壁を通じ、 液化ガスに伝えるようになつている。
具体例としては、 伝熱板 15として、 厚さが 0 . 8誦の純アルミニウム板を使用 し、 幅 8 0腿、 長さ 2 0 5腿に形成してなる。 この伝熱板 15は、 前記バーナー 7 でのガスの燃焼に伴ってバーナー自身の温度が高くなり、 その熱で伝熱板 15の受 熱部 15a が加熱され、 この熱が伝熱板 15を他端部側に伝達し、 放熱部 15c の温度 が上昇して、 ガスボンベ 9を加熱する。
なお、 第 3図において、 バーナー側の受熱部 15a からの寸法記入は、 後述の第 2 1図および第 2 2図での測定における伝熱距離を示すものである。
また、 ボンべ収納部 4の底部における前記伝熱板 15の放熱部 15c の下方には、 蓄熱部材 20が配設され、 さらにその下方には熱伝導部材 24が設けられている。 こ の蓄熱部材 20は液状蓄熱材 21を包装材 22に収容してなるものであり、 液状蓄熱材 21としては、 凝固点範囲が 4〜8 °Cのポリエチレングリコール # 4 0 0と、 凝固 点範囲が 1 5〜2 5 °Cのポリエチレングリコール # 6 0 0とを 6 : 4の割合で配 合し、 融点が約 1 0 °Cとなるように調整した潜熱蓄熱材料を使用する。
この配合比率の変化により、 凝固温度特性を任意に設定できるとともに、 他の 潜熱蓄熱材を選択使用することで、 各種熱特性の異なる潜熱蓄熱材を構成するこ とが可能である。
上記蓄熱材 21を例えば 1 0 O mLの :、 厚さ 0 . 2卿の軟質塩化ビニールフィル ムで幅 7 0 mm、 良さ 1 3 0誦の形状に形成した袋状包装材による容器 22の内部に 封入して、 蓄熱部材 20を得た。 この崈熱部材 20を、 前記伝熱板 15の放熱部 15c の 下面に接触するとともに、 伝熱板 15の前後に延びてガスボンベ 9に直接接触する ように配設し、 さらに蓄熱部材 20と伝熱板 15との熱伝達を良好に保っため、 蓄熱 部材 20下部と伝熱板 15の一部とを、 厚さ 5 0〃m、 幅 8 0 mm、 長さ 1 0 0薩のァ ルミ箔で構成された熱伝導部材 24で覆ってなる。
本例のような構造によれば、 ガスボンベ 9をボンべ収納部 4にセッ 卜してバ一 ナー 7での卨火力燃焼を開始すると、 ガスボンベ 9からの気化ガスの供給に伴い、 液化ガスが気化する気化潜熱で内部の液化ガスの温度が低下するが、 蓄熱部材 20 との温度差に応じて蓄熱材 21から熱が供給され、 この蓄熱材 21の温度が低下して その凝固点となると凝固に伴う融解潜熱が放出されて、 ガスボンベ 9に熱が供給 される。 この蓄熱部材 20からガスボンベ 9への熱伝達においては、 熱伝導部材 24 によって蓄熱部材 20の底部側からも熱の伝達が行われ、 熱量供給速度の上昇が得 られる。
また、 バーナー 7での燃焼の開始に伴い、 バーナー 7の温度上昇によりその燃 焼熱の一部が伝熱板 15を伝わり、 放熱部 15c からガスボンベ 9に熱供給が行われ、 液化ガス温度の低下が抑制される。 着火初期においてはキに蓄熱部材 20から熱が 供給され、 ある程度燃焼時問が経過 ( 6〜7分) してから伝熱板 15により熱が供 給される。
使用雰囲気の温度が上昇した場合には、 伝熱板 15を伝わる熱はガスボンベ 9に 供給されるとともに、 これと接触している蓄熱部材 20にも供給され、 ガスボンベ 9の加熱が過剰となるのが抑制される。
上記のような伝熱板 15および蓄熱材 21からの熱の供給と気化潜熱による熱吸収 とが平衡状態となると、 ガスボンベ温度はある一定の温度に維持され、 ガスボン ベ 9のガス圧はこの温度に対応する蒸気圧に保持され、 所定量のガスの供給が安 定して得られ、 急速なガス圧の低下およびガス供給量の減少が防止でき、 火力低 下防止の効果が得られる。
以上のような構成のガス器具 1を用い、 液化ブタンガス (ノルマルブタン 7 0 %、 イソブタン 3 0 % ) を充¾したガスボンベ 9をセッ トして、 初期の火力を 2 2 0 O kcal/hrに設定調整して着火燃焼を行った後、 ガスを使い切り ΰ然消火す るまでの火力の変化を測定した燃焼実験 (後述の実験例 1 ) の結果を、 第 1 4図 〜第 1 6図に 2点鎖線 Αで示す。
なお、 上記蓄熱部材 20の液状蓄熱材 21としては、 ポリエチレングリコール、 硫 酸ナトリウム 1 0水塩のような潜熱蓄熱材を使用するほか、 水、 オイル等の顕熱 蓄熱材を使用して容器 22に封入するようにしてもよい (水を萏熱材とした燃焼実 験の結果を第 1 4図〜第 1 6図に 1点鎖線 Cで示す) 。 さらに、 煉瓦、 コンクリ —卜、 粘度、 プラスチック等の固体の顕熱蓄熱材を封入使用してもよい (紙粘上 を蓄熱材とした燃焼実験の結果を第 1 4図〜第 1 6図に短破線 Bで示す) 。 この 使用する蓄熱材の種類としては、 後述の第 2および第 3の実施の形態においても 同様である。
<第 2の実施の形態 >
本例の気化助勢装置は第 4図に示し、 伝熱板は第 1の実施の形態と同様であり、 蓄熱部材の他の例を示している。
伝熱板 15は前例と同一形状で、 バーナー 7の燃焼熱の一部を伝熱し、 ガスボン ベ 9に熱供給する。 また、 蓄熱部材 25も同様にポリエチレングリコールによる液 状蓄熱材 21を袋状包装材による容器 22に封入したものを、 ボンべ収納部 4に前記 伝熱板 15の放熱部 15c の下面に接触するとともに、 伝熱板 15の前後に延びてガス ボンべ 9に直接接触するように配設してなる。 前例と同一構造には同--符号を付 して説明を省略する。
本例では、 前例に比べて、 アルミ箔で構成された熱伝導部材 24の接触がなく、 蓄熱部材 25と伝熱板 15との熱伝達は両者の接触面のみとなっているが、 熱量が 2 2 0 O kcal/hrで通常の使用環境においては、 バーナー 7での連続燃焼における 気化助勢効果は第 1の実施の形態とほぼ同様に得られる。
<第 3の実施の形態〉
本例の気化助勢装置は第 5図に示し、 伝熱板 15は第 1の実施の形態と同様であ り、 崈熱部材の他の例を示している。
蓄熱部材 28は金属製の容器 29に液状蓄熱材 21が封入されてなる。 上 ΰ金属製の 容器 29は、 例えばアルミニウムで構成され、 上面はガスボンベ 9の周面形状に沿 う樋状に設けられ、 前記伝熱板 15の放熱部 15c に相当する部分は、 このお熱板 15 と密着する形状に設けられ、 この伝熱板 15の放熱部 15c の下部に配設され、 それ を保持するように設けられている。 その他は ¾ 1の実施の形態と同様に構成され ている。
本例の場合には、 蓄熱部材 28が金属製の容器 29で構成されていることで剛性が 高く、 ガスボンベ 9の支持強度が大きくなるものであり、 気化助勢効果は第 1の 実施の形態と同様に得られる。
なお、 上記容器 29は、 銅、 鉄、 ステンレス鋼などの他の金属で構成してもよく、 また、 プラスチックの成型容器で構成してもよい。 一方、 前記第 1および第 2の 実施の形態の包装材による容器 22についても、 プラスチックフィルムに代えて、 金属箔または金厲箔とプラスチックフィルムの積層材で構成してもよい。
く第 4の実施の形態 >
本例の気化助勢装置は第 6図に示し、 伝熱板 15は第 1の実施の形態と同様であ り、 蓄熱部材の他の例を示している。
蓄熱部材 30は、 煉瓦、 金属塊、 紙粘土、 コンクリート、 成形樹脂等の固形蓄熱 材で構成され、 比熱が大きく、 熱伝導性の高い材料を使用するのが好適である。 この蓄熱部材 30の形状は、 前記第 3の実施の形態における金属容器 29の外形と同 様に形成され、 伝熱板 15の放熱部 15c と密着してその下部に配設される。
本例においては、 蓄熱部材 30はその比熱に対応した熱容量に相 ¾する顕熱蓄熱 材であり、 凝固等の相変化を伴わないで、 ガスボンベ 9との温度差に応じた熱の 供給を行うものであり、 第 1の実施の形態とほぼ同様の効果が得られる。
<第 5の実施の形態〉
本例の気化助勢装置は第 7図および第 8図に示し、 伝熱板 15は第 1の実施の形 態と同様であり、 蓄熱部材に代えて熱交換部材を設置した例を示している。
前記伝熱板 15の放熱部 15c の下方には、 外気との熱交換を行う熱交換部材 40が 設けられている。 この熱交換部材 40は、 アルミニウム板等の熱伝導性の い板材 料が折曲加工された波板 40a が前記放熱部 15c の裏面に固着され、 この波板 40a の外側に裏板 40b が接合されてなるハニカムサンドィツチ構造に表面積が大きく 設けられている。
上記熱交換部材は、 第 8図のように、 前記伝熱板 15の放熱部 15c の f面に固着 するとともに、 伝熱板 15の前後に延びて設けられ、 この延長部分がガスボンベ 9 の外面に直接接触するようにしてもよい。
呉体的には、 上記波板 40a は厚さ 0 . 2 mmのアルミニウム板を波数 8、 高さ 5 mmの波形状に加工し、 これを幅 5 5 mm、 長さ 1 3 0腿に形成してなり、 裏板 40b は厚さ 0 . 2 mmのアルミニウム板を幅 5 5聊、 長さ 1 3 0 mmに形成してなる。 本例のような構造によれば、 ガスボンベ 9をセヅ トしてバーナー 7での高火力 燃焼を開始すると、 ガスボンベ 9からの気化ガスの供給に伴い、 液化ガスが気化 する気化潜熱で内部の液化ガスの温度が低下するが、 外気との温度差に応じて熱 交換部材 40で外気から吸収した熱が伝熱板 15の放熱部 15 c を介してガスボンベ 9 に供給される。
また、 バーナー 7での燃焼の開始に伴い、 その燃焼熱の 部が伝熱板 15を伝わ り、 放熱部 15c からガスボンベ 9に熱供給が行われ、 前記例と同様にある程度燃 焼時間が経過 ( 6 ~ 7分) してから安定した熱が伝熱板 15により供給される。 上 記のような伝熱板 15および熱交換部材 40からの熱の供給と気化潜熱による熱吸収 とが平衡状態となると、 ガスボンベ温度はある 定の温度に維持され、 この気化 助勢によりガスボンベ 9のガス圧はこの温度に対応する蒸気圧に保持され、 所定 量のガスの供給が安定して得られ、 急速なガス圧の低下およびガス供給量の減少 が防止できる。
一方、 使 ffl雰! 31気の温度が上昇することなどにより、 伝熱板 15を伝わる熱量が 必要量以上となった際またはガスボンベ温度が外気温度より上昇した際には、 こ の伝熱量の一部は熱交換部材 40から外気に放熱され、 ガスボンベ 9の加熱が過剰 となるのが抑制される。
以上のような伝熱板 15と熱交換部材 40を備えた 51化助勢装置を冇するガス器具 1を用い、 液化ガスを充填したガスボンベ 9をセッ トして、 初期の火力を 2 6 0 0 kcal /hrに設定して着火燃焼を行った後、 ガスを使い切り自然消火するまでの 火力の変化を測定した燃焼実験 (後述の実験例 2 ) の結果を、 第 1 7図〜第 1 9 闻に短破線 Gで示す。
なお、 —ヒ記例においては、 伝熱板に熱交換部材を固着して気化助勢装置を構成 している力、 熱交換部材をガスボンベに接触するように設け、 この熱交換部材に 伝熱板の端部を接続して熱伝達が行えるように構成してもよい。
体的には、 熱交換部材を表板と波板と^板とによるハニカムサンドィツチ状 に設け、 表板がガスボンベを支持するとともに熱的に接触するようにし、 この表 板に伝熱板の放熱側の端部を熱的に連結して構成すればよいものである。 この、 伝熱板と熱交換部材との関係は、 後述の第 6ないし第 1 0の実施の形態において も同様に構成可能である。
<第 6の実施の形態 >
本例の気化助勢装;!は第 9図に示し、 前例に対して熱交換部材の他の例を示し ている。
本例の熱交換部材 43は、 アルミニウム (合金) の押出加工等によって形成した 表面の外殻部 43a と内部に多数の孔を有するハニカム部 43b とによるハニカム構 造体を、 前記伝熱板 15の放熱部 15c の裏面に前例と同様に固着してなるものであ る。 この熱交換部材 43は、 熱伝導性の高い材料と ¾面積の大きい構造とによって、 外気との熱交換性が高く、 外気から吸収した熱を供給して、 気化助勢を行うとと もに、 余剰な熱は外^に放出してガスボンベ温度が異常に ヒ昇するのを防止する その他は第 5の実施の形態と同様に構成されている。
く第 7の実施の形態 >
本例の気化助勢装置は第 1 0図に示し、 第 5の実施の形態に対して熱交換部材 の他の例を示している。
本例の熱交換部材 45は、 アルミニウム (合金) の押出加工等によって形成した、 伝熱板 15に固着される円弧状の表板 45a と、 これに下方に向けて平行に形成され た板状のフィ ン部 45b とによるフィ ン構造体を、 前記伝熱板の裏面に同様に固着 してなるものである。 その他は第 5の実施の形態と同様に構成され 様の作用を 有する。
く第 8の実施の形態〉 本例の気化助勢装置は第 1 1図に示し、 第 5の実施の形態に対して熱交換部材 のフ ィ ン構造体の他の例を示している。
本例の熱交換部材 47におけるフィン構造体は、 前記伝熱板 15の裏面に固着する 円弧状の表板 47a と、 下方に向けて突設された断面 T字状のフィ ン部 47b によつ て形成されている。 その他は第 5の実施の形態と同様に構成され同様の作用を有 する。
く第 9の実施の形態 >
本例の気化助勢装置は第 1 2図に示し、 第 5の実施の形態に対して熱交換部材 のの他の例を示している。
本例の熱交換部材 49は、 アルミ箔等の金厲箔を三角波形状に折曲加工して表面 積を大きく したコルゲー ト体 49a を、 前記伝熱板 15の裏面に固着してなるもので ある。 その他は第 5の実施の形態と同様に構成され同様の作用を有する。
く第 1 0の実施の形態〉
本例の気化助勢装置は第 1 3図に示し、 第 9の突施の形態に対して熱交換部材 の形状が異なる他の例を示している。
本例の熱交換部材 51は、 アルミ箔等の金属箔をパルス波形状に折曲げ加工して 表面積を大きく したコルゲート体 51a を、 前記伝熱板の裏面に固着してなるもの である。 その他は第 5の実施の形態と同様に構成され同様の作用を有する。
<実験例 1 >
前記第 1の実施の形態で、 初期の火力を 2 2 0 O kcal/hrに設定して燃焼を開 始し、 ガスを使い切り 5然消火するまでの火力の変化を測定した燃焼実験の結果 を、 伝熱板のみによる場合、 蓄熱材のみによる場合、 伝熱板および崈熱部材を有 しない場合の比較例の結果とともに第 1 4図〜第 1 6図に示す。 第 1 4図は燃焼 開始時のガスボンベの液化ガスの充填量が 2 5 0 g (満杯量) であり、 第 1 5図 はその充填量が 1 2 5 gの場合、 第 1 6図は充填量が 6 0 gの場合である。 この実験において、 本発明品としては、 第 1の実施の形態における伝熱板とポ リエチレングリコールによる蓄熱材を 1 0 O mL収容した蓄熱部材を有する 2点鎖 線 Aで示す本発明 1、 同様の ί 熱板と紙粘土による固形蓄熱材を蓄熱部材とした 短破線 Βで示す本発明 2、 同様の伝熱板と水による蓄熱材を 1 0 O mL収容した蓄 熱部材を する 1点鎖線 Cで示す本発明 3である。
比較例としては、 伝熱板のみによる実線 Dで示す比較例 1、 ポリエチレングリ コールによる崈熱部材のみによる点線 Eで示す比較例 2、 伝熱板および蓄熱部材 の両方とも有しない長破線 Fで示す比較例 3である。
上記結果において、 まず伝熱板のみによる比較例 1 (曲線 D ) と何もない比較 例 3 (曲線 F ) とを対比してみると、 ガスボンベの充填量が 2 5 0 gの第 1 4図 の場合には、 伝熱板が取り付けられていれば、 液化ガス量が尽きるまで順調に燃 焼が継続され、 ガスボンベよりのガス供給による気化潜熱と伝熱板による熱供給 とが平衡がとれて燃焼している。 これに対して、 比較例 3では、 伝熱板による熱 供給がないので、 ガスボンベはガス供給による 匕潜熱で液化ガスは冷却され、 ガス圧は低下してガス供給量すなわち火力が大きく低減し、 小さい炎での燃焼継 続となり、 燃焼を中断すればガスボンベ中に液化ガスが残留することになる。 同様に第 1 5図で両者を比較すると、 燃焼初期の充填量が少ないことから、 火 力に必要とされるガス量を流出させると、 液化ガスは急速に冷却されガス平衡圧 も急速に低下し、 バーナー 7へのガス供給は低减する。 従って、 比較例 1 (曲線 D ) においても、 伝熱板による熱供給は少なくなり、 第 1 4図の場合では熱平衡 が保たれたが第 1 5図ではその熱平衡は保てず、 火力は比較例 3 (曲線 F ) のも のよりはよいが、 絰時的に低下する。 この場合、 前記と同様途中で炎が短くなり、 燃焼を中断するとガスボンベに液化ガスが残留することになる。 さらに、 第 1 6 図のように燃焼初期の充填 aが低減すると、 伝熱板だけでは熱平衡を得ることは できず、 火力が急激に低下するものである。
上記のように伝熱板を取り付けた比較例 1では、 燃焼開始時の充填 Sが 2 5 0 gのときには燃焼が継続できても、 初期充填量が少ない場合には燃焼継続が困難 なことが分かる。 一般にガス器具 1の使用状況を考えた場合、 来使用のガスボン ベをセッ 卜し、 燃焼を開始してからそのまま燃焼を継続して液化ガスを全部使い 切る使用例は少なく、 途中で燃焼を停 して、 次には充 ½量の低減した状態から 燃焼を開始する場合が多く生じるものである。 そして、 燃焼閲始時のガスボンベ 中の液化ガス量により燃焼状態は大きく変わり、 燃焼の継続およびガスボンベの 液化ガスを使い切ることが困難となる。 ここで、 比較例 2 (曲線 E ) の蓄熱部材 (ポリエチレングリコール :融点 1 0 °C ) のみを設置した場合には、 燃焼開始からの時問の経過に対する火力の低下は、 伝熱板による比較例 1 (曲線 D ) に比べ、 全体的には直線的に低下する傾向にあ る。 また、 同様に、 充填量が低減すると低下が急激となる傾向を有する。
上記蓄熱部材の特性は、 燃焼開始初期においてはガスボンベおよび液化ガスの 温度低下に対して蓄熱材よりの熱供給が速やかに行われるが、 その伝熱は蓄熱部 材のガスボンベとの接触面に近い部分で行われ、 蓄熱部材内部より接触部分への 熱伝達が不足する。 この蓄熱部材内部から熱伝導および対流による熱移動がガス ボンベの冷却に追随できずに遅れ、 徐々にガスボンベの温度が低下するものであ る。 比較例 1の伝熱板と比較すると、 燃焼開始初期の火力低下は比較例 1の伝熱 板の方が大きく、 ある程度の燃焼時^が経過すると逆転して崈熱材の方が火力が 低下する。 なお、 蓄熱材として硫酸ナトリウム 1 0水塩を使用した場合には、 図 示してないが、 火力の低下傾向は比較例 2のポリエチレングリコールと同様に生 じるが、 この実験条件では火力の低下はポリエチレングリコールより小さくなる 特性を示す。
上記のような比較例 1 ~ 3に対して、 本発明 1 ~ 3 (曲線 A ~ C ) によれば、 伝熱板と蓄熱部材との併用により、 良好な火力が維持できる。 燃焼開始時のガス ボンべ充填量が 2 5 0 gの第 1 4図の場合は比較例 1 (曲線 D ) の伝熱板のみを 取り付けた場合と大きな差異はないが、 充填量が少なくなつた第 1 5図、 第 1 6 図の場合の燃焼状態は大きく改善されている。
すなわち、 燃焼初期には蓄熱部材による火力の低下が抑制され伝熱板より良好 であり、 ある程度燃焼時間が継続すると、 伝熱板による火力の低下抑制が行われ、 蓄熱部材ょり火力低下が少ない J¾好な結果が得られている。 このような特性は、 本発明 1ないし本発明 3とではあまり差がなく、 液状蓄熱材が潜熱蓄熱材として のポリエチレングリコールであっても、 顕熱蓄熱材としての水であっても、 さら に固形蓄熱材としての紙粘土であつても、 ほぼ同様の結果が得られている。
なお、 上記崈熱材として水を使用する際に、 その使用量 (封入量) は、 伝熱板 と併用していることでその影響は少ないが、 水量を 2 5 mLに低減した場合には燃 焼開始充 ¾量が 6 0 gに低減した場合に燃焼初期の火力低下が多少大きくなるが、 液化ガスが使い切れる火力を維持することが別の実験で確認できた。
また、 上記燃焼実験はガス器具 1を常温雰囲気で燃焼させた場合のものであり、 環境温度が例えば 1 o °c以下のように低い場合で、 潜熱蓄熱材としてのポリェチ レングリコールが凝固しているときには上記潜熱は利用することはできず、 顕熱 を利用した熱の供給でガスボンベの温度低下を抑制するものである。
一方、 伝熱板と蓄熱部材との併用において、 環境温度が高い場合には伝熱板に よるガスボンベへの熱供給が過多となると、 この伝熱板よりの熱供給はガスボン ベと蓄熱部材の両方に接触していることで両者に行われ、 ガスボンベが過熱状態 となるのが防止される。 この点から、 伝熱板の設計においても、 伝熱板単独の場 合より伝熱量を大きくすることが可能となり、 低温側での性能保証がより容易に なるものである。
<実験例 2〉
前記第 5の実施の形態で初期の火力を 2 6 0 O kcal/hrに設定して燃焼を開始 し、 ガスを使い切り自然消火するまでの火力の変化を測定した燃焼実験の結果を、 伝熱板のみによる場合、 伝熱板および熱交換部材を有しない場合の比較例の結果 とともに第 1 7図〜第 1 9図に示す。 第 1 7図は燃焼開始時のガスボンベの液化 ガスの充填量が 2 5 0 g (満杯量) であり、 第 1 8図はその充填量が 1 2 5 gの 場合、 第 1 9図は充填量が 6 0 gの場合である。
この実験において、 本発明品としては、 第 5の実施の形態における伝熱板と熱 交換部材を備えた短破線 Gで示す本発明 4である。 比較例としては、 伝熱板のみ による実線 Dで示す比較例 1、 伝熱板および熱交換部材の両方とも有しない長破 線 Fで示す比較例 3である。
上記結果において、 伝熱板のみによる比較例 1 (曲線 D ) と何もない比較例 3 (曲線 F ) を前記実験例 1の結果 (第 1 4図〜第 1 6図) と比較してみると、 設 定熱量が高いことから消火するまでの時間は短くなるとともに、 気化潜熱愚の增 犬に伴い初期の火力低下が急なものとなっているが、 全体的にはほぼ同様な傾向 を示している。
上記のような比較例に対して、 本発明 4 (曲線 G ) によれば、 伝熱板と熱交換 部材との併用により、 良好な火力が維持できる。 特に、 平衡状態となってからの 火力の低下が少なく、 燃焼開始初期の液化ガス量に関係なく比較例 1 (曲線 D ) の伝熱板のみを取り付けた場合に比べて火力の維持が顕著であり、 消火直前まで 高い火力を維持しており、 ^好な気化助勢機能が^られていることが分かる。
<実験例 3〉
ここで上記実験例 1における伝熱板による伝熱量を測定した結果を、 第 2 0図 〜第 2 2図に沿って説明する。 上記実験例 1において、 本発明 1の構成で、 蓄熱 部材を除去し伝熱板のみを取り付けた状態で、 前0己第 1 4図と同様の条件で燃焼 を行うと、 伝熱板はバーナーよりの熱伝達過程で放熱し、 放熱部へかけて温度傾 斜を持つとともに、 平衡温度に達するまで 6〜7分位の時問を要する。
すなわち、 第 2 0図は燃焼を開始してからの燃焼時問の経過と伝熱板の温度変 化を示すもので、 この伝熱板温度の測定点は第 3闵において受熱部 15a より伝熱 距離が 1 4 0誦の位置で、 放熱部 15c より少し前の位置である。 また、 第 2 1図 は燃焼時間が 4 5分経過した時点での各点での伝熱板温度を示している。 これに よれば、 伝熱板温度は、 燃焼開始から急に上昇して 7分後には安定するとともに、 伝熱板の各部位温度は受熱部からの伝熱過程で外部へ放熱され距離に応じて低下 している。
第 2 2図は上記のような温度測定に基づき、 伝熱板各部位への伝熱熱量を示す c 前記第 1 4図の結果より、 実際の燃焼熱量は約 2 0 0 O kcal/hrであり、 この燃 焼に必要な液化ガスの気化潜熱量は約 1 4 . 5 kcal/hrであり、 これに対して第 2 2図によれば、 伝熱板の放熱部 15c (伝熱距離 1 5 0〜 2 0 0 mm) での通過熱 量すなわち放熱量は 3 . 5〜4 kcal/hrであり、 その供給比率は約 2 4〜 2 8 % である。
ここで、 上記伝熱板による熱供給で問題になるのが、 第 2 0図に示したように、 燃焼が開始されてから伝熱板温度が平衡状態となるまでの時問 (約 7分問) であ り、 この間にガスボンベへの熱供給がなければ液化ガス温度は急に低下すること になるが、 この領域では蓄熱部材または熱交換部材によって熱供給が行われて急 激な温度低下を抑制する。
蓄熱部材による供給熱量の設定は、 蓄熱材の素材と虽とによる熱容 の設定と、 ガスボンベに対する接触面積の大きさと、 接触部分の熱伝達特性の設定によって 行うものであり、 伝熱板による熱供給が十分となるまでの初期段階において、 所 要量の熱供給が行えるように設ける。 同様に、 熱交換部材による供給熱量の設定 は、 素材の熱伝導性、 形状 '寸法による熱交換特性の設定等によって行う。
く第 1 1の実施の形態〉
本例の気化助勢装匿は第 2 3図〜第 2 6図に示し、 金属製蓄熱部材を直接ガス ボンベに接触させる例である、
気化助勢装置としては、 まず、 第 2 5図に示すような金属製の蓄熱部材 55を備 えている。 この蓄熱部材 55はボンべ収納部 4の底部に配設されるもので、 例えば 亜鉛合金 (Z D C 2 ) によってダイカスト成形され、 上面の接触面 9aはガスボン ベ 9の缶胴 9aの周面に沿った円弧面に形成され、 底面 9bは平面で、 その前後方向 の長さはガスボンベ 9の缶胴 9aの長さより若干短く形成されている。 上記蓄熱部 材 55は、 上面の接触面 9aがガスボンベ 9に接触して熱伝達を行い、 下面は後述の 伝熱板 56と接触する。
前記蓄熱部材 55は具体的には、 幅 5 0 mm、 長さ 1 3 0誦、 中央の最も薄い部分 の厚さが 8誦に形成されている。 このときの体積は約 1 0 0 cm3 で、 1 5 °Cの温 度変化に対し 1 0 0 O cal の熱容量を有している。
伝熱板 56は第 2 6図に示し、 この伝熱板 56はアルミニウム板等の熱伝導率の高 い材料による板部材で構成される。 該伝熱板 56は前記パーナ一 7と蓄熱部材 55と を連結するものであって、 平坦状の中問部 56b が前記器具本体 2の底面に沿って 設けられ、 その一端部がバーナー 7の近傍で起立して上端が水平に屈曲してなり、 先端受熱部 56a がバーナー 7の底部に固着されている。 このバーナー 7の一部に 接触した受熱部 56a がガス燃焼による熱量の一部を受け取り、 他端の伝熱部 56c に接触する蓄熱部材 55に伝熱する。 この伝熱板 56の伝熱部 56c は、 中間部 55b か ら仕切り板 5の下部を通ってボンべ収納部 4の底部に平坦に延び、 蓄熱部材 55の 底面 55b に固着されている。
伝熱板 56の具体例としては、 厚さが 1 . O ramの純アルミニウム板を使用し、 幅 8 0賴、 長さ 2 0 0匪に形成してなる。 この伝熱板 56は、 Ϊ記パーナ一 7でのガ スの燃焼に伴ってバーナー自身の温度が高くなり、 その熱で伝熱板 56の受熱部 56 a が加熱され、 この熱が伝熱板 56を他端部側に伝達し、 伝熱部 56c の温度が上昇 して、 蓄熱部材 55を介してガスボンベ 9を加熱する。
なお、 ガスボンベ 9 (ガスボンベ缶) は、 円筒状の缶胴 9aの一端部にバルブ機 構のステム 9bが設けられ、 このステム 9bを押し込むことで内部から気化した燃料 ガスの供給が行え、 このガスボンベ 9のガス器具 1へのセッ トは、 マウンティン グ力ッブ 9cに形成された切欠き 9dを通常上方となるように器具本体 1の爪 (図示 せず) に係合して位置決めして行うものである。
本例のような構造によれば、 ガスボンベ 9をボンべ収納部 4にセッ 卜してバー ナ一 7での髙火力燃焼を開始すると、 ガスボンベ 9からの気化ガスの供給に伴い、 液化ガスが気化する気化潜熱で内部の液化ガスの温度が低下するが、 蓄熱部材 55 との温度差に応じてこの蓄熱部材 55からガスボンベ 9に熱が供給される。 この蓄 熱部材 55からガスボンベ 9への熱伝達においては、 熱伝導性の高い金属製である ことから、 内部の熱についても熱流動が速くて良好に供給され、 着火初期の急激 なガスボンべ温度の低下が抑制され、 特に液化ガス残量の少ない場合には温度低 下が急速となるのを阻止して、 液化ガスの気化を促進して高熱量での燃焼を継続 する。
また、 バーナー 7での燃焼の開始に伴い、 バーナー 7の温度上昇によりその燃 焼熱の一部が伝熱板 56を伝わり、 着火からおよそ 6〜 7分後に伝熱部 56c から蓄 熱部材 55を介してガスボンベ 9に熱供給が行われ、 液化ガス温度の低下が抑制さ れる。 つまり、 着火初期においては主に蓄熱部材 55から熱が供給され、 ある程度 燃焼 β§間が経過してから伝熱板 56により熱が供給される。
上記のような伝熱板 56および蓄熱部材 55からの熱の供給と気化潜熱による熱吸 収とが平衡状態となると、 ガスボンベ温度はある一定の温度に維持され、 ガスボ ンべ 9のガス圧はこの温度に対応する蒸気圧に保持され、 所定量のガスの供給が 安定して得られ、 急速なガス圧の低下およびガス供給量の減少が防止でき、 火力 低下防止の効果が得られる。
く第 1 2の実施の形態 >
本例の気化助勢装置は第 2 7冈〜第 3 0図に示し、 伝熱板の端部をガスボンベ 9に直接接触させる例である。
蓄熱部材 58は第 2 9図に示すように、 第 1 1の実施の形態と同様な金属のダイ カス ト成型品であり、 底面 58b は平面で、 上部は後半分がガスボンベ 9の缶胴 9a と接触可能な円弧状の接触面 58a に構成され、 他の前半分が凹状に低く形成され てガスボンベ 9および後述の伝熱板 59とは非接触となる 部 58c に設けられてい る。
伝熱板 59は ¾ 3 0図に示し、 この伝熱板 59は、 一端が第 1 1の実施の形態と同 様の受熱部 59a に形成されてバーナー 7に固着され、 中間部 59b からボンべ収納 部 4に延びる他端の伝熱部 59c はガスボンベ 9の缶胴 9aに沿つた円弧面に形成さ れて、 ガスボンベ 9と接触可能に構成されている。 この伝熱部 59c は、 前記蓄熱 部材 58の凹部 58c に対応する位置に配設されて、 該蓄熱部材 58とは非接触に設置 される。
本例の気化助勢装匿では、 ガスボンベ 9をセッ トすると、 このガスボンベ 9の 周面に蓄熱部材 58と伝熱板 59の両者が同時に接触して熱供給が直接行われるもの であり、 着火初期におけるガスボンベ 9の温度低下に対しては蓄熱部材 58から接 触面 58a を介して速やかに熱が供給され、 その熱伝導性が高いことから、 ガスボ ンべ 9に接触していない部分からも熱移動によってガスボンベ 9の加熱を行う。 また、 着火後、 伝熱板 59の受熱部 59a がバーナー 7の燃焼熱で加熱され、 他端 の伝熱部 59c に接触するガスボンベ 9に直接伝熱する。 この伝熱板 59の伝熱部 59 c は、 蓄熱部材 58とは非接触でバ一ナ部分から伝わった熱が蓄熱部材 58に供給さ れてそのまま大気放散されるのが低減され、 ガスボンベ 9に対する加熱に効率よ く使用される。 本例においても通常の使用環境においては、 バーナー 7での連続 燃焼における気化助勢効果は第 1 1の実施の形態とほぼ同様に得られる。
<第 1 3の実施の形態 >
本例の気化助勢装置は第 3 1図〜第 3 3図に示し、 伝熱板の端部をガスボンベ 9に直接接触させる例である。
蓄熱部材 61は、 第 3 2図に示すように第 1 1の実施の形態と 様な金屈のダイ カスト成型品であり、 底面 61b は平面で、 上部は横半分がガスボンベ 9および後 述の伝熱板 62と接触しない凹部 61 c に形成され、 他の半分はガスボンベ 9の缶胴 9aと接触可能な円弧状の接触面 61a に構成されている。
伝熱板 62は第 3 3図示し、 この伝熱板 62は、 -端が第 1 1の実施の形態と同様 の受熱部 62a に形成されてバーナー 7に固着され、 中問部 62b からボンべ収納部 4に延びる他端の伝熱部 62 c はガスボンベ 9の缶胴 9aに沿つた円弧面に形成され ているが、 その形状は前後方向におく形成されている反而、 円弧方向の さは短 く略ド端部で切れて、 ガスボンベ 9に接触する面積は第 1 2の突施の形態におけ る伝熱部 59c の面積とほぼ同様に形成されている。 この伝熱部 62c は、 前記蓄熱 部材 61の凹部 6k に対応する位置に配設されて、 該蓄熱部材 61とは非接触に設置 される。
本例の気化助勢装置では、 ガスボンベ 9をセッ トすると、 このガスボンベ 9の 周面に蓄熱部材 61と伝熱板 62の両者が同時に接触して熱供給が直接行われるもの であり、 着火初期におけるガスボンベ 9の温度低下に対しては蓄熱部材 61から接 触面 61a を介して速やかに熱が供給され、 その熱伝導性が高いことから、 ガスボ ンべ 9に接触していない部分からも熱移動によってガスボンベ 9の加熱を行う。 また、 着火後、 伝熱板 62の受熱部 62a がバーナー 7の燃焼熱で加熱され、 他端 の伝熱部 62c に接触するガスボンベ 9に直接伝熱する。 この伝熱板 62の伝熱部 62 c は、 蓄熱部材 61とは非接触でパーナ部分から伝わった熱が蓄熱部材 61に供給さ れてそのまま大気放散されるのが低減され、 ガスボンベ 9に対する加熱に効率よ く使用される。 本例においても通常の使用 ί 境においては、 バーナー 7での連続 燃焼における気化助勢効果は第 1 2の実施の形態とほぼ同様に得られる。
く第 1 4の実施の形態 >
本例の気化助勢装置は、 第 3 4図にガスボンベ収納部の要部断而図を、 ¾ 3 5 図に蓄熱部材の斜視図を示す。
蓄熱部材 55および伝熱板 56の基本構造は前記第 1 1の実施の形態と同様であり、 この蓄熱部材 55には、 その上面の接触面 55a に縦溝 55c が形成されている。 この 縱潢 55c はガスボンベ 9の缶胴 9aにおける縱方向の溶接部 9eの位置に対応して設 匿されている。
前記ガスボンベ 9における缶胴 9aの溶接部 9eは、 その形状、 位置については規 格はないが、 現時点での各社のガスボンベ 9においては幅 1 . 0醐、 ^さ 0 . 2 mmの突起状になっており、 その位置はマウンティングカップ 9cの切欠き 9dの対角 から 1 7 ° の位置を中心に ± 1 0画の範囲内に位置している。 これに対応して、 上記縦潢 55c はガスボンベ 9の接触中心から 1 7 ° の位置を中心に幅が 2 0匪で 深さが 0 . 5 mmに形成されている。
本例においては、 上記縦溝 55c を有する蓄熱部材 55にガスボンベ 9をセッ トし た場合には、 このガスボンベ 9の缶胴溶接部 9eは蓄熱部材 55の接触而 55a の縦溝 55c 内に位置することで、 その突起によって周囲に隙間が生じるのを、 縦溝 55c 内に逃げ込んで缶胴 9aの周面は蓄熱部材 61の接触面 61a に対して密に接触して、 伝熱量が確保できる。 この場合、 蓄熱部材 55の接触面 55a の面積は前記第 1 1の 実施の形態のものより狭くなるが、 溶接部 9eに伴う浮き上がりの低减で伝熱が効 率よく行え、 かえって良好な気化助勢効果が得られる。
く第 1 5の実施の形態 >
本例の気化助勢装置は第 3 6図および第 3 7図に示し、 第 1 4の実施の形態に 関連した構造である。
本例の蓄熱部材 55および伝熱板 56の基本構造は前記第 1 1の実施の形態と同様 であり、 蓄熱部材 55の接触面 55a には複数の縦潢 55d が形成されている。 この縦 溝 55d としては、 例えば、 幅 1 . 5 誦、 深さ 0 . 5 mmで、 3 . 5 誦おきに形成さ れている。
本例の場合には、 通常と異なる位置に缶胴 9aの溶接部 9eが設けられているガス ボンべ 9に対しても、 その溶接部 9eを縦溝 55d 内に位置させて、 蓄熱部材 55の接 触面 55a とガスボンベ 9の缶胴 9a周面との密着性を高めて、 伝熱効宇-を向上する ようにしている。
く第 1 6の実施の形態 >
本例の気化助勢装置は第 3 8図および第 3 9図に示し、 ガスボンベ 9の溶接部 9eに対する他の例である。
本例の蓄熱部材 65は、 金属製の可撓性容器 65a 例えばステンレスメッシュ (メ ッシュ 3 5 0 ) の網状袋の内部に、 粒状金厲 65b (例えば、 メッシュ 1 4 5 〜 2 8 0の顆粒状ブロンズ) を充填して構成してなる。 伝熱板 56は前例と同様に形成 されている。
上記蓄熱部材 65は、 具体的には、 幅 5 0腿、 長さ 1 7 0 mm、 高さ 1 0画のステ ンレスメッシュ袋内に、 顆粒状プロンズを 7 4 0 g充填して構成する。 本例においては、 蓄熱部材 65は変形可能であり、 この蓄熱部材 65のヒにガスボ ンべ 9をセッ トすると、 その突起状の溶接部 9eは内部の粒状金厲 65b の移動と可 撓性容器 65a の変形によって逃げ、 周辺の缶胴 9aと萏熱部材 65の接触而とは密に 接触することになる。
なお、 上記可撓性容器 65a としては、 網状金属の他、 金属箔等が使用可能であ り、 また、 内部には粒状金属、 粉末状金属が充填可能である。
<実験例 4 >
前記第 1 1の実施の形態に示すような蓄熱部材 55と伝熱板 56とを有するガス器 具 1を使用して、 液化ブタンガス (ノルマルブタン 7 0 %、 イソブタン 3 0 % ) を充填したガスボンベ 9 (充填量が 2 5 0 g , 1 2 5 g , 6 0 g , 3 0 gの 4種 類) をセッ トして、 初期の火力を 2 5 0 O kcal/hrに設定調整して着火後、 ガス を使い切り自然消火するまでの火力の変化を測定した燃焼実験 (外気温 1 6〜 1 7 °C ) の結果を、 第 4 0図に実線でそれそれの充填 fiで示す。 また、 第 4 0図に は破線で伝熱板のみによる測定結果を併記している。 この伝熱板は、 前記第 1 2 の実施の形態における伝熱板と同様に、 他端部を湾曲形成して直接ガスボンベ 9 に接触して燃焼熱の一部を伝熱してガスボンベを加熱する構造である。
この第 4 0図によれば、 破線の伝熱板のみによるものでは、 燃焼開始初期にお ける火力低下が充填量の少ない場合に顕著であり、 ガスボンベ温度が急激に低下 しており、 ある程度時間が経過して伝熱板による熱供給が開始すると火力低下が 抑制されていることが分かる。 これに対して、 本発明の金属製蓄熱部材と伝熱板 を有する場合には、 燃焼^始初期の火力低下が蓄熱部材からの熱供給によって抑 制され、 高火力が維持されて全体の燃焼時間が短くなつている。 なお、 充填 fiが 2 5 0 g (満杯量) の場合には、 液化ガスの熱容量が大きく 51化潜熱による温度 低下が少ないことで蓄熱部材による効果は少なくなっている。
また、 各ガス量においてのガス使い切り状況を見るため、 初期ガス量が 2 5 0 の¾合には着火 8 3分後、 1 2 5 ^では4 2分後、 6 0 gでは 2 0分後、 3 0 gでは 1 0分後のガス消費 ¾を測定し、 この 際のガス消費量と、 理想的に火力 を 2 5 0 O kcal/hrに維持した場合の珲論的ガス消費 Sとの比によるガス消费率 を求めた結果を第 4 1図に す。 理論値からの計 ΐなので、 測定消費率は 1 0 0 %まで违していないが、 実用上 7 5 %以上ならばガス使い切りとなり得るものであり、 7 5 %未満の場合には、 ガス使い切りとはならず、 燃焼途中で火力が低下し、 このときに液化ガスはガス ボンべ内に残 ¾した状態で消火する。 この点から第 4 1図を兒ると、 伝熱板のみ によるものでは、 初期ガス IIが約 1 9 0 g以下の場合、 上記消費率が 7 5 %以下 に低下してガス使い切りとならないのに対し、 蓄熱部材と伝熱部材とを併用した 本発 Π/jによるものでは、 消費率が 7 5 %以下となることがなく初期ガス βに関係 なくガス使い切りを達成できる。
<実験例 5〉
また、 第 1 1の実施の形態のような蓄熱部材と伝熱板を備えた気化助勢装置を 有するガス器 ί¾ 1を用い、 液化ガスを 6 0 g充填したガスボンベ 9をセッ 卜して、 初期の火力を 2 5 0 O kcal/hrに設定して着火燃焼を行い、 ガスボンベ 9の缶胴 9a底部の温度変化 (外気温 2 2 °C ) を測定した結果を第 4 2図に示す。 この図に は、 第 1 1の実施の形態によるものと、 第 1の比較例として前記のような伝熱板 のみを設けたもの、 また第 2の比較例として伝熱板のガスボンベ接触部の下面に、 0 . 2 mm厚さの塩化ビニール袋に蓄熱材として水を人れて貼り付けたものでの燃 焼における温度変化を同様に測定している。
第 4 2図によれば、 伝熱板のみの場合には、 燃焼開始初期には熱供給がないこ とから、 ガスボンベ 9中の液化ガス充填 Sが 6 0 gと少ないために液化ガスの熱 容量も少なく、 高熱量燃焼に伴う液化ガスの気化に応じて急速に温度低下を示し、 6 - 7分経過した時点より伝熱扳による熱供給が增大して平衡状態に達するが、 この平衡状態での温度は低く、 火力も低下する。
また、 蓄熱材として水を用いたものでは、 伝熱板による熱供給が行われる前の 燃焼 始時の状態では、 蓄熱材よりの熱供給は行われても蓄熱材の表面層のみの 蓄熱が供給されるにとどまり、 大きな効果が期待できない。
これらに比較して、 本発明によるものでは、 金属製の蓄熱部材の使用により、 燃焼開始からのガスボンベの温度低下に伴うガスボンベと蓄熱部材の温度差に応 じて、 この蓄熱部材から迅速に熱供給が行われ、 ガスボンベの温度低下が緩慢と なり、 これにより燃焼熱量も大きく、 伝熱板による伝熱 ϋも増大してガスボンベ の温度低下が少なく、 高い温度に維持されている。
上記! ¾係をさらに詳述すると、 例えば、 ガス器具を 2 5 0 O kcai/hrの火力で 燃焼させた場合のガスボンベ中の液化ガスの気化潜熱は、 毎分 3 0 0 cal となる c この熱量を外部よりガスボンベに供給することによりその火力での燃焼維持が行 われるが、 突際にはこの必要熱 Mを蓄熱部材および伝熟板によって完全に供給す ることはできず、 ガスボンベおよび液化ガスの温度は低下し、 ガス- 'μ衡圧も低下 する。
しかして、 ガス甲-衡圧よりみてガスボンベ内の液化ガス温度が 5 °Cに低下する までであれば 2 5 0 O kcal/hrの熱量燃焼が可能である。 このことからガスボン ベへの熱供給は蓄熱部材ぉよび伝熱板を利用してガスボンべ温度が 5 °Cに低下す るまでの時問をできるだけ長くすることが、 上記高熱量燃焼を維持するために必 要である。
第 4 3図は上記実験において燃焼時間に対する金属製蓄熱部材、 水による蓄熱 材、 伝熱板のそれそれの加熱熱量の変化を示すものであり、 第 4 4図は気化潜熱 量からこれらの加熱熱量を減算したガスボンベの冷却熱量の変化を すものであ り、 第 4 5図はガスボンベ初期ガス量に対する上記高熱量燃焼での火力維持燃焼 時間を示し、 この第 4 5図にはさらにガスボンベ内の液化ガスを燃焼させた場合 の燃焼時問を火力維持限界線として併記している。
まず、 伝熱板の場合、 第 4 3図によれば、 燃焼を開始してから徐々に伝熱量が 増大し平衡状態となるには 6 ~ 7分の時問を要する。 この平衡状態となる過程は、 燃焼を開始してから伝熱板による熱供給が増大するまでは液化ガス温度は低下し、 これに伴いバーナーへのガス供給量が低減して燃焼熱量が减少し伝熱板による伝 熱量も減少するものであり、 この低下した気化潜熱と伝熱量とが低いレベルで平 衡することになる。
また、 前述のように、 ガスボンベ内の液化ガスは熱容星を持ち、 残留ガス量に より熱容量は異なることから、 ガス残量が少ないと熱容量は小さく気化潜熱によ る冷却も急速になる。 このことから、 第 4 4図によれば、 例えば、 ガス残量 6 0 gの場合、 伝熱板のみの 2 5 0 O kcal/hrの火力維持時問は 4分であり、 1 2 5 gの場合は 1 8分、 2 5 0 gの場合は 9 0分となる。 さらに、 第 4 5図によれば、 伝熱板のみの場合には、 初期ガス ¾が 2 5 0 gの ときは燃焼時間が火力維持限界線以上あるので問題ないが、 1 2 5 g、 6 0 g、 3 0 gの場合はいずれも限界線以下となっている。 この場合にはガスボンベ中に 液化ガスが残留しているのにもかかわらず、 温度低下によって β熱量燃焼が維持 できず、 火力が低下してガスが残留してしまい使い切りができない状態となる。 これに対して、 金属材料または水による蓄熱部材のみのものでは、 第 4 3図の 加熱量は、 燃焼開始によるボンべ温度の低下に伴い、 この時点から熱供給が開始 され、 蓄熱量により徐々に熱供給が低下するが、 金属製蓄熱部材によるものでは この応動が速く、 水の場合には蓄熱量の伝熱が遅いため金属の場合より応動が鈍 くなる。 つまり、 水による蓄熱材では単位時間の熱量は少ないが艮ぃ時問継続す る一方、 金属製蓄熱部材では単位時間の熱量が多く加熱時問は短くなつている。 そして、 上記のような金属材料または水による蓄熱部材と伝熱板との組み合わ せたものにおいては、 第 4 3図の加熱量は、 両者の熱量を加算したものであるが、 実線で示す本発明によるものが燃焼開始初期から aい加熱量を安定して有し、 破 線で示す比較例の水による蓄熱部材を組み合わせたものでは、 ピーク値は高いが 初期状態の加熱量は低くなつている。
また、 第 4 4図によれば、 蓄熱部材と伝熱板とを並設すると、 燃焼開始直後の 温度低下の軽減が図れ、 これにより連続燃焼維持時間は長くなる。 また、 衡状 態に至る過程でのボンべ温度の低下が少なく、 燃焼熱量も増大して高いレベルで の平衡状態が得られ、 特に燃焼開始初期の熱供給量の多い本発明 (実線) による ものが良好な特性を示している。
上記の結果として、 第 4 5図における火力維持時問が火力維持限界線を上回り、 初期ガス量が少ない状態においても高熱量燃焼を維持しつつガスの使い切りを達 成することができるものである。

Claims

請求の範
1 . カセッ ト式ガスボンベを交換可能にセッ トし気化ガスを燃焼するバーナーを 備えた高熱量ガス器具において、
一端を前記バーナーの近傍に配設し他端を前記ガスボンベに接触させて燃焼熱 の一部をガスボンベに供給して加熱する伝熱板を設けるとともに、
前記伝熱板とガスボンベとの接触位置に、 蓄熱部材を上記伝熱板に接触させて 配設したことを特徴とする高熱量ガス器具における気化助勢装置。
2 . 前記蓄熱部材は、 前記伝熱板とガスボンベとの接触位 gで、 伝熱板と接触す るとともにガスボンベの一部と接触可能に配設したことを特徴とする詰求 I员 1に 記載の高熱量ガス器具における 化助勢装置。
3 . 前記蓄熱部材は、 容器内に液状蓄熱材を収容してなることを特徴とする請求 項 1または 2に記載の高熱量ガス器具における気化助勢装置。
4 . 前記液状蓄熱材として、 融点が 4〜 1 4 °Cの潜熱蓄熱材を収容しその融解潜 熱を利用することを特徴とする請求頃 3に記載の高熱 fiガス器具における気化助
5 . 前記液状蓄熱材として、 分子量の異なるポリエチレングリコールを配合して、 融点を調整した混合液を収容したことを特徴とする詰求項 4に記載の高熱量ガス 器具における気化助勢装置。
6 . 前記液状崈熱材として、 水を収容しその顕熱を利用することを特徴とする^ 求項 3に記 Sの高熱量ガス器具における気化助勢装置。
7 . ^記蓄熱部材は、 固形蓄熱材で構成したことを特徴とする請求項 1または 2 に記載の高熱量ガス器具における気化助勢装置。
8 . 前記伝熱板と蓄熱部材との接触部分において、 蓄熱部材の伝熱板と接触する 而以外の面に熱伝導部材を接触させるとともに、 この熱伝導部材の端部を i記伝 熱板に接触伝熱させるように設けたことを特徴とする請求項 1または 2に S載の 高熱量ガス器具における 化助勢装置。
^求
9 . カセット式ガスボンベを交換可能にセッ 卜し^化ガスを燃焼するバーナーを 備えた高熱量ガス器具において、
一端を ¾記バーナーの近傍に配設し他端を前記ガスボンベに接触させて燃焼熱 の一-部をガスボンベに供給して加熱する伝熱板を設けるとともに、
前記伝熱板とガスボンベとの接触位置に、 外気との熱交換を行う熱交換部材を 上記伝熱板に接触させて配設したことを特徴とする高熱量ガス器具における気化 助勢装置。
1 0 . 前記熱交換部材は、 前記伝熱板とガスボンベとの接触位置で、 伝熱板と接 触するとともにガスボンベの一部と接触可能に配設したことを特徴とする請求項 9に記載の高熱量ガス器具における気化助勢装置。
1 1 . ^記熱交換部材が、 金属板または金属箔を折曲加工してなり、 伝熱板のガ スボンベとの接触面の反対面に固着してなることを特徴とする請求項 9に記載の 高熱量ガス器具における気化助勢装置。
1 2 . 前記熱交換部材が、 ハニカムサンドイッチ構造であることを特徴とする請 求項 9に記載の高熱量ガス器具における気化助勢装置。
1 3 . 前記熱交換部材が、 フィ ン状の突起を有することを特徴とする請求項 9に 記載の高熱量ガス器具における気化助勢装置。
1 4 . カセッ 卜式ガスボンベを交換可能にセッ 卜し気化ガスを燃焼するパーナ一 を備えた高熱量ガス器具において、
空気との熱交換を行う熱交換部材をガスボンベと接触可能に設けるとともに、 一端を前記バーナーの近傍に配設し他端を前 ϋ'己熱交換部材に接触させて燃焼熱の 一部を供給する伝熱板を設けたことを特徴とする 熱量ガス器具における気化助 勢装置。
1 5 . カセッ ト式ガスボンベを交換可能にセッ トし気化ガスを燃焼するバーナー を備えた高熱量ガス器具において、
前記ガスボンベに 部を接触させて金属材料による蓄熱部材を設け、 燃焼開始 初期状態において前記蓄熱部材からガスボンベに熱を供給するとともに、 一端を前記バーナーの近傍に配設し他端をガスボンベとは非接触状態で前記蓄 熱部材に接触させて燃焼熱の -部を供給する伝熱板を設けたことを特徴とする高 熱量ガス器具における気化助勢装; S。
1 6 . カセヅ 卜式ガスボンベを交換可能にセッ 卜し気化ガスを燃焼するバーナー を備えた高熱呈ガス器呉において、
前記ガスボンベに一部を接触させて金屈材料による g熱部材を設け、 燃焼開始 初期状態において前 ύ' 熱部材からガスボンベに熱を供給するとともに、 一端を前記バーナーの近傍に配設し他端を前 蓄熱部材とは 接触状態で该蓄 熱部材と接触していない部位のガスボンベに接触させて燃焼熱の一部を供給する 伝熱板を設けたことを特徴とする高熱 iaガス器 ί¾における気化助勢装置。
1 7 . 前記蓄熱部材は、 ガスボンベ缶との接触面が缶胴形状に沿った円弧面であ り、 この接触面に縦溝を設けたことを特徴とする請求項 1 5または 1 6に記載の 高熱量ガス器具における気化助勢装置。
1 8 . 前記蓄熱部材は、 可撓性容器に粒状金属あるいは粉体状金属を収容してな ることを特徴とする請求項 1 5または 1 6に ¾載の高熱量ガス器具における気化 助勢装置。
PCT/JP1996/002655 1995-12-13 1996-09-17 Dispositif favorisant le passage en phase gazeuse pour appareil a gaz possedant une valeur de chauffage elevee WO1997021961A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/091,201 US6089218A (en) 1995-12-13 1996-09-17 Vaporization acceleration device for high-calorie gas appliance
EP96930420A EP0866276A4 (en) 1995-12-13 1996-09-17 DEVICE FOR PROMOTING THE GASEOUS PHASE FOR A GAS APPLIANCE HAVING A HIGH HEATING VALUE
KR1019980704469A KR19990072138A (ko) 1995-12-13 1996-09-17 고열량 가스 기구용 기화 촉진 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7324470A JP2787154B2 (ja) 1995-12-13 1995-12-13 高熱量ガス器具における気化助勢装置
JP7/324470 1995-12-13

Publications (1)

Publication Number Publication Date
WO1997021961A1 true WO1997021961A1 (fr) 1997-06-19

Family

ID=18166172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002655 WO1997021961A1 (fr) 1995-12-13 1996-09-17 Dispositif favorisant le passage en phase gazeuse pour appareil a gaz possedant une valeur de chauffage elevee

Country Status (7)

Country Link
US (1) US6089218A (ja)
EP (1) EP0866276A4 (ja)
JP (1) JP2787154B2 (ja)
KR (1) KR19990072138A (ja)
CN (1) CN1106534C (ja)
CA (1) CA2240187A1 (ja)
WO (1) WO1997021961A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0907054A1 (fr) * 1997-10-03 1999-04-07 Giovanni Santilli Appareil portatif à gaz G.P.L. fixé directement sur cartouches jetables ou réservoirs rechargeables, applicable à un utilisateur thermique

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8091106B1 (en) 2000-06-26 2012-01-03 Thomson Licensing Method and apparatus for using DVD subpicture information in a television receiver
DE10053679A1 (de) * 2000-10-28 2002-05-08 Volkswagen Ag Gaskocher, insbesondere für Campingfahrzeuge
AU2003216701A1 (en) * 2002-03-28 2003-10-13 Bs Manufacturing Limited A Compact Stove.
JP4534667B2 (ja) * 2004-08-24 2010-09-01 日立工機株式会社 燃焼式動力工具
JP2009530532A (ja) * 2006-03-21 2009-08-27 ディクソン,マイケル,パトリック 液体又は液化ガス気化システム
US20070277801A1 (en) * 2006-05-09 2007-12-06 Tong Han Enterprise Co., Ltd Cooking device
US20080072891A1 (en) * 2006-09-22 2008-03-27 Iwatani International Corporation Of America Heat panel system
CN102062419B (zh) * 2010-04-07 2013-01-09 徐克� 气化炉搅推调整和复合式取气方法及其装置
CN102042481B (zh) * 2010-12-13 2013-05-08 刘新 一种瓶装液化石油气全自动强制气化机
KR101356776B1 (ko) * 2013-05-16 2014-01-27 주식회사 코베아 휴대용 버너
TWD174006S (zh) * 2014-10-28 2016-03-01 高飛亞有限公司 瓦斯爐之部分
CN204880256U (zh) * 2015-07-15 2015-12-16 脉鲜金属(大连)有限公司 便携式燃气灶具
CN108980906A (zh) * 2018-08-17 2018-12-11 安徽信息工程学院 燃气灶
US11262079B2 (en) * 2019-05-15 2022-03-01 Gsi Outdoors, Inc Collapsible camp stove
USD972359S1 (en) * 2020-06-02 2022-12-13 Dr. Hows Co., Ltd. Portable gas range
KR102431576B1 (ko) * 2022-01-19 2022-08-10 김주학 설치안정성 및 파지성이 증대된 충전식 가스버너
CN114909679A (zh) * 2022-04-11 2022-08-16 山东大学 一种防止卡式炉气罐结霜的装置及卡式炉

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100880U (ja) * 1977-12-26 1979-07-16
JPS54100880A (en) 1977-11-23 1979-08-08 Harwell Packaging Ltd Preparation of largeesized bag with valve
JPS54123726A (en) * 1978-03-18 1979-09-26 Tiger Vacuum Bottle Ind Method of preventing reduction of vaporization action of liquefied gas in gas bomb for cassette system gas heater and gas bomb and gas heater for said method
JPS5525757A (en) * 1978-08-14 1980-02-23 Keiji Aoyanagi Method of promoting liquidified gas gasification for small- sized desk heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100880A (en) 1977-11-23 1979-08-08 Harwell Packaging Ltd Preparation of largeesized bag with valve
JPS54100880U (ja) * 1977-12-26 1979-07-16
JPS54123726A (en) * 1978-03-18 1979-09-26 Tiger Vacuum Bottle Ind Method of preventing reduction of vaporization action of liquefied gas in gas bomb for cassette system gas heater and gas bomb and gas heater for said method
JPS5525757A (en) * 1978-08-14 1980-02-23 Keiji Aoyanagi Method of promoting liquidified gas gasification for small- sized desk heater

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0866276A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0907054A1 (fr) * 1997-10-03 1999-04-07 Giovanni Santilli Appareil portatif à gaz G.P.L. fixé directement sur cartouches jetables ou réservoirs rechargeables, applicable à un utilisateur thermique

Also Published As

Publication number Publication date
CN1208454A (zh) 1999-02-17
KR19990072138A (ko) 1999-09-27
CN1106534C (zh) 2003-04-23
CA2240187A1 (en) 1997-06-19
EP0866276A1 (en) 1998-09-23
JP2787154B2 (ja) 1998-08-13
JPH09159175A (ja) 1997-06-20
US6089218A (en) 2000-07-18
EP0866276A4 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
WO1997021961A1 (fr) Dispositif favorisant le passage en phase gazeuse pour appareil a gaz possedant une valeur de chauffage elevee
US7722782B2 (en) Portable heating apparatus and metal fuel composite for use with same
US7058292B2 (en) Heat storage type heater and method of controlling input and output of heat of the same
EP0015106B1 (en) Absorption-desorption system
WO2010117857A2 (en) Solid-state thermite composition based heating device
US20100252023A1 (en) Package heating apparatus
KR20030007578A (ko) 수소 가역 저장 탱크
EP0084532B1 (en) Heating device
US4043314A (en) Food heaters
JP2785003B2 (ja) 高熱量ガス器具における気化助勢装置
ES2380514T3 (es) Generador de niebla que tiene un intercambiador de calor mejorado
JP2007315546A (ja) 水素貯蔵容器および水素吸放出装置
JP2005323704A (ja) 電気湯沸かし器
JP3026745B2 (ja) カセット式ガスボンベおよびガス器具
TW322526B (ja)
JP2006177434A (ja) 水素貯蔵・供給装置
JPH01187794A (ja) マイクロ波による蓄熱体およびマイクロ波発熱保温機器
JPH0288404A (ja) 金属水素化合物を用いた熱交換器
CN203286210U (zh) 回收壁面散热的复合储能保温板
US20100255169A1 (en) Package heating apparatus and chemical composition
JPH0334926B2 (ja)
JPS6048800A (ja) アイロン
JP2000063815A (ja) 蓄熱方法及びそれを用いた蓄熱装置
JP2548873Y2 (ja) 内燃機関の潤滑油加熱装置
RU2030036C1 (ru) Высокотемпературная аккумуляторная батарея

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96199845.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2240187

Country of ref document: CA

Ref document number: 2240187

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09091201

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019980704469

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996930420

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996930420

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980704469

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019980704469

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996930420

Country of ref document: EP