WO1997015823A2 - Vorrichtung und messverfahren zur bestimmung des absorptions- und/oder streuungsgrades eines mediums - Google Patents

Vorrichtung und messverfahren zur bestimmung des absorptions- und/oder streuungsgrades eines mediums Download PDF

Info

Publication number
WO1997015823A2
WO1997015823A2 PCT/EP1996/004726 EP9604726W WO9715823A2 WO 1997015823 A2 WO1997015823 A2 WO 1997015823A2 EP 9604726 W EP9604726 W EP 9604726W WO 9715823 A2 WO9715823 A2 WO 9715823A2
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
medium
shielding means
detector
evaluation circuit
Prior art date
Application number
PCT/EP1996/004726
Other languages
English (en)
French (fr)
Other versions
WO1997015823A3 (de
Inventor
Thomas HÖLSCHER
Siegfried Woye
Original Assignee
Neue Messelektronik Dresden Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neue Messelektronik Dresden Gmbh filed Critical Neue Messelektronik Dresden Gmbh
Publication of WO1997015823A2 publication Critical patent/WO1997015823A2/de
Publication of WO1997015823A3 publication Critical patent/WO1997015823A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/288X-rays; Gamma rays or other forms of ionising radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments

Definitions

  • the invention relates to a device for determining the degree of absorption and / or scatter of a medium, the device having a radiation source and a radiation detector, and the radiation source emitting reference radiation of a certain intensity, and the radiation detector transmitting the part of the medium that has passed through
  • Reference radiation and external radiation are detected and a signal corresponding to the intensity of the detected radiation is forwarded to an evaluation circuit.
  • Such devices are used inter alia. used for contactless determination of the level of liquids, suspensions or bulk materials.
  • Other areas of application are the measurement of interface layers between two media, limit signaling or density measurement.
  • the radiometric method is also used whenever measurements have to be carried out under extreme conditions. This can be the case, for example, if due to very high temperatures, pressures or other extreme environmental conditions at the place of use Installation of sensors in the process area is not possible.
  • Gamma radiation is mostly used as radiation. The measuring effect of such radiometric measuring devices is based on the absorption or scattering of the gamma radiation by the material to be measured.
  • the device consists, among other things, of a lead shield, which surrounds a radioactive radiator, a radiation detector and an evaluation circuit.
  • the shield and detector are attached to the outside of the media container.
  • the radionuclide can emit gamma radiation through the provided passage opening of the shield in the direction of the medium and the detector, which penetrates the container walls and is received on the opposite side of the container.
  • the measured dose rate or intensity is therefore a measure of the filling level or density of the medium to be checked.
  • the detectors used are, for example, Geiger-Müller counter tubes or On the basis of the pulses per unit of time counted in the detector, the downstream evaluation circuit calculates the desired process size, such as the filling height in cm or the density in g / cm 3 .
  • the radiometric method is mainly used in large industrial plants. It often happens that, for example, systems for non-destructive material testing are used in close proximity to the radiometric device. Gamma and X-rays are mostly used in material testing. These extraneous radiation sources sporadically emit gamma quanta. The intensity of this extraneous radiation is therefore at the location of the radiation detector radiometric device is not predictable and falsifies the measurement result, ie that for example the level or density display changes suddenly without the level or the density of the medium actually having changed. Also, no statement can be made about the constancy of the external radiation, since the distance between the external radiation sources and the device can change constantly, as a result of which the intensity of the external radiation at the detector changes.
  • This background radiation can be assumed to be a constant Qffset, but this background can e.g. change after accidents in nuclear facilities.
  • Devices are known in which the extraneous radiation emission is suppressed or eliminated. All of these devices have in common that a radiation source is used in each case, which continuously emits radiation of a certain intensity in the direction of the medium and the radiation detector. The devices differ mainly in the type of extraneous radiation suppression.
  • a device in which the change speeds and change accelerations of the pulse rates generated by the radiation detectors are monitored.
  • the occurrence of a jump in the pulse rate is evaluated as the occurrence or change of the external radiation.
  • a disadvantage of this method is that only a rapid appearance or drop in the pulse rate can be safely interpreted as the appearance or drop in the external radiation. If the external radiation changes only slowly, this is not recognized as a change in the external radiation, but rather as a change in the fill level or the density of the medium to be monitored. Absolute freedom from extraneous radiation must also be guaranteed when calibrating the device, otherwise the measurement result will be falsified.
  • the energy that has lower or higher quantum energy than the reference radiation is already filtered out in a scintillator radiation detector using a NaJ crystal and downstream discriminator thresholds.
  • a scintillator radiation detector using a NaJ crystal and downstream discriminator thresholds.
  • pulses are registered and forwarded to the evaluation device, which are generated by incident gamma quanta with the energy of the reference radiation.
  • This method has the disadvantage that extraneous radiation that has the same quantum energy cannot be filtered out and thus falsifies the measurement result.
  • the method is also ineffective if the energy of the useful radiation lies in the spectrum of the X-ray radiation, which represents extraneous radiation.
  • the energy threshold must be set for each measuring point depending on the radiation medium used.
  • Another way of eliminating extraneous radiation can be done by means of suitable lead shielding, the lead shielding completely enclosing the radiation detectors except for a radiation entry window and shielding them from the environment.
  • the disadvantage here is that the shape of the lead shields must be adapted to the shape of the radiation detector used in each case. If, for example, the radiation detector is operated in a cooled manner, special shields are required to accommodate the detector and the cooler. Because of their large diameter, these shields can weigh up to 250 kg, which means that the device can only be used to a limited extent.
  • This method is also ineffective if the external radiation comes from the direction of the reference radiation, since it can thus pass through the radiation entrance window of the shield unimpeded.
  • the shielding is also ineffective in the case of greedy extraneous radiation, since energy-rich quanta can penetrate the shielding more easily.
  • the object of the invention is therefore to develop a device of the type mentioned in such a way that the intensity or change in intensity and the incident direction of the external radiation do not impair the measurement result.
  • this object is achieved in that the radiation source emits radiation periodically or intermittently. Because the reference radiation only radiates for a definable time at certain time intervals, it is possible to determine the intensity of the external radiation by means of the radiation detector and the downstream evaluation circuit. If the radiation source does not emit radiation, the entire intensity determined by the radiation detector can be attributed to the extraneous radiation. During the time interval in which the radiation source emits the reference radiation, the sum of the part of the reference radiation which has passed through the medium and the
  • REPLACEMENT BLA ⁇ External radiation determined by the radiation detector. As soon as the total intensity and the intensity of the extraneous radiation are known, the actual intensity of the part of the reference radiation which has passed through the medium can be calculated by subtracting extraneous radiation from the total radiation. This calculated value of the degree of absorption or scattering of the medium is the more precise the shorter the time intervals, ie the higher the frequency of switching the radiation source on and off, since the influence of the change over time up to the subtraction phase is relatively small or is insignificant.
  • the external radiation component is regularly redetermined. Continuous extraneous radiation elimination is thus possible, the intensity of the extraneous radiation being able to change as desired over time without falsifying the measurement result.
  • the radiation source advantageously communicates with the evaluation circuit in such a way that at least the states “radiation source emits reference radiation” and “radiation source does not transmit reference radiation” are known to the evaluation circuit.
  • the evaluation circuit has a memory and a computing unit, the evaluation circuit being triggered by the radiation source and, depending on the respective radiation state of the radiation source, the intensity value determined by means of the radiation detector is either written to the memory or the previously stored value is subtracted from the intensity value just measured.
  • the radiation source advantageously has a gamma radiation-emitting agent, in particular a radionuclide, a Geiger-Muller number tube or a scintillator being used as the radiation detector.
  • the Radiation detector generates pulse trains as the output signal, the frequency or pulse rate of the pulse trains being a measure of the intensity of the radiation detected by the radiation detector. Since a scintillator has a much greater sensitivity than a Geiger-Muller number tube, and thus the radionuclide can radiate with less intensity, the scintillator is preferable to the Geiger-Muller number tube depending on the application.
  • the radiation means of the radiation source can e.g. can be switched on and off directly.
  • An X-ray tube can serve as the radiation source.
  • an X-ray tube has a disproportionately high quantum energy.
  • a considerable amount of circuitry is required, as a result of which the costs for such a device were inappropriately high.
  • such a device would not be as robust as a radiation source with a radionuclide as the radiation means.
  • the radiation source has a shielding means, the reference radiation not passing through or being sufficiently absorbed by the material of the shielding means.
  • the shielding agent can e.g. be arranged between the medium and the emitting means. However, it is preferred if the emitting agent is completely surrounded by the shielding agent.
  • the shielding means has a passage opening through which the reference radiation of the emitting means or radionuclide can pass unhindered in the direction of the medium or radiation detector.
  • an actuator either the emitting means itself or the shielding means is periodically moved or rotated between two positions by means of an actuator, wherein in the first position that of the O 97/15823 PC17EP96 / 04726
  • the shielding means absorbs all or most of the reference radiation emitted by the emitting means in the direction of the medium or radiation detector.
  • the passage opening is either closed or no direct, i.e. there is a straight path from the emitting means to the detector.
  • the shielding means is advantageously solid, in particular made of lead, the shape of the shielding means being particularly spherical or cylindrical.
  • the shielding means has two radial bores which are connected to one another in the center of the shielding means, the emitting means being movable in the first bore by means of the actuator and the second bore being Passage opening forms such that the medium and the radiation detector are arranged on the extension of the axis of the second bore.
  • the emitting means is fastened to a plunger which is guided by a guide, in particular the first bore.
  • the tappet can be moved or adjusted by means of a rotatable cam disk, an electromagnetic, pneumatic or hydraulic drive.
  • the shielding means is moved or rotated by means of the actuator, it is advantageous if the shielding means is a sleeve-shaped, pot-shaped or hollow-cylindrical part which can be rotated about its longitudinal axis by means of an actuator, and whose jacket has at least one passage opening and in the interior thereof the emitting means is arranged.
  • the shielding means is rotated continuously about its axis, the passage opening periodically for em certain time interval dependent on the speed of rotation of the shielding means, the
  • the time interval can be adjusted as required by changing the speed of rotation of the shielding means.
  • the emitting means lie in a fixed, pot-shaped shielding means, the passage opening of the shielding means being able to be opened or closed as desired by means of a movable screen.
  • Such an embodiment of the shield has the advantage that not the entire shield itself, but only the visor, which is much lighter in comparison to the entire shield, has to be moved and thus smaller forces are to be applied and less energy is required.
  • FIG. 2a state: radiation source does not emit reference radiation
  • FIG. 2b state: radiation source emits reference radiation
  • FIG. 1 radiation source with shielding device.
  • FIG. 1 shows a schematic structure of the radiometric device according to the invention for measuring the degree of absorption or scattering of a medium 8
  • the device has a radiation source 1, which consists of a means 2 emitting gamma radiation, in particular a radionuclide and a shield 3.
  • the radionuclide 2 emits a reference radiation 5 of constant intensity, which is known by comparing an electronic switch-off device 13.
  • the reference radiation 5 emitted by the radionuclide passes through a passage opening 19 of the shield 3 and enters the container 9 in which the medium 8 to be monitored is.
  • a part 6 of the reference radiation 5 is absorbed or scattered by the medium, so that the radiation 6 can no longer be registered by the radiation detector 10.
  • the output signal 12 of the radiation detector 10 is evaluated by means of an evaluation circuit or electronics 13 and indicates the state of the medium 8 by means of a display 14 and / or transmits the state of the medium 8 by means of a signal 15 to a downstream electronics.
  • the radiation source 1 communicates with the evaluation circuit 13 by means of a transmission path 17.
  • the transmission circuit 17 tells the evaluation circuit 13 whether or not the radiation source 1 emits the reference radiation 5 in the direction 25 of the radiation detector 10.
  • FIG. 2a shows the state in which the radiation source 1 does not emit any reference radiation 5. As a result, only falls External radiation 11 m the radiation detector 10 em.
  • a signal 12 corresponding to the intensity of the external radiation 11 is transmitted from the radiation detector 10 to the evaluation circuit 13, the determined value m being stored in a memory (not shown).
  • the evaluation circuit 13 will display the fullness value or density value, which was calculated after the expiry of the previous time interval in which the radiation source 1 emitted the reference radiation.
  • FIG. 2b shows a time period following that in FIG. 2a, in which the radiation source 1 emits the reference radiation 5 (N R ).
  • the evaluation circuit 13 is informed via the transmission path 17 that the radiation source 1 is currently emitting the reference radiation 5.
  • This intensity value N G is used in the previous time interval (FIG. 2a). stored intensity value N of the extraneous radiation 11 subtracted.
  • the value calculated hereby and cleaned of the external radiation 11 corresponds to the intensity value of the portion 7 of the reference radiation 5 that has passed through the medium 8.
  • the level of the medium 8 in the container 7 or, for example, the density of the medium 8 can now be calculated from the intensity value of the portion 7 by comparison with the known intensity of the reference radiation 5.
  • This state value X e is displayed by the evaluation circuit 13 by means of the display 14 and / or is made available via an output line 15 of the downstream electronic components, not shown.
  • FIG. 3 shows a possible exemplary embodiment for generating the interval radiation of the reference radiation 5.
  • the radionuclide 2 is located in a lead shield 3 which has two radial bores 18, 19 which are connected at a point 20 to one another.
  • the radionuclide 2 is fastened to the end of an impact ice 21, which is continuously moved back and forth by means of a cam disk 22. Depending on the number of revolutions and the shape of the cam or the guiding surface of the cam disk 22, the lengths of the alternating tent intervals can be set as desired.
  • the plunger 21 is in a bore 18 em and is guided by this. If the plunger 21 is fully inserted into the bore 18, the radionuclide 2 is located where the two bores 18, 19 meet. Only in this position is it possible for the reference radiation emitted by the radionuclide to exit in the direction of the medium 9 and the radiation detector 10 through the second bore 19 acting as an outlet opening.
  • the radionuclide is no longer on the extension of the axis 25 of the second bore 19, and consequently no radiation 5 can reach the radiation detector 10 from the radionuclide 2. In this case, the radiation detector 10 only detects the external radiation 11.
  • the position of the radionuclide 2 is continuously transmitted to the evaluation circuit 13 by means of a sensor (not shown), as a result of which the latter decide
  • REPLACEMENT BLA ⁇ (RULE 26) can determine whether the intensity value just measured or recorded can be attributed to the extraneous radiation 11 or whether the value relates to the total radiation N.
  • the actuator can be realized not only by means of a cam disk 22 which is mounted on a shaft 23.
  • an electromagnetic, hydraulic or pneumatic drive can also be used.
  • the frequency and the duty cycle of the opening / dimming period can be individually and easily changed or set by the evaluation / control electronics by means of an electrical, pneumatic or hydraulic line (not shown). This allows the operator to make an optimum setting for the respective measuring section.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Fluid Mechanics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Bestimmung des Absorptions- und/oder Streuungsgrades eines Mediums (8), wobei die Vorrichtung eine Strahlungsquelle (1) und einen Strahlendetektor (10) hat, und die Strahlungsquelle (1) eine Referenzstrahlung (5) bestimmter Intensität emittiert, und der Strahlendetektor (10) den durch das Medium (8) hindurchgetretenen Teil (7) der Referenzstrahlung (5), sowie Fremdstrahlung (11) detektiert und ein der Intensität der detektierten Strahlung (7, 11) entsprechendes Signal (12) an eine Auswertschaltung (13) weiterleitet, wobei die Strahlungsquelle (1) periodisch oder zeitweise die Referenzstrahlung (5) emittiert.

Description

Vorrichtung und Meßverfahren zur Bestimmung des Absorptions¬ und/oder Streuungsgrades eines Mediums
Die Erfindung betrifft eine Vorrichtung zur Bestimmung des Absorptions- und/oder Streuungsgrades eines Mediums, wobei die Vorrichtung eine Strahlungsquelle und einen Strahlendetektor hat, und die Strahlungsquelle eine Referenzstrahlung bestimmter Intensität emittiert, und der Strahlendetektor den durch das Medium hindurchgetretenen Teil der
Referenzstrahlung, sowie Fremdstrahlung detektiert und ein der Intensität der detektierten Strahlung entsprechendes Signal an eine Auswertschaltung weiterleitet.
Derartige Vorrichtungen werden u.a. zur berührungslosen Ermittlung des Füllstands von Flüssigkeiten, Suspensionen oder Schüttgütern eingesetzt. Weitere Einsatzgebiete sind die Messung von Trennschichten zwischen zwei Medien, die Grenzwertsignalisation oder auch die Dichtemessung.
Die Forderung nach berührungsloser Messung besteht insbesondere bei aggressiven, abrasiven und klebrigen Medien oder wenn aus septischen Gründen der Meßwertgeber nicht mit dem Meßgut in Kontakt kommen darf. Auch kommt das radiometrische Verfahren immer dann zum Einsatz, wenn unter extremen Bedingungen gemessen werden muß. Dies kann z.B. dann der Fall sein, wenn infolge sehr hoher Temperaturen, Drücke oder sonstiger extremer Umweltbedingungen am Einsatzort die Installation von Meßwertgebern im Prozeßbereich nicht möglich ist. Als Strahlung wird meist Gammastrahlung verwendet. Der Meßeffekt derartiger radiometrischer Meßeinrichtungen beruht auf der Absorption oder Streuung der Gammastrahlung durch das Meßgut. Die Vorrichtung besteht dabei unter anderem aus einer Bleiabschirmung, die einen radioaktiven Strahler umhüllt, einem Strahlendetektor sowie einer Auswerteschaltung. Die Abschirmung und der Detektor werden außen an dem Behälter des Mediums angebracht. Durch die vorgesehene Durchlaßöffnung der Abschirmung in Richtung des Mediums und des Detektors kann das Radionuklid Gammastrahlung emittieren, die die Behälterwände durchdringt und auf der gegenüberliegenden Seite des Behälters empfangen "wird. Je größer die Füllhöhe oder je dichter das Medium in dem Behälter ist, um so stärker ist die Absorption der Gammastrahlung und um so geringer ist die Dosisleistung bzw. Intensität am Strahlendetektor. Die gemessene Dosisleistung bzw. Intensität ist damit ein Maß für die Füllhöhe bzw. Dichte des zu überprüfenden Mediums. Als Detektoren werden z.B. Geiger-Müller-Zählrohre oder Szintillatoren verwendet. Auf der Basis der im Detektor gezählten Impulse pro Zeiteinheit errechnet die nachgeschaltete Auswertschaltung die gewünschte Prozeßgröße, wie z.B. die Füllhöhe in cm oder die Dichte in g/cm3.
Wegen seiner Robustheit und seiner Eigenschaft, selbst für Messungen unter extremen Prozeßbedingungen eingesetzt werden zu können, wird das radiometrische Verfahren überwiegend in Anlagen der Großindustrie eingesetzt. Hierbei kommt es oft vor, das in relativer Nähe zur radiometrischen Vorrichtung z.B. Anlagen zur zerstörungsfreien Werkstoffprüfung eingesetzt werden. Bei der Werkstoffprüfung wird meist Gamma- und Röntgenstrahlung eingesetzt. Diese Fremdstrahlungsquellen emittieren sporadisch Gammaquanten. Die Intensität dieser Fremdstrahlung ist daher am Ort des Strahlungsdetektors der radiometrischen Vorrichtung nicht vorhersehbar und verfälscht das Meßergebnis, d.h., daß sich z.B. die Füllstands- oder Dichteanzeige plötzlich ändert, ohne das sich der Füllstand oder die Dichte des Mediums tatsächlich geändert hatte. Auch kann keine Aussage über die Konstanz der Fremdstrahlung gemacht werden, da sich der Abstand zwischen den Fremdstrahlungsquellen und der Vorrichtung standig andern kann, wodurch sich die Intensität der Fremdstrahlung am Detektor ändert.
Eine andere Möglichkeit der Beeinflussung des Meßergebnisses durch Fremdstrahlung ist die kosmische oder terrestrische Strahlung. Diese Untergrundstrahlung kann zwar als konstanter Qffset angenommen werden, jedoch kann sich dieser Untergrund z.B. nach Havarien in kerntechnischen Anlagen verandern.
Die Forderung, in radiometrischen Meßsystemen aus Strahlenschutzgrunden mit sehr geringen Aktivitäten zu arbeiten, wird durch die Verwendung der hochempfindlichen Szmtillationsdetektoren zum Nachweis von Gammastrahlung erfüllt. Aufgrund ihrer hohen Empfindlichkeit reagieren diese Detektoren auch auf die einfallende Fremdstrahlung gammadefektoskopischer Untersuchungen, was das Ergebnis der radiometrischen Messungen in nicht vorhersehbarer Weise beeinflußt. Fehlmessungen sind jedoch besonders m den genannten prädestinierten Einsatzbereichen der Radiometrie zu vermeiden, da gerade hier fehlerbehaftete Meßergebnisse Folgen nicht abschatzbaren Ausmaßes haben können.
Es sind Vorrichtungen bekannt, bei denen der Fremdstrahlungs- emfluß unterdruckt bzw. eliminiert wird. All diesen Vorrichtungen ist gemein, daß jeweils eine Strahlungsquelle eingesetzt wird, die kontinuierlich Strahlung bestimmter Intensität in Richtung des Mediums und des Strahlungsdetektors emittiert. Die Vorrichtungen unterscheiden sich hauptsachlich in der Art der Fremdstrahlungsunterdrückung.
So ist eine Vorrichtung bekannt, bei der die Änderungsgeschwindigkeiten und Änderungsbeschleunigungen der von den Strahlungsdetektoren erzeugten Impulsraten überwacht wird. Das Auftreten eines Sprungs in der Impulsrate wird als Auftreten bzw. Änderung der Fremdstrahlung gewertet. Nachteilig bei diesem Verfahren ist jedoch, daß nur ein schnelles Auftreten oder Abfallen der Impulsrate sicher als Auftreten bzw. Abfallen der Fremdstrahlung gedeutet werden kann. Ändert sich die Fremdstrahlung nur langsam, so wird dies nicht als eine Änderung der Fremdstrahlung erkannt, sondern als Änderung des Füllstandes bzw. der Dichte des zu überwachenden Mediums. Auch muß bei der Kalibrierung der Vorrichtung eine absolute Fremdstrahlungsfreiheit garantiert sein, da ansonsten das Meßergebnis verfälscht wird.
Bei einer weiteren Methode zur Fremdstrahlungseliminierung wird bereits in einem Szintillatorstrahlungsdetektor unter Verwendung eines NaJ-Kristalls und nachgeschalteten Diskriminatorschwellen diejenige Energie ausgefiltert, die geringere oder höhere Quantenenergie als die Referenzstrahlung hat. Es werden somit nur Impulse registriert und zum Auswertegerät weitergeleitet, welche durch einfallende Gammaquanten mit der Energie der Referenzstrahlung erzeugt werden. Diese Methode hat den Nachteil, daß Fremdstrahlung, die die gleiche Quantenenergie hat, nicht ausgefiltert werden kann und somit das Meßergebnis verfälscht. Auch ist das Verfahren wirkungslos, wenn die Energie der Nutzstrahlung im Spektrum der Röntgenstrahlung liegt, welche Fremdstrahlung darstellt. Ferner muß die Energieschwelle für jede Meßstelle in Abhängigkeit des verwendeten Strahlungsmittels eingestellt werden.
Eine weitere Möglichkeit der Eliminierung der Fremdstrahlung kann mittels geeigneter Bleiabschirmungen erfolgen, wobei die Bleiabschirmungen die Strahlungsdetektoren bis auf ein Strahlungseintrittsfenster vollständig umschließen und von der Umgebung abschirmen. Nachteilig ist hierbei, daß die Form der Bleiabschirmungen der Form des jeweils verwendeten Strahlungsdetektors angepaßt werden muß. Wird z.B. der Strahlungsdetektor gekühlt betrieben, so sind besondere Abschirmungen zur Aufnahme des Detektors und des Kühlers notwendig. Wegen ihres großen Durchmessers werden diese Abschirmungen bis zu 250 kg schwer, wodurch die Vorrichtung nur bedingt einsetzbar ist. Auch ist dieses Verfahren wirkungslos, wenn die Fremdstrahlung aus der Richtung der Referenzstrahlung kommt, da sie somit ungehindert durch das Strahlungseintrittsfenster der Abschirmung hindurchtreten kann. Auch ist die Abschirmung bei einergiereicher Fremdstrahlung wirkungslos, da ernergiereiche Quanten die Abschirmung leichter durchdringen können.
Aufgabe der Erfindung ist es daher eine Vorrichtung der genannten Art derart weiterzubilden, daß die Intensität bzw. Intensitätsänderung, sowie die einfallende Richtung der Fremdstrahlung das Meßergebnis nicht beeinträchtigen.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die Strahlungsquelle periodisch oder zeitweise Strahlung emittiert. Dadurch, daß die Referenzstrahlung nur in bestimmten Zeitabständen für eine bestimmbare Zeit strahlt, ist es möglich, mittels des Strahlungsdetektors und der nachgeschalteten Auswertschaltung die Intensität der Fremdstrahlung zu ermitteln. Strahlt die Strahlungsquelle nicht, so ist die gesamte vom Strahlungsdetektor ermittelte Intensität auf die Fremdstrahlung zurückzuführen. Während des Zeitintervalls, in der die Strahlungsquelle die Referenzstrahlung emittiert, wird die Summe aus dem durch das Medium hindurchgetretenen Teil der Referenzstrahlung und der
ERSATZBLAπ(REGEL26) Fremdstrahlung vom Strahlungsdetektor ermittelt. Sobald die Gesamtmtensitat und die Intensität der Fremdstrahlung bekannt sind, kann durch bloße Subtraktion Fremdstrahlung von der Gesamtstrahlung die Tatsachliche Intensität des Teils der Referenzstrahlung berechnet werden, der durch das Medium hindurchgetreten ist. Dieser berechnete Wert des Absorptions¬ bzw. Streuungsgrades des Mediums ist um so genauer, je kurzer man die Zeitmtervalle, d.h. je hoher man die Frequenz des Ein- und Ausschaltens der Strahlungsquelle wählt, da hierdurch der Einfluß der zeitlichen Änderung bis hin zur Subtraktionsphase relativ gering bzw. unbedeutend ist.
Durch den standigen Wechsel zwischen den beiden Phasen wird der Fremdstrahlungsanteil regelmäßig neu bestimmt. Somit ist eine kontinuierliche Fremdstrahleliminierung möglich, wobei sich die Intensität der Fremdstrahlung über die Zeit beliebig andern kann, ohne das Meßergebnis zu verfalschen.
Vorteilsmaßig kommuniziert die Strahlenquelle mit der Auswertschaltung, derart, daß zumindest die Zustande "Strahlungsquelle sendet Referenzstrahlung aus" und "Strahlungsquelle sendet keine Referenzstrahlung aus" der Auswertschaltung bekannt sind. Ferner hat die Auswertschaltung einen Speicher und eine Recheneinheit, wobei die Auswertschaltung durch die Strahlungsquelle getriggert wird und entsprechend zum jeweiligen Strahlungszustand der Strahlungsquelle der mittels des Strahlungsdetektors ermittelte Intensitatswert entweder m den Speicher geschrieben wird oder der zuvor gespeicherte Wert von dem gerade gemessenen Intensitatswert subtrahiert wird.
Ferner hat die Strahlungsquelle vorteilsmaßig ein Gammastrahlung emittierendes Mittel, insbesondere ein Radionuklid, wobei als Strahlungsdetektor em Geiger-Muller- Zahlrohr oder em Szmtillator verwendet wird. Der Strahlungsdetektor generiert als Ausgangssignal Impulsfolgen, wobei die Frequenz bzw. Impulsrate der Impulsfolgen em Maß für die Intensität der vom Strahlungsdetektor detektierten Strahlung ist. Da em Szmtillator eine weitaus größere Empfindlichkeit als em Geiger-Muller-Zahlrohr hat, und somit das Radionuklid mit geringerer Intensität strahlen kann, ist der Szmtillator dem Geiger-Muller-Zahlrohr je nach Anwendungsfall vorzuziehen.
Das Strahlungsmittel der Strahlungsquelle kann z.B. direkt em- und ausgeschaltet werden. Als Strahlungsquelle kann dabei eme Röntgenröhre dienen. Eine Röntgenröhre hat jedoch eme unverhältnismäßig hohe Quantenenergie. Außerdem ist hierfür em erheblicher schaltungstechnischer Aufwand notig, wodurch die Kosten für eme derartige Vorrichtung unangemessen hoch waren. Darüber hinaus wäre eine solche Vorrichtung nicht so robust wie eine Strahlungsquelle mit einem Radionuklid als Strahlungsmittel.
In einer bevorzugten Ausführungsform hat die Strahlungsquelle em Abschirmmittel, wobei die Referenzstrahlung durch das Material des Abschirmmittels nicht hmdurchtritt bzw. genügend absorbiert wird. Das Abschirmmittel kann z.B. zwischen dem Medium und dem emittierenden Mittel angeordnet sein. Es ist jedoch zu bevorzugen, wenn das emittierende Mittel vom Abschirmmittel vollständig umgeben ist.
Das Abschirmmittel hat in beiden Ausführungsformen eine Durchlaßoffnung, durch die die Referenzstrahlung des emittierenden Mittels bzw. Radionuklids ungehindert m Richtung des Mediums bzw. Strahlendetektors durchtreten kann. Mittels eines Stellantriebs wird entweder das emittierende Mittel selbst oder das Abschirmmittel mittels eines Stellantriebs zwischen zwei Positionen periodisch verfahren bzw. verdreht, wobei in der ersten Position die von dem O 97/15823 PC17EP96/04726
emittierenden Mittel erzeugte Referenzstrahlung durch die Durchlaßoffnung ungehindert m Richtung des Mediums bzw. Strahlendetektors durchtreten kann, und in der zweiten Position das Abschirmmittel die gesamte oder den größten Teil der von dem emittierenden Mittel m Richtung des Mediums bzw. Strahlendetektors emittierte Referenzstrahlung absorbiert. Dies bedeutet, daß die Durchlaßoffnung entweder verschlossen ist oder kein direkter, d.h. gerader Weg vom emittierenden Mittel zum Detektor besteht. Das Abschirmmittel hierbei ist vorteilsmaßig massiv, msbesondere aus Blei, wobei die Form des Abschirmmittels insbesondere kugelförmig oder zylindrisch zu wählen ist.
Wird das emittierende Mittel mittels des Stellantriebs verfahren, ist es von Vorteil, wenn das Abschirmmittel zwei radiale Bohrungen hat, die im Mittelpunkt des Abschirmmittels miteinander in Verbindung sind, wobei m der ersten Bohrung das emittierende Mittel mittels des Stellantriebs verfahrbar ist und die zweite Bohrung die Durchlaßoffnung bildet, derart, daß m der Verlängerung der Achse der zweiten Bohrung das Medium und der Strahlungsdetektor angeordnet sind. Das emittierende Mittel ist hierzu an emem Stößel befestigt, der von einer Fuhrung, insbesondere der ersten Bohrung gefuhrt ist. Der Stößel kann mittels einer verdrehbaren Nockenscheibe, eines elektromagnetischen, pneumatischen oder hydraulischen Antriebs verfahren bzw. verstellt werden.
Wird das Abschirmmittel mittels des Stellantriebs verfahren bzw. verdreht, ist es von Vorteil, wenn das Abschirmmittel ein hülsen-, topfformiges oder hohlzylindπsches Teil ist, welches um seine Langsachse mittels emes Antriebs verdrehbar ist, und deren Mantel mindestens eine Durchlaßoffnung hat und in deren Innenraum das emittierende Mittel angeordnet ist. Das Abschirmmittel wird hierbei kontinuierlich um seine Achse gedreht, wobei die Durchlaßoffnung periodisch für em bestimmtes, von der Umdrehungsgeschwindigkeit des Abschirmmittels abhangigen Zeitintervall, die
Referenzstrahlung von dem emittierenden Mittel in Richtung des Strahlungsdetektors austreten laßt. Durch Änderung der Umdrehungsgeschwindigkeit des Abschirmmittels kann das Zeitintervall bedarfsmaßig angepaßt werden.
Auch ist es vorstellbar, daß m einem ortsfesten topfformigen Abschirmmittel das emittierende Mittel emliegt, wobei die Durchlaßoffnung des Abschirmmittels mittels einer beweglichen Blende beliebig geöffnet oder verschlossen werden kann. Eine derartige Ausfuhrung der Abschirmung hat den Vorteil, daß nicht die gesamte Abschirmung selbst, sondern lediglich die im Vergleich zur gesamten Abschirmung wesentlich leichtere Blende bewegt werden muß und somit kleinere Kräfte aufzuwenden sind bzw. weniger Energie erforderlich ist.
Nachfolgend werden mögliche Ausfuhrungsformen der Erfindung anhand von Zeichnungen naher erläutert.
Es zeigen:
Figur 1 Eme schematische Darstellung der radiometrischen
Vorrichtung;
Figur 2a Zustand: Strahlungsquelle emittiert keine ReferenzStrahlung;
Figur 2b Zustand: Strahlungsquelle emittiert Referenzstrahlung;
Figur 3 Strahlungsquelle mit Abschirmvorrichtung.
Die Figur 1 zeigt einen schematischen Aufbau der erfindungsgemaßen radiometerischen Vorrichtung zur Messung des Absorptions- bzw. Streuungsgrades eines Mediums 8. Die Vorrichtung hat eine Strahlungsquelle 1, die aus einem Gammastrahlung aussendenden Mittel 2, insbesondere eines Radionuklids und einer Abschirmung 3 besteht. Das Radionuklid 2 emittiert eine Referenzstrahlung 5 konstanter Intensität, die durch Abgleich einer Ausschaltelektronik 13 bekannt ist. Die vom Radionuklid emittierte Referenzstrahlung 5 tritt durch eine Durchlaßöffnung 19 der Abschirmung 3 hindurch und tritt in das Behältnis 9, in dem das zu überwachende Medium 8 ist, ein. Ein Teil 6 der Referenzstrahlung 5 wird vom Medium absorbiert oder gestreut, so daß die Strahlung 6 nicht mehr vom Strahlungsdetektor 10 registriert werden kann. Lediglich der Teil 7 der Referenzstrahlung 5, der durch das Medium 8 und das Behältnis 9 hindurchgetreten ist, dringt in den Strahlungsdetektor 10 ein, welcher je nach Bauart ein bestimmtes Ausgangssignal 12 generiert, wobei das Ausgangssignal 12 in einem funktionalen Zusammenhang mit der Intensität der in den Strahlungsdetektor 10 eingefallenen Strahlung steht. Zusätzlich zu dem durch das Medium 8 vollständig hindurchgetretenen Teil 7 der Referenzstrahlung 5, fällt eine Fremdstrahlung 11 in den Strahlungsdetektor 10 ein.
Das Ausgangssignal 12 des Strahlungsdetektors 10 wird mittels einer Auswerteschaltung bzw. -elektronik 13 ausgewertet und zeigt den Zustand des Mediums 8 mittels einer Anzeige 14 an und/oder übermittelt den Zustand des Mediums 8 mittels eines Signals 15 an eine nachgeschaltete Elektronik.
Wie aus den Figuren 2a und 2b ersichtlich ist, kommuniziert die Strahlungsquelle 1 mittels einer Übertragungsstrecke 17 mit der Auswertschaltung 13. Über die Übertragungsstrecke 17 wird der Auswertschaltung 13 mitgeteilt, ob die Strahlungsquelle 1 die Referenzstrahlung 5 in Richtung 25 des Strahlungsdetektors 10 emittiert oder nicht. In Figur 2a ist der Zustand dargestellt, in dem die Strahlungsquelle 1 keine Referenzstrahlung 5 aussendet. Demzufolge fällt lediglich Fremdstrahlung 11 m den Strahlungsdetektor 10 em. Em zur Intensität der Fremdstrahlung 11 entsprechendes Signal 12 wird von dem Strahlungsdetektor 10 an die Auswertschaltung 13 übermittelt, wobei der ermittelte Wert m einem nicht dargestellten Speicher abgelegt wird.
Wahrend des Zeitmtervalls, in dem die Strahlungsquelle 1 keine Referenzstrahlung 5 aussendet, wird die Auswertschaltung 13 den Fullstandswert bzw. Dichtewert anzeigen, der nach Ablauf des vorherigen Zeitmtervalls errechnet wurde, in dem die Strahlungsquelle 1 die Referenzstrahlung ausgesendet hat.
In Figur 2b ist ein dem in Figur 2a nachfolgender Zeitabschnitt dargestellt, in dem die Strahlungsquelle 1 die Referenzstrahlung 5 (NR) emittiert. Über die Übertragungsstrecke 17 wird der Auswertschaltung 13 mitgeteilt, daß die Strahlungsquelle 1 momentan die Referenzstrahlung 5 emittiert. Der Strahlungsdetektor 10 detektiert die Intensität der Gesamtstrahlung N, = NR + NF, bestehend aus dem das Medium 8 durchdrungenen Strahlungsanteil 7 der Referenzstrahlung 5 sowie der Fremdstrahlung 11. Von diesem Intensitatswert NG wird der in dem vorhergehenden Zeitmtervall (Fig. 2a) gespeicherte Intensitatswert N der Fremdstrahlung 11 subtrahiert. Der hiermit errechnete, von der Fremdstrahlung 11 bereinigte Wert entspricht dem Intensitatswert des Anteils 7 der Referenzstrahlung 5, der durch das Medium 8 durchgetreten ist. Aus dem Intensitatswert des Anteils 7 kann nun durch Vergleich mit der bekannten Intensität der Referenzstrahlung 5 der Füllstand des Mediums 8 in dem Behältnis 7 oder z.B. die Dichte des Mediums 8 errechnet werden. Dieser Zustandswert X e wird von der Auswerteschaltung 13 mittels der Anzeige 14 angezeigt und/oder über eme Ausgangsleitung 15 der nicht dargestellten nachgeschalteten Elektronikkomponenten zur Verfugung gestellt.
ERSÄrZBLÄTT(REGEL26) Dieses Subtraktions-Verfahren benotigt nur emen minimalen Aufwand an Elektronik und mechanischen Komponenten, wobei handelsübliche Bauteile Verwendung finden können.
Die Figur 3 zeigt ein mögliches Ausfuhrungsbeispiel zur Erzeugung der intervallmaßigen Abstrahlung der Referenzstrahlung 5. Das Radionuklid 2 befindet sich m einer Bleiabschirmung 3, die zwei radiale Bohrungen 18, 19 hat, welche in einem Punkt 20 miteinander in Verbindung smd.
Das Radionuklid 2 ist am Ende eines Stoßeis 21 befestigt, welches mittels einer Nockenscheibe 22 kontinuierlich hin und her bewegt wird. Je nach der Umdrehungszahl und der Gestalt des Nockens bzw. der Fuhrungsflache der Nockenscheibe 22, können die Langen der sich abwechselnden Zeltintervalle beliebig eingestellt werden. Der Stößel 21 liegt in der einen Bohrung 18 em und wird von dieser gefuhrt. Ist der Stößel 21 vollständig in die Bohrung 18 eingeführt, so befindet sich das Radionuklid 2 dort, wo sich die beiden Bohrungen 18,19 treffen. Nur in dieser Position ist es möglich, daß die von dem Radionuklid ausgestrahlte Referenzstrahlung durch die als Austrittsöffnung fungierende zweite Bohrung 19 in Richtung des Mediums 9 und des Strahlungsdetektors 10 austreten kann. Wird der Stößel 21 von der Nockenscheibe 22 wieder etwas aus der Bohrung 18 herausbewegt, so befindet sich das Radionuklid nicht mehr auf der Verlängerung der Achse 25 der zweiten Bohrung 19, folglich kann auch keine Strahlung 5 von dem Radionuklid 2 zum Strahlungsdetektor 10 gelangen. In diesem Fall detektiert der Strahlungsdetektor 10 lediglich die Fremdstrahlung 11.
Mittels eines nicht dargestellten Sensors, wird die Position des Radionuklids 2 fortwahrend an die Auswertschaltung 13 übermittelt, wodurch diese entscheiden
ERSATZBLAπ(REGEL 26) kann, ob der gerade gemessene bzw. aufgenommene Intensitatswert alleme auf die Fremdstrahlung 11 zurückzuführen ist oder sich der Wert auf die Gesamtstrahlung N bezieht.
Es versteht sich von selbst, daß der Stellantrieb nicht nur mittels einer Nockenscheibe 22, welche auf einer Welle 23 montiert ist, realisierbar ist. Anstelle der rotierenden Nockenscheibe 22 kann auch em elektromagnetischer, hydraulischer oder pneumatischer Antrieb verwendet werden. In diesem Fall kann die Frequenz und das Tastverhaltnis der Äuf/Ablendperiode von der Auswert-/Steuerelektronιk mittels emer nicht dargestellten elektrischen, pneumatischen oder hydraulischen Leitung individuell und leicht verändert bzw. eingestellt werden. Damit laßt sich bedienerseitig eme optimale Einstellung für die jeweilige Meßstrecke vornehmen.

Claims

Patentansprüehe
1. Vorrichtung zur Bestimmung des Absorptions- und/oder Streuungsgrades eines Mediums (8), wobei die Vorrichtung eine Strahlungsquelle (1) und einen Strahlendetektor (10) hat, und die Strahlungsquelle (1) eine
Referenzstrahlung (5) bestimmter Intensität emittiert, und der Strahlendetektor (10) den durch das Medium (8) hindurchgetretenen Teil (7) der Referenzstrahlung (5), sowie Fremdstrahlung (11) detektiert und ein der Intensität der detektierten Strahlung (7,11) entsprechendes Signal (12) an eine Auswertschaltung (13) weiterleitet, d a d u r c h g e k e n n z e i c h n e t , daß die Strahlungsquelle (1) periodisch oder zeitweise die Referenzstrahlung (5) emittiert.
2. Vorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Strahlenquelle (1) mit der Auswertschaltung (13) kommuniziert, derart, daß zumindest die Zustände "Strahlungsquelle (1) sendet Referenzstrahlung (5) aus" und "Strahlungsquelle (1) sendet keine Referenzstrahlung (5) aus" der Auswertschaltung (5) bekannt sind.
3. Vorrichtung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß die Auswertschaltung
(13) einen Speicher und eine Recheneinheit hat.
4. Vorrichtung nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , daß in dem Zeitintervall, in dem die Strahlungsquelle (1) keine Referenzstrahlung (5) aussendet, die Auswertschaltung (13) die sich aus kosmischer und temstrischer Strahlung und anderen Storstrahlungen zusammensetzende Fremdstrahlung (11) mittels des Strahlendetektors (10) ermittelt und den ermittelten Wert der Fremdstrahlungsmtensitat (11) m dem Speicher ablegt bzw. speichert.
5. Vorrichtung nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , daß m der Zeit, m der die Strahlungsquelle (1) die Referenzstrahlung (5) emittiert, die Auswertschaltung (13) die sich aus dem durch das Medium (8) hindurchgetretenen Teil (7) der Referenzstrahlung (5) und der Fremdstrahlung (11) zusammensetzende Gesamtstrahlung mittels des Strahlendetektors (10) ermittelt und von dem ermittelten Wert der Gesamtstrahlungsintensitat den im Speicher abgelegten bzw. gespeicherten Wert der
Fremdstrahlungsmtensitat (11) mittels der Recheneinheit subtrahiert.
6. Vorrichtung nach einem der vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß der
Strahlungsdetektor (10) em Geiger-Muller-Zahlrohr oder em Szmtillator ist, wobei der Strahlungsdetektor (10) als Ausgangssignal (12) Impulsfolgen generiert und die Frequenz bzw. Impulsrate der Impulsfolgen em Maß für die Intensität der vom Strahlungsdetektor (10) detektierten Strahlung (7,11) ist.
7. Vorrichtung nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , daß die Auswerteschaltung (13) die Frequenz bzw. die Impulsrate ermittelt.
8. Vorrichtung nach einem der vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die
Strahlungsquelle (1) ein Gammastrahlung emittierendes Mittel (2) insbesondere ein Radionuklid hat.
9. Vorrichtung nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , daß die Strahlungsquelle (1) ein Abschirmmittel (3) hat, wobei die Referenzstrahlung (5) durch das Material des Abschirmmittels (3) nicht hindurchtritt bzw. genügend absorbiert wird.
10. Vorrichtung nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t , daß das Abschirmmittel (3) zwischen dem Medium (8) und dem emittierenden Mittel (2) angeordnet ist.
11. Vorrichtung nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t , daß das emittierende Mittel
(2) vom Abschirmmittel (3) umgeben ist.
12. Vorrichtung nach Anspruch 10 oder 11, d a d u r c h g e k e n n z e i c h n e t , daß das Abschirmmittel (3) eine Durchlaßöffnung (19) hat, durch die die Referenzstrahlung (5) des emittierenden Mittels (2) ungehindert in Richtung (25) des Mediums (8) bzw. Strahlendetektors (10) durchtreten kann.
13. Vorrichtung nach einem der vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß das emittierende Mittel (2) und/oder das Abschirmmittel (3) mittels eines Stellantriebs (22,23) zwischen zwei Positionen verfahrbar bzw. verdrehbar ist, wobei in der ersten Position die von dem emittierenden Mittel (2) erzeugte Referenzstrahlung (5) durch die Durchlaßöffnung (19) des Abschirmmittels (3) ungehindert in Richtung (25) des Mediums (8) bzw. Strahlendetektors (10) durchtreten kann, und in der zweiten Position das Äbschirmmittel (3) die gesamte oder den größten Teil der von dem emittierenden Mittel (2) in Richtung (25) des Mediums (8) bzw. Strahlendetektors (10) emittierte Referenzstrahlung (5) absorbiert.
14. Vorrichtung nach einem der vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß das
Abschirmmittel (3) massiv, insbesondere aus Blei ist, wobei die Form des Abschirmmittels (3) insbesondere kugelförmig oder zylindrisch ist.
15. Vorrichtung nach Anspruch 14, d a d u r c h g e k e n n z e i c h n e t , daß das Abschirmmittel (3) zwei radiale Bohrungen (18,19) hat, die im Mittelpunkt (20) des Abschirmmittels (3) miteinander in Verbindung sind, wobei in der ersten Bohrung (18) das emittierende Mittel (2) mittels des Stellantriebs (21,22,23) verfahrbar ist und die zweite Bohrung (19) die Durchlaßöffnung bildet, derart, daß in der Verlängerung der Achse (25) der zweiten Bohrung (19) das Medium (8) und der Strahlungsdetektor (10) angeordnet sind.
16. Vorrichtung nach einem der vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß das emittierende Mittel (2) an einem Stößel (21) befestigt ist, der von einer Führung, insbesondere der ersten Bohrung (19) geführt ist, und der Stößel (19) mittels einer verdrehbaren Nockenscheibe (22), eines elektromagnetischen, pneumatischen oder hydraulischen Antriebs verfahr- bzw. verstellbar ist.
17. Vorrichtung nach Anspruch 14, d a d u r c h g e k e n n z e i c h n e t , daß das Äbschirmmittel ein hülsentopfförmiges oder hohlzylindrisches Teil ist, - 1!
welches um seine Längsachse mittels eines Antriebs verdrehbar ist, und deren Mantel mindestens eine Durchlaßöffnung hat, in deren Innenraum das emittierende Mittel angeordnet ist.
18. Vorrichtung nach Anspruch 14, d a d u r c h g e k e n n z e i c h n e t , daß das emittierende Mittel (2) ortsfest im Abschirmmittel (3) einliegt und die Durchlaßöffnung (19) des Abschirmmittels (3) mittels einer beweglichen Blende verschließbar ist.
19. Vorrichtung nach einem der vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß mittels mindestens eines mit der Auswertschaltung (13) kommunizierenden Sensors die Position des emittierenden Mittels (2) und/oder des Abschirmmittels (3,4) ermittelbar ist.
PCT/EP1996/004726 1995-10-27 1996-10-28 Vorrichtung und messverfahren zur bestimmung des absorptions- und/oder streuungsgrades eines mediums WO1997015823A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19540182A DE19540182A1 (de) 1995-10-27 1995-10-27 Vorrichtung und Meßverfahren zur Bestimmung des Absorptions- und/oder Streuungsgrades eines Mediums
DE19540182.4 1995-10-27

Publications (2)

Publication Number Publication Date
WO1997015823A2 true WO1997015823A2 (de) 1997-05-01
WO1997015823A3 WO1997015823A3 (de) 1997-05-29

Family

ID=7776025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/004726 WO1997015823A2 (de) 1995-10-27 1996-10-28 Vorrichtung und messverfahren zur bestimmung des absorptions- und/oder streuungsgrades eines mediums

Country Status (2)

Country Link
DE (1) DE19540182A1 (de)
WO (1) WO1997015823A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020053343A1 (de) * 2018-09-14 2020-03-19 Vega Grieshaber Kg Fremdstrahlungserkennung mit gamma-modulator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010063240A1 (de) * 2010-12-16 2012-06-21 Endress + Hauser Gmbh + Co. Kg Radiometrisches Messgerät
DE102011077637A1 (de) * 2011-06-16 2012-12-20 Endress + Hauser Gmbh + Co. Kg Strahlenschutzbehälter
CN102706409A (zh) * 2012-06-19 2012-10-03 郭云昌 一种有关提高无源核子料位计信噪比的方法
DE102018204795A1 (de) * 2018-03-28 2019-10-02 Krones Ag Vorrichtung und Verfahren zur Kontrolle einer Füllhöhe von Verpackungsbehältern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2678399A (en) * 1951-12-03 1954-05-11 Shell Dev Measurement of radiation absorption
DE2001513A1 (de) * 1969-01-15 1970-07-23 Commissariat Energie Atomique Vorrichtung zur Messung des Gehalts einer Probe an einem Element durch Gamma-Absorptiometrie
US4720808A (en) * 1985-05-15 1988-01-19 Josef Repsch Method and apparatus for measuring sheet products

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2306550A1 (de) * 1973-02-10 1974-08-15 Frieseke & Hoepfner Gmbh Geraet zum messen des flaechengewichtes von textilbahnen oder aehnlichem bahnfoermigem messgut
DE3425295C2 (de) * 1984-07-10 1986-07-24 Hoesch Ag, 4600 Dortmund Vorrichtung zur Messung des Dickenprofils von gewalzten Blechbändern
EP0221323A1 (de) * 1985-10-08 1987-05-13 Heimann GmbH Gepäckprüfanlage
DE3736673A1 (de) * 1987-10-29 1989-05-11 Fraunhofer Ges Forschung Infrarot-analysengeraet
DE4114030C1 (de) * 1991-04-29 1992-09-17 Laboratorium Prof. Dr. Rudolf Berthold Gmbh & Co, 7547 Wildbad, De
DE4135282C2 (de) * 1991-10-25 1994-09-22 Heimann Systems Gmbh & Co Röntgenscanner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2678399A (en) * 1951-12-03 1954-05-11 Shell Dev Measurement of radiation absorption
DE2001513A1 (de) * 1969-01-15 1970-07-23 Commissariat Energie Atomique Vorrichtung zur Messung des Gehalts einer Probe an einem Element durch Gamma-Absorptiometrie
US4720808A (en) * 1985-05-15 1988-01-19 Josef Repsch Method and apparatus for measuring sheet products

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AUTOMATISIERUNGSTECHNISCHE PRAXIS, Bd. 27, Nr. 7, Juli 1985, M]NCHEN, Seiten 313-319, XP002028702 HEIER K.: "Radiometrische F}llstandmessungen" *
TOWNSHEND: "Encyclopedia of analytical science, vol 7" 1995 , ACADEMIC PRESS , LONDON XP002028703 siehe Seite 4355, Spalte 1, Zeile 14 - Zeile 23 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020053343A1 (de) * 2018-09-14 2020-03-19 Vega Grieshaber Kg Fremdstrahlungserkennung mit gamma-modulator
GB2590270A (en) * 2018-09-14 2021-06-23 Grieshaber Vega Kg External radiation detection with a gamma modulator
GB2590270B (en) * 2018-09-14 2022-06-15 Grieshaber Vega Kg External radiation detection with a gamma modulator
US11927468B2 (en) 2018-09-14 2024-03-12 Vega Grieshaber Kg External radiation detection with a gamma modulator

Also Published As

Publication number Publication date
WO1997015823A3 (de) 1997-05-29
DE19540182A1 (de) 1997-04-30

Similar Documents

Publication Publication Date Title
EP1314006B2 (de) Vorrichtung zur bestimmung und/oder überwachung des füllstands eines füllguts in einem behälter
EP0511542B1 (de) Verfahren zur automatischen Driftstabilisierung bei der Strahlungsmessung mit einem Detektor
DE4214369C2 (de) Verfahren und Vorrichtung zum Bestimmen der Knochenmineraldichte und der Knochenstärke
EP1868893B1 (de) Sensorvorrichtung einer verpackungsmaschine
EP0079600B1 (de) Verfahren und Vorrichtung zur Untersuchung des Inhaltes von Containern
DE102006023309A1 (de) Verfahren und Vorrichtung zur Erkennung von Material mittels Schnellneutronen und eines kontinuierlichen spektralen Röntgenstrahles
CH624601A5 (de)
CH643359A5 (de) Verfahren zum pruefen von produktproben und anordnung zur durchfuehrung des verfahrens.
DE1809520C3 (de) Verfahren zur automatischen Driftstabilisierung bei der Strahlungsmessung mit einem Detektor
WO1997015823A2 (de) Vorrichtung und messverfahren zur bestimmung des absorptions- und/oder streuungsgrades eines mediums
DE102017130534B4 (de) Verfahren zum Kalibrieren einer radiometrischen Dichte-Messvorrichtung
DE10048559A1 (de) Vorrichtung zur Bestimmung und/oder Überwachung der Dichte und/oder des Füllstands eines Mediums in einem Behälter
EP2217946B1 (de) Vorrichtung zur online-bestimmung des gehalts einer substanz und verfahren unter verwendung einer solchen vorrichtung
EP1725858B1 (de) Vorrichtung zur online-analyse
DE102016222298A1 (de) Radiometrische Füllstandmessung
DE10132267A1 (de) Vorrichtung zur Bestimmung und/oder Überwachung der Dichte / des Dichteprofils und/oder Füllstands
DE19711124C2 (de) Verfahren und Vorrichtung zur Erkennung künstlicher Gammastrahlung
DE3835629A1 (de) Verfahren und vorrichtung zur dichtemessung mittels positronenstreuung und annihilation
EP1239303A1 (de) Verfahren zur Erkennung und Unterdrückung von Fremdstrahlungseinflüssen bei radiometrischen Messungen
WO2010060794A2 (de) Detektoreinrichtung zum überwachen von metallschrott auf radioaktive bestandteile
DE19824039A1 (de) Verfahren und Vorrichtung zur Prüfung von Schüttmaterial, insbesondere von Bauschutt und/oder Bodenaushub, auf den Gehalt an Radionukliden
WO2006125696A1 (de) Verfahren und anordnung zur bestimmung eines flächengewichtes und/oder einer chemischen zusammensetzung einer geförderten materialprobe
EP1526376A1 (de) Verfahren zum Bestimmen eines Flächengewichtes und/oder einer chemischen Zusammensetzung einer geförderten Materialprobe und Vorrichtung hierfür
AT8087U1 (de) Verfahren und vorrichtung zur bestimmung der dicke der isolation eines flachkabels in bereichen der metallischen leiterbahnen
DE2652872A1 (de) Verfahren und vorrichtung zur bestimmung von partikel-geschwindigkeiten in foerderstroemen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase