WO1997012403A1 - Diode - Google Patents

Diode Download PDF

Info

Publication number
WO1997012403A1
WO1997012403A1 PCT/JP1995/001956 JP9501956W WO9712403A1 WO 1997012403 A1 WO1997012403 A1 WO 1997012403A1 JP 9501956 W JP9501956 W JP 9501956W WO 9712403 A1 WO9712403 A1 WO 9712403A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor region
type semiconductor
electrode
bevel
region
Prior art date
Application number
PCT/JP1995/001956
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Murakami
Yasuo Onose
Makoto Morishima
Sigeharu Nonoyama
Toyoichi Nemoto
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1995/001956 priority Critical patent/WO1997012403A1/en
Publication of WO1997012403A1 publication Critical patent/WO1997012403A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes

Definitions

  • the present invention relates to a diode, and particularly to a junction structure suitable for achieving high withstand voltage and high reliability.
  • technique
  • the peripheral side surface of a diode having a pn junction formed between a P-type layer and an n-type layer is formed in a concave curved shape. It has been shown that surface discharge can be prevented by forming the curved apex of the peripheral side on the lower impurity concentration layer side of the p-type layer and the n-type layer.
  • the bevel surface is processed by processing the bevel surface so that at least the brazing material layer is left and one main surface of the heat buffer plate is not exposed. It shows that the reliability of the breakdown voltage characteristics can be improved and the workability of coating the passivation film can be improved.
  • the electric field strength on the semiconductor surface is not uniform Therefore, depending on the bevel angle and the polarity and magnitude of the charge in the protective film on the semiconductor surface, the surface of the n-type semiconductor layer having a low impurity concentration close to the p-type semiconductor layer side or the n-type semiconductor layer having a high impurity concentration
  • the electric field is strong and the breakdown is easy. That is, the breakdown phenomenon does not occur uniformly at the Pn junction inside the device, but tends to occur at the end face. For this reason, even if a high withstand voltage diode is initially obtained, breakdown is likely to occur due to local heat generation at the time of breakdown. There is a problem that is reduced. In addition, there is a problem that the withstand voltage is reduced when a high-temperature current test is performed while a current is flowing in the forward direction.
  • the present invention has been made in consideration of the problems of the conventional structure as described above, and provides a highly reliable high breakdown voltage diode. Disclosure of the invention
  • a diode according to the present invention includes a pair of main surfaces, a first semiconductor region of a first conductivity type, and a second semiconductor of a first conductivity type which is adjacent to the first semiconductor region and has a lower impurity concentration than the first semiconductor region.
  • a semiconductor substrate having a region and a third semiconductor region of a second conductivity type adjacent to the second semiconductor region.
  • the end has a bevel structure
  • a first electrode is provided on the surface of the first semiconductor region on one main surface
  • the third electrode is provided on the surface of the third semiconductor region on the other main surface.
  • a second electrode is provided.
  • a bevel region is located between the end of the first electrode and the bevel surface and is parallel to the first electrode forming surface of the semiconductor substrate.
  • the first conductivity type and the second conductivity type are p-type and n-type, respectively, but are opposite to each other.
  • the diode of the present invention when a so-called high-temperature energization test in which a forward current is applied between the first electrode and the second electrode in a high-temperature state is performed, a part of the carrier injected from the first semiconductor region extends in the bevel plane direction. Injected.
  • the injected carriers in the direction of the bevel surface are injected into and accumulated in the interface between the semiconductor substrate near the bevel surface and the insulator usually formed on the bevel surface for passivation.
  • An inversion layer is formed on the surface of the semiconductor substrate, which causes a decrease in breakdown voltage.
  • the occurrence of such factors is prevented by means for suppressing the injection of the carrier near the bevel surface or means for suppressing the injection of the carrier into the insulator covering the bevel surface.
  • the means for suppressing the injection of carriers is provided between the end of the first electrode and the bevel surface in a region parallel to the first electrode forming surface of the semiconductor substrate. The distance between the end of the first electrode and the beveled surface increases, and a means for suppressing the carrier injection is located between the end of the first electrode and the beveled surface. Carriers to reach can be extremely reduced.
  • FIG. 1 is a sectional view of a first embodiment of a high breakdown voltage diode according to the present invention.
  • FIG. 2 is a plan view of a first embodiment of the high breakdown voltage diode according to the present invention.
  • FIG. 3 is a view showing an impurity concentration distribution in a portion AA ′ of the high breakdown voltage diode of FIG. 1 according to the present invention.
  • FIG. 4 is a view showing an impurity concentration distribution in a BB ′ portion of the high breakdown voltage diode of FIG. 1 according to the present invention.
  • FIG. 5 is a view showing a manufacturing process of the first embodiment of the high breakdown voltage diode according to the present invention.
  • FIG. 6 is a sectional view of a second embodiment of the high breakdown voltage diode according to the present invention.
  • FIG. 7 is a view showing an impurity concentration distribution in a C-C ′ portion of the high breakdown voltage diode of FIG. 5 according to the present invention.
  • FIG. 8 is a view showing an impurity concentration distribution in a DD ′ portion of the high breakdown voltage diode of FIG. 1 according to the present invention.
  • FIG. 9 is a sectional view of a third embodiment of the high breakdown voltage diode according to the present invention.
  • FIG. 10 is a sectional view of a fourth embodiment of the high breakdown voltage diode according to the present invention.
  • C is a sectional view of a fifth embodiment of the high breakdown voltage diode according to the present invention.
  • FIG. 12 is a sectional view of a sixth embodiment of the high breakdown voltage diode according to the present invention.
  • FIG. 13 is a cross-sectional view of a modified example of the sixth embodiment of the high breakdown voltage diode according to the present invention.
  • FIG. 14 is a sectional view of another modification of the sixth embodiment of the high breakdown voltage diode according to the present invention.
  • FIG. 17 is a sectional view of a ninth embodiment of a high breakdown voltage diode according to the present invention.
  • FIG. 18 is a view showing a manufacturing process of a ninth embodiment of the high breakdown voltage diode according to the present invention.
  • FIG. 19 is a sectional view of a modification of the first embodiment of the high breakdown voltage diode according to the present invention.
  • FIG. 20 shows a modification of the ninth embodiment of the high breakdown voltage diode according to the present invention.
  • FIG. 21 is a cross-sectional view of another modified example of the first embodiment of the high breakdown voltage diode according to the present invention.
  • FIG. 22 is a sectional view of another modified example of the ninth embodiment of the high breakdown voltage diode according to the present invention.
  • n +, ⁇ , and n ⁇ indicating the conductivity type of the semiconductor layer indicate relative differences in impurity concentration, and the impurity concentration decreases in this order. This is the same for P +, p, and P-.
  • FIG. 1 is a sectional view showing a first embodiment of a high breakdown voltage diode according to the present invention.
  • a p + type semiconductor region 20, an n ⁇ type semiconductor region 10, an n type semiconductor region 40, and a high impurity concentration n + type semiconductor region 30 are formed adjacent to each other.
  • An anode electrode 120 and a force source electrode 130 are formed in the P-type semiconductor region 20 and the n + -type semiconductor region 30 having a high impurity concentration, respectively.
  • a first insulating film 5 having an elastic modulus of 10 ′ ° dyn / cm 2 or more is formed on the exposed surface of the semiconductor region for stabilizing the surface of the diode.
  • the first insulating film 5 overhangs a part of the anode electrode 120 and the cathode electrode 130 so as to cover the entire exposed surface of the semiconductor region. Further, a second insulating film 6 having an elastic modulus of 1 (T ⁇ 10 ′ ° dyn cm 2 ) is formed by being laminated on the first insulating film 5.
  • FIG. 2 is a plan view of the high breakdown voltage diode of FIG. 1 as viewed from the cathode electrode 130 side. Each part of this high voltage diode is concentric to increase the voltage resistance Is formed.
  • FIG. 3 and FIG. 4 are diagrams showing the impurity concentration distribution in the AA ′ and BB ′ portions of the high breakdown voltage diode of FIG. 1 according to the present invention.
  • the ⁇ + type semiconductor region 20 has a surface impurity concentration of 1 ⁇ 1 from the anode side of the ⁇ type semiconductor region 10 which is a high resistance semiconductor substrate of 100 to 500. 0 15 to 1 X 10 ' 8 Zcm 3 is formed by diffusion. Further, from the force source side, n + type semiconductor region 30 is formed by diffusion so that the surface impurity concentration becomes 1 ⁇ 10 ′ 3 to 1 ⁇ 10 ′′ / cm 3 , and n + type semiconductor region 30 and n ⁇ An ⁇ -type semiconductor region 40 having an impurity concentration between the n + -type semiconductor region 30 and the ⁇ --type semiconductor region 10 is formed between the n-type semiconductor regions 10.
  • the surface impurity concentration of the ⁇ + -type semiconductor region 30 is 1 Xi 0 ' s to 1 Xi 0 20 / cm 3
  • the surface impurity concentration is at most 1 X 1 O ⁇ / cm 3 .
  • the depletion layer becomes n- From the pn junction of the p-type semiconductor region 10 and the p-type semiconductor region 20 to the ⁇ ⁇ -type semiconductor region 1. Since the surface at the element end of the ⁇ junction has a regular bevel structure, the surface is more likely to expand than the inside. In the present embodiment, the surface of the ⁇ ⁇ type semiconductor region 10 is a positive bevel having a smaller bevel angle at a certain distance from the ⁇ ⁇ junction.
  • the reverse bias voltage is applied, and the ⁇ ⁇ -type semiconductor region 10 Even if the entire surface is depleted, the depletion layer extends to the ⁇ -type semiconductor region 40, so that the surface electric field is reduced.
  • the electric field intensity on the surface does not become extremely high as compared with the case of the ⁇ ⁇ + junction of the ⁇ ⁇ type semiconductor region 10 and the ⁇ + type semiconductor region 30 with a high impurity concentration, so that high reliability and high withstand voltage are obtained. Can be compatible. If the ⁇ ⁇ type semiconductor region 10 and the ⁇ + type semiconductor region 30 are directly adjacent to each other without interposing the ⁇ type semiconductor region 40, the negative charge in the first insulating film or the second insulating film will be reduced. And the ⁇ -type inversion layer is formed on the surface of the ⁇ -type semiconductor region 10 close to the ⁇ + type semiconductor region 30, the surface electric field becomes extremely high at the ⁇ - ⁇ + junction and the withstand voltage decreases.
  • ⁇ ⁇ + junction of the ⁇ ⁇ + junction
  • the withstand voltage decreases.
  • the ⁇ -type semiconductor region 40 is parallel to the beveled inclined surface a and the force source electrode forming surface and is adjacent to the n + -type semiconductor region 30.
  • Surface b the distance between the n + type semiconductor region 30 and the n ⁇ type semiconductor region 10 along the exposed surface of the n type semiconductor region 40 is larger than the distance c inside the device.
  • Electrons can be injected from the n + type semiconductor region 30 to the vicinity of the exposed surface a of the n type semiconductor region 40.
  • the exposed surface a exists between the n + type semiconductor region 30 and the bevel surface b, injection of electrons near the bevel surface b is suppressed. Therefore, if the impurity concentration of the n-type semiconductor region 40 is set so that the depletion layer does not reach the exposed surface a at the rated voltage, electrons are accumulated in the first insulating film 5 formed on the exposed surface a.
  • the n-type semiconductor region 40 has a higher impurity concentration than the n ⁇ -type semiconductor region 10, P inversion is difficult. As described above, even if charges are accumulated in the first insulating film 5 formed on the exposed surfaces a and b of the n-type semiconductor region 40, the influence on the withstand voltage is small and high reliability is obtained.
  • FIG. 5 is a diagram showing a manufacturing process of the first embodiment.
  • the surface impurity concentration is at most 1 ⁇ 10 17 / cm from one main surface of the high-resistance ⁇ ⁇ type semiconductor region 10 having a resistivity of 100 to 500 ⁇ . about 5 0 mu eta-type semiconductor region 4 0 diffusion depth of m so as to be 3 formed by any of the following methods.
  • n-type semiconductor region 40 is formed from one main surface of n ⁇ -type semiconductor region 10 by an epitaxy method.
  • a shallow deposition layer 20 having a high impurity concentration containing a P-type impurity such as aluminum, gallium or boron is formed from the pair of main surfaces.
  • a metal such as aluminum is vapor-deposited, and the rear node electrode 120 and the cathode electrode 130 are formed to a predetermined size by ordinary photoetching. Further, the end face of the pn junction composed of the P + type semiconductor region 20 and the n ⁇ type semiconductor region 10 is processed with a sand blast or a grindstone so as to have a bevel angle ⁇ with respect to the horizontal plane. Work from any position on the 10 end face to a bevel angle smaller than the bevel angle.
  • the end face where each semiconductor region is exposed has a modulus of elasticity of 10 '° dyn / cm 2 or more, such as polyimide silicone or a silicon dioxide film formed by a CVD method.
  • 1 Deposit insulating film 5.
  • a second insulating film 6 made of, for example, silicone rubber and having an elastic modulus of 10 s to 10 '° dyn / cm 2 is applied.
  • FIG. 6 is a sectional view of a second embodiment of the high breakdown voltage diode according to the present invention.
  • the difference from FIG. 1 is that a P + + type semiconductor region 120 having a higher impurity concentration than the p + type semiconductor region 20 is added to the anode side.
  • p + When the p-type semiconductor region 20 is formed by diffusion, it is desirable that the surface impurity concentration of the p + -type semiconductor region 20 is lower than that described in FIG.
  • FIG. 7 and 8 are diagrams showing the impurity concentration distribution in the C-C portion and the DD ′ portion of the high breakdown voltage diode of FIG. 5 according to the present invention.
  • the p + -type semiconductor region 20 surface impurity concentration of 1 X 1 0 ' are formed by deep rather diffused so as to be 5 ⁇ 1 X 1 0 "/ cm 3, further P ++ type semiconductor region 1 2 0 the surface impurity concentration of 1 X 1 0' It is formed so as to be 8 to 1 X 10 ' s / cm 3 and shallower than the p + -type semiconductor region 20.
  • FIG. 9 is a sectional view of a third embodiment of the high breakdown voltage diode according to the present invention.
  • the nn + junction between the n-type semiconductor region 40 and the n + -type semiconductor region 30 having a high impurity concentration is exposed on the bevel surface. Therefore, since the photo-etching is not required when the n-type semiconductor region 30 is formed by diffusion, the manufacturing process can be simplified. Further, in this embodiment, the n + type semiconductor region from the end of the cathode electrode 130 to the bevel surface a is set. 30 width is enough.
  • the width is set such that electrons injected from the cathode electrode 130 and passing through the n + type semiconductor region 30 are not trapped in the first insulating film 5 near the bevel surface a. Therefore, in the conduction life test, the p-type inversion layer is not easily formed on the surface of the n-type semiconductor region 40 close to the n-type semiconductor region 10, and even if a reverse bias voltage is applied, the n- The surface electric field near the n-n junction between the type semiconductor region 10 and the n-type semiconductor region 40 is not increased, and both high reliability and high withstand voltage can be achieved.
  • FIG. 10 is a sectional view of a fourth embodiment of the high breakdown voltage diode according to the present invention.
  • the exposed surface b of the region 40 is formed. Since the creepage distance of the n-type semiconductor region 40 exposed on the diode surface can be increased, higher reliability can be achieved.
  • FIG. 11 is a sectional view showing a fifth embodiment of the high breakdown voltage diode according to the present invention.
  • the exposed surface of the n + -type semiconductor region 30 having a high impurity concentration close to the force source electrode is partially removed, and the surface parallel to the cathode electrode 130 is removed.
  • a Q 1 portion where the n-type semiconductor region 40 is exposed is formed.
  • the depletion layer extending from the pn junction consisting of the P + type semiconductor region 20 and the n ⁇ type semiconductor region 10 is n-type. It can be stopped in the semiconductor region 40 and the n-type of Q 1 It is possible to prevent the semiconductor region 40 from reaching the surface.
  • FIG. 12 is a sectional view of a sixth embodiment of the high breakdown voltage diode according to the present invention.
  • ap + type semiconductor region 20, an n ⁇ type semiconductor region 10, and a high impurity concentration n + type semiconductor region 30 are formed adjacent to each other, and the p type semiconductor region 20 and the high impurity concentration n In the + type semiconductor region 30, an anode electrode 120 and a cathode electrode 130 are formed, respectively.
  • the n-type semiconductor region 41 is formed so as to be interposed between the n + -type semiconductor region 30 and the n ⁇ -type semiconductor region 10 on the end face. Between the n + -type semiconductor regions.
  • the semiconductor region exposed on the surface has a first insulating film 5 with an elastic modulus of 10 '° dyn / cni 2 or more and an elastic modulus of 10 s to 10'.
  • the second insulating film 6 of dy ri Zcni 2 is formed by lamination.
  • the n + -type semiconductor region 30 with a high impurity concentration becomes an emitter for highly-injected electrons, while the n-type semiconductor region 41 becomes an emitter for low-injection. . Therefore, the current density inside the diode is increased, and the forward voltage drop can be reduced.
  • the current density can be reduced at the outer periphery of the diode, especially at the end face, More electrons flow in the first insulating film 5 or at the interface between the first insulating film 5 and the semiconductor region, for example, at the interface between the n-type semiconductor region 40 near the n + type semiconductor region 30 and the first insulating film 5, The phenomenon of accumulation as a negative space charge in the first insulating film 5 near the n + type semiconductor region 30 is unlikely to occur.
  • n + -type semiconductor area 3 0 p-type inversion layer in the n-type semiconductor region 4 1 surface is not easily formed near the t
  • a p-type inversion layer is formed on the surface of the conductor region 41, a p-type inversion layer is extremely unlikely to be formed on the surface of the n-type semiconductor region 41 near the n-type semiconductor region 10.
  • a reverse bias voltage is applied, the surface electric field near the n-n junction between the n-type semiconductor region 10 and the n-type semiconductor region 40 on the end face does not increase, and both high reliability and high breakdown voltage can be achieved.
  • FIGS. 13 and 14 are cross-sectional views of a modification of the sixth embodiment (FIG. 12). The difference from FIG. 12 is the depth of the n-type semiconductor region formed on the end face.
  • the n-type semiconductor region 42 is formed at the same depth as the n + -type semiconductor region 30.
  • an n + -type semiconductor region 30 and a deeper n-type semiconductor region 43 are formed.
  • the depletion layer extending mainly from the P n junction consisting of the P + -type semiconductor region and the n--type semiconductor region to the n--type semiconductor region becomes an n-type semiconductor region. Reach 1 or 4 2.
  • the depletion layer hardly reaches the surface of the n-type semiconductor region 41 or 42 close to the n + -type semiconductor region 30 by forming the n-type semiconductor region 41 or 42 as thick as the n-type semiconductor region 41. Therefore, reliability can be further improved.
  • FIG. 15 shows a sectional view of a seventh embodiment of the high breakdown voltage diode according to the present invention.
  • the difference from the embodiment of FIG. 14 is that the surface of the n-type semiconductor region 44 is The exposed part is partially removed.
  • the n + type semiconductor region 30 and the n type semiconductor region 43 are selectively formed.In this embodiment, however, the n + type semiconductor region 30 is formed over the entire surface.
  • the photo-etching step at the time of ripening can be omitted. (Example 8)
  • FIG. 16 is a sectional view of an eighth embodiment of the high breakdown voltage diode according to the present invention.
  • the difference from the embodiment of FIG. 14 is that the portion Q2 exposed on the surface of the n-type semiconductor region 45 near the force source electrode is partially removed. As a result, the creepage distance of the n-type semiconductor region 45 can be further increased, so that high reliability can be achieved.
  • FIG. 17 is a sectional view showing a ninth embodiment of the high breakdown voltage diode according to the present invention.
  • ap + type semiconductor region 20, an n ⁇ type semiconductor region 10, and a high impurity concentration n + type semiconductor region 30 are formed adjacent to each other, and the p type semiconductor region 20 and the high impurity concentration n In the + type semiconductor region 30, a cathode electrode 120 and a cathode electrode 130 are formed, respectively.
  • the n-type semiconductor region 46 is formed so as to be interposed between the n + -type semiconductor region 30 and the n ⁇ -type semiconductor region 10 on the end face, and has a high impurity concentration near the cathode electrode 130.
  • the portion Q3 exposed on the surface of the region 30 is removed, and the n + type semiconductor region 32 is left on the outer periphery.
  • the details of the operation of this embodiment are the same as those of the embodiment of FIG.
  • FIG. 18 is a diagram showing the manufacturing process of this example.
  • the high resistivity of 100-500 Qcm The n-type semiconductor region 46 having a diffusion depth of about 50 ⁇ is subjected to normal oxidation and heat treatment so that the surface impurity concentration from the one main surface of the n- type semiconductor region 10 becomes at most 1 X 1 O'Vcm 3.
  • a shallow deposition layer with a high P (phosphorus) impurity concentration is selectively formed using phosphorous dichlorite, for example, at a temperature of 1150 to 1250 ° C. And formed by drive-in diffusion.
  • a shallow deposition layer 20 having a high impurity concentration containing a P-type impurity such as aluminum, gallium or boron is formed from the pair of main surfaces.
  • a window of an oxide film is formed on the surface by oxidation or photo-etching (not shown), and an n + type semiconductor region is selectively formed as shown in (c).
  • Form 30 After that, after removing the deposition layer on the surface by etching, a window of an oxide film is formed on the surface by oxidation or photo-etching (not shown), and an n + type semiconductor region is selectively formed as shown in (c). Form 30.
  • a metal such as aluminum is deposited, and a rear node electrode 120 and a force source electrode 130 are formed to a predetermined size by ordinary photoetching. Further, the end face of the pn junction composed of the P + type semiconductor region 20 and the n ⁇ type semiconductor region 10 is processed with a sand blast or a grindstone so as to have a bevel angle ⁇ with respect to the horizontal plane. Work from any position on the 0 end face to a bevel angle smaller than the bevel angle ⁇ .
  • the end face where each semiconductor region is exposed has a first insulating film having a modulus of elasticity of 10 '° dyn Xcm 2 or more, such as polyimide silicon or a silicon dioxide film formed by CVD. 5 is applied, and a silicone rubber 6 having an elastic modulus of 10 s to 10 '° dynZcni 2 is applied to prevent discharge.
  • a first insulating film having a modulus of elasticity of 10 '° dyn Xcm 2 or more such as polyimide silicon or a silicon dioxide film formed by CVD. 5 is applied, and a silicone rubber 6 having an elastic modulus of 10 s to 10 '° dynZcni 2 is applied to prevent discharge.
  • the high-breakdown-voltage diodes whose sectional views are shown in FIGS.
  • the anode electrode 120 of the first embodiment (FIG. 1) and the ninth embodiment (FIG. 17) is replaced with an alloy type.
  • the anode electrode 220 uses a thick plate such as tungsten or molybdenum, and uses a P + type semiconductor region 20 and a solder material 121 such as aluminum, for example. Alloyed. Operation of the modifications shown in the first 9 view and the second 0 Figure, t still the same as the wafer pressure type shown in Figure 1 and the first 7 FIG respectively, the first 9 view and a second 0
  • the alloy-type electrode shown in the figures can be applied to each of the embodiments shown in FIGS.
  • the high-breakdown-voltage diodes shown in cross-sectional views in FIGS. 21 and 22 are also modifications of the first embodiment (FIG. 1) and the ninth embodiment (FIG. 17), respectively:
  • the semiconductor area exposed on the surface has a third elastic modulus of more than 10 ⁇ dyn / cm 2 , for example, silicone rubber, polyimide silicone, silicon dioxide, glass, etc.
  • An insulating film 7 is formed.
  • the elastic modulus 1 0 1 The semiconductor region in the first view and the first 7 FIG exposed on the surface.
  • each modification shown in FIGS. 21 and 22 is the same as that of the diode to which the two types of insulating films shown in FIGS. 1 and 17 are applied.
  • the end face structure to which one type of insulating film shown in FIGS. 21 and 22 is applied depends on the embodiment shown in FIGS. 5 to 16, FIGS. 19 and 20, and FIGS. It can be applied to the modification.
  • the end face shape of the diode is sandblasted or a grindstone to determine whether the P + type semiconductor region 20 and the n ⁇ type semiconductor region 10
  • the end face of the pn junction is processed so as to have a bevel angle ⁇ with respect to the horizontal plane, and the end face of the ⁇ ⁇ type semiconductor region 10 is processed so that the bevel angle ⁇ is smaller than the bevel angle ⁇ 2
  • a step bevel structure is applied.
  • the present invention is not limited to these two-stage bevels, but a ⁇ ⁇ junction composed of a ⁇ + type semiconductor region 20 and an ⁇ ⁇ type semiconductor region 10, and a ⁇ ⁇ type semiconductor region 10 and an ⁇ type semiconductor region 4
  • the effect of the present invention can be achieved even if the end face of the ⁇ - ⁇ junction of 0 is processed so as to have the same bevel angle with respect to the horizontal plane.
  • the bevel angle ⁇ may be used.

Abstract

A diode comprising a semiconductor substrate which has a pair of main planes and bevel edges, wherein an n+ type semiconductor region, an n- type semiconductor region and a p+ type semiconductor regions are formed adjacent to one another. Means for preventing carrier injection toward bevel edges is disposed in a region between the bevel edges and the end of a cathode electrode and parallel to the cathode surface of the semiconductor substrate. Accordingly, carriers can hardly be trapped by the insulator for passivation, formed on the bevel edges, and thus the diode has a high withstand voltage and high reliability.

Description

明 細 書  Specification
ダイォー ド 技術分野  Diode Technical field
本発明は、 ダイオー ドに係り、 特に高耐圧かつ高信頼を達成するのに 好適な接合構造に閲する。 冃 、技  The present invention relates to a diode, and particularly to a junction structure suitable for achieving high withstand voltage and high reliability. 、, technique
従来のダイオー ドの高耐圧化技術としては、 I E E E Transaction on E lectoron Devices, Vol. E D— 3 1, No. 6 , 7 3 3 ( 1 9 8 4 ) における . P. Brieger等による "The Influence of Surface Charge and Bevel Angle on the Blocking Behavior of a High - Voltage p+nn+ Device" と題する文献において、 半導体素子の端面のベ ベル角度を調整して P n接合表面の電界強度を低減することによリ高耐 圧のダイオー ドが得られることが示されている。  A conventional diode withstanding voltage technology is described in “The Influence of IEEE Transaction on Electron Devices, Vol. ED-31, No. 6, 733 (1994)” by P. Brieger and others. In a document entitled “Surface Charge and Bevel Angle on the Blocking Behavior of a High-Voltage p + nn + Device”, the bevel angle at the end face of a semiconductor device was adjusted to reduce the electric field strength at the Pn junction surface. It is shown that a diode with high withstand voltage can be obtained.
また、 実公昭 48— 40370 号公報においては、 この従来技術によれば、 P型層と n型層との間に p n接合を形成したダイォー ドの周側面を凹形 彎曲状に形成し、 その周側面の彎曲頂点を p型層と n型層のうちで低不 純物濃度層側に形成することにより、 表面放電が防止できることが示さ れている。  According to Japanese Utility Model Publication No. 48-40370, according to this conventional technique, the peripheral side surface of a diode having a pn junction formed between a P-type layer and an n-type layer is formed in a concave curved shape. It has been shown that surface discharge can be prevented by forming the curved apex of the peripheral side on the lower impurity concentration layer side of the p-type layer and the n-type layer.
さらに、 特開昭 61— 158171号公報に記載された技術によれば、 少なく ともろう材層を残し熱緩衝板の 1つの主面が露出しないようにべベル面 を加工することにより、 ベベル面の耐圧特性の信頼性を高め、 且つパッ シベーション膜被覆の作業性を向上できることを示している。  Further, according to the technology described in Japanese Patent Application Laid-Open No. 61-158171, the bevel surface is processed by processing the bevel surface so that at least the brazing material layer is left and one main surface of the heat buffer plate is not exposed. It shows that the reliability of the breakdown voltage characteristics can be improved and the workability of coating the passivation film can be improved.
前述した最初の従来技術では、 半導体表面の電界強度が一様ではない ため、 ベベル角度や半導体表面の保護膜中の電荷の極性や大きさ等によ り、 p型半導体層側や高不純物濃度の n型半導体層側に近い低不純物濃 度の n型半導体層表面で電界が強くなリ降伏し易い。 すなわち、 降伏現 象は素子の内部の P n接合で一様に起こらず、 どう しても端面部分で起 り易い。 このため、 初期的に高耐圧ダイオー ドが得られても、 降伏時に は局所的な熱発生を伴うので破壊に至りやすく、 電圧を印加したまま高 温にさらす、 いわゆる高温バイァス試験を行うと耐圧が低下するという 問題がある。 さらに、 順方向に電流を流したまま高温にさらす、 いわゆ る高温通電試験を行うと耐圧が低下するという問題がある。 In the first prior art mentioned above, the electric field strength on the semiconductor surface is not uniform Therefore, depending on the bevel angle and the polarity and magnitude of the charge in the protective film on the semiconductor surface, the surface of the n-type semiconductor layer having a low impurity concentration close to the p-type semiconductor layer side or the n-type semiconductor layer having a high impurity concentration The electric field is strong and the breakdown is easy. That is, the breakdown phenomenon does not occur uniformly at the Pn junction inside the device, but tends to occur at the end face. For this reason, even if a high withstand voltage diode is initially obtained, breakdown is likely to occur due to local heat generation at the time of breakdown. There is a problem that is reduced. In addition, there is a problem that the withstand voltage is reduced when a high-temperature current test is performed while a current is flowing in the forward direction.
一方、 前述した 2番目あるいは最後の従来技術でも、 表面安定化膜中 に存在する電荷の量について十分配慮されておらず、 上記高温バイァス 試験ゃ通電試験等の寿命試験により阻止性能が低下するという問題があ る。  On the other hand, even in the above-mentioned second or last conventional technology, sufficient consideration is not given to the amount of charge existing in the surface stabilizing film, and the blocking performance is reduced by the life test such as the high-temperature bias test and the current test. There's a problem.
本発明は、 上記のような従来構造の問題点を考慮してなされたもので あり、 高信頼の高耐圧ダイオー ドを提供する。 発明の開示  The present invention has been made in consideration of the problems of the conventional structure as described above, and provides a highly reliable high breakdown voltage diode. Disclosure of the invention
本発明のダイオー ドは、 一対の主表面と、 第 1導電型の第 1 半導体領 域と、 第 1 の半導体領域に隣接し第 1 半導体領域より不純物濃度が低い 第 1導電型の第 2半導体領域と、 第 2半導体領域に隣接する第 2導電型 の第 3半導体領域とを有する半導体基体を備えている。 この半導体基体 において、 その端部はべベル構造を有し、 一方の主表面における第 1 半 導体領域表面には第 1電極が設けられ、 他方の主表面における第 3半導 体領域表面には第 2電極が設けられる。 さらに、 第 1電極端部とベベル 面との間に位置し半導体基体の第 1電極形成面に平行な領域に、 ベベル 面付近へのキヤリァの注入を抑制する手段あるいはべベル面上を被覆す る絶縁物へのキヤリアの注入を抑制する手段を備えている。 A diode according to the present invention includes a pair of main surfaces, a first semiconductor region of a first conductivity type, and a second semiconductor of a first conductivity type which is adjacent to the first semiconductor region and has a lower impurity concentration than the first semiconductor region. A semiconductor substrate having a region and a third semiconductor region of a second conductivity type adjacent to the second semiconductor region. In this semiconductor substrate, the end has a bevel structure, a first electrode is provided on the surface of the first semiconductor region on one main surface, and the third electrode is provided on the surface of the third semiconductor region on the other main surface. A second electrode is provided. Further, a bevel region is located between the end of the first electrode and the bevel surface and is parallel to the first electrode forming surface of the semiconductor substrate. There is provided a means for suppressing the injection of the carrier into the vicinity of the surface or a means for suppressing the injection of the carrier into the insulator covering the bevel surface.
ここで、 第 1導電型及び第 2導電型は、 それぞれ p型あるいは n型で あるが、 互いに逆の導電型である。  Here, the first conductivity type and the second conductivity type are p-type and n-type, respectively, but are opposite to each other.
本発明のダイォー ドにおいて、 高温状態で第 1 電極と第 2電極の間に 順方向電流を流すいわゆる高温通電試験を行うと、 第 1 半導体領域から 注入されるキヤリァの一部がベベル面方向に注入される。 このべベル面 方向への注入キャリアは、 ベベル面付近の半導体基体とベベル面上に通 常はパッシベーションの為に形成される絶縁物との界面やこの絶縁物中 に注入され蓄積されると、 半導体基体表面に反転層が形成され耐圧が低 下する要因となる。 このような要因の発生が、 本発明においては、 ベべ ル面付近へのキヤリァの注入を抑制する手段あるいはべベル面上を被覆 する絶縁物へのキヤリァの注入を抑制する手段により防止される。 ここ で、 これらのキャリアの注入を抑制する手段は、 第 1電極端部とベベル 面との間に位置し半導体基体の第 1電極形成面に平行な領域に設けられ ているので、 半導体沿面に沿った第 1電極端部とベベル面までの距離が 増加しさらに、 このような第 1電極端部とベベル面までの間にキヤリァ の注入を抑制する手段が位置しているので、 ベベル面に到達するキヤリ ァを極めて少なくすることができる。 図面の簡単な説明  In the diode of the present invention, when a so-called high-temperature energization test in which a forward current is applied between the first electrode and the second electrode in a high-temperature state is performed, a part of the carrier injected from the first semiconductor region extends in the bevel plane direction. Injected. The injected carriers in the direction of the bevel surface are injected into and accumulated in the interface between the semiconductor substrate near the bevel surface and the insulator usually formed on the bevel surface for passivation. An inversion layer is formed on the surface of the semiconductor substrate, which causes a decrease in breakdown voltage. In the present invention, the occurrence of such factors is prevented by means for suppressing the injection of the carrier near the bevel surface or means for suppressing the injection of the carrier into the insulator covering the bevel surface. . Here, the means for suppressing the injection of carriers is provided between the end of the first electrode and the bevel surface in a region parallel to the first electrode forming surface of the semiconductor substrate. The distance between the end of the first electrode and the beveled surface increases, and a means for suppressing the carrier injection is located between the end of the first electrode and the beveled surface. Carriers to reach can be extremely reduced. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明による高耐圧ダイオー ドの第 1 の実施例の断面図。 第 2図は、 本発明による高耐圧ダイォー ドの第 1 の実施例の平面図。 第 3図は、 本発明による第 1 図の高耐圧ダイオー ドの A— A ' 部の不 純物濃度分布を示す図。 第 4図は本発明による第 1 図の高耐圧ダイォー ドの B— B ' 部の不純 物濃度分布を示す図。 FIG. 1 is a sectional view of a first embodiment of a high breakdown voltage diode according to the present invention. FIG. 2 is a plan view of a first embodiment of the high breakdown voltage diode according to the present invention. FIG. 3 is a view showing an impurity concentration distribution in a portion AA ′ of the high breakdown voltage diode of FIG. 1 according to the present invention. FIG. 4 is a view showing an impurity concentration distribution in a BB ′ portion of the high breakdown voltage diode of FIG. 1 according to the present invention.
第 5図は、 本発明による高耐圧ダイォー ドの第 1 の実施例の製造工程 を示す図。  FIG. 5 is a view showing a manufacturing process of the first embodiment of the high breakdown voltage diode according to the present invention.
第 6図は、 本発明による高耐圧ダイオー ドの第 2の実施例の断面図。 第 7図は、 本発明による第 5図の高耐圧ダイオー ドの C— C ' 部の不 純物濃度分布を示す図。  FIG. 6 is a sectional view of a second embodiment of the high breakdown voltage diode according to the present invention. FIG. 7 is a view showing an impurity concentration distribution in a C-C ′ portion of the high breakdown voltage diode of FIG. 5 according to the present invention.
第 8図は、 本発明による第 1 図の高耐圧ダイオー ドの D— D ' 部の不 純物濃度分布を示す図。  FIG. 8 is a view showing an impurity concentration distribution in a DD ′ portion of the high breakdown voltage diode of FIG. 1 according to the present invention.
第 9図は、 本発明による高耐圧ダイォー ドの第 3の実施例の断面図。 第 1 0図は、 本発明による高耐圧ダイォー ドの第 4の実施例の断面図 c 第 1 1 図は、 本発明による高耐圧ダイオー ドの第 5の実施例の断面図。 第 1 2図は、 本発明による高耐圧ダイォー ドの第 6の実施例の断面図。 第 1 3図は、 本発明による高耐圧ダイォー ドの第 6の実施例の変形例 の断面図。 FIG. 9 is a sectional view of a third embodiment of the high breakdown voltage diode according to the present invention. FIG. 10 is a sectional view of a fourth embodiment of the high breakdown voltage diode according to the present invention. C FIG. 11 is a sectional view of a fifth embodiment of the high breakdown voltage diode according to the present invention. FIG. 12 is a sectional view of a sixth embodiment of the high breakdown voltage diode according to the present invention. FIG. 13 is a cross-sectional view of a modified example of the sixth embodiment of the high breakdown voltage diode according to the present invention.
第 1 4図は、 本発明による高耐圧ダイオー ドの第 6の実施例の他の変 形例の断面図。  FIG. 14 is a sectional view of another modification of the sixth embodiment of the high breakdown voltage diode according to the present invention.
第 1 5図は、 本発明による高耐圧ダイオー ドの第 7の実施例の断面図 c 第 1 6図は、 本発明による高耐圧ダイオー ドの第 8の実施例の断面図。 第 1 7図は、 本発明による高耐圧ダイオー ドの第 9の実施例の断面図。 第 1 8図は、 本発明による高耐圧ダイオー ドの第 9の実施例の製造ェ 程を示す図。 The first 5 figures sectional view c first 6 views of a seventh embodiment of the high voltage diodes according to the present invention, an eighth cross-sectional view of an embodiment of the high withstand voltage diode according to the present invention. FIG. 17 is a sectional view of a ninth embodiment of a high breakdown voltage diode according to the present invention. FIG. 18 is a view showing a manufacturing process of a ninth embodiment of the high breakdown voltage diode according to the present invention.
第 1 9図は、 本発明による高耐圧ダイォー ドの第 1 の実施例の変形例 の断面図。  FIG. 19 is a sectional view of a modification of the first embodiment of the high breakdown voltage diode according to the present invention.
第 2 0図は、 本発明による高耐圧ダイオー ドの第 9の実施例の変形例 の断面図。 FIG. 20 shows a modification of the ninth embodiment of the high breakdown voltage diode according to the present invention. FIG.
第 2 1 図は、 本発明による高耐圧ダイォ一 ドの第 1 の実施例の他の変 形例の断面図。  FIG. 21 is a cross-sectional view of another modified example of the first embodiment of the high breakdown voltage diode according to the present invention.
第 2 2図は、 本発明による高耐圧ダイオー ドの第 9の実施例の他の変 形例の断面図。 発明を実施するための最良の形態  FIG. 22 is a sectional view of another modified example of the ninth embodiment of the high breakdown voltage diode according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を図面を用いて説明する。 各実施例において相 当物には同一の符号を付ける。 また、 半導体層の導電型を示す記号 n + , η , n - は相対的な不純物濃度の相違を表し、 この順に不純物濃度は低 くなる。 この点は、 P + , p, P - についても同様である。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each embodiment, the same reference numerals are given to the equivalents. The symbols n +, η, and n − indicating the conductivity type of the semiconductor layer indicate relative differences in impurity concentration, and the impurity concentration decreases in this order. This is the same for P +, p, and P-.
(実施例 1 )  (Example 1)
第 1 図は本発明による高耐圧ダイォー ドの第 1 の実施例を示す断面図 である。 p + 型半導体領域 2 0, n - 型半導体領域 1 0 , n型半導体領 域 4 0, 高不純物濃度の n + 型半導体領域 3 0が隣接して形成される。 P型半導体領域 2 0及び高不純物濃度の n + 型半導体領域 3 0にはそれ ぞれァノ一ド電極 1 2 0及び力ソー ド電極 1 3 0が形成されている。 ま た、 ダイオー ドの表面安定化のため、 半導体領域の露出表面上には弾性 率が 1 0 ' ° d y n /cm2 以上の第 1絶縁膜 5が形成されている。 この第 1絶縁膜 5は、 それで半導体領域の露出表面の全面を覆うために、 ァノ ー ド電極 1 2 0及びカソード電極 1 3 0の一部にオーバーハングさせて いる。 さらに、 弾性率が 1 (T〜 1 0 ' ° d y n cm2の第 2絶緣膜 6が第 1絶縁膜 5の上に積層して形成されている。 FIG. 1 is a sectional view showing a first embodiment of a high breakdown voltage diode according to the present invention. A p + type semiconductor region 20, an n − type semiconductor region 10, an n type semiconductor region 40, and a high impurity concentration n + type semiconductor region 30 are formed adjacent to each other. An anode electrode 120 and a force source electrode 130 are formed in the P-type semiconductor region 20 and the n + -type semiconductor region 30 having a high impurity concentration, respectively. Further, a first insulating film 5 having an elastic modulus of 10 ′ ° dyn / cm 2 or more is formed on the exposed surface of the semiconductor region for stabilizing the surface of the diode. The first insulating film 5 overhangs a part of the anode electrode 120 and the cathode electrode 130 so as to cover the entire exposed surface of the semiconductor region. Further, a second insulating film 6 having an elastic modulus of 1 (T〜10 ′ ° dyn cm 2 ) is formed by being laminated on the first insulating film 5.
第 2図は第 1 図の高耐圧ダイォー ドのカソ一ド電極 1 3 0側から見た 平面図である。 高耐圧化のため、 本高耐圧ダイオー ドの各部は同心円状 に形成されている。 FIG. 2 is a plan view of the high breakdown voltage diode of FIG. 1 as viewed from the cathode electrode 130 side. Each part of this high voltage diode is concentric to increase the voltage resistance Is formed.
第 3図及び第 4図は本発明による第 1 図の高耐圧ダイオー ドの A— A' 部及び B— B' 部の不純物濃度分布を示す図である。  FIG. 3 and FIG. 4 are diagrams showing the impurity concentration distribution in the AA ′ and BB ′ portions of the high breakdown voltage diode of FIG. 1 according to the present invention.
第 3図が示すように 1 0 0〜 5 0 0 の高抵抗半導体基板である η- 型半導体領域 1 0のァノー ド側から ρ+ 型半導体領域 2 0が表面不 純物濃度が 1 X 1 015〜 1 X 1 0'8Zcm3 になるよう拡散によ リ形成さ れている。 さらに力ソー ド側から n+ 型半導体領域 3 0が表面不純物濃 度が 1 X 1 0 ' 3〜 1 X 1 0 " /cm3 になるよう拡散により形成され、 n+ 型半導体領域 3 0と n- 型半導体領域 1 0の間には n+ 型半導体領 域 3 0と η- 型半導体領域 1 0のそれぞれの不純物濃度の間の不純物濃 度を有する η型半導体領域 4 0が形成されている。 As shown in FIG. 3, the ρ + type semiconductor region 20 has a surface impurity concentration of 1 × 1 from the anode side of the η− type semiconductor region 10 which is a high resistance semiconductor substrate of 100 to 500. 0 15 to 1 X 10 ' 8 Zcm 3 is formed by diffusion. Further, from the force source side, n + type semiconductor region 30 is formed by diffusion so that the surface impurity concentration becomes 1 × 10 ′ 3 to 1 × 10 ″ / cm 3 , and n + type semiconductor region 30 and n− An η-type semiconductor region 40 having an impurity concentration between the n + -type semiconductor region 30 and the η--type semiconductor region 10 is formed between the n-type semiconductor regions 10.
第 4図が示すようにカソー ド側から拡散された η型半導体領域 4 0は η+型半導体領域 3 0の表面不純物濃度が 1 X i 0's〜 1 X i 020 /cm3 であるのに対して、 表面不純物濃度が高々 1 X 1 O^/cm3 になるよう 深く拡散して形成されている。 As shown in FIG. 4, in the η-type semiconductor region 40 diffused from the cathode side, the surface impurity concentration of the η + -type semiconductor region 30 is 1 Xi 0 ' s to 1 Xi 0 20 / cm 3 On the other hand, it is formed by deep diffusion so that the surface impurity concentration is at most 1 X 1 O ^ / cm 3 .
次に、 本実施例の動作について説明する。 アノー ド電極 1 2 0が正, カソー ド電極 1 3 0が負となるように p n接合に順バイァス電圧が印加 されると、 高不純物濃度の n+ 型半導体領域 3 0から電子が、 p+ 型半 導体領域 2 0から正孔が注入され、 このダイォー ドに順方向電流が流れ る。 電子による電流は主に n+ 型半導体領域 3 0直下に流れるが、 一部 第 1絶縁膜 5中や第 1絶縁膜 5と半導体領域界面にも流れる。 例えば、 この電子電流は n+ 型半導体領域 3 0に近い n型半導体領域 4 0と第 1 絶縁膜 5との界面に流れる。 このため、 n+ 型半導体領域 3 0に近い第 1絶縁膜 5中に負の空間電荷として電子が蓄積される。 この蓄積された 電子は半導体表面に反対の極性、 即ち正孔を誘起し n+ 型半導体領域 3 0に近い n型半導体領域 4 0表面には p型の反転層が形成される。 こ のような現象は特に順方向電圧を印加したまま高温にさらす、 いわゆる 通電寿命試験において著しい。 Next, the operation of the present embodiment will be described. When a forward bias voltage is applied to the pn junction so that the anode electrode 120 is positive and the cathode electrode 130 is negative, electrons from the n + type semiconductor region 30 with a high impurity concentration become p + type half. Holes are injected from the conductor region 20, and a forward current flows through this diode. The current caused by the electrons mainly flows directly below the n + -type semiconductor region 30, but also partially flows in the first insulating film 5 or at the interface between the first insulating film 5 and the semiconductor region. For example, this electron current flows at the interface between the n-type semiconductor region 40 near the n + -type semiconductor region 30 and the first insulating film 5. Therefore, electrons are accumulated as negative space charges in the first insulating film 5 near the n + type semiconductor region 30. The accumulated electrons induce holes of opposite polarity on the semiconductor surface, that is, holes, and the n + type semiconductor region A p-type inversion layer is formed on the surface of the n-type semiconductor region 40 close to 30. Such a phenomenon is particularly remarkable in a so-called energization life test in which a high temperature is applied while a forward voltage is applied.
このような状態になったダイオー ドのアノー ド電極 1 2 0が負、 力ソ 一ド電極 1 3 0が正となるように p n接合に逆バイァス電圧が印加され ると、 空乏層が n - 型半導体領域 1 0と p型半導体領域 2 0の p n接合 から主として η - 型半導体領域 1 に拡がる。 この ρ η接合部の素子端部 における表面が正べベル構造となっているので、 表面では内部よリ拡が りやすい。 本実施例では、 η - 型半導体領域 1 0の表面が上記 ρ η接合 からある一定の距離のところでさらにべベル角度が小さな正べベルとな つていることと、 η - 型半導体領域 1 0と η + 型半導体領域 3 3 との間 に両者の間の不純物濃度を有する η型半導体領域 4 0 を介在させている ことにより、 上記逆バイアス電圧が印加され、 端面の η - 型半導体領域 1 0表面が全て空乏化しても、 η型半導体領域 4 0にも空乏層が拡がる ので表面電界は緩和される。 When a reverse bias voltage is applied to the pn junction such that the anode electrode 120 of the diode in such a state becomes negative and the source electrode 130 becomes positive, the depletion layer becomes n- From the pn junction of the p-type semiconductor region 10 and the p-type semiconductor region 20 to the η − -type semiconductor region 1. Since the surface at the element end of the ρη junction has a regular bevel structure, the surface is more likely to expand than the inside. In the present embodiment, the surface of the η − type semiconductor region 10 is a positive bevel having a smaller bevel angle at a certain distance from the ρ η junction. By interposing the η- type semiconductor region 40 having an impurity concentration between the η + -type semiconductor region 33 and the η + -type semiconductor region 33 , the reverse bias voltage is applied, and the η − -type semiconductor region 10 Even if the entire surface is depleted, the depletion layer extends to the η-type semiconductor region 40, so that the surface electric field is reduced.
従って、 表面における電界強度は、 η - 型半導体領域 1 0 と高不純物 濃度の η + 型半導体領域 3 0との η η + 接合の場合に比べ極端に高くな らないので高信頼と高耐圧を両立させることができる。 仮に、 η - 型半 導体領域 1 0と η + 型半導体領域 3 0が η型半導体領域 4 0 を介さず直 接隣接していると、 第 1絶縁膜あるいは第 2絶緣膜中の負の電荷の影響 を受け、 η + 型半導体領域 3 0に近い η - 型半導体領域 1 0表面で ρ型 反転層が形成されるため上記 η - η + 接合で極端に表面電界が高くなり 耐圧が低下してしまう。  Therefore, the electric field intensity on the surface does not become extremely high as compared with the case of the η η + junction of the η − type semiconductor region 10 and the η + type semiconductor region 30 with a high impurity concentration, so that high reliability and high withstand voltage are obtained. Can be compatible. If the η − type semiconductor region 10 and the η + type semiconductor region 30 are directly adjacent to each other without interposing the η type semiconductor region 40, the negative charge in the first insulating film or the second insulating film will be reduced. And the ρ-type inversion layer is formed on the surface of the η-type semiconductor region 10 close to the η + type semiconductor region 30, the surface electric field becomes extremely high at the η-η + junction and the withstand voltage decreases. Would.
本実施例において、 η型半導体領域 4 0は、 ベベル加工された傾斜面 a及び力ソー ド電極形成面に平行でかつ n + 型半導体領域 3 0に隣接す る面 bにおいて露出している。 これにより、 n型半導体領域 4 0の露出 面に沿った n + 型半導体領域 3 0と n - 型半導体領域 1 0 との距離は、 素子内部における距離 cよりも大きくなる。 このため、 導通時において. n + 型半導体領域 3 0から n - 型半導体領域 1 0のべベル面付近への電 子注入を抑えられるので、 このべベル面に形成される第 1 の絶縁膜 5へ の電子の蓄積を防止できる。 従って、 ダイオー ドの耐圧が安定化し、 信 頼性が向上する。 In this embodiment, the η-type semiconductor region 40 is parallel to the beveled inclined surface a and the force source electrode forming surface and is adjacent to the n + -type semiconductor region 30. Surface b. As a result, the distance between the n + type semiconductor region 30 and the n − type semiconductor region 10 along the exposed surface of the n type semiconductor region 40 is larger than the distance c inside the device. Thus, during conduction, electron injection from the n + type semiconductor region 30 to the n − type semiconductor region 10 near the bevel surface can be suppressed, and the first insulating film formed on this bevel surface 5 can be prevented from accumulating electrons. Therefore, the withstand voltage of the diode is stabilized, and the reliability is improved.
n + 型半導体領域 3 0から n型半導体領域 4 0の露出面 a付近へは電 子が注入されうる。 しかし、 n + 型半導体領域 3 0 とべベル面 bとの間 に露出面 aが有るので、 ベベル面 b付近への電子の注入は抑えられる。 従って、 定格電圧において空乏層が露出面 aに到達しないように、 n型 半導体領域 4 0の不純物濃度を設定すれば、 露出面 aに形成される第 1 の絶縁膜 5に電子が蓄積されても、 耐圧への悪影響はない。 さらに、 n 型半導体領域 4 0は n - 型半導体領域 1 0よりも不純物濃度が高いので、 P反転しにくい。 以上により、 n型半導体領域 4 0の露出面 a, bに形 成される第 1 の絶縁膜 5に電荷が蓄積されても、 耐圧への影響は小さく、 高い信頼性が得られる。  Electrons can be injected from the n + type semiconductor region 30 to the vicinity of the exposed surface a of the n type semiconductor region 40. However, since the exposed surface a exists between the n + type semiconductor region 30 and the bevel surface b, injection of electrons near the bevel surface b is suppressed. Therefore, if the impurity concentration of the n-type semiconductor region 40 is set so that the depletion layer does not reach the exposed surface a at the rated voltage, electrons are accumulated in the first insulating film 5 formed on the exposed surface a. However, there is no adverse effect on withstand voltage. Further, since the n-type semiconductor region 40 has a higher impurity concentration than the n − -type semiconductor region 10, P inversion is difficult. As described above, even if charges are accumulated in the first insulating film 5 formed on the exposed surfaces a and b of the n-type semiconductor region 40, the influence on the withstand voltage is small and high reliability is obtained.
第 5図は第 1 の実施例の製造工程を示す図である。  FIG. 5 is a diagram showing a manufacturing process of the first embodiment.
まず、 ( a ) が示すように抵抗率が 1 0 0〜 5 0 0 Ω の高抵抗の η - 型半導体領域 1 0の一方の主表面から表面不純物濃度が高々 1 X 1 0 1 7 /cm3 になるよう約 5 0 μ mの拡散深さの η型半導体領域 4 0 を 次の何れかの方法により形成する。 η - 型半導体領域 1 0の一対主表面 からジ亜塩素酸リンを用いてリンの高不純物濃度で浅いデポジション層 を形成し裏面のデポジション層をエッチングで除去した後、 1 1 5 0〜 1 2 5 0 °Cの温度でドライブイン拡散する。 または、 裏面のみに酸化膜 を形成しておき上記のデポジションと ドライブイン拡散をする。 あるい は n - 型半導体領域 1 0の一方の主表面からェピタキシャル法によって n型半導体領域 4 0を形成する。 First, as shown in (a), the surface impurity concentration is at most 1 × 10 17 / cm from one main surface of the high-resistance η − type semiconductor region 10 having a resistivity of 100 to 500 Ω. about 5 0 mu eta-type semiconductor region 4 0 diffusion depth of m so as to be 3 formed by any of the following methods. After forming a shallow deposition layer at a high impurity concentration of phosphorus using phosphorus dichlorite from the pair of main surfaces of the η − type semiconductor region 10 and removing the deposition layer on the back surface by etching, Drive-in diffusion at a temperature of 125 ° C. Or an oxide film only on the back Is formed, and the above-described deposition and drive-in diffusion are performed. Alternatively, n-type semiconductor region 40 is formed from one main surface of n − -type semiconductor region 10 by an epitaxy method.
次に、 ( b ) が示すように一対の主表面からアルミニウム, ガリウム あるいはボロン等の P型不純物を含む高不純物濃度で浅いデポジション 層 2 0を形成する。  Next, as shown in (b), a shallow deposition layer 20 having a high impurity concentration containing a P-type impurity such as aluminum, gallium or boron is formed from the pair of main surfaces.
その後、 n型半導体領域 4 0側表面のデポジション層をエッチングで 除去した後、 図示していないが酸化およびホ トエッチングによりその表 面に酸化膜の窓開けを行う。 この窓より n型不純物を選択的に拡散して、 ( c ) が示すように n + 型半導体領域 3 0を形成する。  Then, after removing the deposition layer on the surface of the n-type semiconductor region 40 by etching, windows of an oxide film are formed on the surface by oxidation and photo etching (not shown). An n-type impurity is selectively diffused from this window to form an n + -type semiconductor region 30 as shown in (c).
次に、 (d ) が示すように、 アルミニウム等の金属を蒸着し、 通常の ホ トエッチングによリアノー ド電極 1 2 0とカソー ド電極 1 3 0 を所定 の大きさに形成する。 さらに、 サン ドブラス 卜あるいは砥石で P + 型半 導体領域 2 0と n - 型半導体領域 1 0からなる p n接合の端面を水平面 に対してべベル角 αとなるよう加工し、 η - 型半導体領域 1 0の端面の 任意の位置からベベル角 よ り小さいベベル角 になるよう加工する。 最後に、 ( e ) が示すように各半導体領域が露出している端面に弾性 率が 1 0 ' ° d y n /cm2 以上のたとえばポリイミ ドシリコーンや C V D 法によって形成される二酸化珪素膜等の第 1絶縁膜 5 を被着する。 さら に放電を防止するため弾性率が 1 0 s〜 1 0 ' ° d y n / cm 2の例えばシリ コーンゴム等の第 2絶縁膜 6 を被着する。 Next, as shown in (d), a metal such as aluminum is vapor-deposited, and the rear node electrode 120 and the cathode electrode 130 are formed to a predetermined size by ordinary photoetching. Further, the end face of the pn junction composed of the P + type semiconductor region 20 and the n − type semiconductor region 10 is processed with a sand blast or a grindstone so as to have a bevel angle α with respect to the horizontal plane. Work from any position on the 10 end face to a bevel angle smaller than the bevel angle. Finally, as shown in (e), the end face where each semiconductor region is exposed has a modulus of elasticity of 10 '° dyn / cm 2 or more, such as polyimide silicone or a silicon dioxide film formed by a CVD method. 1 Deposit insulating film 5. Further, in order to prevent discharge, a second insulating film 6 made of, for example, silicone rubber and having an elastic modulus of 10 s to 10 '° dyn / cm 2 is applied.
(実施例 2 )  (Example 2)
第 6図は本発明による高耐圧ダイォー ドの第 2の実施例の断面図を示 す。 第 1 図と異なるところはァノ一 ド側に p + 型半導体領域 2 0よりも 不純物濃度が高い P + +型半導体領域 1 2 0を付加したことである。 p + 型半導体領域 2 0を拡散で形成する場合、 p + 型半導体領域 2 0の表面 不純物濃度は第 1 図で説明したものより低い方が望ましい。 FIG. 6 is a sectional view of a second embodiment of the high breakdown voltage diode according to the present invention. The difference from FIG. 1 is that a P + + type semiconductor region 120 having a higher impurity concentration than the p + type semiconductor region 20 is added to the anode side. p + When the p-type semiconductor region 20 is formed by diffusion, it is desirable that the surface impurity concentration of the p + -type semiconductor region 20 is lower than that described in FIG.
第 7図及び第 8図は本発明による第 5図の高耐圧ダイォー ドの C一 C 部及び D— D ' 部の不純物濃度分布を示す図である。  7 and 8 are diagrams showing the impurity concentration distribution in the C-C portion and the DD ′ portion of the high breakdown voltage diode of FIG. 5 according to the present invention.
第 Ί図及び第 8図が示すように 1 0 0〜 5 0 0 Q cinの高抵抗半導体基 板である n - 型半導体領域 1 0のァノー ド側から、 p + 型半導体領域 2 0力 、 表面不純物濃度が 1 X 1 0 ' 5〜 1 X 1 0 " /cm3 になるよう深 く拡散して形成され、 さらに P ++型半導体領域 1 2 0が表面不純物濃度 が 1 X 1 0 ' 8〜 1 X 1 0 ' s /cm3 になるよう p + 型半導体領域 2 0より も浅く拡散して形成されている。 このように、 アノー ド側に 2段階の拡 散層を設けると、 逆バイアス電圧が印加される場合、 空乏層は殆ど高抵 杭の n - 型半導体領域 1 0に拡がるが、 p + 型半導体領域 2 0にも拡が り易くなるため、 n - 型半導体領域 1 0 と p + 型半導体領域 2 0からな る P n接合の電界強度を第 1 図に示した構造より下げることができる。 このため本実施例は、 高耐圧化に有利となる。 また、 P + +型半導体領域 1 2 0が順バイアス電圧が印加された場合に実効的な正孔の注入源とな リ、 かつァノー ド電極との接触抵抗を低減できるので順方向電圧降下を 下げることができる。 As shown in FIGS. 1 and 8, from the anode side of the n − -type semiconductor region 10, which is a high-resistance semiconductor substrate of 100 to 500 Qcin, the p + -type semiconductor region 20 surface impurity concentration of 1 X 1 0 'are formed by deep rather diffused so as to be 5 ~ 1 X 1 0 "/ cm 3, further P ++ type semiconductor region 1 2 0 the surface impurity concentration of 1 X 1 0' It is formed so as to be 8 to 1 X 10 ' s / cm 3 and shallower than the p + -type semiconductor region 20. As described above, by providing a two-stage diffusion layer on the anode side, When a reverse bias voltage is applied, the depletion layer almost spreads to the n − -type semiconductor region 10 of the high-resistance region, but easily spreads to the p + -type semiconductor region 20. The electric field strength of the Pn junction composed of P 0 and p + -type semiconductor region 20 can be lower than that of the structure shown in Fig. 1. Therefore, this embodiment is advantageous for increasing the breakdown voltage. + + When the forward bias voltage is applied to the mold semiconductor region 120, the effective semiconductor becomes a hole injection source, and the contact resistance with the anode electrode can be reduced, so that the forward voltage drop can be reduced.
(実施例 3 )  (Example 3)
第 9図は本発明による高耐圧ダイオー ドの第 3の実施例の断面図を示 す。 第 1 図の実施例とは異なり、 n型半導体領域 4 0と高不純物濃度の n + 型半導体領域 3 0との n n + 接合がベベル面に露出している。 従つ て、 n型半導体領域 3 0を拡散にて形成する際にホ トエッチングが不要 になるので、 製造プロセスが簡略化できる。 さらに本実施例では、 カソ ー ド電極 1 3 0の端部からベベル面 aに到るまでの n + 型半導体領域 3 0の幅を十分にとっている。 この幅は、 カソー ド電極 1 3 0から注入 された後 n + 型半導体領域 3 0を通る電子がベベル面 a付近の第 1絶縁 膜 5に トラップされないような大きさとする。 このため通電寿命試験に おいて n - 型半導体領域 1 0に近い n型半導体領域 4 0表面には p型の 反転層が形成されにく く、 逆バイアス電圧が印加されても端面の n - 型 半導体領域 1 0と n型半導体領域 4 0の n - n接合近傍の表面電界は高 くならず高信頼と高耐圧を両立させることができる。 FIG. 9 is a sectional view of a third embodiment of the high breakdown voltage diode according to the present invention. Unlike the embodiment of FIG. 1, the nn + junction between the n-type semiconductor region 40 and the n + -type semiconductor region 30 having a high impurity concentration is exposed on the bevel surface. Therefore, since the photo-etching is not required when the n-type semiconductor region 30 is formed by diffusion, the manufacturing process can be simplified. Further, in this embodiment, the n + type semiconductor region from the end of the cathode electrode 130 to the bevel surface a is set. 30 width is enough. The width is set such that electrons injected from the cathode electrode 130 and passing through the n + type semiconductor region 30 are not trapped in the first insulating film 5 near the bevel surface a. Therefore, in the conduction life test, the p-type inversion layer is not easily formed on the surface of the n-type semiconductor region 40 close to the n-type semiconductor region 10, and even if a reverse bias voltage is applied, the n- The surface electric field near the n-n junction between the type semiconductor region 10 and the n-type semiconductor region 40 is not increased, and both high reliability and high withstand voltage can be achieved.
(実施例 4 )  (Example 4)
第 1 0図は本発明による高耐圧ダイォー ドの第 4の実施例の断面図を 示す。 本実施例では、 第 9図の実施例における n + 型半導体領域 3 0の カソー ド電極 1 3 0の周辺部をエッチダウンにより除去することにより、 カソー ド電極 1 3 0に平行な n型半導体領域 4 0の露出面 b を形成して いる。 ダイォー ド表面に露出する n型半導体領域 4 0の沿面距離を長く できるので一層高信頼を達成することができる。  FIG. 10 is a sectional view of a fourth embodiment of the high breakdown voltage diode according to the present invention. In this embodiment, the peripheral portion of the cathode electrode 130 of the n + type semiconductor region 30 in the embodiment of FIG. The exposed surface b of the region 40 is formed. Since the creepage distance of the n-type semiconductor region 40 exposed on the diode surface can be increased, higher reliability can be achieved.
(実施例 5 )  (Example 5)
第 1 1 図は本発明による高耐圧ダイオー ドの第 5の実施例の断面図を 示す。 本実施例では、 第 9図の実施例において、 力ソー ド電極に近い高 不純物濃度の n + 型半導体領域 3 0の露出面を部分的に除去し、 カソー ド電極 1 3 0に平行な面において n型半導体領域 4 0が露出する Q 1部 を形成している。 こうすることにより、 順バイアス時において力ソー ド 電極 1 3 0あるいは n + 型半導体領域 3 0から注入された電子により、 Q 1部における第 1絶縁膜 5中あるいは第 1絶縁膜 5 と n型半導体領域 4 0の界面に負電荷が蓄積されても、 逆バイアス電圧を印加した場合、 P + 型半導体領域 2 0と n - 型半導体領域 1 0からなる p n接合から延 びる空乏層は n型半導体領域 4 0内に止めることができ、 Q 1 部の n型 半導体領域 4 0表面に到達するのを防止することができる。 さらに、 逆 バイァス電圧が印加されると端面部でも上記 p n接合から主に n - 型半 導体領域に延びる空乏層が第 1絶縁膜 5や第 2絶縁膜 6中の電荷により たとえ n型半導体領域 4 0表面に延びても、 外周部の n + 型半導体領域 3 1 で止めることが可能となり、 Q 1部の n型半導体領域 4 0表面に生 じる P型反転層の影響は無くなり、 信頼性が向上できる。 FIG. 11 is a sectional view showing a fifth embodiment of the high breakdown voltage diode according to the present invention. In the present embodiment, in the embodiment of FIG. 9, the exposed surface of the n + -type semiconductor region 30 having a high impurity concentration close to the force source electrode is partially removed, and the surface parallel to the cathode electrode 130 is removed. In this case, a Q 1 portion where the n-type semiconductor region 40 is exposed is formed. By doing so, the electrons injected from the force source electrode 130 or the n + type semiconductor region 30 at the time of forward bias cause the n-type in the first insulating film 5 or the first insulating film 5 in the Q 1 part. Even if negative charges are accumulated at the interface of the semiconductor region 40, when a reverse bias voltage is applied, the depletion layer extending from the pn junction consisting of the P + type semiconductor region 20 and the n − type semiconductor region 10 is n-type. It can be stopped in the semiconductor region 40 and the n-type of Q 1 It is possible to prevent the semiconductor region 40 from reaching the surface. Further, when a reverse bias voltage is applied, a depletion layer extending from the pn junction to the n − -type semiconductor region mainly at the end face portion due to electric charges in the first insulating film 5 and the second insulating film 6 even if the n-type semiconductor region Even if it extends to the surface of 40, it can be stopped at the n + -type semiconductor region 31 on the outer periphery, and the influence of the P-type inversion layer generated on the surface of the n-type semiconductor region 40 of Q 1 is eliminated, and reliability is improved. Performance can be improved.
(実施例 6 )  (Example 6)
第 1 2図は本発明による高耐圧ダイォー ドの第 6の実施例の断面図を 示す。 半導体内部においては p + 型半導体領域 2 0, n - 型半導体領域 1 0, 高不純物濃度の n + 型半導体領域 3 0が隣接して形成され、 p型 半導体領域 2 0及び高不純物濃度の n + 型半導体領域 3 0にはそれぞれ ァノー ド電極 1 2 0及びカソー ド電極 1 3 0が形成されている。 n型半 導体領域 4 1 は、 端面における n + 型半導体領域 3 0 と n - 型半導体領 域 1 0の間に介在するよう形成されているが、 n - 型半導体領域 1 0と 高不純物濃度の n + 型半導体領域の間には介在しない。 素子内部に n型 半導体領域がないので、 動作領域が薄くなリ順方向電圧降下が低減でき る利点がある。 また、 ダイオー ドの表面安定化のため、 表面に露出して いる半導体領域には弾性率が 1 0 ' ° d y n /cni2 以上の第 1絶縁膜 5 と 弾性率が 1 0 s〜 1 0 ' ° d y ri Zcni2の第 2絶縁膜 6が積層して形成され ている。 FIG. 12 is a sectional view of a sixth embodiment of the high breakdown voltage diode according to the present invention. Inside the semiconductor, ap + type semiconductor region 20, an n − type semiconductor region 10, and a high impurity concentration n + type semiconductor region 30 are formed adjacent to each other, and the p type semiconductor region 20 and the high impurity concentration n In the + type semiconductor region 30, an anode electrode 120 and a cathode electrode 130 are formed, respectively. The n-type semiconductor region 41 is formed so as to be interposed between the n + -type semiconductor region 30 and the n − -type semiconductor region 10 on the end face. Between the n + -type semiconductor regions. Since there is no n-type semiconductor region inside the device, there is an advantage that the forward voltage drop can be reduced because the operating region is thin. In order to stabilize the surface of the diode, the semiconductor region exposed on the surface has a first insulating film 5 with an elastic modulus of 10 '° dyn / cni 2 or more and an elastic modulus of 10 s to 10'. ° The second insulating film 6 of dy ri Zcni 2 is formed by lamination.
さらに、 導通時におけるキャリアの高注入条件のもとでは、 高不純物 濃度の n + 型半導体領域 3 0は高注入の電子のエミッタとなるが、 n型 半導体領域 4 1 は低注入のエミッタとなる。 従って、 ダイォ一 ドの内部 の電流密度は高くなり順方向電圧降下を低減できる。 さらにダイォー ド の外周部、 特に端面部では電流密度を低くできるので、 通電寿命試験に より電子が第 1絶縁膜 5中や第 1絶縁膜 5と半導体領域界面、 例えば n + 型半導体領域 3 0に近い n型半導体領域 4 0 と第 1絶縁膜 5 との界 面に流れて、 n + 型半導体領域 3 0に近い第 1絶縁膜 5中に負の空間電 荷として蓄積する現象が起こりにく くなる。 このため、 n + 型半導体領 域 3 0に近い n型半導体領域 4 1表面で p型の反転層が形成されにくい t 従って、 仮に通電寿命試験により n + 型半導体領域 3 0に近い n型半導 体領域 4 1 表面には p型の反転層が形成されても、 n - 型半導体領域 1 0に近い n型半導体領域 4 1 表面には p型の反転層が極めて形成され にく く、 逆バイアス電圧が印加されても端面の n - 型半導体領域 1 0と n型半導体領域 4 0の n - n接合近傍の表面電界は高くならず高信頼と 高耐圧を両立させることができる。 Furthermore, under the conditions of high carrier injection during conduction, the n + -type semiconductor region 30 with a high impurity concentration becomes an emitter for highly-injected electrons, while the n-type semiconductor region 41 becomes an emitter for low-injection. . Therefore, the current density inside the diode is increased, and the forward voltage drop can be reduced. Furthermore, since the current density can be reduced at the outer periphery of the diode, especially at the end face, More electrons flow in the first insulating film 5 or at the interface between the first insulating film 5 and the semiconductor region, for example, at the interface between the n-type semiconductor region 40 near the n + type semiconductor region 30 and the first insulating film 5, The phenomenon of accumulation as a negative space charge in the first insulating film 5 near the n + type semiconductor region 30 is unlikely to occur. Therefore, n + -type semiconductor area 3 0 p-type inversion layer in the n-type semiconductor region 4 1 surface is not easily formed near the t Thus, if current life test near the n + -type semiconductor regions 3 0 by n-type half Even if a p-type inversion layer is formed on the surface of the conductor region 41, a p-type inversion layer is extremely unlikely to be formed on the surface of the n-type semiconductor region 41 near the n-type semiconductor region 10. Even if a reverse bias voltage is applied, the surface electric field near the n-n junction between the n-type semiconductor region 10 and the n-type semiconductor region 40 on the end face does not increase, and both high reliability and high breakdown voltage can be achieved.
第 1 3図及び第 1 4図は第 6の実施例 (第 1 2図) の変形例の断面図 を示す。 第 1 2図と異なるのは、 端面に形成した n型半導体領域の深さ であり、 第 1 3図では n + 型半導体領域 3 0と同じ深さに n型半導体領 域 4 2 を形成しており、 第 1 4図では n + 型半導体領域 3 0とより深く n型半導体領域 4 3 を形成している。 n型半導体領域が深いと逆バイァ ス電圧を印加した場合、 P + 型半導体領域と n - 型半導体領域からなる P n接合から主に n - 型半導体領域に延びる空乏層は n型半導体領域 4 1 もしくは 4 2に到達する。 このとき、 n型半導体領域 4 1 もしくは 4 2のように厚く形成しておくことにより n + 型半導体領域 3 0に近い n型半導体領域 4 1 もしくは 4 2の表面に空乏層が到達しにく くなるの で、 一層信頼性が向上できる。  FIGS. 13 and 14 are cross-sectional views of a modification of the sixth embodiment (FIG. 12). The difference from FIG. 12 is the depth of the n-type semiconductor region formed on the end face. In FIG. 13, the n-type semiconductor region 42 is formed at the same depth as the n + -type semiconductor region 30. In FIG. 14, an n + -type semiconductor region 30 and a deeper n-type semiconductor region 43 are formed. When a reverse bias voltage is applied when the n-type semiconductor region is deep, the depletion layer extending mainly from the P n junction consisting of the P + -type semiconductor region and the n--type semiconductor region to the n--type semiconductor region becomes an n-type semiconductor region. Reach 1 or 4 2. At this time, the depletion layer hardly reaches the surface of the n-type semiconductor region 41 or 42 close to the n + -type semiconductor region 30 by forming the n-type semiconductor region 41 or 42 as thick as the n-type semiconductor region 41. Therefore, reliability can be further improved.
(実施例 7 )  (Example 7)
第 1 5図は本発明による高耐圧ダイオー ドの第 7の実施例の断面図を 示す。 第 1 4図の実施例と異なるところは n型半導体領域 4 4の表面に 露出した個所を部分的に除去したところにある。 第 1 4図の実施例では. n + 型半導体領域 3 0と n型半導体領域 4 3は選択的に形成されている が、 本実施例においては、 n + 型半導体領域 3 0を表面全体に拡散して 形成した後、 主と して端面部の n + 型半導体領域 3 0 を部分的に除去す ることにより、 n型半導体領域 4 4の沿面距離を長くすることができる t 従って、 拡散熟処理時のホ トエッチング工程を省略することができる。 (実施例 8 ) FIG. 15 shows a sectional view of a seventh embodiment of the high breakdown voltage diode according to the present invention. The difference from the embodiment of FIG. 14 is that the surface of the n-type semiconductor region 44 is The exposed part is partially removed. In the embodiment shown in FIG. 14, the n + type semiconductor region 30 and the n type semiconductor region 43 are selectively formed.In this embodiment, however, the n + type semiconductor region 30 is formed over the entire surface. after forming diffused by Rukoto to remove the n + -type semiconductor regions 3 0 of the end surface portion partially in the main, t thus it is possible to lengthen the creepage distance of the n-type semiconductor region 4 4, diffusion The photo-etching step at the time of ripening can be omitted. (Example 8)
第 1 6図は本発明による高耐圧ダイオー ドの第 8の実施例の断面図を 示す。 第 1 4図の実施例と異なるところは、 力ソー ド電極に近い n型半 導体領域 4 5の表面に露出した個所 Q 2部を部分的に除去したところに ある。 これにより、 n型半導体領域 4 5の沿面距離をさらに長くできる ので、 高信頼化が達成できる。  FIG. 16 is a sectional view of an eighth embodiment of the high breakdown voltage diode according to the present invention. The difference from the embodiment of FIG. 14 is that the portion Q2 exposed on the surface of the n-type semiconductor region 45 near the force source electrode is partially removed. As a result, the creepage distance of the n-type semiconductor region 45 can be further increased, so that high reliability can be achieved.
(実施例 9 )  (Example 9)
第 1 7図は本発明による高耐圧ダイオー ドの第 9の実施例の断面図を 示す。 半導体内部においては p + 型半導体領域 2 0, n - 型半導体領域 1 0, 高不純物濃度の n + 型半導体領域 3 0が隣接して形成され、 p型 半導体領域 2 0及び高不純物濃度の n + 型半導体領域 3 0にはそれぞれ ァノ— ド電極 1 2 0及びカソー ド電極 1 3 0が形成されている。 n型半 導体領域 4 6は端面における n + 型半導体領域 3 0と n - 型半導体領域 1 0の間に介在するよう形成され、 カソー ド電極 1 3 0に近い高不純物 濃度の n + 型半導体領域 3 0の表面に露出した個所 Q 3部を除去し、 外 周部に n + 型半導体領域 3 2 として残している。 本実施例の動作の詳細 については第 1 1 図の実施例と同様である。  FIG. 17 is a sectional view showing a ninth embodiment of the high breakdown voltage diode according to the present invention. Inside the semiconductor, ap + type semiconductor region 20, an n − type semiconductor region 10, and a high impurity concentration n + type semiconductor region 30 are formed adjacent to each other, and the p type semiconductor region 20 and the high impurity concentration n In the + type semiconductor region 30, a cathode electrode 120 and a cathode electrode 130 are formed, respectively. The n-type semiconductor region 46 is formed so as to be interposed between the n + -type semiconductor region 30 and the n − -type semiconductor region 10 on the end face, and has a high impurity concentration near the cathode electrode 130. The portion Q3 exposed on the surface of the region 30 is removed, and the n + type semiconductor region 32 is left on the outer periphery. The details of the operation of this embodiment are the same as those of the embodiment of FIG.
第 1 8図は本実施例の製造工程を示す図である。  FIG. 18 is a diagram showing the manufacturing process of this example.
まず、 ( a ) が示すように抵抗率が 1 0 0〜 5 0 0 Q cmの高抵抗の n- 型半導体領域 1 0の一方の主表面から表面不純物濃度が高々 1 X 1 O'Vcm3 になるよう約 5 0 μ ιηの拡散深さの n型半導体領域 4 6を 通常の酸化, ホ卜エッチング工程を経た後、 選択的にジ亜塩素酸リンを 用いた P (リン) の高不純物濃度で浅いデポジション層を形成し、 例え ば 1 1 5 0〜 1 2 5 0 °Cの温度でドライブイン拡散して形成する。 First, as shown in (a), the high resistivity of 100-500 Qcm The n-type semiconductor region 46 having a diffusion depth of about 50 μιη is subjected to normal oxidation and heat treatment so that the surface impurity concentration from the one main surface of the n- type semiconductor region 10 becomes at most 1 X 1 O'Vcm 3. After the etching process, a shallow deposition layer with a high P (phosphorus) impurity concentration is selectively formed using phosphorous dichlorite, for example, at a temperature of 1150 to 1250 ° C. And formed by drive-in diffusion.
次に、 ( b ) が示すように一対の主表面からアルミニウム, ガリウム あるいはボロン等の P型不純物を含む高不純物濃度で浅いデポジション 層 2 0を形成する。  Next, as shown in (b), a shallow deposition layer 20 having a high impurity concentration containing a P-type impurity such as aluminum, gallium or boron is formed from the pair of main surfaces.
その後、 表面のデポジション層をエッチングで除去した後、 図示して いないが酸化, ホ卜エッチングによリ表面に酸化膜の窓開けを行い( c ) が示すように選択的に n+ 型半導体領域 3 0を形成する。  After that, after removing the deposition layer on the surface by etching, a window of an oxide film is formed on the surface by oxidation or photo-etching (not shown), and an n + type semiconductor region is selectively formed as shown in (c). Form 30.
その後、 ( d ) が示すように、 アルミニウム等の金属を蒸着し、 所定 の大きさに通常のホトエッチングによリアノー ド電極 1 2 0と力ソー ド 電極 1 3 0を形成する。 さらに、 サン ドブラス 卜あるいは砥石で P+ 型 半導体領域 2 0と n- 型半導体領域 1 0からなる p n接合の端面を水平 面に対してべベル角 αとなるよう加工し、 η- 型半導体領域 1 0の端面 の任意の位置からベベル角 αより小さいべベル角 になるように加工す る。  Thereafter, as shown in (d), a metal such as aluminum is deposited, and a rear node electrode 120 and a force source electrode 130 are formed to a predetermined size by ordinary photoetching. Further, the end face of the pn junction composed of the P + type semiconductor region 20 and the n− type semiconductor region 10 is processed with a sand blast or a grindstone so as to have a bevel angle α with respect to the horizontal plane. Work from any position on the 0 end face to a bevel angle smaller than the bevel angle α.
最後に、 (e ) が示すように各半導体領域が露出している端面に弾性 率が 1 0 ' ° d y n Xcm2 以上のたとえばポリイ ミ ドシリコーンや C V D 法によって二酸化珪素膜等の第 1絶縁膜 5を被着し、 さらに放電を防止 するため弾性率が 1 0s〜 1 0'° d y nZcni2の例えばシリコーンゴム 6 を被着する。 Finally, as shown in (e), the end face where each semiconductor region is exposed has a first insulating film having a modulus of elasticity of 10 '° dyn Xcm 2 or more, such as polyimide silicon or a silicon dioxide film formed by CVD. 5 is applied, and a silicone rubber 6 having an elastic modulus of 10 s to 10 '° dynZcni 2 is applied to prevent discharge.
(他の変形例)  (Other variations)
第 1 9図及び第 2 0図に断面図を示す高耐圧ダイオー ドは、 それぞれ 第 1 の実施例 (第 1 図) 及び第 9の実施例 (第 1 7図) のァノー ド電極 1 2 0を合金型に置き換えたものである。 第 1 9図及び第 2 0図におい て、 ァノー ド電極 2 2 0はタングステンあるいはモリブデン等の厚い板 を使用し、 P + 型半導体領域 2 0と例えばアルミニウム等の臘材 1 2 1 を用いて合金化している。 第 1 9図及び第 2 0図に示した各変形例の動 作は、 それぞれ第 1 図及び第 1 7図に示したウェハ圧接型と同様である t なお、 第 1 9図及び第 2 0図に示した合金型の電極は、 第 5図〜第 1 6 図の各実施例にも適用することができる。 The high-breakdown-voltage diodes whose sectional views are shown in FIGS. The anode electrode 120 of the first embodiment (FIG. 1) and the ninth embodiment (FIG. 17) is replaced with an alloy type. In FIGS. 19 and 20, the anode electrode 220 uses a thick plate such as tungsten or molybdenum, and uses a P + type semiconductor region 20 and a solder material 121 such as aluminum, for example. Alloyed. Operation of the modifications shown in the first 9 view and the second 0 Figure, t still the same as the wafer pressure type shown in Figure 1 and the first 7 FIG respectively, the first 9 view and a second 0 The alloy-type electrode shown in the figures can be applied to each of the embodiments shown in FIGS.
第 2 1 図及び第 2 2図に断面図を示す高耐圧ダイォー ドも、 それぞれ 第 1 の実施例 (第 1 図) 及び第 9の実施例 (第 1 7図) の変形例である: それぞれダイオー ドの表面安定化のため、 表面に露出している半導体領 域には例えばシリコーンゴム, ポリイ ミ ドシリコーン, 二酸化珪素, ガ ラス等の弾性率が 1 0 ε d y n /cm2以上の第 3絶縁膜 7が形成されてい る。 第 1 図及び第 1 7図では表面に露出している半導体領域には弾性率 が 1 0 1。 d y nノ cm2 以上の第 1絶縁膜 5 と弾性率が 1 0 S〜 1 0 ' ° d y n /cm2 の第 2絶縁膜 6が積層して形成されていたが、 本発明者は、 必ずしも表面安定化膜が 2種類なくても、 本実施例のように 1種類だけ でも十分高耐圧化と高信頼化を達成できることを確認した。 第 2 1 図及 び第 2 2図に示した各変形例の動作は、 第 1 図及び第 1 7図に示した 2 種類の絶縁膜を適用したダイォー ドと同様である。 なお、 第 2 1 図およ び第 2 2図に示した 1種類の絶縁膜を適用する端面構造は、 第 5図〜第 1 6図, 第 1 9図及び第 2 0図の実施例ないし変形例にも適用すること ができる。 The high-breakdown-voltage diodes shown in cross-sectional views in FIGS. 21 and 22 are also modifications of the first embodiment (FIG. 1) and the ninth embodiment (FIG. 17), respectively: In order to stabilize the surface of the diode, the semiconductor area exposed on the surface has a third elastic modulus of more than 10 ε dyn / cm 2 , for example, silicone rubber, polyimide silicone, silicon dioxide, glass, etc. An insulating film 7 is formed. The elastic modulus 1 0 1 The semiconductor region in the first view and the first 7 FIG exposed on the surface. dyn Bruno cm 2 or more first but second insulating film 6 of insulating film 5 and the elastic modulus is 1 0 S ~ 1 0 '° dyn / cm 2 was formed by laminating, the present inventors have always surface Even if there were no two types of stabilizing films, it was confirmed that sufficiently high withstand voltage and high reliability could be achieved with only one type as in this example. The operation of each modification shown in FIGS. 21 and 22 is the same as that of the diode to which the two types of insulating films shown in FIGS. 1 and 17 are applied. The end face structure to which one type of insulating film shown in FIGS. 21 and 22 is applied depends on the embodiment shown in FIGS. 5 to 16, FIGS. 19 and 20, and FIGS. It can be applied to the modification.
第 1 図〜第 2 2図の説明において、 ダイォー ドの端面形状はサン ドブ ラス トあるいは砥石で P + 型半導体領域 2 0と n - 型半導体領域 1 0か らなる p n接合の端面を水平面に対してべベル角 αとなるよう加工し、 η - 型半導体領域 1 0の端面の任意の位置からベベル角 αより小さいべ ベル角 βになるよう加工した 2段べベル構造を適用している。 しかし、 本発明はこれらの 2段べベルに限らず、 ρ + 型半導体領域 2 0と η - 型 半導体領域 1 0からなる ρ η接合、 さらに η - 型半導体領域 1 0と η型 半導体領域 4 0の η - η接合の端面を水平面に対して同一のベベル角と なるよう加工しても本発明の効果は達成できる。 表面安定化のための第 1絶縁膜あるいは第 2絶縁膜中の正電荷が少ないときは、 逆バイァス電 圧を印加した場合、 端面の正べベル構造において η - 型半導体領域 1 〇 の表面に空乏層が延びやすく η型半導体領域 4 0近傍の η - 型半導体領 域 1 0表面で電界が集中する可能性があり、 あまりべベル角 は小さく ない方が好ましい。 このため、 第 1絶縁膜あるいは第 2絶縁膜中の正電 荷が少ないときは、 上記のベベル角 γで加工してもかまわない。 In the description of FIG. 1 and FIG. 22, the end face shape of the diode is sandblasted or a grindstone to determine whether the P + type semiconductor region 20 and the n − type semiconductor region 10 The end face of the pn junction is processed so as to have a bevel angle α with respect to the horizontal plane, and the end face of the η − type semiconductor region 10 is processed so that the bevel angle β is smaller than the bevel angle α 2 A step bevel structure is applied. However, the present invention is not limited to these two-stage bevels, but a ρ η junction composed of a ρ + type semiconductor region 20 and an η − type semiconductor region 10, and a η − type semiconductor region 10 and an η type semiconductor region 4 The effect of the present invention can be achieved even if the end face of the η-η junction of 0 is processed so as to have the same bevel angle with respect to the horizontal plane. When the positive charge in the first insulating film or the second insulating film for stabilizing the surface is small, when a reverse bias voltage is applied, the surface of the η-type semiconductor region 1 An electric field may be concentrated on the surface of the η-type semiconductor region 10 near the η-type semiconductor region 40 because the depletion layer easily extends, and it is preferable that the bevel angle is not too small. Therefore, when the positive charge in the first insulating film or the second insulating film is small, the bevel angle γ may be used.
以上詳述したように、 本発明によればダイォー ドの高耐圧化と高信頼 化を両立させることができる。  As described in detail above, according to the present invention, it is possible to achieve both high breakdown voltage and high reliability of the diode.

Claims

請 求 の 範 囲 The scope of the claims
1 . 一対の主表面と、  1. A pair of main surfaces,
第 1導電型の第 1 半導体領域と、  A first semiconductor region of a first conductivity type;
第 1 半導体領域に隣接する、 第 1 半導体領域より不純物濃度が低い第 1導電型の第 2半導体領域と、  A second semiconductor region of a first conductivity type adjacent to the first semiconductor region and having a lower impurity concentration than the first semiconductor region;
第 2半導体領域に隣接する、 第 2導電型の第 3半導体領域と、 を有する半導体基体を備え、  A semiconductor substrate having a second conductivity type third semiconductor region adjacent to the second semiconductor region; and
一方の主表面における第 1 半導体領域表面には第 1 電極が設けられ、 他方の主表面における第 3半導体領域表面には第 2電極が設けられ、 半導体基体の端部はべベル構造を有し、  A first electrode is provided on the surface of the first semiconductor region on one main surface, and a second electrode is provided on the surface of the third semiconductor region on the other main surface, and the end of the semiconductor substrate has a bevel structure. ,
第 1電極端部とベベル面との間に位置し、 半導体基体の第 1電極形成 面に平行な領域に、 ベベル面付近へのキヤリァの注入を抑制する手段を 備えることを特徴とするダイオー ド。  A diode located between the end of the first electrode and the bevel surface and provided in a region parallel to the first electrode forming surface of the semiconductor substrate, for suppressing injection of a carrier near the bevel surface. .
2 . 請求項 1 に記載のダイオー ドにおいて、 前記べベル面付近へのキヤ リァの注入を抑制する手段が、 半導体基体の第 1 電極形成面に平行な領 域に設けられ、 第 1導電型で不純物濃度が第 1 の半導体領域より低く第 3半導体領域より高い第 4半導体領域であることを特徴とするダイォー ド、。  2. The diode according to claim 1, wherein the means for suppressing injection of a carrier near the bevel surface is provided in a region parallel to a first electrode forming surface of the semiconductor substrate, and wherein the first conductivity type is provided. Wherein the fourth semiconductor region has an impurity concentration lower than that of the first semiconductor region and higher than that of the third semiconductor region.
3 . 請求項 2に記載のダイオー ドにおいて、 前記第 3半導体領域がベべ ル面に露出していることを特徴とするダイォ一 ド。  3. The diode according to claim 2, wherein the third semiconductor region is exposed on a bell surface.
4 . 請求項 2に記載のダイオー ドにおいて、 第 1電極端部とベベル面と の間に前記第 4半導体領域に達する凹部が設けられることを特徴とする ダイォー ド。  4. The diode according to claim 2, wherein a recess reaching the fourth semiconductor region is provided between an end of the first electrode and a bevel surface.
5 . 請求項 3に記載のダイオー ドにおいて、 第 1電極端部とベベル面と の間に前記第 4半導体領域に達する凹部が設けられることを特徴とする ダイォー ド。 5. The diode according to claim 3, wherein a recess reaching the fourth semiconductor region is provided between an end of the first electrode and a bevel surface. Diode.
6 . 請求項 1 に記載のダイオー ドにおいて、 ベベル面上に、 弾性率が 1 0 ' ° d y n /cm2 以上の第 1絶縁物と弾性率が 1 0 ε〜 1 0 ' ° d y η ノ cm2 の第 2絶縁物が積層して被覆されていることを特徴とするダイォ 一 ド。 6. The diode according to claim 1, wherein on the bevel surface, a first insulator having an elastic modulus of 10 '° dyn / cm 2 or more and an elastic modulus of 10 ε to 10' ° dy η cm are provided. 2. A diode, wherein the second insulator is laminated and covered.
7 . 一対の主表面と、  7. A pair of main surfaces,
第 1 導電型の第 1 半導体領域と、  A first semiconductor region of a first conductivity type;
第 1 半導体領域に隣接する、 第 1半導体領域より不純物濃度が低い第 The first semiconductor region adjacent to the first semiconductor region and having a lower impurity concentration than the first semiconductor region.
1 導電型の第 2半導体領域と、 1 a second semiconductor region of conductivity type;
第 2半導体領域に隣接する、 第 2導電型の第 3半導体領域と、 を有する半導体基体を備え、  A semiconductor substrate having a second conductivity type third semiconductor region adjacent to the second semiconductor region; and
一方の主表面における第 1 半導体領域表面には第 1電極が設けられ、 他方の主表面における第 3半導体領域表面には第 2電極が設けられ、 半導体基体の端部はべベル構造を有し、 ベベル面上は絶縁物によリ被 覆され、  A first electrode is provided on the surface of the first semiconductor region on one main surface, and a second electrode is provided on the surface of the third semiconductor region on the other main surface. The end of the semiconductor substrate has a bevel structure. , The bevel surface is covered with an insulator,
第 1電極端部とベベル面との間に位置し、 半導体基体の第 1 電極形成 面に平行な領域に、 ベベル面付近の絶縁物へのキヤリアの注入を抑制す る手段を備えることを特徴とするダイオー ド。  A device is provided between the end of the first electrode and the bevel surface, and in a region parallel to the first electrode forming surface of the semiconductor substrate, means for suppressing injection of the carrier into the insulator near the bevel surface is provided. Diode.
8 . 請求項 7に記載のダイオー ドにおいて、 前記べベル面付近の絶縁物 へのキヤリァの注入を抑制する手段が、 半導体基体の第 1電極形成面に 平行な領域に設けられ、 第 i導電型で不純物濃度が第 1 の半導体領域よ リ低く第 3半導体領域より高い第 4半導体領域であることを特徴とする ダイォー ド。  8. The diode according to claim 7, wherein the means for suppressing injection of the carrier into the insulator near the bevel surface is provided in a region parallel to the first electrode forming surface of the semiconductor substrate, A diode comprising: a fourth semiconductor region having a lower impurity concentration than the first semiconductor region and a higher impurity concentration than the third semiconductor region.
9 . 請求項 8に記載のダイオー ドにおいて、 前記第 3半導体領域がベべ ル面に露出していることを特徴とするダイォー ド。 9. The diode according to claim 8, wherein the third semiconductor region is exposed on a bell surface.
1 0 . 請求項 8に記載のダイオー ドにおいて、 第 1電極端部とベベル面 との間に前記第 4半導体領域に達する凹部が設けられることを特徴とす るダイォード。 10. The diode according to claim 8, wherein a recess reaching the fourth semiconductor region is provided between an end of the first electrode and a bevel surface.
1 1 . 請求項 9に記載のダイオー ドにおいて、 第 1電極端部とベベル面 との間に前記第 4半導体領域に達する凹部が設けられることを特徴とす るダイオー ド。  11. The diode according to claim 9, wherein a recess reaching the fourth semiconductor region is provided between an end of the first electrode and a bevel surface.
1 2 . 請求項.7に記載のダイオー ドにおいて、 前記絶縁物が、 弾性率が 1 0 1 0 d y n /cm2 以上の第 1絶縁物と弾性率が 1 (Γ〜 1 0 ' ° d y n /cm2 の第 2絶縁物とを積層したものであることを特徴とするダイォー ド、。 12. The diode according to claim 7, wherein the insulator has a modulus of elasticity of at least 1 10 dyn / cm 2 and a first insulator having an elastic modulus of 1 (Γ to 10 ′ ° dyn / cm 2 ). a diode, which is formed by stacking a second insulator having a size of 2 cm 2 .
1 3 . 一対の主表面と、  1 3. A pair of main surfaces,
第 1導電型の第 1半導体領域と、  A first semiconductor region of a first conductivity type;
第 1 半導体領域に隣接する、 第 1 半導体領域よリ不純物濃度が低い第 1導電型の第 2半導体領域と、  A second semiconductor region of a first conductivity type adjacent to the first semiconductor region and having a lower impurity concentration than the first semiconductor region;
第 2半導体領域に隣接する、 第 2導電型の第 3半導体領域と、 を有する半導体基体を備え、  A semiconductor substrate having a second conductivity type third semiconductor region adjacent to the second semiconductor region; and
一方の主表面における第 1 半導体領域表面には第 1電極が設けられ、 他方の主表面における第 3半導体領域表面には第 2電極が設けられ、 半導体基体の端部はべベル構造を有し、  A first electrode is provided on the surface of the first semiconductor region on one main surface, and a second electrode is provided on the surface of the third semiconductor region on the other main surface. The end of the semiconductor substrate has a bevel structure. ,
第 1電極端部とベベル面との間に位置し、 半導体基体の第 1電極形成 面に平行な領域に、 第 1導電型で不純物濃 が第 1 の半導体領域より低 く第 3半導体領域よリ高い第 4半導体領域が設けられることを特徴とす るダイオー ド。  In a region located between the end of the first electrode and the bevel surface and parallel to the surface on which the first electrode is formed of the semiconductor substrate, the impurity concentration of the first conductivity type is lower than that of the first semiconductor region and lower than that of the third semiconductor region. A diode having a high fourth semiconductor region.
1 4 . 請求項 1 3に記載のダイオー ドにおいて、 前記第 3半導体領域が ベベル面に露出していることを特徴とするダイオー ド。 14. The diode according to claim 13, wherein the third semiconductor region is exposed on a bevel surface.
1 5 . 請求項 1 3に記載のダイオー ドにおいて、 第 1電極端部とベベル 面との間に前記第 4半導体領域に達する凹部が設けられることを特徴と するダイォー ド。 15. The diode according to claim 13, wherein a recess reaching the fourth semiconductor region is provided between an end of the first electrode and a bevel surface.
1 6 . 請求項 1 4に記載のダイオー ドにおいて、 第 1電極端部とベベル 面との間に前記第 4半導体領域に達する凹部が設けられることを特徴と するダイオー ド。  16. The diode according to claim 14, wherein a recess reaching the fourth semiconductor region is provided between an end of the first electrode and a bevel surface.
1 7 . 請求項 1 3に記載のダイオー ドにおいて、 ベベル面上に、 弾性率 が 1 0 ' ° d y n /cm2以上の第 1絶縁物と弾性率が 1 0 ε〜 1 0 ' ° d y η /cm2 の第 2絶縁物が積層して被覆されていることを特徴とするダイォ 一 17. The diode according to claim 13, wherein a first insulator having an elastic modulus of 10 '° dyn / cm 2 or more and an elastic modulus of 10 ε to 10' ° dy η are formed on the bevel surface. characterized in that a second insulator of / cm 2 is laminated and covered.
PCT/JP1995/001956 1995-09-27 1995-09-27 Diode WO1997012403A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/001956 WO1997012403A1 (en) 1995-09-27 1995-09-27 Diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/001956 WO1997012403A1 (en) 1995-09-27 1995-09-27 Diode

Publications (1)

Publication Number Publication Date
WO1997012403A1 true WO1997012403A1 (en) 1997-04-03

Family

ID=14126315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001956 WO1997012403A1 (en) 1995-09-27 1995-09-27 Diode

Country Status (1)

Country Link
WO (1) WO1997012403A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042662A1 (en) * 1999-01-12 2000-07-20 eupec Europäische Gesellschaft für Leistungshalbleiter mbH & Co. KG Power semiconductor structural part with a mesa edge
CN104009096A (en) * 2014-06-09 2014-08-27 苏州市职业大学 Rectifier diode device
JP2021144981A (en) * 2020-03-10 2021-09-24 株式会社東芝 Semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505911B1 (en) * 1970-05-27 1975-03-08
JPS5297679A (en) * 1976-02-12 1977-08-16 Mitsubishi Electric Corp Semiconductor rectifying element
JPS5745285A (en) * 1980-08-29 1982-03-15 Mitsubishi Electric Corp High withstand voltage diode
JPS584816B2 (en) * 1975-08-04 1983-01-27 ゼネラル・エレクトリック・カンパニイ Semiconductor elements and their manufacturing methods
JPS61158171A (en) * 1984-12-28 1986-07-17 Toshiba Corp Semiconductor device
JPH0642542B2 (en) * 1988-04-08 1994-06-01 株式会社東芝 High-voltage semiconductor device manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505911B1 (en) * 1970-05-27 1975-03-08
JPS584816B2 (en) * 1975-08-04 1983-01-27 ゼネラル・エレクトリック・カンパニイ Semiconductor elements and their manufacturing methods
JPS5297679A (en) * 1976-02-12 1977-08-16 Mitsubishi Electric Corp Semiconductor rectifying element
JPS5745285A (en) * 1980-08-29 1982-03-15 Mitsubishi Electric Corp High withstand voltage diode
JPS61158171A (en) * 1984-12-28 1986-07-17 Toshiba Corp Semiconductor device
JPH0642542B2 (en) * 1988-04-08 1994-06-01 株式会社東芝 High-voltage semiconductor device manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICROFILM OF THE SPECIFICATION AND DRAWINGS ANNEXED TO THE WRITTEN APPLICATION OF JAPANESE UTILITY MODEL, Application No. 85198/1976 (Laid-open No. 4869/1978) (HITACHI, LTD.), 17 January 1978. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042662A1 (en) * 1999-01-12 2000-07-20 eupec Europäische Gesellschaft für Leistungshalbleiter mbH & Co. KG Power semiconductor structural part with a mesa edge
US6696705B1 (en) 1999-01-12 2004-02-24 Eupec Europaeische Gesellschaft Fuer Leistungshalbleiter Mbh & Co. Kg Power semiconductor component having a mesa edge termination
CN104009096A (en) * 2014-06-09 2014-08-27 苏州市职业大学 Rectifier diode device
JP2021144981A (en) * 2020-03-10 2021-09-24 株式会社東芝 Semiconductor device
JP7296907B2 (en) 2020-03-10 2023-06-23 株式会社東芝 semiconductor equipment

Similar Documents

Publication Publication Date Title
US7816229B2 (en) Semiconductor device with channel stop trench and method
EP1947700B1 (en) Low voltage diode with reduced parasitic resistance and method for fabricating
US8242535B2 (en) IGBT and method of producing the same
JP3417013B2 (en) Insulated gate bipolar transistor
US8716826B2 (en) Semiconductor device
US7906796B2 (en) Bipolar device and fabrication method thereof
JP6873865B2 (en) Power semiconductor devices and methods for manufacturing such power semiconductor devices
TWI478216B (en) Method for fabricating semiconductor device
US9018633B2 (en) Semiconductor device
JP4088852B2 (en) SiC Schottky diode
JP5310291B2 (en) Semiconductor device and manufacturing method thereof
US20210184054A1 (en) Semiconductor device and its manufacturing method
CN111129137B (en) SiC insulated gate bipolar transistor with NiO/SiC pn heterojunction
JP2012248736A (en) Semiconductor device
JP3468571B2 (en) Semiconductor device
WO1997012403A1 (en) Diode
JP2012227419A (en) Wide-gap semiconductor device
JPS58148469A (en) Schottky diode
CN113658922A (en) JBS silicon carbide diode device structure for enhancing reliability and manufacturing method
JP2001111034A (en) Planar semiconductor device
JP3067034B2 (en) Schottky barrier semiconductor device
JP3789580B2 (en) High voltage semiconductor device
TWI806005B (en) Semiconductor device and method for manufacturing semiconductor device
CN111799336B (en) SiC MPS diode device and preparation method thereof
JP5077508B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase