TWI806005B - Semiconductor device and method for manufacturing semiconductor device - Google Patents

Semiconductor device and method for manufacturing semiconductor device Download PDF

Info

Publication number
TWI806005B
TWI806005B TW110105553A TW110105553A TWI806005B TW I806005 B TWI806005 B TW I806005B TW 110105553 A TW110105553 A TW 110105553A TW 110105553 A TW110105553 A TW 110105553A TW I806005 B TWI806005 B TW I806005B
Authority
TW
Taiwan
Prior art keywords
conductivity type
semiconductor layer
type semiconductor
concentration
low
Prior art date
Application number
TW110105553A
Other languages
Chinese (zh)
Other versions
TW202135170A (en
Inventor
小笠原淳
Original Assignee
日商新電元工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020025740A external-priority patent/JP7505892B2/en
Application filed by 日商新電元工業股份有限公司 filed Critical 日商新電元工業股份有限公司
Publication of TW202135170A publication Critical patent/TW202135170A/en
Application granted granted Critical
Publication of TWI806005B publication Critical patent/TWI806005B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Noodles (AREA)
  • Bipolar Transistors (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

本發明的半導體裝置,包括:由第一導電型構成的低濃度第一導電型半導體層。設置在低濃度第一導電型半導體層上,且由第二導電型構成的第二導電型半導體層。以及設置在第二導電型半導體層的一部分上的鈍化膜。其中,距離第二導電型半導體層的一側的面30μm以內的距離處的摻雜濃度可以小於等於1×1019cm-3,且大於等於1×1017cm-3。第二導電型半導體層、以及低濃度第一導電型半導體層與第二導電型半導體層之間的介面可以含有重金屬。 The semiconductor device of the present invention includes: a low-concentration first conductivity type semiconductor layer made of the first conductivity type. The second conductivity type semiconductor layer is arranged on the low concentration first conductivity type semiconductor layer and is composed of the second conductivity type. and a passivation film disposed on a portion of the second conductivity type semiconductor layer. Wherein, the doping concentration at a distance within 30 μm from one surface of the second conductivity type semiconductor layer may be less than or equal to 1×10 19 cm -3 and greater than or equal to 1×10 17 cm -3 . The second conductive type semiconductor layer and the interface between the low concentration first conductive type semiconductor layer and the second conductive type semiconductor layer may contain heavy metals.

Description

半導體裝置及半導體裝置的製造方法 Semiconductor device and method for manufacturing semiconductor device

本發明涉及具有鈍化層的半導體裝置及半導體裝置的製造方法。 The present invention relates to a semiconductor device having a passivation layer and a method for manufacturing the semiconductor device.

一直以來,人們都在嘗試提供對雷電突波等具有高耐久性的半導體裝置。例如在日本特開2012-165013號公報中,揭露了一種半導體裝置,其包括:第一導電型半導體層;擴散區域,由選擇性地設置在第一導電型半導體層的表面層上的第二導電型半導體區域構成,且位於大於等於12.6μm,且小於等於30μm的深度;以及低壽命區域,通過使在整個第一導電型半導體層以及所述擴散區域上,從比擴散區域與第一導電型半導體層之間的接合介面即PN接面的最深位置淺的位置直至比PN接面的最深位置深的位置上含有通過He離子照射而形成的壽命殺手(Life-time killer),從而使載流子的壽命比其他區域短。 Conventionally, attempts have been made to provide semiconductor devices having high durability against lightning surges and the like. For example, in Japanese Patent Laid-Open No. 2012-165013, a semiconductor device is disclosed, which includes: a first conductivity type semiconductor layer; Conductive type semiconductor region, and located at a depth greater than or equal to 12.6 μm, and less than or equal to 30 μm; and the low lifetime region, by making the entire first conductive type semiconductor layer and the diffusion region The junction interface between the PN-type semiconductor layers, that is, the deepest position of the PN junction, contains a life-time killer (Life-time killer) formed by He ion irradiation at a position shallower than the deepest position of the PN junction. Runners have a shorter lifetime than other regions.

在日本特開2012-165013號公報中,雖然是以在壓低雷電突波的耐久性的同時,降低順向電壓VF為目的,但是除了需要He離子照射這一特有製程外,還無法將順向電壓抑制得足夠低。 In Japanese Patent Laid-Open No. 2012-165013, although the purpose is to reduce the forward voltage VF while reducing the durability of the lightning surge, it is impossible to reduce the forward voltage VF in addition to the special process of He ion irradiation. The voltage is suppressed low enough.

鑒於上述情況,本發明提供了一種能夠緩和電流集中、獲得高雷電突波耐久性的半導體裝置。 In view of the above circumstances, the present invention provides a semiconductor device capable of alleviating current concentration and obtaining high lightning surge durability.

概念1 Concept 1

本發明涉及的一種半導體裝置,其特徵在於,包括:低濃度第一導電型半導體層,由第一導電型構成;第二導電型半導體層,設置在所述低濃度第一導電型半導體層上,且由第二導電型構成;以及鈍化層,設置在第二導電型半導體層的一部分上,其中,距離所述第二導電型半導體層的一側的面30μm以內的距離處的摻雜濃度小於等於1×1019cm-3,且大於等於1×1017cm-3,所述第二導電型半導體層、以及所述低濃度第一導電型半導體層與所述第二導電型半導體層之間的介面含有重金屬。 A semiconductor device according to the present invention is characterized in that it comprises: a low-concentration semiconductor layer of the first conductivity type, which is composed of the first conductivity type; a second conductivity-type semiconductor layer, which is arranged on the low-concentration semiconductor layer of the first conductivity type , and is composed of the second conductivity type; and a passivation layer, disposed on a part of the second conductivity type semiconductor layer, wherein the doping concentration at a distance within 30 μm from the surface of one side of the second conductivity type semiconductor layer less than or equal to 1×10 19 cm -3 , and greater than or equal to 1×10 17 cm -3 , the second conductivity type semiconductor layer, the low concentration first conductivity type semiconductor layer and the second conductivity type semiconductor layer The interface between contains heavy metals.

概念2 Concept 2

在上述概念1所述的半導體裝置中,所述第二導電型半導體層的厚度大於等於50μm。 In the semiconductor device described in Concept 1 above, the thickness of the second conductivity type semiconductor layer is greater than or equal to 50 μm.

概念3 concept 3

在上述概念1或概念2所述的半導體裝置中,在距離所述第二導電型半導體層的一側的面20μm以內的距離處的摻雜濃度大於等於1×1018cm-3In the semiconductor device described in concept 1 or concept 2 above, the doping concentration at a distance within 20 μm from one side surface of the second conductivity type semiconductor layer is equal to or greater than 1×10 18 cm −3 .

概念4 concept 4

在上述概念1或概念2所述的半導體裝置中,在所述低濃度第一導電型半導體層的另一側,設置有第一導電型的摻雜濃度比所述低濃度第一導電型半導體層高的高濃度第一導電型半導體層, 起始於所述第一導電型半導體層的端面,直至所述高濃度第一導電型半導體層的第一導電型的摻雜濃度達到所述低濃度第一導電型半導體層的第一導電型的摻雜濃度的1000倍為止的厚度方向上的距離D1、與起始於所述低濃度第一導電型半導體層的端面,直至所述第二導電型半導體層的第二導電型的摻雜濃度達到所述低濃度第一導電型半導體層的第一導電型的摻雜濃度的1000倍為止的厚度方向上的距離D2之間的關係滿足下述(公式1):

Figure 110105553-A0305-02-0005-19
In the semiconductor device described in Concept 1 or Concept 2 above, on the other side of the low-concentration first-conductivity-type semiconductor layer, a doping concentration of the first-conductivity type is provided that is higher than that of the low-concentration first-conductivity-type semiconductor layer. The high-concentration semiconductor layer of the first conductivity type starts from the end face of the semiconductor layer of the first conductivity type until the doping concentration of the first conductivity type of the semiconductor layer of the high concentration first conductivity type reaches the low The distance D1 in the thickness direction up to 1000 times the doping concentration of the first conductivity type semiconductor layer with a concentration of the first conductivity type starts from the end surface of the low concentration first conductivity type semiconductor layer and ends at the second The relationship between the distance D2 in the thickness direction until the doping concentration of the second conductivity type of the semiconductor layer of the low concentration first conductivity type reaches 1000 times the doping concentration of the first conductivity type of the low-concentration first conductivity type semiconductor layer satisfies the following Said (Formula 1):
Figure 110105553-A0305-02-0005-19

概念5 Concept 5

在上述概念4所述的半導體裝置中,起始於所述低濃度第一導電型半導體層的端面,直至所述第二導電型半導體層的第二導電型的摻雜濃度達到所述低濃度第一導電型半導體層的第一導電型的摻雜濃度的1000倍為止的厚度方向上的距離D2為20μm~40μm。 In the semiconductor device described in concept 4 above, starting from the end surface of the low-concentration first conductivity type semiconductor layer, until the doping concentration of the second conductivity type of the second conductivity type semiconductor layer reaches the low concentration The distance D2 in the thickness direction of the first conductivity type semiconductor layer up to 1000 times the doping concentration of the first conductivity type is 20 μm to 40 μm.

概念6 Concept 6

在上述概念1或概念2所述的半導體裝置中,所述重金屬為鉑。 In the semiconductor device according to Concept 1 or Concept 2, the heavy metal is platinum.

概念7 Concept 7

在上述概念1或概念2所述的半導體裝置中,所述鈍化層為玻璃層。 In the semiconductor device described in Concept 1 or Concept 2 above, the passivation layer is a glass layer.

概念8 concept 8

本發明涉及的一種半導體裝置的製造方法,其特徵在於,包括:準備半導體基板的製程,所述半導體基板具有:由第一導電型構成的低濃度第一導電型半導體層、以及設置在所述低濃度第一導電型半導體層上,且由第二導電型構成的第二導電型半導體層。 A method of manufacturing a semiconductor device according to the present invention is characterized in that it includes: a process of preparing a semiconductor substrate, the semiconductor substrate has: a low-concentration first conductivity type semiconductor layer composed of a first conductivity type; A second conductivity type semiconductor layer formed of the second conductivity type is on the low concentration first conductivity type semiconductor layer.

在第二導電型半導體層的一部分上設置鈍化層的製程。 A process of disposing a passivation layer on a part of the second conductivity type semiconductor layer.

使重金屬滲透到所述第二導電型半導體層內的製程;以及對所述半導體基板以及所述鈍化層加熱的製程。 a process of infiltrating the heavy metal into the semiconductor layer of the second conductivity type; and a process of heating the semiconductor substrate and the passivation layer.

其中,距離所述第二導電型半導體層的一側的面30μm以內的距離處的摻雜濃度小於等於1×1019cm-3,且大於等於1×1017cm-3Wherein, the doping concentration at a distance within 30 μm from one side of the second conductivity type semiconductor layer is less than or equal to 1×10 19 cm -3 and greater than or equal to 1×10 17 cm -3 .

所述第二導電型半導體層、以及所述低濃度第一導電型半導體層與所述第二導電型半導體層之間的介面含有重金屬。 The second conductive type semiconductor layer and the interface between the low concentration first conductive type semiconductor layer and the second conductive type semiconductor layer contain heavy metal.

在本發明中,當採用距離第二導電型半導體層的一側的面30μm以內的距離處的摻雜濃度小於等於1×1019cm-3,且大於等於1×1017cm-3,且第二導電型半導體層、以及低濃度第一導電型半導體層與第二導電型半導體層之間的介面含有重金屬的形態的情況下,就能夠緩和電流集中、獲得高雷電突波耐久性。 In the present invention, when the doping concentration at a distance within 30 μm from one side surface of the second conductivity type semiconductor layer is less than or equal to 1×10 19 cm -3 and greater than or equal to 1×10 17 cm -3 , and When the second conductivity type semiconductor layer and the interface between the low concentration first conductivity type semiconductor layer and the second conductivity type semiconductor layer contain heavy metal, current concentration can be alleviated and high lightning surge durability can be obtained.

11:高濃度第一導電型半導體層 11: High concentration first conductivity type semiconductor layer

12:低濃度第一導電型半導體層 12: Low concentration first conductivity type semiconductor layer

13:第二導電型半導體層 13: Second conductivity type semiconductor layer

16、18:摻雜表面層 16, 18: doped surface layer

17:抗蝕劑膜 17: Resist film

19:氧化膜 19: oxide film

20:第一電極 20: The first electrode

30:第二電極 30: Second electrode

50:玻璃膜 50: glass film

61、62:絕緣膜 61, 62: insulating film

65:檯面槽 65:Mesa groove

66:凹部 66: Concave

70:開口部 70: Opening

圖1是可在本發明的第一實施例中使用的半導體裝置的截面圖。 FIG. 1 is a cross-sectional view of a semiconductor device usable in a first embodiment of the present invention.

圖2A-圖2C是可在本發明的第一實施例中使用的半導體裝置的製造過程的截面圖。 2A-2C are cross-sectional views of a manufacturing process of a semiconductor device usable in the first embodiment of the present invention.

圖3A和圖3B是緊接著圖2C中的製程後的半導體裝置的製造製程的過程截面圖。 3A and 3B are process cross-sectional views of the manufacturing process of the semiconductor device immediately after the process in FIG. 2C.

圖4A和圖4B是緊接著圖3B中的製程後的半導體裝置的製造製程的過程截面圖。 4A and 4B are process cross-sectional views of the manufacturing process of the semiconductor device immediately after the process in FIG. 3B.

圖5A和圖5B是緊接著圖4B中的製程後的半導體裝置的製造製程的過程截面圖。 5A and 5B are process cross-sectional views of the manufacturing process of the semiconductor device immediately after the process in FIG. 4B.

圖6是展示本發明第一實施例的一個例子(實施例)中的深度方向上的摻雜濃度的曲線圖。 FIG. 6 is a graph showing the doping concentration in the depth direction in one example (Example) of the first embodiment of the present invention.

圖7是展示比較例一中的深度方向上的摻雜濃度的曲線圖。 FIG. 7 is a graph showing the doping concentration in the depth direction in Comparative Example 1. Referring to FIG.

圖8是展示比較例二中的深度方向上的摻雜濃度的曲線圖。 FIG. 8 is a graph showing the doping concentration in the depth direction in Comparative Example 2. Referring to FIG.

圖9是展示比較例一、比較例二以及實施例中的會損壞半導體裝置的雷電突波施加電壓的比率的曲線圖。 9 is a graph showing ratios of lightning surge applied voltages that can damage semiconductor devices in Comparative Example 1, Comparative Example 2, and Examples.

圖10是展示在實施例涉及的半導體裝置中在注入鉑時與未注入鉑時的順向電壓VF與順向電流IF之間關係的曲線圖。 10 is a graph showing the relationship between the forward voltage VF and the forward current IF when platinum is injected and when platinum is not injected in the semiconductor device according to the embodiment.

圖11是可在本發明的第二實施例中使用的半導體裝置的截面圖。 11 is a cross-sectional view of a semiconductor device usable in a second embodiment of the present invention.

第一實施例 first embodiment

本實施例的半導體裝置為二極體、閘流體等具有PN接面的裝置。半導體裝置例如圖1所示,可以包括:高濃度第一導電型半導體層11;設置在高濃度第一導電型半導體層11上,且由第一導電型摻雜濃度比高濃度第一導電型半導體層11低的第一導電型構成的低濃度第一導電型半導體層12;設置在低濃度第一導電型半導體層12上,且由第二導電型構成的第二導電型半導體層13;以及設置在第二導電型半導體層13的一部分上的鈍化膜(如後述例如玻璃膜50)。第一導電型例如為n型,第二導電型例如為p型。不過,並不限於此,第一導電型也可以是p型,第二導電型也可以是n型。本實施例的半導體裝置的額定電壓可以大於等於600V。第二導電型半導體層13可以設置在低濃度第一導電型半導體層12的一側的整個面上。通過這樣在低濃度第一導電型半導體層12一側 的整個面上設置第二導電型半導體層13,就能夠切實地承受後述具有高di/dt的雷電突波。 The semiconductor device of this embodiment is a device having a PN junction such as a diode or a thyristor. For example, a semiconductor device as shown in FIG. 1 may include: a high-concentration first conductivity type semiconductor layer 11; A low-concentration first conductivity type semiconductor layer 12 composed of a low first conductivity type in the semiconductor layer 11; a second conductivity type semiconductor layer 13 formed on the low concentration first conductivity type semiconductor layer 12 and composed of a second conductivity type; And a passivation film (such as a glass film 50 to be described later) provided on a part of the second conductivity type semiconductor layer 13 . The first conductivity type is, for example, n-type, and the second conductivity type is, for example, p-type. However, it is not limited thereto, and the first conductivity type may also be p-type, and the second conductivity type may also be n-type. The rated voltage of the semiconductor device of this embodiment may be equal to or greater than 600V. The second conductive type semiconductor layer 13 may be provided on the entire surface of one side of the low-concentration first conductive type semiconductor layer 12 . In this way, on the side of the low-concentration first conductivity type semiconductor layer 12 If the second conductive type semiconductor layer 13 is provided on the entire surface, it can reliably withstand the lightning surge with high di/dt described later.

距離第二導電型半導體層13的一側的面30μm以內的距離處的摻雜濃度可以小於等於1×1019cm-3,且大於等於1×1017cm-3。第二導電型半導體層13、以及低濃度第一導電型半導體層12與第二導電型半導體層13之間的介面可以含有重金屬。重金屬可列舉金、鉑等,較佳實施例為使用鉑。重金屬不僅可以包含在低濃度第一導電型半導體層12與第二導電型半導體層13之間的介面處,也可以包含在低濃度第一導電型半導體層12的內部,還可以遍及整個低濃度第一導電型半導體層12。另外,在本實施例中,將圖1的上方側稱為一側,將圖1的下方側稱為另一側。低濃度第一導電型半導體層12摻雜濃度例如小於等於1×1015cm-3,且大於等於1×1013cm-3,典型值為1×1014cm-3The doping concentration at a distance within 30 μm from one side surface of the second conductivity type semiconductor layer 13 may be less than or equal to 1×10 19 cm −3 and greater than or equal to 1×10 17 cm −3 . The second conductive type semiconductor layer 13 and the interface between the low concentration first conductive type semiconductor layer 12 and the second conductive type semiconductor layer 13 may contain heavy metals. Examples of heavy metals include gold, platinum, and the like, and platinum is used in a preferred embodiment. Heavy metals can be contained not only at the interface between the low-concentration first conductivity type semiconductor layer 12 and the second conductivity type semiconductor layer 13, but also in the interior of the low-concentration first conductivity type semiconductor layer 12, or throughout the entire low-concentration semiconductor layer 12. The first conductive type semiconductor layer 12 . In addition, in this embodiment, the upper side in FIG. 1 is referred to as one side, and the lower side in FIG. 1 is referred to as the other side. The doping concentration of the low-concentration first conductivity type semiconductor layer 12 is, for example, less than or equal to 1×10 15 cm -3 and greater than or equal to 1×10 13 cm -3 , with a typical value of 1×10 14 cm -3 .

第二導電型半導體層13的厚度可以大於等於50μm,也可以大於等於60μm。 The thickness of the second conductivity type semiconductor layer 13 may be greater than or equal to 50 μm, or greater than or equal to 60 μm.

距離第二導電型半導體層13的一側的面20μm以內的距離處的摻雜濃度可以大於等於1×1018cm-3The doping concentration at a distance within 20 μm from one side surface of the second conductivity type semiconductor layer 13 may be greater than or equal to 1×10 18 cm −3 .

起始於第一導電型半導體層12的端面(另一側的面),直至高濃度第一導電型半導體層11的第一導電型的摻雜濃度達到低濃度第一導電型半導體層12的第一導電型的摻雜濃度的1000倍為止的厚度方向上的距離D1(另一側處的距離)、與起始於低濃度第一導電型半導體層12的端面(一側的面),直至第二導電型半導體層13的第二導電型的摻雜濃度達到低濃度第一導電型半導體層12的第一導電型的摻雜濃度的1000倍為止的厚度方向上的距離D2(一側處的距離)之間的關係滿足下述(公式1)(參照圖6):

Figure 110105553-A0305-02-0008-16
Starting from the end surface (face on the other side) of the first conductivity type semiconductor layer 12, until the doping concentration of the first conductivity type of the high concentration first conductivity type semiconductor layer 11 reaches that of the low concentration first conductivity type semiconductor layer 12 The distance D1 in the thickness direction (distance at the other side) up to 1000 times the doping concentration of the first conductivity type, and the end surface (side surface) starting from the low-concentration first conductivity type semiconductor layer 12, The distance D2 in the thickness direction until the doping concentration of the second conductivity type of the second conductivity type semiconductor layer 13 reaches 1000 times the doping concentration of the first conductivity type of the low-concentration first conductivity type semiconductor layer 12 (one side The relationship between the distance at) satisfies the following (formula 1) (refer to FIG. 6):
Figure 110105553-A0305-02-0008-16

D1和D2大致相等,可以滿足下述(公式2):

Figure 110105553-A0305-02-0009-17
D1 and D2 are approximately equal and can satisfy the following (Formula 2):
Figure 110105553-A0305-02-0009-17

D1和D2實質上相等,可以滿足下述(公式3):

Figure 110105553-A0305-02-0009-18
D1 and D2 are substantially equal and can satisfy the following (Formula 3):
Figure 110105553-A0305-02-0009-18

起始於低濃度第一導電型半導體層12的端面(一側的面),直至第二導電型半導體層13的第二導電型的摻雜濃度達到低濃度第一導電型半導體層12的第一導電型的摻雜濃度的1000倍為止的厚度方向上的距離D2(一側處的距離)可以為20μm~40μm。可以根據D2的值來調整D1的值,以滿足上述(公式1)、(公式2)和(公式3)中的任一個。作為典型值,D1和D2可以各自為30μm(四捨五入後的30μm)。也可以(參照圖6)。另外,也可以根據D1的值來調整D2的值。 Starting from the end face (side surface) of the low-concentration first conductivity type semiconductor layer 12, until the doping concentration of the second conductivity type of the second conductivity type semiconductor layer 13 reaches the second conductivity type of the low concentration first conductivity type semiconductor layer 12. The distance D2 in the thickness direction (distance on one side) up to 1000 times the doping concentration of one conductivity type may be 20 μm to 40 μm. The value of D1 may be adjusted according to the value of D2 to satisfy any one of (Formula 1), (Formula 2) and (Formula 3) above. As typical values, D1 and D2 may each be 30 μm (30 μm after rounding). It is also possible (refer to FIG. 6). In addition, the value of D2 may also be adjusted according to the value of D1.

矽基板、碳化矽基板、氮化鎵基板等可以用作高濃度第一導電型半導體層11。第二導電型半導體層13可以藉由向低濃度第一導電型半導體層12注入例如p型摻雜(例如硼)來形成。 A silicon substrate, a silicon carbide substrate, a gallium nitride substrate, etc. can be used as the high-concentration first conductivity type semiconductor layer 11 . The second conductive type semiconductor layer 13 can be formed by implanting, for example, p-type doping (eg, boron) into the low-concentration first conductive type semiconductor layer 12 .

如圖1所示,可以在第二導電型半導體層13的正面設置有第一電極20,並且在高濃度第一導電型半導體層11的背面設置有第二電極30。第一電極20例如可以是陽電極,第二電極30例如可以是陰電極。第一電極20例如可以由矽化鋁或矽化鎳構成。第二電極30也可以是含矽化物膜的鎳膜。 As shown in FIG. 1 , a first electrode 20 may be provided on the front surface of the second conductivity type semiconductor layer 13 , and a second electrode 30 may be provided on the back surface of the high-concentration first conductivity type semiconductor layer 11 . The first electrode 20 may be, for example, an anode electrode, and the second electrode 30 may be, for example, a cathode electrode. The first electrode 20 can be made of aluminum silicide or nickel silicide, for example. The second electrode 30 may also be a nickel film containing a silicide film.

也可以在第一電極20的周圍設置作為鈍化膜的玻璃膜50。 A glass film 50 as a passivation film may also be provided around the first electrode 20 .

玻璃膜50中使用的玻璃材料例如SiO2的含量在49.5mol%~64.3mol%的範圍內,Al2O3的含量在3.7mol%~14.8mol%的範圍內,B2O3的含量在8.4mol%~17.9mol%的範圍內,ZnO的含量在3.9mol%~14.2mol%的範圍內,鹼土金屬的氧化物的含量在7.4mol%~12.9mol%的範圍內。 The content of the glass material used in the glass film 50, such as SiO 2 , is in the range of 49.5 mol% to 64.3 mol%, the content of Al 2 O 3 is in the range of 3.7 mol% to 14.8 mol%, and the content of B 2 O 3 is in the range of In the range of 8.4mol%~17.9mol%, the content of ZnO is in the range of 3.9mol%~14.2mol%, and the content of the oxide of alkaline earth metal is in the range of 7.4mol%~12.9mol%.

上述的半導體裝置可以採用如下方法進行製造。 The above-mentioned semiconductor device can be manufactured by the following method.

準備低濃度第一導電型半導體層12(圖2A)。低濃度第一導電型半導體層12可以採用單晶圓。在採用單晶圓的情況下,能夠抑制製造成本。不過,也不限於此,也可以採用磊晶晶圓或擴散晶圓。 A low concentration first conductivity type semiconductor layer 12 is prepared (FIG. 2A). A single wafer can be used for the low-concentration first conductivity type semiconductor layer 12 . In the case of using a single wafer, manufacturing costs can be suppressed. However, it is not limited thereto, and epitaxial wafers or diffused wafers may also be used.

在低濃度第一導電型半導體層12的一側的面和另一側的面上分別上例如以沉積物設置第二導電型的摻雜表面層16(圖2B)。作為第二導電型摻雜表面層16的摻雜,例如可以為B(硼)。 On one side and the other side of the low-concentration first conductivity type semiconductor layer 12, a doped surface layer 16 of the second conductivity type is provided, for example, by deposits ( FIG. 2B ). The doping of the second conductivity type doped surface layer 16 may be, for example, B (boron).

在用抗蝕劑膜17覆蓋第二導電型的摻雜表面層16後,對低濃度第一導電型半導體層12的另一側的面進行蝕刻(圖2C)。 After covering the doped surface layer 16 of the second conductivity type with the resist film 17, the surface on the other side of the low-concentration first conductivity type semiconductor layer 12 is etched (FIG. 2C).

接著,在低濃度第一導電型半導體層12的一側的面上形成例如由SiO2構成的氧化膜19後,在低濃度第一導電型半導體層12的另一側的面上設置第一導電型的摻雜表面層18(圖3A)。作為第一導電型摻雜表面層18的摻雜,例如可以舉出P(磷)。 Next, after forming an oxide film 19 made of, for example, SiO 2 on one side of the low-concentration first conductivity type semiconductor layer 12, a first Conductive type doped surface layer 18 (FIG. 3A). As the doping of the first conductivity type doped surface layer 18, P (phosphorus) can be mentioned, for example.

接著,例如在1100℃~1300℃下加熱20小時。通過這樣進行加熱,摻雜區域就會分別在低濃度第一導電型半導體層12的一側和另一側擴大(圖3B)。最終,在低濃度第一導電型半導體層12的一側的面上形成第二導電型半導體層13,在低濃度第一導電型半導體層12的另一側的面上形成摻雜濃度比低濃度第一導電型半導體層12高的高濃度第一導電型半導體層11。各摻雜表面層的厚度可以大於等於50μm,也可以大於等於60μm。 Next, heating is performed at, for example, 1100° C. to 1300° C. for 20 hours. By heating in this way, the doped regions expand respectively on one side and the other side of the low-concentration first conductivity type semiconductor layer 12 (FIG. 3B). Finally, the second conductive type semiconductor layer 13 is formed on one side of the low-concentration first conductive type semiconductor layer 12, and the doping concentration is lower than that of the low-concentration first conductive type semiconductor layer 12 on the other side. High-concentration first-conductivity-type semiconductor layer 11 with high-concentration first-conductivity-type semiconductor layer 12 . The thickness of each doped surface layer may be greater than or equal to 50 μm, or greater than or equal to 60 μm.

接著,在第二導電型半導體層13上形成由SiO2等構成的絕緣膜61(圖4A)。並且在第一導電型半導體基板11背面形成由SiO2等構成的絕緣膜62(圖4A)。 Next, an insulating film 61 made of SiO2 or the like is formed on the second conductivity type semiconductor layer 13 (FIG. 4A). And an insulating film 62 made of SiO 2 or the like is formed on the back surface of the first conductivity type semiconductor substrate 11 (FIG. 4A).

接著,將形成的絕緣膜61用作遮罩,對一側的面進行蝕刻,形成檯面槽65(圖4B)。作為本實施例的蝕刻,可以使用乾蝕刻或濕蝕刻等方式來進行。 Next, using the formed insulating film 61 as a mask, one surface is etched to form a mesa groove 65 ( FIG. 4B ). As the etching in this embodiment, dry etching or wet etching can be used.

接著,以覆蓋形成的檯面槽65和絕緣膜61的方式,形成由玻璃膜50構成的保護膜(鈍化膜)(圖5A)。 Next, a protective film (passivation film) made of the glass film 50 is formed so as to cover the formed mesa groove 65 and insulating film 61 ( FIG. 5A ).

接著,通過選擇性地對所形成的絕緣膜61和玻璃膜50進行蝕刻來形成開口部70(圖5B)。 Next, openings 70 are formed by selectively etching the formed insulating film 61 and glass film 50 ( FIG. 5B ).

接著,在第二導電型半導體層13和玻璃膜50上設置重金屬(圖5B)。作為重金屬可採用鉑。此時,為了在第二導電型半導體層13和玻璃膜50上設置重金屬,可以通過塗布、蒸鍍、濺射等進行沉積。重金屬可以塗布在一側的整個面上,這樣,重金屬就會滲透到第二導電型半導體層13內部、低濃度第一導電型半導體層12與第二導電型半導體層13的介面以及低濃度第一導電型半導體層12內。重金屬也可以分佈在整個低濃度第一導電型半導體層12上。 Next, a heavy metal is provided on the second conductivity type semiconductor layer 13 and the glass film 50 (FIG. 5B). Platinum can be used as heavy metal. At this time, in order to provide the heavy metal on the second conductivity type semiconductor layer 13 and the glass film 50, deposition may be performed by coating, vapor deposition, sputtering, or the like. The heavy metal can be coated on the entire surface of one side, so that the heavy metal will penetrate into the second conductive type semiconductor layer 13, the interface between the low concentration first conductive type semiconductor layer 12 and the second conductive type semiconductor layer 13, and the low concentration second conductive type semiconductor layer. Inside a conductive type semiconductor layer 12 . Heavy metals may also be distributed throughout the low-concentration first conductivity type semiconductor layer 12 .

接著,將半導體基板和玻璃膜50以例如700度~900度加熱10~60分鐘。通過這樣加熱,使重金屬在半導體層內擴散。 Next, the semiconductor substrate and the glass film 50 are heated at, for example, 700°C to 900°C for 10 to 60 minutes. By heating in this way, the heavy metal is diffused in the semiconductor layer.

在如上所述製造的半導體裝置中,在距第二導電型半導體層13的一側的面30μm以內距離處的摻雜濃度為小於等於1×1019cm-3,且大於等於1×1017cm-3In the semiconductor device manufactured as described above, the doping concentration at a distance within 30 μm from one side surface of the second conductivity type semiconductor layer 13 is 1×10 19 cm −3 or less and 1×10 17 or more cm -3 .

然後,在正面側的開口部70形成第一電極20,在背面側形成第二電極30(參照圖1)。 Then, the first electrode 20 is formed in the opening 70 on the front side, and the second electrode 30 is formed on the back side (see FIG. 1 ).

《效果》 "Effect"

接著,對本實施例的效果的進行說明。本發明可以採用《效果》中說明的任何形態。 Next, effects of this embodiment will be described. The present invention can take any form described in "Effects".

在本實施例中,距離第二導電型半導體層13的一側的面30μm以內的距離處的摻雜濃度小於等於1×1019cm-3,且大於等於1×1017cm-3,且第二導電型半導體層13、以及低濃度第一導電型半導體層12與第二導電型半導體層13之間的介面含有重金屬的形態的情況下,就能夠緩和電流集中,並且可以承受由 高di/dt構成的雷電突波(可以得到高的雷電突波耐受性)。從可以獲得如此高的雷電突波耐久性來看,半導體裝置可以是用於轉換器的二極體。 In this embodiment, the doping concentration at a distance within 30 μm from one surface of the second conductivity type semiconductor layer 13 is less than or equal to 1×10 19 cm −3 and greater than or equal to 1×10 17 cm −3 , and When the second conductivity type semiconductor layer 13 and the interface between the low-concentration first conductivity type semiconductor layer 12 and the second conductivity type semiconductor layer 13 contain heavy metals, the concentration of current can be eased, and can withstand high di Lightning surge composed of /dt (high lightning surge tolerance can be obtained). From the fact that such a high lightning surge durability can be obtained, the semiconductor device can be a diode for a converter.

如果一側的面(上端面)的摻雜濃度超過1×1019cm-3,則鉑等重金屬難以進入,從而就無法加快後述的反向恢復時間(reverse recover time,trr)。 If the doping concentration on one side (upper end surface) exceeds 1×10 19 cm -3 , heavy metals such as platinum are difficult to enter, and the reverse recovery time (trr) described later cannot be accelerated.

而如果一側的面(上段面)的摻雜濃度小於1×1018cm-3的情況下,則難以與第一電極20形成歐姆接觸。因此,使一側的面的摻雜濃度在1×1018cm-3以上是有益的。特別是當第一電極20中與第二導電型半導體層13的介面由Ni等構成的情況下特別有益。 On the other hand, if the doping concentration of one side surface (upper section surface) is less than 1×10 18 cm −3 , it is difficult to form ohmic contact with the first electrode 20 . Therefore, it is beneficial to set the doping concentration on one surface to 1×10 18 cm −3 or more. It is particularly beneficial when the interface between the first electrode 20 and the second conductivity type semiconductor layer 13 is made of Ni or the like.

在採用第二導電型半導體層13的厚度為50μm以上的形態的情況下,能夠以充分的厚度保持摻雜濃度高的區域,這樣就特別能夠緩和電流集中。 In the case where the second conductivity type semiconductor layer 13 has a thickness of 50 μm or more, it is possible to maintain a region with a high doping concentration in a sufficient thickness, and thus to alleviate current concentration in particular.

在採用了距離第二導電型半導體層13的一側的面20μm以內的距離處的摻雜濃度為1×1018cm-3以上的形態的情況下,能夠提高深度較淺的區域中的摻雜濃度,遮掩更就特別能夠提高對雷電突波的耐久性。 In the case where the doping concentration at a distance of 1×10 18 cm −3 or more within 20 μm from one surface of the second conductivity type semiconductor layer 13 is adopted, the doping concentration in the shallower region can be increased. The impurity concentration, the masking can especially improve the durability against lightning surges.

當起始於第一導電型半導體層12的端面,直至高濃度第一導電型半導體層11的第一導電型的摻雜濃度達到低濃度第一導電型半導體層12的第一導電型的摻雜濃度的1000倍為止的厚度方向上的距離D1、與起始於低濃度第一導電型半導體層12的端面,直至第二導電型半導體層13的第二導電型的摻雜濃度達到低濃度第一導電型半導體層12的第一導電型的摻雜濃度的1000倍為止的厚度方向上的距離D2之間的關係滿足公式:1.1×D2

Figure 110105553-A0305-02-0012-9
D1
Figure 110105553-A0305-02-0012-10
0.9×D2的情況下,就能夠在一側和另一側上均設置摻雜濃度高的區域。這樣一來,就能夠提高對雷電突波的耐久性(參照圖6以及圖9中的“實施例”)。 When starting from the end surface of the first conductivity type semiconductor layer 12, until the doping concentration of the first conductivity type of the high concentration first conductivity type semiconductor layer 11 reaches the doping concentration of the first conductivity type of the low concentration first conductivity type semiconductor layer 12 The distance D1 in the thickness direction up to 1000 times of the impurity concentration, and the end face of the low-concentration first conductivity type semiconductor layer 12 until the doping concentration of the second conductivity type of the second conductivity type semiconductor layer 13 reaches the low concentration The relationship between the distance D2 in the thickness direction up to 1000 times the doping concentration of the first conductivity type of the first conductivity type semiconductor layer 12 satisfies the formula: 1.1×D2
Figure 110105553-A0305-02-0012-9
D1
Figure 110105553-A0305-02-0012-10
In the case of 0.9×D2, it is possible to provide regions with a high doping concentration on both one side and the other side. In this way, the durability against lightning surges can be improved (see "Example" in FIGS. 6 and 9 ).

當採用起始於低濃度第一導電型半導體層12的端面,直至第二導電型半導體層13的第二導電型的摻雜濃度達到低濃度第一導電型半導體層12的第一導電型的摻雜濃度的1000倍為止的厚度方向上的距離D2為20μm~40μm的 形態的情況下,就能夠增大摻雜濃度較高的區域的厚度,這樣一來,就能夠在提高對雷電突波的耐久性的同時,緩和電流集中(參照圖6以及圖9中的“實施例”)。 When starting from the end face of the low-concentration first conductivity type semiconductor layer 12, until the doping concentration of the second conductivity type of the second conductivity type semiconductor layer 13 reaches that of the first conductivity type of the low concentration first conductivity type semiconductor layer 12 The distance D2 in the thickness direction up to 1000 times the doping concentration is 20μm~40μm In the case of the form, the thickness of the region with a high doping concentration can be increased, so that the durability against lightning surges can be improved, and the current concentration can be alleviated (see " Example").

圖9的實施例展示了圖6所示形態的雷電突波容量相對於後述的比較例一的比率。在圖7所示的比較例一的形態中,在第二導電型半導體層13中,不存在第二導電型的摻雜濃度為第一導電型的摻雜濃度的1000倍的部位,在高濃度第一導電型半導體層11中,起始於低濃度第一導電型半導體層12端面,直至達到低濃度第一導電型半導體層12的第一導電型摻雜濃度的1000倍的厚度方向上距離D1為4μm。雖然圖9中用比較例一來表示這種情況下的雷電突波耐久性,但是其值僅為作為實施例表示的值的1/12左右。在圖8所示的比較例二的形態中,距第二導電型半導體層13的一側的面(上端面)30μm以內的距離處的摻雜濃度未達到大於等於1×1017cm-3,在第二導電型半導體層13中,在第二導電型摻雜濃度達到第一導電型摻雜濃度的1000倍的部位處的距離第一導電型半導體層的端面的厚度方向上的距離D2為10μm。雖然在圖9中作為比較例二展示了此情況下的雷電突波耐久性相對於比較例一的比例,但是其值僅為作為實施例表示的值的2/3左右。 The embodiment in FIG. 9 shows the ratio of the lightning surge capacity of the form shown in FIG. 6 relative to Comparative Example 1 described later. In the form of Comparative Example 1 shown in FIG. 7 , in the semiconductor layer 13 of the second conductivity type, there is no portion where the doping concentration of the second conductivity type is 1000 times that of the first conductivity type. Concentration of the first conductivity type semiconductor layer 11, starting from the end surface of the low concentration first conductivity type semiconductor layer 12, until reaching 1000 times the first conductivity type doping concentration of the low concentration first conductivity type semiconductor layer 12 in the thickness direction The distance D1 is 4 μm. Although the lightning surge durability in this case is shown by comparative example 1 in FIG. 9 , the value is only about 1/12 of the value shown as the example. In the form of Comparative Example 2 shown in FIG. 8 , the doping concentration at a distance within 30 μm from one surface (upper end surface) of the second conductivity type semiconductor layer 13 does not reach 1×10 17 cm −3 or more. , in the second conductivity type semiconductor layer 13, the distance D2 in the thickness direction from the end surface of the first conductivity type semiconductor layer at the position where the second conductivity type doping concentration reaches 1000 times the first conductivity type doping concentration is 10 μm. Although the ratio of the lightning surge durability in this case to that of Comparative Example 1 is shown as Comparative Example 2 in FIG. 9 , the value is only about 2/3 of the value shown as the Example.

通過在第二導電型半導體層13、以及低濃度第一導電型半導體層12與第二導電型半導體層13之間的介面上設置重金屬,可以降低內建電勢。這樣,就可以將反向恢復時間trr加快至數μs的程度。另外,使用鉑作為重金屬,也特別有益於加快trr。如圖10所示,在使用鉑作為重金屬的情況下,還能夠得到降低低電流側的VF(順向電壓)的效果。例如用於空調的電流使用1A~2A,對於在空調等中使用的半導體裝置來說,降低低電流側的VF(順向電壓)是非常有益的。 By disposing heavy metals on the second conductivity type semiconductor layer 13 and the interface between the low concentration first conductivity type semiconductor layer 12 and the second conductivity type semiconductor layer 13 , the built-in potential can be reduced. In this way, the reverse recovery time trr can be accelerated to the degree of several μ s. In addition, using platinum as a heavy metal is also particularly beneficial to speed up trr. As shown in FIG. 10 , when platinum is used as the heavy metal, the effect of reducing VF (forward voltage) on the low current side can also be obtained. For example, the current used in air conditioners uses 1A~2A. For semiconductor devices used in air conditioners, etc., it is very beneficial to reduce the VF (forward voltage) on the low current side.

第二實施例 second embodiment

下面,對本發明的第二實施例進行說明。 Next, a second embodiment of the present invention will be described.

在第一實施例中,設置有檯面槽65,但在本實施例中,設置有凹部66來代替檯面槽65(參照圖11)。除此之外,與第一實施例相同,在第二實施例中也可以採用在第一實施例中採用的所有結構。 In the first embodiment, the mesa groove 65 is provided, but in the present embodiment, the concave portion 66 is provided instead of the mesa groove 65 (see FIG. 11 ). Other than that, all the structures employed in the first embodiment can also be employed in the second embodiment as in the first embodiment.

本實施例的半導體裝置例如圖11所示,包括:高濃度第一導電型半導體層11;設置在高濃度第一導電型半導體層11上,且由第一導電型的摻雜濃度比高濃度第一導電型半導體層11低的第一導電型構成的低濃度第一導電型半導體層12;設置在低濃度第一導電型半導體層12上,且有第二導電型構成的第二導電型半導體層13;以及設置在第二導電型半導體層13的一部分上的玻璃膜50。 The semiconductor device of this embodiment, as shown in FIG. 11, includes: a high-concentration first-conductivity-type semiconductor layer 11; A low-concentration first-conductivity-type semiconductor layer 12 composed of a low-first-conductivity-type semiconductor layer 11; a second-conductivity-type second-conductivity-type composition arranged on the low-concentration first-conductivity-type semiconductor layer 12 the semiconductor layer 13 ; and the glass film 50 provided on a part of the second conductivity type semiconductor layer 13 .

距離第二導電型半導體層13的一側的面30μm以內的距離處的摻雜濃度可以小於等於1×1019cm-3且大於等於1×1017cm-3。第二導電型半導體層13、以及低濃度第一導電型半導體層12與第二導電型半導體層13之間的介面可以含有重金屬。 The doping concentration at a distance within 30 μm from one side surface of the second conductivity type semiconductor layer 13 may be equal to or less than 1×10 19 cm −3 and equal to or greater than 1×10 17 cm −3 . The second conductive type semiconductor layer 13 and the interface between the low concentration first conductive type semiconductor layer 12 and the second conductive type semiconductor layer 13 may contain heavy metals.

在本實施例中,也能夠得到與第一實施例同樣的效果,即,能夠緩和電流集中,且能夠獲得高雷電突波耐久性。 Also in this embodiment, the same effects as those of the first embodiment can be obtained, that is, current concentration can be alleviated and high lightning surge durability can be obtained.

上述各實施例、變形例中的記載以及圖式中揭露的圖式僅為用於說明請求項中記載的發明的一例,因此請求項中記載的發明不受上述實施例或圖式中揭露的內容所限定。本申請最初的請求項中的記載僅僅是一個示例,可以根據說明書、圖式等的記載對請求項中的記載進行適宜的變更。 The descriptions in the above-mentioned embodiments and modifications, and the drawings disclosed in the drawings are only examples for explaining the invention described in the claims, and therefore the inventions described in the claims are not limited by the above-mentioned embodiments or drawings. limited by content. The descriptions in the first claims of this application are merely examples, and the descriptions in the claims can be appropriately changed based on the descriptions in the specification, drawings, and the like.

11:高濃度第一導電型半導體層 11: High concentration first conductivity type semiconductor layer

12:低濃度第一導電型半導體層 12: Low concentration first conductivity type semiconductor layer

13:第二導電型半導體層 13: Second conductivity type semiconductor layer

20:第一電極 20: The first electrode

30:第二電極 30: Second electrode

50:玻璃膜 50: glass film

61、62:絕緣膜 61, 62: insulating film

65:檯面槽 65:Mesa groove

Claims (7)

一種半導體裝置,包括:低濃度第一導電型半導體層,其導電型態為第一導電型;第二導電型半導體層,設置在該低濃度第一導電型半導體層上,其導電型態為第二導電型;以及鈍化層,設置在第二導電型半導體層的一部分上;其中,距離該第二導電型半導體層的一側的面30μm以內的距離處的摻雜濃度小於等於1×1019cm-3,且大於等於1×1017cm-3;該第二導電型半導體層、以及該低濃度第一導電型半導體層與該第二導電型半導體層之間的介面含有鉑。 A semiconductor device, comprising: a low-concentration first conductivity type semiconductor layer, whose conductivity type is the first conductivity type; a second conductivity type semiconductor layer, disposed on the low concentration first conductivity type semiconductor layer, whose conductivity type is The second conductivity type; and a passivation layer disposed on a part of the second conductivity type semiconductor layer; wherein, the doping concentration at a distance within 30 μm from one side of the second conductivity type semiconductor layer is less than or equal to 1×10 19 cm -3 , and greater than or equal to 1×10 17 cm -3 ; the second conductivity type semiconductor layer and the interface between the low concentration first conductivity type semiconductor layer and the second conductivity type semiconductor layer contain platinum. 如請求項1所述的半導體裝置,其中該第二導電型半導體層的厚度大於等於50μm。 The semiconductor device according to claim 1, wherein the thickness of the second conductivity type semiconductor layer is greater than or equal to 50 μm. 如請求項1或2所述的半導體裝置,其中在距離該第二導電型半導體層的一側的面20μm以內的距離處的摻雜濃度大於等於1×1018cm-3The semiconductor device according to claim 1 or 2, wherein the doping concentration at a distance within 20 μm from one side surface of the second conductivity type semiconductor layer is greater than or equal to 1×10 18 cm −3 . 一種半導體裝置,進一步包含:低濃度第一導電型半導體層,由第一導電型構成;第二導電型半導體層,設置在該低濃度第一導電型半導體層上,且由第二導電型構成;以及鈍化層,設置在第二導電型半導體層的一部分上,其中,距離該第二導電型半導體層的一側的面30μm以內的距離處的雜質濃度
Figure 110105553-A0305-02-0016-11
1×1019cm-3
Figure 110105553-A0305-02-0016-12
1×1017cm-3, 該第二導電型半導體層、以及該低濃度第一導電型半導體層與該第二導電型半導體層之間的介面含有鉑,高濃度第一導電型半導體層,設置在該低濃度第一導電型半導體層的另一側,且該高濃度第一導電型半導體層的第一導電型的摻雜濃度大於該低濃度第一導電型半導體層的第一導電型的摻雜濃度;其中,起始於該第一導電型半導體層的端面,直至該高濃度第一導電型半導體層的第一導電型的摻雜濃度達到該低濃度第一導電型半導體層的第一導電型的摻雜濃度的1000倍為止的厚度方向上的距離D1、與起始於該低濃度第一導電型半導體層的端面,直至該第二導電型半導體層的第二導電型的摻雜濃度達到該低濃度第一導電型半導體層的第一導電型的摻雜濃度的1000倍為止的厚度方向上的距離D2之間的關係滿足公式:1.1×D2
Figure 110105553-A0305-02-0017-13
D1
Figure 110105553-A0305-02-0017-15
0.9×D2。
A semiconductor device, further comprising: a low-concentration first conductivity type semiconductor layer composed of the first conductivity type; a second conductivity type semiconductor layer disposed on the low-concentration first conductivity type semiconductor layer and composed of the second conductivity type and a passivation layer disposed on a part of the second conductivity type semiconductor layer, wherein the impurity concentration at a distance within 30 μm from one side surface of the second conductivity type semiconductor layer
Figure 110105553-A0305-02-0016-11
1×1019cm-3
Figure 110105553-A0305-02-0016-12
1×1017cm-3, the second conductivity type semiconductor layer, and the interface between the low concentration first conductivity type semiconductor layer and the second conductivity type semiconductor layer contains platinum, and the high concentration first conductivity type semiconductor layer is arranged on The other side of the low-concentration first conductivity type semiconductor layer, and the first conductivity type doping concentration of the high concentration first conductivity type semiconductor layer is greater than the first conductivity type doping concentration of the low concentration first conductivity type semiconductor layer impurity concentration; wherein, starting from the end surface of the first conductivity type semiconductor layer, until the doping concentration of the first conductivity type of the high concentration first conductivity type semiconductor layer reaches the first concentration of the low concentration first conductivity type semiconductor layer The distance D1 in the thickness direction up to 1000 times the doping concentration of the conductivity type, and the doping of the second conductivity type starting from the end surface of the low-concentration first conductivity type semiconductor layer to the second conductivity type semiconductor layer The relationship between the distance D2 in the thickness direction until the concentration reaches 1000 times the doping concentration of the first conductivity type of the low-concentration first conductivity type semiconductor layer satisfies the formula: 1.1×D2
Figure 110105553-A0305-02-0017-13
D1
Figure 110105553-A0305-02-0017-15
0.9×D2.
如請求項4所述的半導體裝置,其中,起始於該低濃度第一導電型半導體層的端面,直至該第二導電型半導體層的第二導電型的摻雜濃度達到該低濃度第一導電型半導體層的第一導電型的摻雜濃度的1000倍為止的厚度方向上的距離D2為20μm~40μm。 The semiconductor device according to claim 4, wherein, starting from the end surface of the low-concentration first conductivity type semiconductor layer, until the doping concentration of the second conductivity type of the second conductivity type semiconductor layer reaches the low-concentration first The distance D2 in the thickness direction up to 1000 times the doping concentration of the first conductivity type of the conductivity type semiconductor layer is 20 μm to 40 μm. 如請求項1、2、4或5所述的半導體裝置,其中該鈍化層為玻璃層。 The semiconductor device as claimed in claim 1, 2, 4 or 5, wherein the passivation layer is a glass layer. 一種半導體裝置的製造方法,包括:準備半導體基板的製程,該半導體基板具有:由第一導電型構成的低濃度第一導電型半導體層、以及設置在該低濃度第一導電型半導體層上,且由第二導電型構成的第二導電型半導體層;在第二導電型半導體層的一部分上設置鈍化層的製程;使鉑滲透到該第二導電型半導體層內的製程;以及 對該半導體基板以及該鈍化層加熱的製程,其中,距離該第二導電型半導體層的一側的面30μm以內的距離處的摻雜濃度小於等於1×1019cm-3,且大於等於1×1017cm-3,該第二導電型半導體層、以及該低濃度第一導電型半導體層與該第二導電型半導體層之間的介面含有鉑。 A method of manufacturing a semiconductor device, comprising: a process of preparing a semiconductor substrate, the semiconductor substrate having: a low-concentration first conductivity type semiconductor layer composed of a first conductivity type; and being disposed on the low-concentration first conductivity type semiconductor layer, And the second conductivity type semiconductor layer composed of the second conductivity type; the process of providing a passivation layer on a part of the second conductivity type semiconductor layer; the process of making platinum penetrate into the second conductivity type semiconductor layer; and the semiconductor A process for heating the substrate and the passivation layer, wherein the doping concentration at a distance within 30 μm from one side of the second conductivity type semiconductor layer is less than or equal to 1×10 19 cm -3 and greater than or equal to 1×10 17 cm −3 , the second conductivity type semiconductor layer, and the interface between the low concentration first conductivity type semiconductor layer and the second conductivity type semiconductor layer contains platinum.
TW110105553A 2020-02-19 2021-02-18 Semiconductor device and method for manufacturing semiconductor device TWI806005B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-025740 2020-02-19
JP2020025740A JP7505892B2 (en) 2020-02-19 Semiconductor device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW202135170A TW202135170A (en) 2021-09-16
TWI806005B true TWI806005B (en) 2023-06-21

Family

ID=77275670

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110105553A TWI806005B (en) 2020-02-19 2021-02-18 Semiconductor device and method for manufacturing semiconductor device

Country Status (2)

Country Link
CN (1) CN113284938A (en)
TW (1) TWI806005B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965181A (en) * 1972-10-25 1974-06-24
JP4965181B2 (en) 2006-07-31 2012-07-04 有限会社鈴木軽合金 Molding device for spherical mold

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199733A (en) * 1996-01-16 1997-07-31 Hitachi Ltd Semiconductor device and its manufacture
JP2002373897A (en) * 2001-06-14 2002-12-26 Nippon Inter Electronics Corp Method for fabricating diode
JP2004006664A (en) * 2002-04-10 2004-01-08 Sanken Electric Co Ltd Manufacturing method of semiconductor device
CN100555668C (en) * 2004-08-27 2009-10-28 松下电器产业株式会社 Semiconductor device for surge protection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965181A (en) * 1972-10-25 1974-06-24
JP4965181B2 (en) 2006-07-31 2012-07-04 有限会社鈴木軽合金 Molding device for spherical mold

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
本案自述先前技術 *

Also Published As

Publication number Publication date
TW202135170A (en) 2021-09-16
CN113284938A (en) 2021-08-20
JP2021132082A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
US9905666B2 (en) Trench schottky rectifier device and method for manufacturing the same
US6221688B1 (en) Diode and method for manufacturing the same
US9064904B2 (en) MOS P-N junction Schottky diode device and method for manufacturing the same
US20060237813A1 (en) Junction barrier schottky with low forward drop and improved reverse block voltage
JP2004515080A5 (en)
JP2000516767A (en) SiC semiconductor device including pn junction having voltage absorbing edge
CN107331616A (en) A kind of trench junction barrier schottky diode and preparation method thereof
CN108346688B (en) SiC trench junction barrier Schottky diode with CSL transport layer and manufacturing method thereof
JP4126359B2 (en) Silicon carbide Schottky diode and manufacturing method thereof
TWI440096B (en) Schottky diode and method of manufacture
JP4942255B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
TWI806005B (en) Semiconductor device and method for manufacturing semiconductor device
CN114122150A (en) Preparation method and application of silicon carbide power diode
JP2005135972A (en) Manufacturing method of semiconductor device
CN111081758A (en) SiC MPS structure for reducing on-resistance and preparation method thereof
JP3635956B2 (en) Method for manufacturing silicon carbide Schottky barrier diode
JP7505892B2 (en) Semiconductor device and method for manufacturing the same
CN210349845U (en) Silicon carbide junction barrier Schottky diode
CN113972261A (en) Silicon carbide semiconductor device and preparation method
CN113140612A (en) Terminal structure of silicon carbide power device and preparation method thereof
CN112310227A (en) High-potential-barrier SiC JBS device and preparation method thereof
CN110931548A (en) Semiconductor device structure and manufacturing method thereof
JP3067034B2 (en) Schottky barrier semiconductor device
US20240105859A1 (en) Schottky barrier diode
JP2005079233A (en) Schottky diode and its manufacturing method