WO1997019707A1 - Procede d'obtention d'agents liquides sterilisants et/ou stimulants et dispositif de mise en oeuvre du procede - Google Patents

Procede d'obtention d'agents liquides sterilisants et/ou stimulants et dispositif de mise en oeuvre du procede Download PDF

Info

Publication number
WO1997019707A1
WO1997019707A1 PCT/CH1996/000418 CH9600418W WO9719707A1 WO 1997019707 A1 WO1997019707 A1 WO 1997019707A1 CH 9600418 W CH9600418 W CH 9600418W WO 9719707 A1 WO9719707 A1 WO 9719707A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
water
sterilizing
liquid agent
stimulating
Prior art date
Application number
PCT/CH1996/000418
Other languages
English (en)
Inventor
Pavel Koulik
Svetlana Krapivina
Original Assignee
Ist Instant Surface Technology S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ist Instant Surface Technology S.A. filed Critical Ist Instant Surface Technology S.A.
Publication of WO1997019707A1 publication Critical patent/WO1997019707A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/358Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/03Electric current
    • A61L2/035Electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention relates to a process for obtaining sterilizing and / or stimulating liquid agents and to its implementation device. It also relates to sterilizing and stimulating liquid agents resulting from the process, as well as their use, in particular for cleaning, sterilization and activation of surfaces, in particular interior surfaces of containers; for the sterilization of medical instruments, particularly hollow (tubular) of great length; for increased longevity of fruit and vegetable storage; for disinfection, sterilization and increasing the shelf life of liquids prepared from food concentrates; for the activation of surfaces and the vital functions of organisms.
  • This use therefore extends in particular to the fields of the food industry, medicine, pharmaceuticals, agriculture.
  • Ethylene oxide is used industrially for the sterilization of medical instruments and materials. Its advantage is that it can act at low temperature and therefore that it can be used for the sterilization of thermophobic materials, such as in particular polymers.
  • This chemical agent is characterized by a limited sporicidal activity, which requires a sterilization time exceeding 3 hours and reaching in many cases 7 to 8 hours.
  • Another disadvantage of this agent is that it is harmful. It presents a danger for service personnel and the environment.
  • the time required for the desorption of this agent from the treated surfaces is from several hours to several days, this delay being necessary before the treated surfaces can be used, for example for packaging food products. See the publication [5] Chaigneau M., "Sterilization and disinfection", Editions Maison-neuve, Sainte Ruffine (France), 1977.
  • the duration of sterilization using hydrogen peroxide depends on its concentration and temperature and can vary from several tens of minutes to several hours. (See the publication [6] Toledo RT, Escher FE and Ayres JC, "Sporicidal properties of hydrogen peroxide against food spoilage organisms", Applied Microbiology, 1973, 10, p. 592-597). An increase in its concentration from 20 to 41% and its temperature from 20 to 70 degrees centigrade makes it possible to significantly reduce the duration of the treatment.
  • H2 ⁇ 2 is an unstable molecule, the speed of decomposition of which increases in the presence of heavy metal ions.
  • the use of hydrogen peroxide has the following disadvantages:
  • Sodium hypochlorite is a very active liquid sterilant, which has a high sporicidal activity in an acid medium (pH ⁇ 7). See the publication [7] L'Haridon R. and Cerf 0. "Control of the effectiveness of the barriers opposed to contaminations by an Aseptic Conditioning Equipment for Milk", (Prototype Remy 77), French dairy review no 309 and 310, 1973.
  • the concentration of hypochloride, calculated in relation to chlorine, must be 300 to 1000 mg / 1 (pp).
  • Such a liquid has a sterilizing effect only at low temperature and at room temperature, since heating would lead to the decomposition of sodium hypochlorite. This sterilizing agent can therefore only be used in combination with other agents, with subsequent cleaning with sterile water.
  • Alcohols are effective disinfectants but do not kill bacteria in the form of spores. Alcohols and glucols can only be used for sterilization at temperatures above 100 ° C, which is excluded when processing polymeric materials. Sterilants such as formaldehyde, glutoraldehyde, betapropiolactone and others cannot be used in the food industry because their temperatures and times of action are not part of an industrial aseptic packaging rhythm.
  • the object of the present invention is to provide sterilizing and activating liquid agents which do not have the disadvantages of the liquid agents which have been mentioned above.
  • the invention relates to a process for obtaining sterilizing liquid agents and / or stimulating liquid agents, during which running water containing salts in concentration does not exceed the requirements of standard standards. on drinking water, and this water is subjected to the action of a continuous electric field so as to generate two metastable liquids, the first, with acidic properties, in the anodic zone, usable as a liquid agent sterilant, and the second, with basic properties, in the cathode zone, usable as a stimulating liquid agent.
  • the invention also relates to a device for carrying out this method, comprising an electrochemical cell, in which is arranged a porous membrane arranged so as to separate the volume of the cell into two parts, in which are respectively connected electrodes to a direct current source, and where the distance 1 between the electrodes is limited by the relationships l- ⁇ 1 ⁇ 12 with
  • U is the minimum voltage between the electrodes for which the device operates
  • the invention also relates to the liquid agents as such resulting from the process, and the use of said agents, in particular in the following cases:
  • thermophobic such as polymers
  • the AW liquid being introduced into the cavity after a vacuum has been made in the cavity, so as to ensure good filling of the cavity by the agent sterilant;
  • the invention further relates to a method for treating a liquid, a surface or an organism, during which, in a first step, the sterilizing liquid agent according to the invention is used for disinfection (sterilization). of the liquid, surface or organism to be treated, and in that in a second step, the stimulating liquid agent according to the invention is used to stimulate the vital functions of the liquid, the surface or the organism treat.
  • the method according to the invention thus consists in using running water containing natural salts, in particular sodium chloride, in a concentration corresponding to the standard standards required for drinking water, or by adding chloride to this water (for example NaCl ) at a rate, for example, of 0.01 to 0.1% per liter, depending on the applications, and to subject this water to the action of an electric field, which causes electrochemical reactions in its volume.
  • natural salts in particular sodium chloride
  • chloride for example NaCl
  • This water then separates into two metastable products, one with acidic properties, appearing in the anode zone, and which will be designated below by the letters AW (anode water), and the other with basic properties, appearing in the cathode zone, and which will be designated below by the letters CW (cathode water), each of these products having a specific action on the media to be treated, one, AW, having properties of sterilizing agent the other, CW, those of an agent stimulating the vital functions of organisms.
  • AW anode water
  • CW cathode water
  • FIG. 1 is a block diagram of the device for implementing the method according to the invention
  • FIG. 2 is an example of a construction diagram of the device for implementing the method according to the invention for a water flow system with parallel flat electrodes,
  • FIG. 3 is a photograph of three glasses containing a solution of blackcurrant concentrate after 14 days of observation, the content of one of the glasses having been treated with the sterilizing agent according to the invention, and
  • FIG. 4 illustrates the result of the treatment of oat seeds (a) and peas (b) with the CW stimulating agent according to the invention.
  • the figure shows the dried plants, fixed after 20 days of growth with daily watering with simple water (*) and with the CW agent (**) (identical frequency and quantity conditions).
  • the leaf and root systems are remarkably more developed in case (**) than in case (*).
  • a stream of running water is subjected to a continuous electric field, to which a limited quantity of chloride, in particular NaCl, may optionally be added, not exceeding, if necessary, the chloride concentration authorized by official standards for drinking water.
  • the electrolysis of this water divides it into two components, one, acid, the agent AW (anode water), whose pH can vary from 2 to 7, and the other, basic, the agent CW (cathode water), the pH of which can vary from 7 to 12. These transformations are probably accompanied by a declusterization of the water. It is known from the document [8] Za ⁇ tsev ID, Kretsh EI, "The use and study of temporarily activated water”. Russian Periodic Ed.
  • the viscosity ⁇ is proportional to the square root of the mass of clusters or n 1/2, and inversely proportional to the square of their size, either n ⁇ 2/3 "it follows that ⁇ is proportional to n 7/6. A decrease of n by an order of magnitude would explain a decrease in ⁇ of ⁇ 10 times.
  • the sterilizing activity of the liquid agent AW depends, among other things, on the value of its pH. This is optimal between 2 and 4 as shown in Tables 1 to 6.
  • the basic diagram of the device for implementing the method is illustrated in FIG. 1.
  • the device contains an electrochemical cell a, with a porous membrane b. This membrane separates the volume of the cell into two parts, in which the electrodes c and c ′ are respectively located, connected to a source of direct current d.
  • the treated water running water
  • the treated water is poured into the cell. It contains small amounts of natural salts, varying in concentration depending on the source of water, in particular chlorides (for example sodium), the concentration of which can, if necessary, be increased (for example up to 0.1% of the volume of treated water).
  • the device of FIG. 1 makes it possible to carry out the method according to the invention only if the distance 1 between the electrodes obeys boundary conditions, depending on the parameters of the process, such as the minimum voltage U between the electrodes for which the device is capable of operating, the flow of water passing through the device, and other geometric and physical characteristics appearing in formulas (1) to (4).
  • the limit l ⁇ is determined by the condition of non-overheating of the treated water above d 'a limit value ⁇ T. This condition is fulfilled if the water flow through the device is sufficient to compensate for Joule heating.
  • the basic relationship is:
  • the upper limit 1 corresponds to the distance between the electrodes for which the applied electric field is likely to destroy (deform, reorganize, restructure) the water clusters.
  • E c this minimum critical value of the electric field.
  • the dielectric permeability of water being of the order of 10 2 ′ the moment of the cluster dipole would be 10 2 times less than the moment of the dipole of a simple molecule, that is to say P ⁇ 2 - 10 -3 2 Coulomb - meter.
  • the average size of the cluster should be an order of magnitude greater than that of the water molecule, ie r ⁇ 4 • 10 ⁇ 9 m. We therefore have, according to (4):
  • the indication of the limits between which the distance between the electrodes must be able to be varied is thus obtained: 2.5-10 " 3 ⁇ 1 ⁇ 10" 1 m.
  • the construction diagram of the device shown in Figure 2 is for a water flow system with parallel flat electrodes.
  • the cell 1 contains the flat electrodes 2 and a permeable membrane 3.
  • the electrodes are connected to a direct current source 4.
  • the circuit is arranged for the measurement of the voltage 5 at the electrodes and of the current 6.
  • a switch 7 makes it possible to switch on the circuit.
  • the water supply duct 8 includes a flow regulator 9.
  • the electrodes are provided with adjustment screws 10 making it possible to modify the distance 1.
  • the conduits of the resulting liquid agents AW and CW 11 and 12 are provided with temperature sensors 13 and pH 14. They possibly serve storage tanks 15 and 16.
  • a system 17 makes it possible to add, if necessary, to the water supply a chloride solution (for example sodium) making it possible to increase the concentration of chloride in simple water (running water, for example).
  • a chloride solution for example sodium
  • a group of microorganisms (Bacillus pumulus ATCC 14884 and Bacillus cereus) was deposited in the same manner as in Example 1. After the bottles were treated with the AW liquid agent, a microbiological analysis was carried out. The results are shown in Tables 1 and 2.
  • microorganisms of the first and second group were deposited on the inner wall of the PET bottles as described in examples 1 and 2. Part of the bottles was treated with the liquid agent AW, the other with an aqueous hydrochloric acid solution. The results of the treatment are shown in Table 3.
  • Microorganisms of the first and second groups were deposited on the internal surface of tubes of polymer material with an internal diameter of 3 mm and a length of 50 cm. Their total number was 10 6 .
  • the tubes were immersed in an AW liquid agent so that the liquid completely filled the tubes.
  • the tubes were kept filled with liquid for some time.
  • the results of the microbiological analysis are shown in Table 4.
  • FIG. 3 Photographs of glasses containing a solution of blackcurrant concentrate treated as mentioned above are reproduced in FIG. 3.
  • the blackcurrant concentrate was mixed with running water.
  • the blackcurrant concentrate was mixed with liquid agent AW. After 14 days of observation, it can be seen that solution “a” is moldy on the surface and in volume, while solution “b” is intact.
  • the seeds were then planted on land with identical properties.
  • the watering conditions on the various grounds were identical. The only difference was in the properties of the coolants.
  • AW liquid agent after generation, was stored in a closed container.
  • liquid agent AW with a pH of 2.0 to 4.0 can be used in particular:
  • the liquid agent CW can be used in particular for stimulating the development of plant growth and increasing crops.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electrochemistry (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

L'invention concerne un procédé d'obtention d'agents liquides stérilisants et/ou d'agents liquides stimulants, au cours duquel on utilise de l'eau courante contenant des sels en concentration ne dépassant pas les exigences des normes standards sur l'eau potable, et l'on soumet cette eau à l'action d'un champ électrique continu de façon à générer deux liquides métastables, le premier, aux propriétés acides, dans la zone anodique, utilisable en tant qu'agent liquide stérilisant, et le second, aux propriétés basiques, dans la zone cathodique, utilisable en tant qu'agent liquide stimulant. L'invention concerne également un dispositif pour la mise en oeuvre de ce procédé.

Description

Procédé d'obtention d'agents liquides stérilisants e /ou stimulants et dispositif de mise en oeuyre du procédé
La présente invention concerne un procédé d'obtention d'agents liquides stérilisants et/ou stimulants et son dispositif de mise en oeuvre. Elle concerne également les agents liquides stérilisants et stimulants issus du procédé, ainsi que leur utilisation, en particulier pour le nettoyage, la stérilisation et l'activation de surfaces, notamment surfaces intérieures de récipients; pour la stérilisation d'instruments médicaux, notamment creux (tubulaires) de grande longueur; pour l'augmentation de la longévité de stockage de fruits et légumes; pour la désinfection, stérilisation et l'augmentation de la longévité de conservation des liquides préparés à base de concentrés alimentaires; pour l'activation des surfaces et des fonctions vitales des organismes. Cette utilisation s'étend donc en particulier aux domaines de l'industrie alimentaire, de la médecine, de la pharmaceutique, de l'agriculture.
On connaît différentes méthodes permettant de stériliser la surface d'objets ou un volume de liquide à l'aide d'agents liquides de nature chimique. De telles méthodes sont décrites par exemple dans les publications suivantes: [1] Lawrence C.A. et Bloc S.S, "Disinfection, sterilization and préservation", Lea and Febiger, Philadelphie, 1968, [2] Bernard D.T. , Gavin A., Scott V.N., Shafer B.D., Stevenson K.E., Unverferth J.A. and Chandarana D.I., "Validation of Aceptic Processing and Packaging", in «Food technology», 1990, 12, p. 119-122, [3] Stumbo C.R., "Thermbacteriology in food processing", Académie Press, New-York, 1973, et [4] Bail C.O., Oison F.S. ., "Sterilization in food technology", New-York, Mac Graw Hill Book Company, 1957, 654 p.
Parmi ces agents, on peut distinguer, entre autres, l'oxyde d'éthylène, le peroxyde d'hydrogène et 1'hypochlorite de sodium. L'oxyde d'éthylène est utilisé industriellement pour la stérilisation des instruments et des matériaux médicaux. Son avantage est de pouvoir agir à basse température et donc de pouvoir être utilisé pour la stérilisation de matériaux thermophobes, tels que notamment les polymères. Cet agent chimique est caractérisé par une activité sporicide limitée, ce qui nécessite un temps de stérilisation dépassant 3 heures et atteignant dans beaucoup de cas 7 à 8 heures. Un autre désavantage de cet agent est qu'il est nocif. Il présente en effet un danger pour le personnel de service et pour l'environnement. De plus, le temps nécessaire pour la désorption de cet agent des surfaces traitées est de plusieurs heures à plusieurs jours, ce délai étant nécessaire avant qu'on puisse utiliser les surfaces traitées, par exemple pour l'emballage de produits alimentaires. Voir la publication [5] Chaigneau M., "Stérilisation et désinfection", Editions Maison-neuve, Sainte Ruffine (France), 1977.
La durée de stérilisation à l'aide du peroxyde d'hydrogène dépend de sa concentration et de sa température et peut varier de plusieurs dizaines de minutes à plusieurs heures. (Voir la publication [6] Toledo R.T., Escher F.E. and Ayres J.C., "Sporicidal properties of hydrogen peroxide against food spoilage organisms", Applied Microbiology, 1973, 10, p. 592-597) . Une augmentation de sa concentration de 20 à 41 % et de sa température de 20 à 70 degrés centigrades permettent de diminuer sensiblement la durée du traitement. Cependant H2θ2 est une molécule instable, dont la vitesse de décomposition augmente en présence d'ions de métaux lourds. De plus, l'utilisation du peroxyde d'hydrogène a les désavantages suivants:
- lors de 1'évaporation de H2O2, les produits superficiellement actifs qui seraient restés sur la surface traitée, par exemple après le lavage des récipients, ne sont pas éliminés, ce qui peut provoquer leur apparition dans les produits alimentaires;
- l'utilisation de hautes concentrations de H2O2 nécessaires pour la stérilisation efficace des surfaces traitées, nécessite une importante installation de ventilation pour assurer une atmosphère écologiquement acceptable sur le lieu de production; - dans les spores comme le Bacillus subtilis sont présents des ferments comme le "Catalase", qui décomposent H2O2; cela limite l'efficacité de la stérilisation lors de la destruction des micro-organismes du type spore [6] .
L'hypochlorite de sodium est un stérilisant liquide très actif, qui présente une haute activité sporicide en milieu acide (pH < 7). Voir la publication [7] L'Haridon R. et Cerf 0. "Contrôle de l'efficacité des barrières opposées aux contaminations par un Appareillage de Conditionnement Aseptique du Lait", (Prototype Remy 77) ,revue laitière française no 309 et 310, 1973. La concentration de l'hypochlorure, calculée par rapport au chlore doit être de 300 à 1000 mg/1 (pp ) . Un tel liquide a un effet stérilisant uniquement à faible température et à température ambiante, puisqu'un echauffement conduirait à décomposer l'hypochlorite de sodium. Cet agent stérilisant ne peut donc être utilisé qu'en combinaison avec d'autres agents, avec nettoyage ultérieur à l'eau stérile.
Les alcools sont des moyens désinfectants efficaces mais ne tuent pas les bactéries sous forme de spores. Les alcools et les glucols ne peuvent être utilisés pour la stérilisation qu'à des températures supérieures à 100°C, ce qui est exclu lors du traitement des matériaux polymères. Les stérilisants tels que le formaldéhyde, le glutoraldéhyde, le betapropiolactone et autres ne sont pas utilisables dans l'industrie alimentaire car leurs températures et leurs temps d'action ne s'inscrivent pas dans le cadre d'un rythme industriel d'emballage aseptique.
Si on ajoute aux restrictions imposées aux agents stérilisants, celles de ne pas influencer les goûts et les odeurs des produits alimentaires, on s'aperçoit qu'il est très difficile de trouver un agent liquide qui, de par ses caractéristiques, puisse satisfaire à toutes les exigences de la stérilisation dans l'industrie alimentaire, celles-ci devenant, avec le progrès, de plus en plus complexes et difficiles à réaliser.
Le but de la présente invention est de proposer des agents liquides stérilisants et activants ne présentant pas les désavantages des agents liquides qui ont été mentionnés plus haut.
A cet effet, l'invention concerne un procédé d'obtention d'agents liquides stérilisants et/ou d'agents liquides stimulants, au cours duquel on utilise de l'eau courante contenant des sels en concentration ne dépassant pas les exigences des normes standards sur l'eau potable, et l'on soumet cette eau à l'action d'un champ électrique continu de façon à générer deux liquides métastables, le premier, aux propriétés acides, dans la zone anodique, utilisable en tant qu'agent liquide stérilisant, et le second, aux propriétés basiques, dans la zone cathodique, utilisable en tant qu'agent liquide stimulant.
L'invention concerne également un dispositif pour la mise en oeuvre de ce procédé, comportant une cellule électrochimique, dans laquelle est disposée une membrane poreuse agencée de façon à séparer le volume de la cellule en deux parties, dans lesquelles sont disposées respectivement des électrodes connectées à une source de courant continu, et où la distance 1 entre les électrodes est limitée par les relations l- < 1 < 12 avec
11 = U2's/(p-G-c-ΔT) et 12 = 4π-ε0-U-r3/P
où:
U est la tension minimum entre les électrodes pour laquelle le dispositif fonctionne,
S la surface des électrodes, p la résistivité électrique de l'eau, c la chaleur spécifique de l'eau,
G le débit minimum d'eau à travers l'appareil,
ΔT 1'echauffement limite de l'eau pendant la réaction chimique, r la dimension caractéristique des clusters de l'eau,
P le moment de dipôle des clusters de l'eau, ε0 la perméabilité diélectrique du vide (4πε0 = 1010 unités
S.I.)
L'invention concerne aussi les agents liquides en tant que tels issus du procédé, et l'utilisation desdits agents, notamment dans les cas suivants:
- pour le nettoyage et la stérilisation à basse température des surfaces solides, notamment thermophobes, comme les polymères;
- pour le traitement des surfaces solides intérieures, telles que celles des tubes longs et étroits (tels qu'endoscopes, cathéters) , des récipients et autres conteneurs;
- pour la désinfection ou stérilisation en volume des liquides, notamment des jus à base de concentrés;
- sous forme de flux continu, pour le traitement d'objets longs et creux, ouverts à leurs deux extrémités, de façon à permettre un renouvellement continu de l'action nettoyante et stérilisante et de diminuer ainsi la durée d'action;
- pour le traitement d'objets longs et creux, ouverts à une extrémité, le liquide AW étant introduit dans la cavité après qu'on ait fait le vide dans la cavité, de façon à assurer un bon remplissage de la cavité par l'agent stérilisant;
- avec un pH < 4, pour la préservation et la prolongation du délai de conservation des fruits, des légumes et autres produits alimentaires, lesdits fruits, légumes et autres produits alimentaires étant plongés dans l'agent liquide stérilisant ou recouvert avec l'agent liquide stérilisant;
- en tant que produit stimulant les fonctions vitales des organismes;
- en tant que produit de traitement avant la plantation et en tant que produit d'arrosage pendant la croissance des plantes, de façon à les stimuler.
L'invention concerne en outre un procédé de traitement d'un liquide, d'une surface ou d'un organisme, au cours duquel dans un premier temps on utilise l'agent liquide stérilisant selon selon l'invention pour la désinfection (stérilisation) du liquide, de la surface ou de l'organisme à traiter, et en ce que dans un deuxième temps on utilise l'agent liquide stimulant selon selon 1'invention pour stimuler les fonctions vitales du liquide, de la surface ou de l'organisme à traiter.
Le procédé selon l'invention consiste ainsi à utiliser l'eau courante contenant des sels naturels, notamment du chlorure de sodium, en concentration concordant aux normes standards exigées pour l'eau potable, ou en ajoutant à cette eau du chlorure (par exemple NaCl) à raison, par exemple, de 0.01 à 0.1 % par litre, selon les applications, et à soumettre cette eau à l'action d'un champ électrique, ce qui provoque des réactions électrochimiques dans son volume.
Cette eau se sépare alors en deux produits métastables, l'un aux propriétés acides, apparaissant dans la zone anodique, et que l'on désignera ci-après par les lettres AW (anode water), et l'autre de propriétés basiques, apparaissant dans la zone cathodique, et que l'on désignera ci-après par les lettres CW (cathode water) , chacun de ces produits ayant une action spécifique sur les milieux à traiter, l'un, AW, ayant des propriétés d'agent stérilisant efficace, l'autre, CW, celles d'un agent stimulant les fonctions vitales des organismes. Ces deux agents liquides, qui peuvent donc être produits simultanément, présentent entre autres avantages de pouvoir être utilisés à température ambiante, à l'échelle industrielle.
La description qui suit se réfère au dessin sur lequel:
- la figure 1 est un schéma de principe du dispositif pour la mise en oeuvre du procédé selon l'invention,
- la figure 2 est un exemple de schéma de construction du dispositif de mise en oeuvre du procédé selon l'invention pour un système à débit d'eau avec des électrodes plates parallèles,
- la figure 3 est une photographie de trois verres contenant une solution de concentré de cassis après 14 jours d'observation, le contenu d'un des verres ayant été traité avec l'agent stérilisant selon l'invention, et
- la figure 4 illustre le résultat du traitement de semences d'avoine (a) et de pois (b) par l'agent stimulant CW selon l'invention. La figure montre les plantes séchées, fixées après 20 jours de pousse avec arrosage journalier à l'eau simple (*) et à l'agent CW (**) (conditions de fréquences et de quantité identiques) . Les systèmes des feuilles et des racines sont remarquablement plus développés dans le cas (**) que dans le cas (*) .
Selon 1'invention on soumet à un champs électrique continu un flux d'eau courante, à laquelle on peut éventuellement ajouter une quantité limitée de chlorure, notamment NaCl, ne dépassant pas, si nécessaire, la concentration de chlorure autorisée par les normes officielles pour eaux potables. L'électrolyse de cette eau la divise en deux composantes, l'une, acide, l'agent AW (anode water), dont le pH peut varier de 2 à 7, et l'autre, basique, l'agent CW (cathode water), dont le pH peut varier de 7 à 12. Ces transformations s'accompagnent vraisemblablement d'une déclustérisation de l'eau. Il est connu du document [8] Zaïtsev I.D., Kretsh E.I., "L'utilisation et l'étude de l'eau temporairement activée". Ed. périodique russe "Industrie chimique" no 4, 1989, qu'à l'état stable et pour des conditions normales, l'eau pure est composée de clusters du type (H2θ)n, où n est un nombre entier supérieur à un et pouvant atteindre 103. Si, dans l'eau pure, ces clusters sont relativement instables, dans une solution ils sont "fixés" par les ions positifs et négatifs qui les rendent stables (phénomène de solvatation) . On peut se représenter une solution faible comme un ensemble de clusters, dont certains sont solvatés.
Le traitement de cette solution par un champ électrique provoque, dans certaines conditions, une destruction partielle des clusters suivant le schéma général:
(H20)n-> (H20)+ a2(H20)2 + ... où Σ a^ = n
Cette destruction s'accompagne très probablement d'une restructuration interne des clusters du type (H2Û)i (i»l) qui pourrait être due à une polarisation collective du système de molécules H2O à l'intérieur du cluster. Cette polarisation pourrait avoir un temps de vie supérieur à la durée d'action du champ électrique appliqué lors de la génération des agents liquides AW et CW, et donc être la cause d'une accumulation d'énergie. Cela expliquerait la conservation de leurs propriétés particulières, acquises durant l'action du champ électrique (viscosité réduite, diminution de la tension superficielle, augmentation de la mouillabilité des surfaces, [8], ainsi que les propriétés anormales de stérilisation de l'agent AW et d'activation de l'agent CW, et la libération de cette énergie sous forme d'activation) . En effet, la réduction sensible de la viscosité ne pourrait être due qu'à une réduction de la dimension des clusters qui composent l'eau ou du nombre moyen de molécules H2O par cluster.
La viscosité η étant proportionnelle à la racine carrée de la masse des clusters, soit à n1/2, et inversement proportionnelle au carré de leur dimension, soit à n~2/3» il s'en suit que η est proportionnel à n7/6. Une diminution de n d'un ordre de grandeur expliquerait une diminution de η de ~10 fois.
L'électrolyse de l'eau, contenant notamment NaCl, s'accompagne de la génération dans la zone anodique de petites quantités de peroxyde d'hydrogène (H2O2) et d'hypochlorite de sodium (NaOCl) . Ces composantes représentent des désinfectants actifs. Dans la zone cathodique, on observe une précipitation de sels provenant de la décomposition de l'eau courante et la formation de dépôts de ces sels. La concentration des ions de métaux lourds due à cette précipitation diminue sensiblement dans l'agent liquide CW, ce qui concourt à lui donner ses propriétés remarquables.
L'activité stérilisante de l'agent liquide AW dépend, entre autres, de la valeur de son pH. Celle-ci est optimale entre 2 et 4 comme le montrent les tableaux 1 à 6.
Les expériences faites en comparant l'action stérilisante (désinfectante) de l'agent liquide AW et de l'eau simple, non traitée, à laquelle on a ajouté des composantes chimiques désinfectantes en concentrations égales à celles créées dans l'agent liquide AW, montrent que l'efficacité désinfectante de l'agent liquide AW, à conditions identiques (températures, temps d'action et autres) , est de beaucoup supérieure (voir tableau 7). Ceci porte à croire que l'action stérilisante des produits chimiques créés dans l'agent liquide AW est en corrélation avec la présence de clusters à l'état métastable, qui activent la matière traitée. Cette activation a lieu aussi bien
1) dans les boissons à base de concentrés de fruits L l'addition de l'agent liquide AW leur donnant un temps de vie (de non-contamination) de beaucoup supérieur à celui du liquide non traité, sans apparemment altérer la couleur, le goût et l'odeur (voir exemple 5 et tableau 5)
2) sur la surface de fruits et de légumes régulièrement aspergés d'agent liquide AW dont la durée de conservation, une fois traités avec cet agent, augmente sensiblement (voir exemple 6 et tableau 6)
3) sur la surface de semences traitées à l'agent liquide CW avant leur plantation et arrosées pendant leur croissance, ce qui accélère leur croissance, renforce et développe leur système de racines et de feuilles, et donc augmente sensiblement la récolte en quantité et en qualité, par rapport aux semences traitées dans les mêmes conditions à l'eau simple (voir exemple 7, fig. 4 et tableau 7)
Il est important de souligner que l'action activante a lieu, que le traitement soit opéré avec l'agent liquide AW aussi bien qu'avec l'agent liquide CW. On observe même un effet positif plus sensible à longue échéance après traitement avec l'agent liquide CW par rapport au traitement avec l'agent liquide AW, ce qui prouve que l'action activante est due aux clusters et non pas à la présence de produits chimiques, ceux- ci ayant tendance à freiner le développement des plantes par leur action destructrice des fonctions vitales (stérilisation, désinfection, etc.).
On a pu observer que les agents liquides, créés selon le procédé revendiqué, perdent leur activité après traitement, la durée de cette perte dépendant de la quantité de matière traitée et de sa nature (voir exemple 8 et tableau 8) . Il est donc bien question d'une désactivation, c'est-à-dire d'une perte d'énergie accumulée dans les clusters, puisque le liquide résultant est de nouveau une eau dont les propriétés ne peuvent pas être distinguées de celles de l'eau simple contenant les résidus des réactions chimiques qui ont eu lieu.
Cette constatation permet également de proposer un traitement, par exemple de jus de fruits, où, dans un premier temps, à l'aide de l'agent liquide AW, est exercée une action stérilisante, puis ensuite, le temps de vie de l'agent liquide AW étant écoulé, on crée à l'aide d'une addition de l'agent liquide CW, une propriété stimulante des fonctions vitales de l'organisme qui absorbera la boisson.
Le schéma de principe du dispositif pour la mise en oeuvre du procédé est illustré à la figure 1. Le dispositif contient une cellule électrochimique a, avec une membrane poreuse b. Cette membrane sépare le volume de la cellule en deux parties, dans lesquelles se trouvent respectivement les électrodes c et c', connectées à une source de courant continu d. L'eau traitée (eau courante) est versée dans la cellule. Elle contient en petites quantités des sels naturels, de concentration variable suivant la source d'eau, notamment des chlorures, (par exemple de sodium) , dont la concentration peut, éventuellement, être augmentée (par exemple jusqu'à 0,1% du volume d'eau traitée). Le processus de séparation de l'eau en deux agents liquides AW et CW a lieu dès l'enclenchement du circuit électrique, l'agent liquide AW se localisant dans la partie anodique de l'appareil, et l'agent liquide CW, dans la partie cathodique. Quelques-uns des produits apparaissant lors du processus électrochimique sont indiqués sur la figure 1.
L'apparition d'un champ électrique et le passage du courant dans la solution provoquent:
1. un echauffement Joule du liquide,
2. une réorganisation (restructuration) non thermique des clusters, les transformant en formations métastables, capables de conserver leur forme et leur énergie un certain temps, et de revenir à l'état initial en transmettant leur énergie sous forme d'une activation des surfaces et/ou matières traitées.
Le dispositif de la figure 1 ne permet de réaliser le procédé selon l'invention que si la distance 1 entre les électrodes obéit à des conditions limites, dépendant des paramètres du processus, tels que la tension minimum U entre les électrodes pour laquelle le dispositif est capable de fonctionner, le débit de l'eau qui traverse le dispositif, et d'autres caractéristiques géométriques et physiques apparaissant dans les formules (1) à (4) .
Les considérations physiques suivantes permettent de montrer que, pour réaliser le procédé selon l'invention, il faut que 1^ < 1 < 12- La limite l± est déterminée par la condition de non-suréchauffement de l'eau traitée au-dessus d'une valeur limite ΔT. Cette condition est remplie si le débit d'eau à travers le dispositif est suffisant pour compenser 1'echauffement Joule. La relation de base est :
G-c-ΔT = τj2/R ~ U2 S/(p-l1) (1)
où G est le débit d'eau à travers l'appareil, c la chaleur spécifique de l'eau,
ΔT 1'echauffement limite de l'eau pendant la réaction chimique,
U la tension minimum entre les électrodes pour laquelle l'appareil fonctionne,
R la résistance du milieu entre les électrodes, p la résistivité du milieu, et S la surface des électrodes
de (1) on obtient l ~ U2 • S/ (p-G-c-ΔT) (2)
La limite supérieure 1 correspond à la distance entre les électrodes pour laquelle le champ électrique appliqué est susceptible de détruire (déformer, réorganiser, restructurer) les clusters de l'eau. Soit Ec cette valeur critique minimum du champ électrique. On peut en évaluer l'ordre de grandeur en l'égalant au champ électrique créé par le cluster. Celui-ci est le résultat de la superposition des champs créés par les dipôles des molécules H2O du cluster et donc, très grossièrement:
Ec ~ r-l/(4π-ε0) P/r3 (3)
où ε0 est la perméabilité diélectrique du vide (4πε0 = 1010 unités S.I. ) , P le moment du dipôle résultant du cluster et r la dimension caractéristique du cluster. On obtient donc pour 12 la relation approximative
12 = U/Ec ~ 4π-ε0-U-r3/P (4)
Exemple:
Dans cet exemple, toute les données des grandeurs physiques sont tirées de l'ouvrage "Tables des grandeurs physiques" Ed. I.K. Kikoine, Moscou, Atomizdat, 1976.
Supposons que U = 2102 V
S = 10"2 m2 G = 10"4 m3/s ΔT = 30 degrés
Sachant que c ~ 5 10^ J/m3 degrés et p ~10 Ohm-m pour une solution de 0.05% de NaCl dans l'eau, on obtient pour 1^
lχ ~ 2.4-10-3 m
Pour calculer l'ordre de grandeur de I2 on peut estimer très approximativement P à partir du moment du dipôle de la molécule d'eau qui est de 2-10"30 Coulomb-mètre.
La perméabilité diélectrique de l'eau étant de l'ordre de 102' le moment du dipôle du cluster serait de 102 fois inférieur au moment du dipôle d'une molécule simple, c'est-à-dire P ~ 2 - 10-3 2 Coulomb - mètre .
La dimension moyenne du cluster, d'après [8] devrait être d'un ordre de grandeur supérieure à celle de la molécule d'eau, c'est-à-dire r ~ 410~9 m. On a donc, selon (4):
!2 ~ 10-1 m
Les expériences pratiques auxquelles les inventeurs ont procédé montrent, en fait, que I2 ~ 8 cm.
On obtient donc, dans cet exemple, pour la construction du dispositif selon l'invention, l'indication des limites entre lesquelles doit pouvoir varier la distance entre les électrodes: 2.5-10"3 < 1 < 10"1 m.
Le schéma de construction du dispositif représenté à la figure 2 est destiné à un système à débit d'eau avec des électrodes plates parallèles. La cellule 1 contient les électrodes plates 2 et une membrane perméable 3. Les électrodes sont reliées à une source de courant continu 4. Le circuit est agencé pour la mesure de la tension 5 aux électrodes et du courant 6. Un interrupteur 7 permet d'enclencher le circuit. Le conduit d'alimentation en eau 8 comporte un régulateur de débit 9. Les électrodes sont pourvues de vis de réglage 10 permettant de modifier la distance 1.
Les conduits des agents liquides résultants AW et CW 11 et 12 sont pourvus de capteurs de température 13 et de pH 14. Ils desservent éventuellement des réservoirs d'accumulation 15 et 16. Un système 17 permet d'ajouter, éventuellement, à l'eau d'alimentation une solution de chlorure (par exemple de sodium) permettant d'augmenter la concentration du chlorure dans l'eau simple (eau courante, par exemple).
Une construction axisymétrique du dispositif est aussi possible. Les propriétés des agents liquides AW et CW obtenus grâce à l'application du procédé et du dispositif selon l'invention sont illustrées par les exemples suivants :
Exemple 1
Des micro-organismes en groupe (Staphylococcus aureus ATCC 6538, Pseudomonas aeroginosa ATCC 9027, Serratia mar ces cens) ont été disposés sur des surfaces de 1 cm2 chacune, à différentes hauteurs le long de la paroi intérieure de bouteilles PET. Les bouteilles ont été remplies d'agent liquide AW de manière que toutes les surfaces inoculées soient submergées par le liquide stérilisant. Les bouteilles contenant l'agent liquide ont été maintenues pendant un temps déterminé, (voir tableau 1) . Après le processus de stérilisation, l'agent liquide étant éliminé, on a procédé à 1'analyse microbiologique de la surface traitée et de 1'agent liquide stérilisant. Cette analyse a montré que le liquide ne contient pas de micro-organismes vivants après traitement. Les résultats de 1'analyse de la surface sont indiqués aux tableaux 1 et 2.
Exemple 2
Un groupe de micro-organismes (Bacillus pumulus ATCC 14884 et Bacillus cereus) a été déposé de la même manière que dans l'exemple l. Après le traitement des bouteilles par l'agent liquide AW, une analyse microbiologique a été effectuée. Les résultats sont indiqués aux tableaux 1 et 2.
Exemple 3
Les micro-organismes du premier et du deuxième groupe (exemples 1 et 2) ont été déposés sur la paroi intérieure des bouteilles PET comme le décrivent les exemples 1 et 2. Une partie des bouteilles a été traitée par l'agent liquide AW, l'autre par une solution aqueuse d'acide chlorhydrique. Les résultats du traitement sont indiqués au tableau 3.
Exemple 4
On a déposé des micro-organismes du premier et du deuxième groupes (exemples 1 et 2) sur la surface interne de tubes en matière polymère de diamètre intérieur 3 mm et de longueur 50 cm. Leur nombre total était de 106. Les tubes ont été plongés dans un agent liquide AW de telle manière que le liquide remplisse complètement les tubes. Les tubes ont été maintenus remplis de liquide un certain temps. Les résultats de l'analyse microbiologique sont indiqués au tableau 4.
L'analyse montre que pour un pH < 3.6, l'agent liquide AW permet une stérilisation efficace sur les micro-organismes du groupe 1. Pour un temps d'action de 10 minutes on obtient une stérilisation des récipients contaminés par des spores, en utilisant un agent liquide AW de pH < 3.0.
Pour une durée de traitement de 30 minutes, la décontamination des récipients inoculés de spores s'opère pour des valeurs du pH entre 2.0 et 4.0.
Les résultats indiqués au tableau 2 permettent de conclure que pour les valeurs de pH et les durées de traitement optimisées de l'agent liquide AW, la stérilisation du récipient s'opère dans toutes les zones du volume des bouteilles.
Les résultats de l'analyse microbiologique, indiqués au tableau 3, prouvent que le pH de l'agent liquide AW n'est qu'un facteur extérieur de la qualité du liquide stérilisant mais pas une condition nécessaire de stérilisation. L'utilisation d'une solution d'acide chlorhydrique, de même pH que l'agent liquide AW selon la présente invention, n'a donné aucun effet de stérilisation de la surface traitée. La comparaison des résultats indiqués aux tableaux 1 à 4 prouve que l'agent liquide AW est un agent efficace pour le traitement de la surface intérieure des bouteilles et des tubes de grandes longueurs.
Exemple 5
Des verres de 100 ml ont été remplis d'eau, traitée préalablement de différentes manières. Dans cette eau ont été ajoutés 10 ml de concentré de jus de cassis. Les verres ont été observés pendant plusieurs jours, la surface libre du liquide restant ouverte et exposée à une atmosphère ambiante normale. Les résultats des observations sont indiqués au tableau 5. Pour donner une estimation des changements survenus et du degré de moisissure apparaissant à la surface du liquide et dans son volume, les codes suivants sont introduits :
+ Apparition de taches de moisissure sur la surface du liquide ou bien d'un trouble de la transparence du liquide dû à la moisissure en volume.
++ Augmentation sensible de la quantité de moisissures sur la surface et en volume.
+++ La moisissure a envahi toute la surface libre du liquide ou a occupé la moitié du volume du liquide.
x Apparition d'îlots microscopiques de moisissures à la surface.
xx Augmentation du nombre d'îlots de moisissure qui conservent une forme bien déterminée.
o Apparition d'un amas de moisissures coagulées au fond du verre.
oo Augmentation de l'amas de moisissures dans le volume. Outre les différents états de traitement de l'eau par le procédé selon l'invention, des expériences ont également été faites avec d'autres compositions : eau bouillie, eau avec addition d'acide chlorhydrique, de H2O2, de NaOCl en quantités égales aux quantités correspondantes contenues dans l'agent liquide AW, eau ozonée, obtenue par barbotage d'ozone de longue durée. L'analyse montre que l'agent liquide AW (pH = 7)est capable de freiner très fortement le développement des moisissures. Les premiers signes de moisissure apparaissent seulement quand les autres solutions ont déjà complètement perdu leurs propriétés initiales, cela dû à la moisissure. Des baisses du pH à 4.5 et 2.3 ne font qu'augmenter la durée de conservation du liquide, à température ambiante, à 8 jours et à 14 jours respectivement. Les caractéristiques extérieures, (transparence, couleur) le goût et l'odeur restent intactes.
Des photographies de verres contenant une solution de concentré de cassis traitées comme mentionné ci-dessus sont reproduites à la figure 3. Dans les verres "a", le concentré de cassis était mélangé à de l'eau courante. Dans le verre "b", le concentré de cassis était mélangé à de l'agent liquide AW. Après 14 jours d'observation, on voit que la solution "a" est moisie en surface et en volume, tandis que la solution "b" est intacte.
Exemple 6
Des salades de laitue, dont les délais de conservation sont très limités, ont été observées. Les salades ont d'abord été plongées pendant 10 minutes dans différentes préparations d'eau et ont ensuite été conservées à l'air, avec arrosage léger, chaque matin. Les résultats des observations sont donnés au tableau 6.
L'analyse montre que l'utilisation de l'agent liquide AW (pH < 4.5) augmente sensiblement le délai de conservation de la salade. L'efficacité du traitement augmente avec la baisse du pH. Des expériences analogues, faites avec des oranges et des tomates ont donné des résultats analogues sur des temps de conservation plus longs.
Exemple 7
Des quantités égales de semences d'avoine on été plongées pendant un heure dans différentes solutions aqueuses dont les caractéristiques sont données au tableau 7.
Ensuite les semences ont été plantées dans des terrains de propriétés identiques. Les conditions d'arrosage sur les différents terrains étaient identiques. La seule différence résidait dans les propriétés des liquides d'arrosage.
L'analyse a montré que les agents liquides AW et CW ont une action stimulante sur le développement de pousse des feuilles et des racines, l'accélérant et le rendant plus homogène (le nombre des semences ayant germé étant plus grand) et la qualité des récoltes. Des expériences analogues ont été effectuées sur d'autres produits d'agriculture (voir fig. 4).
Exemple 8
On a conservé de l'agent liquide AW, après sa génération, dans un récipient fermé.
A différents moments de la conservation de l'eau AW, on en prélevait des volume égaux auxquels on ajoutait des mêmes quantités d'extrait de jus de fruit (cassis). Les résultats des observations sont donnés au tableau 8.
L'analyse a montré que l'état metastable de l'agent liquide AW relaxe progressivement et que le liquide revient à l'état stable. Lors de cette relaxation, l'agent liquide AW perd progressivement ses fonctions activantes et désinfectantes. Le pH et la composition chimique de la solution, par contre, durant cette relaxation, ne varient guère.
On peut en conclure, d'après les exemples cités, que l'agent liquide AW avec un pH de 2.0 à 4.0 peut être utilisé en particulier:
1. pour le nettoyage et la stérilisation des surfaces internes des récipients en matière polymère destinés à la conservation de produits alimentaires,
2. pour le nettoyage et la stérilisation de la surface intérieure de tubes polymères et autres, utilisés, par exemple, en médecine (endoscopes, cathéters, etc.),
3. pour l'augmentation du délai de conservation de fruits et de légumes,
4. pour l'augmentation du délai de conservation des boissons, notamment quand elles sont préparées à base de concentrés alimentaires.
L'agent liquide CW peut être utilisé notamment pour la stimulation du développement de la croissance des plantes et l'augmentation des récoltes.
Les avantages de l'agent stérilisant selon l'invention sur les stérilisants liquides connus réside ainsi:
1. en sa haute efficacité à faible concentration de produits stérilisants, nocifs à grandes doses,
2. en sa capacité de pénétration dans les petits espaces, interstices, fentes, etc., due à sa faible viscosité,
3. en sa capacité de nettoyer la surface des éléments superficiellement actifs restant sur la surface après les traitements antérieurs,
4. en sa non-toxicité, ce qui permet de l'utiliser non seulement pour le traitement des instruments de médecine et d'emballage de produits alimentaires, mais pour le traitement des produits alimentaires eux-mêmes. TableaiH
Influence de la concentration de la solution et de la durée du traitement des bouteilles PET sur le pouvoir d stérilisation du liquide AW
Figure imgf000023_0001
Tablea
Influence de la répartition des zones de contamination sur l'effet de stérilisation lors du traitement par liquide AW
Figure imgf000024_0001
Tableau 3
Comparaison de l'action stérilisante de l'eau AW et d'autres liquides ayant les mêmes valeurs de pH
Figure imgf000025_0001
Tableau 4
Influence du pH de la solution et de la durée de traitement dans l'eau AW sur l'effet de stérilisation lors du traitement des tubes de grande longueur
Figure imgf000026_0001
Tableau s~
Influence des caractéristiques de l'eau sur le développement des moisissures
Figure imgf000027_0001
Tableau 6
Influence des propriétés des liquides sur les délais de conservation des salades de laitue
Figure imgf000028_0001
Tableau 7
INFLUENCE DU TRAITEMENT DE L'EAU SUR LE DEVELOPPEMENT DES
PLANTES
Figure imgf000029_0001
voir photo fig. 4 Tableau 8
INFLUENCE SUR LE DEVELOPPEMENT DES MOISISSURES DU DELAI
DE CONSERVATION DE L'EAU ACTIVEE AVANT SON UTILISATION COMME
SOLVANT DE CONCENTRES DE CASSIS
Figure imgf000030_0001

Claims

Revendications
1. Procédé d'obtention d'agents liquides stérilisants et/ou d'agents liquides stimulants, caractérisé en ce que l'on utilise de l'eau courante contenant des sels en concentration ne dépassant pas les exigences des normes standards sur l'eau potable, et en ce que l'on soumet cette eau à l'action d'un champ électrique continu de façon à générer deux liquides métastables, le premier, aux propriétés acides, dans la zone anodique, utilisable en tant qu'agent liquide stérilisant, et le second, aux propriétés basiques, dans la zone cathodique, utilisable en tant qu'agent liquide stimulant.
2. Procédé selon la revendication 1 caractérisé en ce que l'on maintient la concentration de chlorures, notamment de chlorure de sodium, dans l'eau, dans des limites de 0.01 à 0.1% par litre.
3. Dispositif pour la mise en oeuvre du procédé selon l'une des revendications précédentes, comportant une cellule électrochimique (a) , dans laquelle est disposée une membrane poreuse (b) agencée de façon à séparer le volume de la cellule en deux parties, dans lesquelles sont disposées respectivement des électrodes (c, c') connectées à une source de courant continu (d) , caractérisé en ce que la distance 1 entre les électrodes est limitée par les relations 1^ < 1 < 12, avec
1_L = U2'S/(p-G-c-ΔT) (2)
et
12 = 4π-ε0-U-r3/P (4)
ou:
U est la tension minimum entre les électrodes pour laquelle le dispositif fonctionne,
S la surface des électrodes, p la résistivité électrique de l'eau, c la chaleur spécifique de l'eau,
G le débit minimum d'eau à travers l'appareil,
ΔT l'echauffement limite de l'eau pendant la réaction chimique, r la dimension caractéristique des clusters de l'eau,
P le moment de dipôle des clusters de l'eau, ε0 la perméabilité diélectrique du vide (4πε0 = 1010 unités
S.I.)
4. Dispositif selon la revendication 3, caractérisé en ce qu'il comporte un dispositif de réglage de la distance entre les électrodes, de façon à faire varier le pH et les autres paramètres des agents liquides stérilisant et stimulant produits.
5. Agent liquide stérilisant en tant que produit issu du procédé selon la revendication 1.
6. Agent liquide selon la revendication 5, caractérisé en ce que son pH est inférieur à 4.
7. Agent liquide stimulant en tant que produit issu du procédé selon la revendication 1.
8. Agent liquide selon la revendication 7, caractérisé en ce que son pH est compris entre 8 et 11.
9. Utilisation de l'agent liquide stérilisant selon l'une des revendications 5 ou 6 pour le nettoyage et la stérilisation à basse température des surfaces solides, notamment thermophσbes, comme les polymères.
10. Utilisation de l'agent liquide stérilisant selon l'une des revendications 5 ou 6 pour le traitement des surfaces solides intérieures, telles que celles des tubes longs et étroits (tels qu'endoscopes, cathéters) , des récipients et autres conteneurs.
11. Utilisation de l'agent liquide stérilisant selon l'une des revendications 5 ou 6 pour la désinfection ou stérilisation en volume des liquides, notamment des jus à base de concentrés.
12. Utilisation de l'agent liquide stérilisant selon l'une des revendications 5 ou 6, sous forme de flux continu, pour le traitement d'objets longs et creux, ouverts à leurs deux extrémités, de façon à permettre un renouvellement continu de l'action nettoyante et stérilisante et de diminuer ainsi la durée d'action.
13. Utilisation de l'agent liquide stérilisant selon l'une des revendications 5 ou 6, pour le traitement d'objets longs et creux, ouverts à une extrémité, le liquide AW étant introduit dans la cavité après qu'on ait fait le vide dans la cavité, de façon à assurer un bon remplissage de la cavité par l'agent stérilisant.
14. Utilisation de l'agent liquide stérilisant selon l'une des revendications 5 ou 6, avec un pH < 4, pour la préservation et la prolongation du délai de conservation des fruits, des légumes et autres produits alimentaires, lesdits fruits, légumes et autres produits alimentaires étant plongés dans l'agent liquide stérilisant ou recouvert avec l'agent liquide stérilisant.
15. Utilisation de l'agent liquide stimulant selon l'une des revendications 7 ou 8, en tant que produit stimulant les fonctions vitales des organismes.
16. Utilisation de l'agent liquide stimulant selon l'une des revendications 7 ou 8, en tant que produit de traitement avant la plantation et en tant que produit d'arrosage pendant la croissance des plantes, de façon à les stimuler.
17. Procédé de traitement d'un liquide, d'une surface ou d'un organisme, caractérisé en ce que dans un premier temps on utilise l'agent liquide stérilisant selon l'une des revendications 5 ou 6 pour la désinfection (stérilisation) du liquide, de la surface ou de l'organisme à traiter, et en ce que dans un deuxième temps on utilise l'agent liquide stimulant selon l'une des revendications 7 ou 8 pour stimuler les fonctions vitales du liquide, de la surface ou de l'organisme à traiter.
PCT/CH1996/000418 1995-11-28 1996-11-27 Procede d'obtention d'agents liquides sterilisants et/ou stimulants et dispositif de mise en oeuvre du procede WO1997019707A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3367/95 1995-11-28
CH336795 1995-11-28

Publications (1)

Publication Number Publication Date
WO1997019707A1 true WO1997019707A1 (fr) 1997-06-05

Family

ID=4254442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1996/000418 WO1997019707A1 (fr) 1995-11-28 1996-11-27 Procede d'obtention d'agents liquides sterilisants et/ou stimulants et dispositif de mise en oeuvre du procede

Country Status (1)

Country Link
WO (1) WO1997019707A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049638A1 (fr) * 1996-06-26 1997-12-31 Ist S.A. Procede et dispositif d'activation des liquides
WO1999008719A2 (fr) * 1997-08-13 1999-02-25 Steris Corporation Appareil de sterilisation utilisant des solutions catholytes et anolytes produites par electrolyse de l'eau
EP0936188A1 (fr) * 1998-01-20 1999-08-18 Hee Jung Kim Procédé de réduction de la viscosité de l'eau par électrolyse
WO2003088930A1 (fr) * 2000-12-15 2003-10-30 Radical Waters Ip (Pty) Ltd Fluide de refroidissement et d'irrigation utilise dans la chirurgie dentaire
WO2005094904A1 (fr) * 2004-04-01 2005-10-13 Forum Bioscience Holdings Limited Solutions desinfectantes
WO2008131936A2 (fr) * 2007-04-25 2008-11-06 Akuatech S.R.L. Eau électrolytique extrêmement stable à largeur de raie à mi-hauteur de rmn réduite
EP2118945A1 (fr) * 2007-02-05 2009-11-18 Ceramatec, Inc. Dispositif de désinfection, et procédés associés utilisant des agents de désinfection produits de manière électrochimique
EP2366294A1 (fr) * 2010-03-11 2011-09-21 Dany Wachter Eau basique
US8277634B2 (en) 2005-10-28 2012-10-02 Apr Nanotechnologies S.A. Electrolytic water treatment device having sintered nanoparticle coated electrode and method for making acid or basic water therewith
US8691289B2 (en) 2009-06-17 2014-04-08 Apr Nanotechnologies S.A. Methods of treating outer eye disorders using high ORP acid water and compositions thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB172466A (en) * 1920-10-04 1921-12-15 Ludwig Georg Leffer A process for regenerating cereals and fish no longer in a fresh condition
US3975246A (en) * 1973-06-09 1976-08-17 Sachs-Systemtechnik Gmbh Method of disinfecting water
EP0115893A1 (fr) * 1983-02-03 1984-08-15 Battelle Memorial Institute Appareil pour stériliser des objets à l'aide d'une solution aqueuse d'hypochlorite
JPS6283485A (ja) * 1985-10-07 1987-04-16 Res Dev Corp Of Japan 淡水の無隔膜直接電解方法
EP0350466A2 (fr) * 1988-07-06 1990-01-10 CASTELLINI S.p.A. Procédé et appareil pour la stérilisation à froid d'instruments de chirurgie, en particulier des instruments de chirurgie dentaire
EP0470841A2 (fr) * 1990-08-10 1992-02-12 Omco Co. Ltd. Procédé et dispositif pour la production d'eau potable stérile
EP0612694A1 (fr) * 1993-02-22 1994-08-31 Nippon Intek Co., Ltd. Procédé et dispositif de production d'eau électrolytique
JPH078455A (ja) * 1993-06-25 1995-01-13 Miura Denshi Kk 流水生成電解酸性水を利用した内視鏡ファイバースコープの殺菌洗浄方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB172466A (en) * 1920-10-04 1921-12-15 Ludwig Georg Leffer A process for regenerating cereals and fish no longer in a fresh condition
US3975246A (en) * 1973-06-09 1976-08-17 Sachs-Systemtechnik Gmbh Method of disinfecting water
EP0115893A1 (fr) * 1983-02-03 1984-08-15 Battelle Memorial Institute Appareil pour stériliser des objets à l'aide d'une solution aqueuse d'hypochlorite
JPS6283485A (ja) * 1985-10-07 1987-04-16 Res Dev Corp Of Japan 淡水の無隔膜直接電解方法
EP0350466A2 (fr) * 1988-07-06 1990-01-10 CASTELLINI S.p.A. Procédé et appareil pour la stérilisation à froid d'instruments de chirurgie, en particulier des instruments de chirurgie dentaire
EP0470841A2 (fr) * 1990-08-10 1992-02-12 Omco Co. Ltd. Procédé et dispositif pour la production d'eau potable stérile
EP0612694A1 (fr) * 1993-02-22 1994-08-31 Nippon Intek Co., Ltd. Procédé et dispositif de production d'eau électrolytique
JPH078455A (ja) * 1993-06-25 1995-01-13 Miura Denshi Kk 流水生成電解酸性水を利用した内視鏡ファイバースコープの殺菌洗浄方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 8721, Derwent World Patents Index; Class D15, AN 87-146665, XP002028132 *
DATABASE WPI Section Ch Week 9512, Derwent World Patents Index; Class D15, AN 95-084389, XP002028133 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049638A1 (fr) * 1996-06-26 1997-12-31 Ist S.A. Procede et dispositif d'activation des liquides
WO1999008719A2 (fr) * 1997-08-13 1999-02-25 Steris Corporation Appareil de sterilisation utilisant des solutions catholytes et anolytes produites par electrolyse de l'eau
WO1999008719A3 (fr) * 1997-08-13 1999-05-20 Steris Corp Appareil de sterilisation utilisant des solutions catholytes et anolytes produites par electrolyse de l'eau
EP0936188A1 (fr) * 1998-01-20 1999-08-18 Hee Jung Kim Procédé de réduction de la viscosité de l'eau par électrolyse
WO2003088930A1 (fr) * 2000-12-15 2003-10-30 Radical Waters Ip (Pty) Ltd Fluide de refroidissement et d'irrigation utilise dans la chirurgie dentaire
WO2005094904A1 (fr) * 2004-04-01 2005-10-13 Forum Bioscience Holdings Limited Solutions desinfectantes
US8277634B2 (en) 2005-10-28 2012-10-02 Apr Nanotechnologies S.A. Electrolytic water treatment device having sintered nanoparticle coated electrode and method for making acid or basic water therewith
EP2118945A1 (fr) * 2007-02-05 2009-11-18 Ceramatec, Inc. Dispositif de désinfection, et procédés associés utilisant des agents de désinfection produits de manière électrochimique
EP2118945A4 (fr) * 2007-02-05 2011-06-01 Ceramatec Inc Dispositif de désinfection, et procédés associés utilisant des agents de désinfection produits de manière électrochimique
WO2008131936A3 (fr) * 2007-04-25 2009-10-01 Akuatech S.R.L. Eau électrolytique extrêmement stable à largeur de raie à mi-hauteur de rmn réduite
WO2008131936A2 (fr) * 2007-04-25 2008-11-06 Akuatech S.R.L. Eau électrolytique extrêmement stable à largeur de raie à mi-hauteur de rmn réduite
EP2594276A1 (fr) * 2007-04-25 2013-05-22 APR Nanotechnologies S.A. Eau electrolytique extremement stable a largeur de raie a mi-hauteur de RMN Reduite
AU2008243353B2 (en) * 2007-04-25 2014-02-06 Akuatech S.R.L. Highly stable electrolytic water with reduced NMR half line width
US8709495B2 (en) 2007-04-25 2014-04-29 Apr Nanotechnologies S.A. Highly stable electrolytic water with reduced NMR half line width
US9404192B2 (en) 2007-04-25 2016-08-02 Apr Nanotechnologies S.A. Highly stable electrolytic water with reduced NMR half line width
US9889153B2 (en) 2007-04-25 2018-02-13 Apr Nanotechnologies S.A. Highly stable electrolytic water with reduced NMR half line width
US8691289B2 (en) 2009-06-17 2014-04-08 Apr Nanotechnologies S.A. Methods of treating outer eye disorders using high ORP acid water and compositions thereof
EP2366294A1 (fr) * 2010-03-11 2011-09-21 Dany Wachter Eau basique

Similar Documents

Publication Publication Date Title
Al-Haq et al. Applications of electrolyzed water in agriculture & food industries
WO1997019707A1 (fr) Procede d&#39;obtention d&#39;agents liquides sterilisants et/ou stimulants et dispositif de mise en oeuvre du procede
US20160151525A1 (en) System and method for treatment of perishable goods with hydrogen-rich water
BRPI0505795B1 (pt) Métodos e composições para redução da população de patógeno de planta
EP1858338A1 (fr) Procede systemique d&#39;hygiene rapprochee et dispositif avec cellule d&#39;aseptisation a basse temperature notamment pour denrees alimentaires
JP2008510802A (ja) 酸素およびオゾンからなる微細気泡を溶解した病気および害虫の抑制剤、およびその製造方法、並びにその噴霧方法
Nur et al. Development of ozone technology rice storage systems (OTRISS) for quality improvement of rice production
Arcot et al. Essential oil vapors assisted plasma for rapid, enhanced sanitization of food-associated pathogenic bacteria
KR101085458B1 (ko) 염소계 살균소독제를 이용한 과채류의 복합살균소독방법
KR20140065566A (ko) 미산성 차아염소산수를 함유하는 식물병 방제용 조성물 및 이를 이용한 식물병 방제 방법
KR102201176B1 (ko) 천연 과일 추출물 및 유기산이 함유된 살균소독제의 제조방법
CN1915041A (zh) 一种蔬菜、水果保鲜剂制品及其应用
Al‐Haq et al. Electrolyzed oxidizing water
KR101848657B1 (ko) 미산성 전해수를 주성분으로 하는 친환경 살균수와 이를 이용하여 살균조건을 확립한 신선 농산물 살균방법
Wu Chlorine Dioxide (ClO 2)
US6361715B1 (en) Method for reducing the redox potential of substances
CN114468201A (zh) 一种延长人参货架期的联合杀菌保鲜方法
KR20040087306A (ko) 나노실버가 함유된 쓰레기통
KR20180134024A (ko) 신선 농산물의 살균방법 및 품질 저하 방지방법
KR20040085107A (ko) 나노실버가 함유된 생수기와 정수기의 물 저장 탱크
EP0912447A1 (fr) Procede et dispositif d&#39;activation des liquides
KR101956575B1 (ko) 살균제 또는 세정제를 생성할 수 있는 전기분해 장치 및 그것을 위한 전기분해 방법
Jung et al. Effect of chlorine dioxide in reduction of harmful microbes on fermented hot pepper paste
Salgado-Escobar et al. Efficacy of disinfection methods and effects on nutraceutical properties in coriander and strawberry
CN1703148B (zh) 有机化合物和金属离子协同消毒和净化的体系及制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97520040

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase