WO1997011186A1 - Verfahren zur herstellung von natriuretischen peptiden über streptavidin-fusionsproteine - Google Patents

Verfahren zur herstellung von natriuretischen peptiden über streptavidin-fusionsproteine Download PDF

Info

Publication number
WO1997011186A1
WO1997011186A1 PCT/EP1996/004061 EP9604061W WO9711186A1 WO 1997011186 A1 WO1997011186 A1 WO 1997011186A1 EP 9604061 W EP9604061 W EP 9604061W WO 9711186 A1 WO9711186 A1 WO 9711186A1
Authority
WO
WIPO (PCT)
Prior art keywords
fusion protein
peptide
protein
amino acids
streptavidin
Prior art date
Application number
PCT/EP1996/004061
Other languages
English (en)
French (fr)
Inventor
Erhard Kopetzki
Original Assignee
Boehringer Mannheim Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Mannheim Gmbh filed Critical Boehringer Mannheim Gmbh
Priority to AU71300/96A priority Critical patent/AU7130096A/en
Priority to JP9512381A priority patent/JPH11511333A/ja
Priority to EP96932542A priority patent/EP0851930A1/de
Publication of WO1997011186A1 publication Critical patent/WO1997011186A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/36Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Actinomyces; from Streptomyces (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/58Atrial natriuretic factor complex; Atriopeptin; Atrial natriuretic peptide [ANP]; Cardionatrin; Cardiodilatin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the invention relates to a process for the recombinant production of natriuretic peptides (NP peptides) by expression of streptavidin fusion proteins and subsequent cleavage of the fusion proteins with a suitable restriction endoprotease.
  • NP peptides natriuretic peptides
  • Natriuretic peptides are peptides with natriuretic activity which are formed in the cardiac ventricle, the adrenal gland and the brain from a precursor polypeptide (prohormone) and which have a ring of 17 amino acids as a structural element which is separated by a disulfide bend between two Cysteine residues is formed.
  • Precursor polypeptides are e.g. B the "atrial” natriuretic peptide (ANP 1-126) or cardiodilatin (CCD 1-126) and the "brain" natriuretic peptides of the B and C type
  • Urodilatin (CDD 95-126) is a natriuretic peptide which can be obtained from human urine (Forssmann, K. et al, Clin. Klisch. 66 (1988) 752-759 (20).
  • the peptide has a length of 32 amino acids, forms a ring of 17 amino acids through the formation of a disulfide bridge between two cysteine residues and belongs to the Cardio ⁇ dilatin / "atrial" -natriuretic peptide (CDD / ANP) family.
  • Urodilatin Like ⁇ -ANP (99 - 126), from the ANP propeptide (ANP 1-126) Urodilatin (CCD 95-126) is probably produced in vivo by cleavage of this propeptide between amino acids 94 and 95.
  • the approximately 3.5 kDa urodilatin peptide differs ⁇ -ANP (99-126) peptide by a 4-amino acid extension at the N-terminus
  • the amino acid sequence and the structure of urodilatin are described, for example, in Drummer, C et al., Pflugers Archiv, European J. of Physiol.
  • Urodilatin binds to the membrane-bound ANP receptors A and B and activates an intracellular guanylate cyclase coupled to the receptor. This causes the formation of the "second messenger" cGMP, which mediates the diuretic and natriuretic effects in the kidney and the relaxing effect on the smooth vascular muscles. (Heim, JM, Biochem. Biophys. Res. Commun. 163 (1989) 37-41 (22)). Urodilatin is thus a preferred therapeutic agent for the prophylaxis and therapy of acute kidney failure, e.g. B. in patients after heart or liver transplants (Bub, A. et al., Histochem. J.
  • propeptide of ⁇ -ANP (99-126) or urodilatin is usually carried out by chemical peptide synthesis (Kent, SBH et al., Banburi Rep. 29 (1988) 3-20 (1); Hodson, JH, Bio / Technology 11 (1993) 1309-1310 (2)).
  • soluble fusion proteins with a selective cleavage sequence and subsequent release of the desired peptide by chemical or enzymatic cleavage (Sharma, A. et al., Proc. Natl. Acad. Sei. USA 91 (1994) 9337 - 9341 (29); Gram, H., Bio / Technology 12 (1994) 1017-1023) (30).
  • the disadvantage of soluble fusion proteins is in particular that they can be degraded in the unstructured peptide region by proteolysis already in the cell or during secretion and processing.
  • streptavidin fusion proteins The production of streptavidin fusion proteins is described in Sano, T. et al., Biochem. Biophys. Res. Commun. 176 (1991) 571-577 (9) and Sano, T. et al., Proc. Natl. Acad. Sei., USA 89 (1992) 1534-1538 (10).
  • the chimeric protein comprises, as streptavidin portion, the amino acids 16-133 of streptavidin, a polylinker and the sequence of the "target protein".
  • Sano describes the mouse metallothionein I protein and the T7 gene 10 protein as target proteins. However, these chimeric proteins did not contain a cleavage site via which the "target protein" can be cleaved off from the streptavidin portion.
  • the object of the present invention is to provide a method by which NP peptides, preferably C-terminal ANP (1-126) peptide fragments (amino acids (AS) 1 - 126), how the fragments AS 95 - 126 (urodilatin), AS 99 - 126 ( ⁇ -ANP) or AS 102 - 126 can be produced in high yield and purity.
  • NP peptides preferably C-terminal ANP (1-126) peptide fragments (amino acids (AS) 1 - 126), how the fragments AS 95 - 126 (urodilatin), AS 99 - 126 ( ⁇ -ANP) or AS 102 - 126 can be produced in high yield and purity.
  • the object is achieved according to the invention by a method for the recombinant production of an NP peptide by expression of a DNA in prokaryotes, which is used for a fusion protein from streptavidin, which is C-terminal with the N-terminus of the said NP peptide via a peptide sequence (hereinafter also referred to as linker), which contains at least one lysine at the C-terminus and is cleavable by endoproteinase LysC, is coded, isolation of the insoluble, inactive protein, solubilization of the inactive protein, cleavage of the fusion protein with endoproteinase LysC and isolation of the desired one NP peptide.
  • linker a peptide sequence
  • endoproteinase LysC cleaves the fusion proteins according to the invention completely, although it is known that endoproteinase LysC cleaves fusion proteins usually only very ineffectively (Allen, G. et al., J. Cell. Sei. Suppl. 3 (1985) 29-38) (40) .
  • endoproteinase LysC essentially cleaves the fusion protein only on the lysine of the linker. This is particularly surprising since it would have been expected that endoproteinase LysC would also cleave at the 4 lysine residues of the streptavidin portion of the fusion protein. Since the cleavage is also fast and practically complete, the combination of streptavidin fusion protein and cleavage with endoproteinase LysC represents a particularly suitable system for the recombinant production of urodilatin.
  • Endoproteinase LysC is an endoproteinase that specifically cleaves proteins and peptides at the C-terminal end of lysine.
  • Such an enzyme is known, for example, from fungi or bacteria (DE 30 34 045 C2).
  • Endoproteinase LysC from bacteria is a protein with a molecular weight of 35 - 38 kDa.
  • the pH optimum is 7.7 and the enzyme is inhibited by aprotinin.
  • the specific activity, measured with tosyl-glycyl-prolyl-lysyl-p-nitroaniline at 25 ° C, is approx. 25 U / mg or approx. 50 Azocoll® units / mg enzyme at 37 ° C.
  • the enzyme can be isolated and purified, for example, from the Lysobacteraceae culture broth.
  • Endoproteinase-LysC (EC 3.4.21.50) from Lysobacter Enzymogenes is available from Boehringer Mannheim GmbH, Germany, Order No. 476986.
  • Endoproteinase LysC is used to cleave fusion proteins that do not contain lysine residues (Ladisch, MR (Editor) Protein Purification ACS-Symposium, Series 427, American Chemical Society, Washington DC 1990, 189 (31); Allen, G. et al., J. Cell. Sci. Suppl. 3 (1985) 29 (32)).
  • a linker in the sense of the present invention, is to be understood as a short-chain peptide sequence which preferably consists of 5-15 amino acids and contains at least one Lys as a cleavage site for endoproteinase LysC.
  • This linker preferably contains a combination of several amino acids, selected from the amino acids Gly, Thr, Ser, Ala, Pro, Asp, Glu, Arg and Lys.
  • a linker is particularly preferably used in which 2-8 of these amino acids are the negatively charged amino acids Asp and / or Glu. The linker expediently ends at the C-terminal with Lys.
  • 5-15 amino acids” and “2-8 of these amino acids” are to be understood such that in the case of a linker which consists of 5 amino acids, at least one amino acid is Lys and, in the preferred embodiment, 2-3 of the amino acids Asp and / or are glu.
  • a linker consisting of 9 amino acids 2-8 of the amino acids can be Asp and / or Glu in the preferred embodiment.
  • the 9th amino acid is Lys.
  • nucleic acids encoding the fusion protein (preferably DNA) can be carried out according to the known methods as described in Sambrook, J. et al. (1989) (6).
  • Streptavidin for example, as described in EP-B 0 198 015 (7) and EP-A 0 612 325 (8), can be used as streptavidin.
  • Other streptavidin derivatives or fragments as described for example by Sano, T. et al., (9), are also suitable.
  • a streptavidin which is truncated (shortened) at the N-terminus and / or C-terminus is preferably used as streptavidin. This prevents aggregation and proteolysis (Sano, T. et al., (9)).
  • a streptavidin is preferably used which begins with amino acids 10-20 and ends with amino acids 130-140 (numbering analogously: Argarana CE. Et al., Nucl. Acids Res. 14 (1986) 1871-1882 (23)).
  • a streptavidin of amino acids 16-133 or 13-139 is preferably used.
  • Natriuretic peptides in the sense of the invention are peptides with natriuretic activity which are formed in the ventricle of the heart, the adrenal gland and the brain from a precursor polypeptide (prohormone) and which have a ring of 17 amino acids as structural element, which is formed by a disulfide bridge between two cysteine residues.
  • Precursor polypeptides are e.g. B. the "atrial" natriuretic peptide (ANP 1-126) or cardiodilatin (CCD 1-126) and the "brain" natriuretic peptides of the B and C type.
  • Preferred NP peptides are derived from the "human ⁇ atrial-natriuretic peptide" (h ⁇ ANP).
  • h ⁇ ANP human ⁇ atrial-natriuretic peptide
  • the C-terminal h ⁇ ANP fragments of amino acids 95-126, 99-126 and 102-126 are particularly preferred.
  • the fusion proteins are produced by expressing a DNA which codes for the fusion protein in prokaryotic or eukaryotic host cells, preferably in prokaryotes.
  • a DNA suitable for expression can preferably be produced synthetically. Such methods are familiar to the person skilled in the art and are described, for example, in Beattie K.L. and Fowler, R.F., Nature 352 (1991) 548-549 (33); EP-B 0 424 990 (34); Itakura, K. et al., Science 198 (1977) 1056-1063 (35).
  • the nucleic acid sequence of the proteins according to the invention can expediently be modified. Such modifications are, for example:
  • E.coli, Streptomyces or Bacillus are suitable as prokaryotic host organisms.
  • Suitable eukaryotic host cells are, for example, yeasts such as Saccharomyces, Pichia, Hansenula and Kluyveromyces and fungi such as Aspergillus and Trichoderma.
  • yeasts such as Saccharomyces, Pichia, Hansenula and Kluyveromyces
  • fungi such as Aspergillus and Trichoderma.
  • the prokaryotic cells are transfected in the usual way with the vector which contains the DNA coding for the fusion protein and then fermented in the usual way. After the cells have been disrupted, the protein is isolated in the customary manner and, if appropriate, purified using immobilized biotin or derivatives thereof, preferably using AfFinity chromatography.
  • the protein is not expressed in soluble form and accumulates in prokaryotes in inactive form (IBs, “inelusion bodies”), it is expediently solubilized according to the processes familiar to the person skilled in the art with a denaturing agent such as guanidine hydrochloride or urea and by dilution or dialysis in a suitable buffer natured The dilution takes place in such a way that the denaturing agent is then diluted at least to such an extent that it no longer exhibits a denaturing effect
  • the dilution is preferably carried out in a pulsed manner, for example by dropping the solubilizate in buffer which does not contain any denaturing agent
  • Such a pulse-like dilution enables a practically simultaneous removal of the action of the denaturing agent and separation of the molecules to be naturalized. This largely avoids an undesired intermolecular interaction (aggregation) of the molecules to be naturalized.
  • the naturalization takes place in the presence of naturalizing aids.
  • naturalizing methods and naturalizing aids are known to the person skilled in the art and for example in US Pat. No. 5,077,392 (36), in the EP B 0 114 506 (37) and Marston, FA O, Biochem J 214 (1986) 1 - 12 (38) and Light, A, Biotechniques 3 (1985) 297 - 306 (39).
  • the "inelusion bodies” are expediently for this purpose solubilized with the denaturing agent in the case of cysteine-containing peptides, if appropriate in the presence of a reducing agent, dilutes the denaturing agent to such an extent that it no longer has a denaturing effect and permits the fusion protein to fold into a state in which its protein domains can assume the natural state This state is characterized in that the disulfide bridges are natively linked in it and the fusion protein even without a high concentration The denaturing agent is then soluble and then cleaved with endoproteinase LysC
  • dithiorythritol, dithiothreitol or mercaptoethanol is preferably used as the reducing agent.
  • Naturation is then expediently carried out in the presence of a redox system, such as oxidized and reduced glutathione or cysteine
  • the expression vector for the core-SA-URO (95-126) fusion gene with endoproteinase LysC cleavage site is based on the expression vector pSAM-CORE for core streptavidin.
  • the preparation and description of the plasmid pSAM-CORE is described in WO 93/09144 ( 11) described.
  • the unique Nhei restriction site located at the 3 'end was used in front of the stop codon of the core-SA gene
  • DNA segment A (FIG. 1) and oligonucleotides 3 (SEQ ED NO: 5) and 4 (SEQ ID NO: 6)
  • GGCCGCATGGACCGTATCGGTGCTCAGTCCGGACTGGGTTGCAACTCCTTCCGTT ACTAATGA SEQ ID NO: 5
  • DNA segment B (FIG. 1) "aged” (reaction buffer: 12.5 mmol / 1 Tris-HCl, pH 7.0 and 12.5 mmol / 1 MgCl2; oligonucleotide concentration: 1 pmol / 60 ⁇ l in each case ) and the hybridization products A and B each subcloned into the polylinker region of the E. coli pUCBM21 vector (Boehringer Mannheim GmbH, Mannheim, Germany) (DNA segment A, interfaces: EcoRI and Notl; DNA segment B, interfaces: Notl and Hindlll). The DNA sequence of the two subcloned DNA segments was confirmed by means of DNA sequencing.
  • the expression plasmid pSA-EK-URO for the core-SA-URO (95-126) fusion gene was then used in a three-fragment ligation from the Nhe / Notl-DNA segment A, the Notl / Hindlll-DNA segment B and the approx. 2.9 kBp long Nhel / Hindlll-pSAM-CORE vector fragment composed. After double digestion, the DNA segments A and B were isolated with the corresponding endonucleases from the corresponding pUCBM21 plasmid derivatives. The desired plasmid pSA-EK-URO was identified by restriction mapping and the DNA sequence of the linker urodilatin region was checked again by DNA sequencing.
  • Example 1 To express the core-SA fusion protein, the E. coli Kl 2 strain RM82 (a methionine revertant from ED 8654, Murray, NE et al. (1977)) (14) was compared with that in Example 1 described expression plasmid pSA-EK-URO and the lacIl repressor plasmid pUBS500 (kanamycin resistance, production and description see: EP-A 0368342).
  • the RM82 / pUBS500 / pSA-EK-URO cells were in DYT medium (1% (w / v) yeast extract, 1% (w / v) Bacto Tryptone (Difco, Detroit, USA) and 0.5% NaCl, with 50 mg / 1 ampicillin and 50 mg / 1 kanamycin to an optical density at 550 nm of 0.6 - 0.9 and then with IPTG (isopropyl-ß-D-thiogalactoside) (1 - 5 mmol / l final concentration After an induction phase of 4-8 hours, the cells were harvested by centrifugation and the cell pellets were washed with 25 mmol / l potassium phosphate buffer, pH 7.5.
  • the cell pellets from 1 ml of centrifuged growth medium (RM82 / pUBS500 / pSA-EK-URO cells) were resuspended in 0.25 ml of 10 mmol / l phosphate buffer, pH 6.8 and 1 mmol / l EDTA and the cells were disrupted by ultrasound treatment . After centrifugation, the supernatant was mixed with 1/5 volume of 5 ⁇ SDS sample buffer (1 ⁇ SDS sample buffer: 50 mmol / l Tris-HCl, pH 6.8, 1% SDS, 1% mercaptoethanol, 10% glycerol, 0.001% bromophenol blue) .
  • the insoluble cell debris fraction was resuspended in 0.3 ml lxSDS sample buffer with 6-8 M urea, the samples were incubated for 5 minutes at 95 ° C. and centrifuged. The proteins were then separated by SDS-polyacrylamide gel electrophoresis (PAGE) (Laemmli, U.K. (1970)) (15) and stained with Coomassie Brilliant Blue R dye.
  • PAGE SDS-polyacrylamide gel electrophoresis
  • the core-SA fusion protein synthesized in E. coli was homogeneous and was found exclusively in the insoluble cell debris fraction (IBs).
  • the level of expression for the core-SA fusion protein was 30-50% based on the total E. coli protein.
  • E. coli RM82 / pUBS500 / pSA-EK-URO cells 200 g (wet weight) of E. coli RM82 / pUBS500 / pSA-EK-URO cells were suspended in 1 10 0.1 mol / 1 Tris-HCl, pH 7.0 at 0 ° C., 300 mg of lysozyme were added and 20 minutes incubated at 0 ° C. The cells were then completely opened mechanically by means of high-pressure dispersion and the DNA was digested in 30 minutes at 25 ° C. by adding 2 ml of 1 mol / 1 MgCl2 and 10 mg of DNAse (Boehringer Mannheim # 154709).
  • the pellet was suspended in 1 1 0.1 mol / l Tris-HCl, 20 mmol / l EDTA, pH 6.5, incubated for 30 minutes at 25 ° C. and the IB preparation was isolated by centrifugation.
  • IB pellet 25 g were suspended in 200 ml of 0.1 mol / l sodium phosphate buffer, 6 mol / l guanidine-HCl, 10 mmol / l EDTA, pH 7.0 by stirring at 25 ° C. for 2 hours. The insoluble constituents were removed by centrifugation and the clear supernatant was processed further.
  • the renaturation was carried out in a BioFlo II fermenter (New Brunswick Scientific Co., Inc.Edison, NJ, USA) at 16 ° C. with stirring (300 rpm) by continuously adding 200 ml of core-SA fusion protein solubilisate in 5 1 20 mmol / l sodium phosphate, pH 7.0, 5 mmol / l EDTA by means of a pump (delivery rate: 15-20 ml / hour).
  • the renaturation mixture was concentrated by cross-flow filtration in a Minisette (membrane type: Nova K10) from Filtron (Karlstein, Germany) and dialyzed against a desired buffer if necessary to remove guanidine-HCl.
  • Minisette membrane type: Nova K10
  • Filtron Karlstein, Germany
  • the core-SA fusion protein was purified directly from the filtered and concentrated renaturate by affinity chromatography on iminobiotin-Sepharose
  • the gel suspension was incubated at room temperature with gentle shaking overnight and then on a frit with 5 1 10 mmol / l potassium phosphate buffer, pH 7.5 with 150 mmol / l NaCl and 20% DMSO, 3 1 deionized water and 3 1 10 mmol / l potassium phosphate buffer, pH 7.5 with 150 mmol / l NaCl
  • a column was filled with exactly 1 ml iminobiotin-Sepharose 4B and equilibrated with 50 mmol / l ethanolamine buffer, pH 9.5 with 0.5 mmol / l NaCl. Then a core-SA solution with a concentration was added of 1 mg / ml applied in equilibration buffer
  • the loading capacity / ml affinity gel (30-40 mg core-SA / ml gel) was determined by measuring the absorption at 280 nm in the eluate and determining the application volume.
  • the core-SA-EK-URO fusion protein was in a concentration of 0.3 to 3 mg / ml and a substrate / protease ratio of 1: 1000 to 1: 25000 (endoproteinase LysC from Lysobacter enzymogenes, sequencing grade; Boehringer Mannheim , Mannheim, Germany) in 50 mmol / I Tris-HCl, pH 8.0 at 30 to 35 ° C and the time course of the enzymatic cleavage was analyzed by analytical reversed phase HPLC (see Example 8). For this purpose, samples (10 to 100 ⁇ l) were taken at intervals of 1 to 3 hours from the reaction mixture over a period of 6 to 24 hours.
  • the enzymatically released peptide can be further purified using chromatographic methods known to the person skilled in the art.
  • the core-SA carrier protein can be separated from the cleavage mixture by negative chromatography on iminobiotin-Sepharose, as described in Example 5 for the core-SA fusion protein
  • the reaction mixture is adjusted to a pH of 9 to 9.5 with ethanolamine and the core-SA carrier protein and uncleaved core-SA fusion protein are separated off by affinity binding to iminobiotin.
  • the sample volume was 10-100 ⁇ l, corresponding to 1-100
  • the detection was carried out with a UV detector at 220 nm. Chromatography was carried out at a flow rate of 0.5 ml / min.
  • the identity and purity of the purified peptide can be determined, for example, by mass spectroscopy (PD-MS and laser desorption spectroscopy), analytical reversed phase HPLC, isoelectric focusing (Bark, JE et al, J Forensic Sei Soc 16 (1976) 115-120 (42) , SDS PAGE (Laemmli, UK, Nature 227 (1970) 680-685 (43)) and capillary electrophoresis, in comparison with a chemically produced standard

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Endocrinology (AREA)
  • Cardiology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Ein Verfahren zur rekombinanten Herstellung von NP-Peptiden durch Expression eine DNA in Prokaryonten oder Eukaryonten, welche für ein Fusionsprotein aus Streptavidin und dem genannten Peptid codiert, ist besonders zur Herstellung von Urodilatin sowie dessen Fragmente geeignet.

Description

Verfahren zur Herstellung von natriuretischen Peptiden über Streptavidin-Fusionsproteine
Gegenstand der Erfindung ist ein Verfahren zur rekombinanten Herstellung von natriureti¬ schen Peptiden (NP-Peptiden) durch Expression von Streptavidin-Fusionsproteinen und anschließender Spaltung der Fusionsproteine mit einer geeigneten Restriktionsendoprotease.
Natriuretische Peptide (NP-Peptide) sind Peptide mit natriuretischer Aktivität, die im Herz- Ventrikel, der Nebenniere und dem Gehirn aus einem Precursorpolypeptid (Prohormon) gebil¬ det werden und als Strukturelement einen Ring aus 17 Aminosäuren aufweisen, der durch eine Disulfidbnicke zwischen zwei Cysteinresten ausgebildet wird. Precursorpolypeptide sind z. B das "atrial"-natriuretische Peptid (ANP 1 - 126) oder Cardiodilatin (CCD 1 - 126) und die "brain" -natriuretischen Peptide vom B- und C-Typ
Urodilatin (CDD 95 - 126) ist ein natriuretisches Peptid, welches aus humanem Urin gewon¬ nen werden kann (Forssmann, K. et al, Clin. Wochensch. 66 (1988) 752 - 759 (20). Das Peptid hat eine Länge von 32 Aminosäuren, bildet einen Ring aus 17 Aminosäuren durch die Ausbildung einer Disulfidbrücke zwischen zwei Cysteinresten und gehört zu der Cardio¬ dilatin/" atrial" -natriuretischen Peptid (CDD/ANP)-Familie. Es entsteht, ebenso wie α-ANP (99 - 126), aus dem ANP-Propeptid (ANP 1 - 126). Urodilatin (CCD 95 - 126) entsteht in vivo vermutlich durch Spaltung dieses Propeptids zwischen den Aminosäuren 94 und 95. Das ca. 3,5 kDa schwere Urodilatin-Peptid unterscheidet sich vom α-ANP (99 - 126)-Peptid durch eine 4-Aminosauren-Verlangerung am N-Terminus. Die Aminosäuresequenz und die Struktur von Urodilatin sind beispielsweise in Drummer, C et al., Pflugers Archiv, European J. of Physiol. 423 (1993) 372 - 377 (21) beschrieben. Urodilatin bindet an die membranständigen ANP-Rezeptoren A und B und aktiviert eine an den Rezeptor gekoppelte intrazellulare Guanylatcyklase. Dies bewirkt die Bildung des "second messengers" cGMP, der die diureti- schen und natriuretischen Wirkungen in der Niere und die relaxierende Wirkung auf die glatte Gefäßmuskulatur vermittelt. (Heim, J.M., Biochem. Biophys. Res. Commun. 163 (1989) 37 - 41 (22)). Damit ist Urodilatin ein bevorzugtes Therapeutikum zur Prophylaxe und Therapie des akuten Nierenversagens, z. B. bei Patienten nach Herz- oder Lebertransplanta¬ tionen (Bub, A. et al., Histochem. J. (Suppl.) 24 (1992) 517 (2-4); Drummer, C. et al., J. Am. Soc. Nephrol. 1 (1991) 1109 - 1 113 (25) und Am. J. Physiol. 262 (1992) F 744 - 754 (26); Emmeluth, C. et al., Am. J. Physiol. 262 (1992) F 513 - F 516 (27); Goetz, K.L. et al., J. Am. Soc. Nephrol. 1 (1990) 867 - 874 (28)). Die synthetische Herstellung von C-tsrminalen Fragmenten des ANP (1 - 126), wie z. B. des Propeptids von α-ANP (99 - 126) oder Urodilatin erfolgt üblicherweise durch chemische Peptidsynthese (Kent, S.B.H. et al., Banburi Rep. 29 (1988) 3 - 20 (1); Hodson, J.H., Bio/Technology 11 (1993) 1309 - 1310 (2)).
Die Nachteile der chemischen Peptidsynthese liegen insbesondere darin, daß sich bei der Syn¬ these häufig unerwünschte Modifizierungen (Fehlsequenzen, nicht abgespaltene Schutzgrup¬ pen) bilden. Weitere Probleme sind die Racemisierung bei Fragment kopplung, Schwierigkeiten bei der Abspaltung von Schutzgruppen und schließlich die aufwendige Reinigung.
Zur rekombinanten Herstellung von Peptiden können verschiedene Verfahren angewendet werden (Kopetzki, E. et al. (1994) (3); Winnacker, E.-L. (1987) (4); Harris, T.J.R. (1983) (5)). Beispielsweise kann eine direkte Expression im Cytoplasma von Mikroorganismen oder Zellinien erfolgen. Hierfür ist jedoch eine Mindestpolypeptidlänge von ca. 80 - 100 Aminosäu¬ ren erforderlich. Kleinere Peptide sird nicht stabil und werden durch Proteolyse abgebaut. Zudem enthalten diese Proteine in der Regel ein zusätzliches N-terminales Methionin, und die Ausbeuten sind sehr gering.
Durch Expression löslicher Fusionsproteine mit selektiver Spaltsequenz und anschließender Freisetzung des gewünschten Peptids durch chemische oder enzymatische Spaltung, kann die Herstellung solcher Peptide verbessert werden (Sharma, A. et al., Proc. Natl. Acad. Sei. USA 91 (1994) 9337 - 9341 (29); Gram, H., Bio/Technology 12 (1994) 1017 - 1023) (30). Der Nachteil von löslichen Fusionsproteinen ist aber insbesondere, daß sie vorwiegend im nicht strukturierten Peptidbereich durch Proteolyse bereits in der Zelle bzw. während der Sekretion und Aufarbeitung degradiert werden können.
Die Herstellung von Streptavidin-Fusionsproteinen ist bei Sano, T. et al., Biochem. Biophys. Res. Commun. 176 (1991) 571 - 577 (9) und Sano, T. et al., Proc. Natl. Acad. Sei., USA 89 (1992) 1534 - 1538 (10) beschrieben Das chimäre Protein umfaßt als Streptavidinanteil die Aminosäuren 16 - 133 von Streptavidin, einen Polylinker und die Sequenz des "target -Pro¬ teins". Als target -Proteine sind von Sano das Maus Metallothionein I Protein und das T7-Gen-10-Protein beschrieben. Diese chimären Proteine enthielten jedoch keine Spaltstelle, über die das "target-Protein" vom Streptavidin-Anteil wieder abgespalten werden kann.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren bereitzustellen, mit dem NP-Peptide, vorzugsweise C-terminale ANP (1 - 126)-Peptidfragmente (Aminosäuren (AS) 1 - 126), wie die Fragmente AS 95 - 126 (Urodilatin), AS 99 - 126 (α-ANP) oder AS 102 - 126 in hoher Ausbeute und Reinheit hergestellt werden können.
Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur rekombinanten Herstellung eines NP-Peptids durch Expression einer DNA in Prokaryonten, welche für ein Fusionsprotein aus Streptavidin, welches C-terminal mit dem N-Terminus des genannten NP-Peptids über eine Peptidsequenz (im weiteren auch als Linker bezeichnet), welche mindestens ein Lysin am C-Terminus enthält und von Endoproteinase LysC spaltbar ist, verbunden ist, codiert, Isolie¬ rung des unlöslichen, inaktiven Proteins, Solubilisierung des inaktiven Proteins, Spaltung des Fusionsproteins mit Endoproteinase LysC und Isolierung des gewünschten NP-Peptids.
Endoproteinase LysC spaltet überraschenderweise die erfindungsgemäßen Fusionsproteine vollständig, obwohl bekannt ist, daß Endoproteinase LysC Fusionsproteine üblicherweise nur sehr ineffektiv spaltet (Allen, G. et al., J. Cell. Sei. Suppl. 3 (1985) 29 - 38) (40). Außerdem spaltet Endoproteinase LysC das Fusionsprotein im wesentlichen nur am Lysin des Linkers. Dies ist besonders überraschend, da zu erwarten gewesen wäre, daß Endoproteinase LysC auch an den 4 Lysinresten des Streptavidinanteils des Fusionsproteins spaltet. Da zudem die Spaltung schnell und praktisch vollständig verläuft, stellt die Kombination aus Streptavidin- Fusionsprotein und Spaltung mit Endoproteinase LysC ein besonders geeignetes System zur rekombinanten Herstellung von Urodilatin dar.
Endoproteinase LysC ist eine Endoproteinase, welche spezifisch am C-terminalen Ende von Lysin Proteine und Peptide spaltet. Ein solches Enzym ist beispielsweise aus Pilzen oder Bak¬ terien (DE 30 34 045 C2) bekannt. Endoproteinase LysC aus Bakterien ist ein Protein mit einem Molekulargewicht von 35 - 38 kDa. Das pH-Optimum liegt bei 7,7 und das Enzym wird durch Aprotinin gehemmt. Die spezifische Aktivität, gemessen mit Tosyl-Glycyl-Prolyl-Lysyl- p-Nitroanilin bei 25°C beträgt ca. 25 U/mg oder ca. 50 Azocoll®-Einheiten/mg Enzym bei 37°C. Das Enzym läßt sich beispielsweise aus der Kulturbrühe von Lysobacteraceae isolieren und reinigen. Endoproteinase-LysC (EC 3.4.21.50) aus Lysobacter Enzymogenes ist von der Boehringer Mannheim GmbH, Deutschland, Best. Nr. 476986 erhältlich. Endoproteinase LysC wird zur Spaltung von Fusionsproteinen verwendet, welche keine Lysinreste enthalten (Ladisch, M.R. (Editor) Protein Purification ACS-Symposium, Series 427, American Chemical Society, Washington D.C. 1990, 189 (31); Allen, G. et al., J. Cell. Sei. Suppl. 3 (1985) 29 (32)). Unter einem Linker, im Sinne der vorliegenden Erfindung, ist eine kurzkettige Peptidsequenz zu verstehen, welche vorzugsweise aus 5 - 15 Aminosäuren besteht und mindestens ein Lys als Spaltstelle für Endoproteinase LysC enthält. Vorzugsweise enthält dieser Linker eine Kombi¬ nation aus mehreren Aminosäuren, ausgewählt aus den Aminosäuren Gly, Thr, Ser, Ala, Pro, Asp, Glu, Arg und Lys. Besonders bevorzugt wird ein Linker verwendet, in dem 2 - 8 dieser Aminosäuren die negativ geladenen Aminosäuren Asp und/oder Glu sind. C-terminal endet der Linker zweckmäßig mit Lys.
Die Angaben "5 - 15 Aminosäuren" und "2 - 8 dieser Aminosäuren" sind so zu verstehen, daß bei einem Linker, der aus 5 Aminosäuren besteht, mindestens eine Aminosäure Lys ist und in der bevorzugten Ausführungsform 2 - 3 der Aminosäuren Asp und/oder Glu sind. Bei einem Linker, der aus 9 Aminosäuren besteht, können in der bevorzugten Ausführungsform 2 - 8 der Aminosäuren Asp und/oder Glu sein. Die 9. Aminosäure ist Lys.
Die Herstellung von das Fusionsprotein codierenden Nukleinsäuren (vorzugsweise DNA) kann nach den bekannten Verfahren, wie sie bei Sambrook, J. et al. (1989) (6) beschrieben sind, erfolgen.
Als Streptavidin kann beispielsweise Streptavidin, wie in der EP-B 0 198 015 (7) und EP-A 0 612 325 (8) beschrieben, verwendet werden. Weitere Streptavidin-Derivate oder - Fragmente, wie beispielsweise von Sano, T. et al., (9) beschrieben, sind ebenfalls geeignet. Als Streptavidin wird bevorzugt ein Streptavidin verwendet, welches am N-Terminus und/oder C-Terminus trunkiert (verkürzt) ist. Dadurch wird die Aggregation und Proteolyse verhindert (Sano, T. et al., (9)). Vorzugsweise wird ein Streptavidin verwendet, welches mit den Aminosäuren 10 - 20 beginnt und mit den Aminosäuren 130 - 140 endet (Numerierung analog: Argarana CE. et al., Nucl. Acids Res. 14 (1986) 1871 - 1882 (23)). Vorzugsweise wird ein Streptavidin der Aminosäuren 16 - 133 oder 13 - 139 verwendet.
Natriuretische Peptide (NP -Peptide), im Sinne der Erfindung, sind Peptide mit natriuretischer Aktivität, die im Ventrikel des Herzens, der Nebenniere und dem Gehirn aus einem Precursor- polypeptid (Prohormon) gebildet werden und als Strukturelement einen Ring aus 17 Aminosäuren aufweisen, der durch eine Disulfidbrücke zwischen zwei Cysteinresten ausgebil¬ det wird. Precursorpolypeptide sind z. B. das "atrial"-natriuretische Peptid (ANP 1 - 126) oder Cardiodilatin (CCD 1 - 126) und die "brain"-natriuretischen Peptide vom B- und C-Typ. Bevorzugte NP -Peptide leiten sich von dem "human α atrial-natriuretic peptide" (hαANP) ab. Besonders bevorzugt sind dabei die C-terminalen hαANP-Fragmente der Aminosäuren 95 - 126, 99 - 126 und 102 - 126.
Die Herstellung der Fusionsproteine erfolgt durch Expression einer DNA, welche für das Fusionsprotein codiert, in prokaryontischen oder eukaryontischen Wirtszellen, vorzugsweise in Prokaryonten. Die Herstellung einer für die Expression geeigneten DNA kann vorzugsweise synthetisch erfolgen. Derartige Verfahren sind dem Fachmann geläufig und beispielsweise in Beattie K.L. und Fowler, R.F., Nature 352 (1991) 548 - 549 (33); EP-B 0 424 990 (34); Itakura, K. et al., Science 198 (1977) 1056 - 1063 (35) beschrieben. Die Nukleinsäuresequenz der erfindungsgemäßen Proteine kann zweckmäßig modifiziert sein. Derartige Modifikationen sind beispielsweise:
— Veränderung der Nukleinsäuresequenz um verschiedene Erkennungssequenzen von Restriktionsenzymen zur Erleichterung der Schritte der Ligation, Klonierung und Muta¬ genese einzuführen.
— Veränderung der Nukleinsäuresequenz zum Einbau von bevorzugten Codons für die Wirtszelle.
— Ergänzung der Nukleinsäuresequenz um zusätzliche Regulations- und Transkriptions¬ elemente, um die Expression in der Wirtszelle zu optimieren.
Alle weiteren Verfahrensschritte zur Herstellung von geeigneten Expressionsvektoren und zur Expression sind Stand der Technik und dem Fachmann geläufig. Beschrieben sind derartige Methoden beispielsweise bei Sambrook, J. et al. (1989) (6).
Als prokaryontische Wirtsorganismen sind beispielsweise E.coli, Streptomyces oder Bacillus geeignet. Als eukaryontische Wirtszellen sind beispielsweise Hefen, wie Saccharomyces, Pichia, Hansenula und Kluyveromyces und Pilze, wie Aspergillus und Trichoderma geeignet. Zur Herstellung der erfindungsgemäßen Fusionsproteine werden die Prokaryontenzellen in üblicher Weise mit dem Vektor, welcher die für das Fusionsprotein codierende DNA enthält, transfiziert und anschließend in üblicher Weise fermentiert. Nach Aufschluß der Zellen wird das Protein in üblicher Weise isoliert und gegebenenfalls über immobilisiertes Biotin oder Derivate davon vorzugsweise über AfFinitätschromatographie gereinigt. Falls das Protein nicht loslich exprimiert wird und in inaktiver Form (IBs, "inelusion bodies") in Prokaryonten anfallt, wird es nach den dem Fachmann gelaufigen Verfahren zweckmäßig mit einem Denaturierungsmittel, wie Guanidinhydrochlorid oder Harnstoff solubilisiert und durch Verdünnung oder Dialyse in einen geeigneten Puffer naturiert Die Verdünnung erfolgt dabei in einer solchen Weise, daß danach das Denaturierungsmittel mindestens soweit verdünnt ist, daß es keine denaturierende Wirkung mehr zeigt
Vorzugsweise erfolgt die Verdünnung pulsartig, beispielsweise durch Eintropfen des Solubili- sats in Puffer, der kein Denaturierungsmittel enthalt
Eine solche pulsartige Verdünnung ermöglicht eine praktisch gleichzeitige Entfernung der Wirkung des Denaturierungsmittels und Vereinzelung der zu naturierenden Moleküle Dadurch wird eine nicht erwünschte intermolekulare Wechselwirkung (Aggregation) der zu naturierenden Moleküle weitgehend vermieden.
Falls das im Denaturierungsmittel solubilisierte Fusionsprotein durch Verdünnung nicht natu¬ riert werden kann, erfolgt die Naturierung in Gegenwart von Naturierungshilfsmitteln Derar¬ tige Naturierungsverfahren und Natuierungshilfsmittel sind dem Fachmann bekannt und bei¬ spielsweise im US-Patent No 5,077,392 (36), in der EP-B 0 114 506 (37) sowie bei Marston, F.A O , Biochem J 214 (1986) 1 - 12 (38) und Light, A , Biotechniques 3 (1985) 297 - 306 (39) beschrieben Zweckmäßig werden die "inelusion bodies" dazu mit dem Denaturierungs¬ mittel bei cysteinhaltigen Peptiden, ggf in Gegenwart eines Reduktionsmittels, solubilisiert, das Denaturierungsmittel soweit verdünnt, daß es nicht mehr denaturierend wirkt und eine Faltung des Fusionsproteins in einen Zustand zulaßt, in dem seine Proteindomanen den natur¬ lichen Zustand einnehmen können Dieser Zustand ist dadurch charakterisiert, daß in ihm die Disulfidbrucken nativ verknüpft sind und das Fusionsprotein auch ohne hohe Konzentration von Denaturierungsmittel loslich ist Anschließend kann die Spaltung mit Endoproteinase LysC erfolgen
Bei Proteinen/Peptiden mit Disulfidb "ucken wird als Reduktionsmittel vorzugsweise Dithio- erythrit, Dithiothreitol oder Mercaptoethanol verwendet Die Naturierung erfolgt dann zweckmäßig in Gegenwart eines Redox-Systems, wie z B von oxidiertem und reduziertem Glutathion oder Cystein
Die folgenden Beispiele, Publikationen, das Sequenzprotokoll und die Abbildung erläutern die Erfindung, deren Schutzumfang sich aus den Patentansprüchen ergibt, weiter Die beschriebe- nen Verfahren sind als Beispiele zu verstehen, die auch noch nach Modifikationen den Gegen¬ stand der Erfindung beschreiben
Fig. 1 zeigt die gemäß Beispiel 1 erhaltenen DNA-Segmente A und B
Beispiel 1
Konstruktion des core-SA-URO(95-126) Fusionsgens mit Endoproteinaselinker
(Plasmid: pSA-EK-URO)
core-SA verkürztes Streptavidin der Aminosäuren Met-(13 - 139)
URO (95 - 126) Urodilatin oder Cardiodilatinfragment der Aminosäuren 95 - 126 (Sequenz beschrieben in Drummer, C et al , Pflugers Archiv, European J of Physiol 423 (1993) 372 - 377 (41))
Der Expressionsvektor für das core-SA-URO(95-126) Fusionsgen mit Endoproteinase LysC- Spaltstelle basiert auf dem Expressionsvektor pSAM-CORE für core-Streptavidin Die Her¬ stellung und Beschreibung des Plasmids pSAM-CORE ist in der WO 93/09144 (11) beschrie¬ ben. Zur Konstruktion von core-SA Fusionsproteinen wurde die singulare am 3'-Ende lokali¬ sierte Nhei Restriktionsschnittstelle vor dem Stopcodon des core-SA Gens benutzt
Ein ca 140 Bp langes für den Linker [VDDDDK] (SEQ ID NO 1) und das Urodilatin(95- 126) Polypeptid [TAPRSLRRSSCFGGRMDRIGAQSGLGCNSFRY] (SEQ ID NO:2) kodierendes DNA-Fragment wurde aus 2 ca 70 Bp langen chemisch hergestelüten DNA Segmenten zusammengesetzt Beim "Gendesign" wurden die in E coli bevorzugt benutzten Codone (E. coli "Codonusage") berücksichtigt und die einzelnen DNA Segmente mit geeigne¬ ten singularen Restriktionsendonukleaseschnittstellen an den Enden versehen
In zwei Ansätzen wurden die komplementären Oligonukleotide I (SEQ DD NO 3) und 2 (SEQ ID NO 4)
I
AATTCGCTAGCGTTGACGACGATGACAAAACGGCGCCGCGTTCCCTGCGTAGATC TTCCTGCTTCGGC (SEQIDNO.3) 2
GGCCGCCGAAGCAGGAAGATCTACGCAGGGAACGCGGCGCCGTTTTGTCATCGTC GTCAACGCTAGCG (SEQIDNO:4)
zu dem DNA Segment A (Fig. 1 ) und die Oligonukleotide 3 (SEQ ED NO: 5) und 4 (SEQ ID NO:6)
3
GGCCGCATGGACCGTATCGGTGCTCAGTCCGGACTGGGTTGCAACTCCTTCCGTT ACTAATGA (SEQ ID NO:5)
4
AGCTTCATTAGTAACGGAAGGAGTTGCAACCCAGTCCGGACTGAGCACCGATACG GTCCATGC (SEQ ID NO:6)
zu dem DNA Segment B, (Fig. 1) "annealt" (Reaktionspuffer: 12,5 mmol/1 Tris-HCl, pH 7,0 und 12,5 mmol/1 MgCl2 ; Oligonukleotid-Konzentration: jeweils 1 pmol / 60 μl) und die Hybridisierungsprodukte A und B jeweils in die Polylinkerregion des E. coli pUCBM21 Vektors (Boehringer Mannheim GmbH, Mannheim, Deutschland) subkloniert (DNA Segment A, Schnittstellen: EcoRI und Notl; DNA Segment B, Schnittstellen: Notl und Hindlll). Mittels DNA Sequenzierung wurde die DNA Sequenz der beiden subklonierten DNA Segmente bestätigt. Danach wurde das Expressionsplasmid pSA-EK-URO für das core-SA- URO(95-126) Fusionsgen in einer Dreifragmentligation aus dem Nhe/Notl-DNA Segment A , dem Notl/Hindlll-DNA Segment B und dem ca. 2,9 kBp langen Nhel/Hindlll-pSAM-CORE Vektorfragment zusammengesetzt. Dabei wurden die DNA Segmente A und B nach Doppel¬ verdau mit den entsprechenden Endonukleasen aus den entsprechenden pUCBM21 Plasmid- derivaten isoliert. Das gewünschte Plasmid pSA-EK-URO wurde durch Restriktionskartierung identifiziert und die DNA Sequenz des Linker-Urodilatin-Bereichs erneut durch DNA Sequenzierung überprüft.
Beispiel 2
Expression der core-SA Fusionsproteine in E. coli
Zur Expression des core-SA Fusionsproteins wurde der E. coli Kl 2 Stamm RM82 (eine Methionin Revertante von ED 8654, Murray, N.E. et al. (1977)) (14) mit dem in Beispiel 1 beschriebenen Expressionsplasmid pSA-EK-URO und dem lacIl-Repressorplasmid pUBS500 (Kanamycin-Resistenz, Herstellung und Beschreibung siehe: EP-A 0368342) transformiert.
Die RM82/pUBS500/pSA-EK-URO-Zellen wurden in DYT-Medium (1% (w/v) Hefeextrakt, 1% (w/v) Bacto Tryptone (Difco, Detroit, USA) und 0,5% NaCl, mit 50 mg/1 Ampicillin und 50 mg/1 Kanamycin bis zu einer optischen Dichte bei 550 nm von 0,6 - 0,9 angezogen und anschließend mit IPTG (Isopropyl-ß-D-thiogalactosid) (1 - 5 mmol/l Endkonzentration) induziert. Nach einer Induktionsphase von 4 - 8 Stunden wurden die Zellen durch Zentrifuga¬ tion geerntet und die Zellpellets mit 25 mmol/l Kaliumphosphatpuffer, pH 7,5 gewaschen.
Expressionsanalyse
Die Zellpellets aus jeweils 1 ml abzentrifugiertem Anzuchtmedium (RM82/pUBS500/pSA- EK-URO-Zellen) wurden in 0,25 ml 10 mmol/l PhosphatpufFer, pH 6,8 und 1 mmol/l EDTA resuspendiert und die Zellen durch Ultraschallbehandlung aufgeschlossen. Nach Zentrifugation wurde der Überstand mit 1/5 Volumen 5 x SDS -Probenpuffer (lxSDS-Probenpuffer: 50 mmol/l Tris-HCl, pH 6,8, 1% SDS, 1% Mercaptoethanol, 10% Glycerin, 0.001% Bromphenolblau) versetzt. Die unlösliche Zelltrümmerfraktion wurde in 0,3 ml lxSDS-Probenpuffer mit 6 - 8 M Harnstoff resuspendiert, die Proben 5 Minuten bei 95°C inkubiert und zentrifügiert. Danach wurden die Proteine durch SDS-Polyacrylamid Gelelektrophorese (PAGE) aufgetrennt (Laemmli, U.K. (1970)) (15) und mit Coomassie Brilliant Blue R Farbstoff angefärbt.
Das in E. coli synthetisierte core-SA Fusionsprotein war homogen und wurde ausschließlich in der unlöslichen Zelltrümmerfraktion gefunden (IBs). Die Expressionshöhe für das core-SA Fusionsprotein betrug 30 - 50% bezogen auf das E. coli Gesamtprotein.
Beispiel 3
Zellyse und Präparation der "inelusion bodies" (IBs)
200 g (Naßgewicht) E. coli RM82/pUBS500/pSA-EK-URO-Zellen wurden in 1 1 0, 1 mol/1 Tris-HCl, pH 7,0 bei 0°C suspendiert, 300 mg Lysozym zugegeben und 20 Minuten bei 0°C inkubiert. Danach wurden die Zellen mechanisch mittels Hochdruckdispersion vollständig auf¬ geschlossen und die DNA durch Zugabe von 2 ml 1 mol/1 MgCl2 und 10 mg DNAse (Boehringer Mannheim # 154709) bei 25°C in 30 Minuten verdaut. Anschließend wurden zur Aufschlußlösung 500 ml 60 mmol/l EDTA, 6% Triton® XI 00 und 1,5 mol/1 NaCl, pH 7,0 zugemischt und weitere 30 Minuten bei 0°C inkubiert. Danach wurden die unlöslichen Bestandteile (Zelltrümmer und EBs) durch Zentrifugation sedimentiert.
Das Pellet wurde in 1 1 0,1 mol/l Tris-HCl, 20 mmol/l EDTA, pH 6,5 suspendiert, 30 Minuten bei 25°C inkubiert und das IB-Präparat durch Zentrifugation isoliert.
Solubilisierung der IBs
25 g IB-Pellet (Naßgewicht) wurden in 200 ml 0,1 mol/I Natriumphosphat Puffer, 6 mol/l Guanidin-HCl, 10 mmol/l EDTA, pH 7,0 durch 2-stündiges Rühren bei 25°C suspendiert. Die unlöslichen Bestandteile wurden durch Zentrifugation abgetrennt und der klare Überstand weiterverarbeitet.
Beispiel 4 Naturierung
Die Renaturierung wurde in einem BioFlo II Fermenter (New Brunswick Scientific Co., Inc. Edison, NJ, USA) bei 16°C unter Rühren (300 UPM) durch kontinuierliche Zugabe von 200 ml core-SA Fusionsprotein Solubilisat in 5 1 20 mmol/l Natriumphosphat, pH 7,0, 5 mmol/l EDTA mittels einer Pumpe (Fördermenge: 15 -20 ml/Std.) bewirkt.
Nach Abschluß der Naturierungsreaktion wurden 50 g Diatomeenerde (Standard Supercel der Firma Lehmann & Foss (Hamburg, E)eutschland)) dazugegeben und die unlöslichen Bestand¬ teile durch 2-fache Filtration abgetrennt [Vorfiltration mittels Büchnertrichter bestückt mit Rundfilter 520 B II der Firma Schleicher & Schüll (Dassel, Deutschland) und Nachfiltration mittels Filtrationsgerät der Firma Satorius (Göttingen, Deutschland) bestückt mit Tiefenfilter K 250 der Firma Seitz (Bad Kreuznach, Deutschland)] und der klare core-SA-Fusionsprotein- haltige Überstand weiterverarbeitet.
Konzentrierung und/oder Dialyse dies Renaturierungsansatzes
Der Renaturierungsansatz wurde durch Cross-Flow-Filtration in einer Minisette (Membran Typ: Nova K10) der Firma Filtron (Karlstein, Deutschland) konzentriert und bei Bedarf zur Entfernung von Guanidin-HCl gegen einen gewünschten Puffer dialysiert. Beispiel 5
AfTinitätschromatographie des core-SA Fusionsproteins
Das core-SA Fusionsprotein wurde direkt aus dem filtrierten und konzentrierten Renaturat durch Affinitatschromatographie an Iminobiotin-Sepharose gereinigt
Herstellung von Iminobiotin-Sepharose 4B
500 ml epoxyaktivierte EAH Sepharose 4B (Pharmacia Biotech, Freiburg, Deutschland) wurden auf einer Fritte mit 15 1 0,5 mol/l NaCl, 3 1 deionisiertem Wasser und 1 1 50 mmol/l Kaliumphosphatpuffer, pH 7,5 mit 150 mmol/l NaCl gewaschen und in 5 1 10 mmol/l Kaliumphosphatpuffer, pH 7,5 mit 150 mmol/l NaCl und 20 % Dimethylsulfoxid (DMSO) resuspendiert 0,5 g Iminobiotinhydroxysuccinimidester (Sigma, Deisenhofen, Deutschland) wurden in 60 ml DMSO gelost, mit 600 ml 10 mmol/l KaliumphosphatpufFer, pH 7,5 und 150 mmol/l NaCl verdünnt und zu der Gelsuspension gegeben Die Gelsuspension wurde bei Raumtemperatur unter leichtem Schütteln über Nacht inkubiert und danach auf einer Fritte mit 5 1 10 mmol/l Kaliumphosphatpuffer, pH 7,5 mit 150 mmol/l NaCl und 20 % DMSO, 3 1 deionisiertem Wasser und 3 1 10 mmol/l Kaliumphosphatpuffer, pH 7,5 mit 150 mmol/l NaCl gewaschen
Zur Ermittlung der core-SA Beladungskapazitat wurde eine Säule mit exakt 1 ml Iminobiotin- Sepharose 4B gestopft und mit 50 mmol/l Ethanolaminpuffer, pH 9,5 mit 0,5 mmol/l NaCl äquilibriert Danach wurde eine core-SA Losung mit einer Konzentration von 1 mg/ml in Aquilibrierungspuffer aufgetragen Durch Absorptionsmessung bei 280 nm im Eluat und Bestimmung des Auftragsvolumens wurde die Beladungskapazitat/ml Affinitatsgel ermittelt (30-40 mg core-SA/ml Gel)
Affinitatschromatographie an Iminobiotin-Sepharose 4B
Eine mit 25 mmol/l Ethanolamin, pH 9,5 aquilibrierte Iminobiotin-Sepharose 4B Säule (4 x 24 cm, V = 300 ml) wurde mit dem konzentrierten mit Ethanolamin auf pH 9,5 titrierten Renatu- rierungsansatz beladen (1 Saulenvolumen/Stunde, 1 SV/Std ) und so lange mit dem Aquilibrie¬ rungspuffer gewaschen, bis die Absoφtion des Eluats bei 280 nm den Leerwert des Puffers erreichte Die Elution des gebundenen Materials erfolgte mit 0, 1 mol/l Kaliumacetatpuffer, pH 3,5. Danach wurde das core-SA Protein gegen den in der enzymatischen Spaltung benutzten Puffer dialysiert Beispiel 6
Enzymatische Spaltung des core-SA Fusionsproteins mit Endoproteinase LysC
Das core-SA-EK-URO Fusionsprotein wurde in einer Konzentration von 0,3 bis 3 mg/ml und einem Substrat / Protease Verhältnis von 1:1000 bis 1 :25000 (Endoproteinase LysC aus Lyso- bacter enzymogenes, sequencing grade; Boehringer Mannheim, Mannheim, Deutschland) in 50 mmol/I Tris-HCl, pH 8,0 bei 30 bis 35°C verdaut und der zeitliche Verlauf der enzymatischen Spaltung durch analytische Reversed Phase HPLC (siehe Beispiel 8) analysiert. Dazu wurden aus dem Reaktionsansatz über einen Zeitraum von 6 bis 24 Stunden Proben (10 bis 100 μl) im Abstand von 1 bis 3 Stunden entnommen.
Beispiel 7
Reinigung des Peptids URO(95-126)
Das enzymatisch freigesetzte Peptid kann mit chromatographischen Methoden, die dem Fach¬ mann bekannt sind, weiter gereinigt werden.
7.1 Abtrennung des core-SA Trägerproteins mittels Affinitatschromatographie
Das core-SA Trägerprotein kann aus dem Spaltungsansatz durch Negativ-Chromatographie an Iminobiotin-Sepharose, wie im Beispiel 5 für das core-SA Fusionsprotein beschrieben, abgetrennt werden
Dazu wird nach der enzymatischen Spaltung der Reaktionsansatz mit Ethanolamin auf einen pH-Wert von 9 bis 9,5 eingestellt und das core-SA Trägerprotein und nicht gespaltenes core- SA Fusionsprotein durch Affinitätsbindung an Iminobiotin abgetrennt.
7.2 Reinigung des Peptids durch Kationenaustauschchromatographie an Fractogel EMD-SO3" 650(M)
Der Spaltungsansatz wurde mit 1 mol/l Natriumacetat, pH 5,0 bis zu einer Endkonzentration von 25 mmol/l versetzt, der pH auf 5,0 eingestellt und damit eine mit 25 mmol/l, pH 5,0 äqui- librierte Fractogel EMD-SO3"-650(M) Säule (3 x 40 cm, V = 283 ml) der Firma Merck (Darmstadt, Deutschland) beladen ( 1 SV/Std.) und so lange mit dem Äquilibrierungspuffer gewaschen, bis die Absorption des Eluats bei 280 nm den Leerwert des Puffers erreichte. Die Elution des gebundenen Materials erfolgte durch einen Gradienten von 0 bis 1 mol/l NaCl in Äquilibrierungspuffer (10 bis 20 SV, 1 SV/Std.).
7.3 Reinigung des Peptids durch Reversed Phase HPLC
Nach Vorreinigung des Peptids mittels Kationenaustauschchromatographie (siehe: Beispiel 7.2) wurde ein Aliquot von 1 bis 2 ml (ca. 100 bis 300 μg) durch semipräparative RP-HPLC unter Fraktionierung weiter aufgereinigt.
Chromatographiebedingungen
Säule: Europher 100-Cg, 5 μm (4 x 250 mm, V = 3,17 ml)
(Knauer, Berlin, Deutschland)
Probenvolumen: 1 - 2 ml (100 - 300 μg Protein)
Detektor: UV, 220 nn
Flußrate: 0,5 ml/min
Fließmittel:
- A: 0.13% TFA in H2O
- B: 0.1% TFA, 80% Acetonitril, 20% H2O (v/v)
Beispiel 8
Analytische Reversed Phase HPLC
Die analytische Reversed Phase HPLC wurde mit einer Europhersäule durchgeführt (Europher 100-Cg, 5 μm (4 x 250 mm, V = 3,17 ml, Knauer, Berlin, Deutschland). Das Probenvolumen betrug 10 - 100 μl, entsprechend 1 - 100 μg Protein. Die Detektion erfolgte mit einem UV- Detektor bei 220 nm. Chromatographiert wurde mit einer Flußrate von 0,5 ml/min.
Fließmittel:
A: 0,13 % Trifluoressigsaure in H2O
B: 0,1 % Trifluoressigsaure, 80 % Acetonitril, 20 % H2O (v/v) (Gradient 100 - 0 % in
50 min).
Urodilatin (95 - 126) eluiert bei 31 min. Beispiel 9
Charakterisierung des gereinigten Peptids
Die Identität und Reinheit des gereinigten Peptids kann z B durch Massenspektroskopie (PD- MS und Laser-Desoφtionsspektroskopie), analytische reversed phase HPLC, isoelektrische Fokusierung (Bark, J E et al , J Forensic Sei Soc 16 (1976) 115 - 120 (42), SDS PAGE (Laemmli, U.K , Nature 227 (1970) 680 - 685 (43)) und Kapillar-Elektrophorese, im Ver¬ gleich mit einem chemisch hergestellten Standard, ubeφruft werden
Referenzliste
1) Kent, S B H et al , Banburi Rep 29 (1988) 3 - 20
2) Hodson, J H , Bio/Technology 1 1 (1993) 1309 - 1310
3) Kopetzki, E et al , Clin Chem 40 (1994) 688 - 704
4) Winnacker, E -L , ( 1987) VCH Publishers, Weinheim and New York
5) Harris, T J R In Genetic Engineenng (Williamson, R ed ), Academic Press, London, vol 4 (1983) 127 - 185
6 ) Sambrook, J et al (1989) In Molecular cloning A laboratory manual Cold Spnng Harbor Laboratory Press, Cold Spring Harbor, New York
7) EP-B 0 198 015
8) EP-A 0 612 325
9) Sano, T et al , Biochem Biophys Res Commun 176 (1991) 571 - 577
10) Sano, T et al , Proc Natl Acad Sei , USA 89 (1992) 1534 - 1538
1 1) WO 93/09144
12) Carter, P In Ladisch, M R , Willson, R C , Painton, C C , Builder, S E eds Protein Purification From Molecular Mechanisms to Large-Scale Processes ACS Symposium Series No 427, American Chemical Society, pp 181-193 (1990)
13) Dougherty, W G et al , EMBO J 7, (1988) 1281-1287
14) Murray, N E et al , Mol Gen Genet 150 (1977) 53-61
15) Laemmli, U K , Nature 227 (1970) 680-685
16) Rokkones, E et al , J Biotechnol 33 (1994) 293 - 306
17) Forsberg, G et al , J Prot Chem 10 (1991) 517 - 526
18) Gardella, T J et al , J Biol Chem 265 (1990) 15854 - 15859
19) Gram, H et al , Bio/Technology 12 (1994) 1017 - 1023
20) Forssmann, K et al , Clin Wociensch 66 (1988) 752 - 752
21) Drummer, C et al , Pflugers Archiv , European J of Physiol 423 (1993) 372 - 377 Heim, J.M., Biochem. Biophys. Res. Commun 163 (1989) 37 - 41
Argarana, CE. et al., Nucl. Acids Res. 14 (1986) 1871 - 1882
Bub, A. et al., Histochem. J. (Suppl.) 24 (1992) 517
Drummer, C. et al., J. Am. Soc. Nephrol. 1 (1991) 1109 - 1113
Am. J. Physiol. 262 (1992) F 744 - F 754
Emmeluth, C. et al., Am. J. Physiol. 262 (1992) F 513 - F 516
Goetz, K.L. et al., J. Am. Soc. Nephrol. 1 (1990) 867 - 874
Sharma, A. et al., Proc. Natl. Acad. Sei. USA 91 (1994) 9337 - 9341
Gram, H, Bio/Technology 12 (1994) 1017 - 1023
Ladisch, M R. (ed.) Protein Purification ACS-Symposium, Series 427, American
Chemical Society, Washington D.C. (1990) 189
Allen, G. et al., J. Cell. Sei. Suppl. 3 (1985) 29
Beattie, K.L.; Fowler, R.F., Nature 352 (1991) 548 - 549
EP-B 0 424 990
Itakura, K. et al., Science 198 (1977) 1056 - 1063
US-Patent No. 5,077,392
EP-B 0 1 14 506
Marston, F.A.O., Biochem. J. 214 (1986) 1 - 12
Light, A., Biotechniques 3 (1985) 297 - 306
Allen, G. et al., J. Cell. Sei. Suppl. 3 (1985) 29 - 38
Drummer, C. et al., Pflügers Archiv, European J. of Physiol. 423 (1993) 372 - 377
Bark, J.E. et al., J. Forensic Sei. Soc. 16 (1976) 115 - 120
Laemmli, U.K., Nature 227 (1970) 680 - 685
SEQUENZPROTOKOLL
(1) ALLGEMEINE ANGABEN:
(i) ANMELDER:
(A) NAME: BOEHRINGER MANNHEIM GMBH
(B) STRASSE: Sandhofer Str. 116
(C) ORT: Mannheim
(E) LAND: Germany
(F) POSTLEITZAHL: D-68305
(G) TELEFON: 08856/60-3446 (H) TELEFAX: 08856/60-3451
(ii) BEZEICHNUNG DER ERFINDUNG: Verfahren zur Herstellung von natriuretischen Peptiden ueber Streptavidin-Fusionsproteine
(iii) ANZAHL DER SEQUENZEN: 6
(iv) COMPUTER-LESBARE FASSUNG:
(A) DATENTRÄGER: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: Patentin Release #1.0, Version #1.30B (EPA)
(2) ANGABEN ZU SEQ ID NO: 1:
(i) SEQUENZKENNZEICHEN:
(A) LANGE: 6 Aminosäuren
(B) ART: Aminosäure
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Peptid
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1
Val Asp Asp Asp Asp Lys
1 5
(2) ANGABEN ZU SEQ ID NO: 2:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 32 Aminosäuren
(B) ART: Aminosäure
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Peptid (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:
Thr Ala Pro Arg Ser Leu Arg Arg Ser Ser Cys Phe Gly Gly Arg Met 1 5 10 15
Asp Arg Ile Gly Ala Gin Ser Gly Leu Gly Cys Asn Ser Phe Arg Tyr 20 25 30
(2) ANGABEN ZU SEQ ID NO: 3:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 68 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: other nucleic acid
(A) BESCHREIBUNG: /desc = "synthetisches Oligonukleotid"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3: AATTCGCTAG CGTTGACGAC GATGACAAAA CGGCGCCGCG TTCCCTGCGT AGATCTTCCT 60 GCTTCGGC 68
(2) ANGABEN ZU SEQ ID NO: 4:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 68 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: other nucleic acid
(A) BESCHREIBUNG: /desc = "synthetisches Oligonukleotid"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: GGCCGCCGAA GCAGGAAGAT CTACGCAGGG AACGCGGCGC CGTTTTGTCA TCGTCGTCAA 60 CGCTAGCG 68
(2) ANGABEN ZU SEQ ID NO: 5:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 63 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: other nucleic acid
(A) BESCHREIBUNG: /desc = "synthetische Oligonukleotid"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5: GGCCGCATGG ACCGTATCGG TGCTCAGTCC GGACTGGGTT GCAACTCCTT CCGTTACTAA 60 TGA 63
(2) ANGABEN ZU SEQ ID NO: 6:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 63 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelstrang
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: other nucleic acid
(A) BESCHREIBUNG: /desc = "synthetisches Oligonukleotid"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6: AGCTTCATTA GTAACGGAAG GAGTTGCAAC CCAGTCCGGA CTGAGCACCG ATACGGTCCA 60 TGC 63

Claims

Patentansprüche
1. Verfahren zur rekombinanten Herstellung eines natriuretischen Peptids (NP-Peptid) durch Expression einer DNA in Prokaryonten oder Eukaryonten, welche für ein Fusionsprotein aus Streptavidin und dem genannten NP-Peptid codiert, wobei der C-Terminus von Streptavidin und der N-Terminus des NP-Peptids über eine Peptidsequenz, welche von Endoproteinase LysC spaltbar ist, verbunden sind, Spaltung des Fusionsproteins mit Endoproteinase LysC und Isolierung des gewünschten Peptids.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Expression in Prokayronten erfolgt, wobei das Fusionsprotein als unlösliches, inaktives Fusionsprotein entsteht, Solubilisierung des inaktiven Fusionsproteins, Naturierung des Fusionsproteins, ggf. Rei¬ nigung des Fusionsproteins über immobilisiertes Biotin oder Derivate davon, Spaltung des Fusionsproteins mit Endoproteinase LysC und Isolierung des gewünschten Peptids.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Naturierung des solubili- sierten, inaktiven Fusionsproteins durch Verdünnen des solubilisierten, inaktiven Fusions¬ proteins in wäßrige Pufferlösung erfolgt.
4. Verfahren nach den Ansprüchen 1 - 3, dadurch gekennzeichnet, daß das Fusionsprotein vor Spaltung durch Affinitatschromatographie an immobilisiertem Biotin oder Biotinderi- vaten gereinigt wird.
5. Verfahren nach den Ansprüchen 1 - 4, dadurch gekennzeichnet, daß als NP-Peptid Urodilatin oder davon abgeleitete Fragmente verwendet werden.
6. Verfahren nach den Ansprüchen 1 - 5, dadurch gekennzeichnet, daß als Peptide Frag¬ mente von Urodilatin der Aminosäuren 95 - 126, 99 - 126 oder 102 - 126 verwendet werden.
PCT/EP1996/004061 1995-09-23 1996-09-17 Verfahren zur herstellung von natriuretischen peptiden über streptavidin-fusionsproteine WO1997011186A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU71300/96A AU7130096A (en) 1995-09-23 1996-09-17 Process for producing natriuretic peptides via streptavidine fusion proteins
JP9512381A JPH11511333A (ja) 1995-09-23 1996-09-17 ストレプトアビジン融合タンパク質によるナトリウム排泄増加性ペプチドを生産するための方法
EP96932542A EP0851930A1 (de) 1995-09-23 1996-09-17 Verfahren zur herstellung von natriuretischen peptiden über streptavidin-fusionsproteine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1995135445 DE19535445A1 (de) 1995-09-23 1995-09-23 Verfahren zur Herstellung von natriuretischen Peptiden über Streptavidin-Fusionsproteine
DE19535445.1 1995-09-23

Publications (1)

Publication Number Publication Date
WO1997011186A1 true WO1997011186A1 (de) 1997-03-27

Family

ID=7773008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/004061 WO1997011186A1 (de) 1995-09-23 1996-09-17 Verfahren zur herstellung von natriuretischen peptiden über streptavidin-fusionsproteine

Country Status (6)

Country Link
EP (1) EP0851930A1 (de)
JP (1) JPH11511333A (de)
AU (1) AU7130096A (de)
CA (1) CA2232841A1 (de)
DE (1) DE19535445A1 (de)
WO (1) WO1997011186A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106525A1 (fr) * 2003-06-03 2004-12-09 Shanghai Centre Of Research & Development Of New Drugs Proteine de fusion pouvant etre exprimee tres efficacement et son procede de production
EP1865059A1 (de) 2001-03-12 2007-12-12 Japan Tobacco, Inc. Neues Protein, dafür kodierendes Gen und Verwendungsverfahren dafür

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4656493B2 (ja) * 2002-11-20 2011-03-23 ベー・エル・アー・ハー・エム・エス・ゲーエムベーハー 部分的proANPペプチドを同定するためのサンドイッチイムノアッセイ
US20080181903A1 (en) * 2006-12-21 2008-07-31 Pdl Biopharma, Inc. Conjugate of natriuretic peptide and antibody constant region

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986002077A1 (en) * 1984-10-02 1986-04-10 Meade Harry M Production of streptavidin-like polypeptides
GB2180539A (en) * 1985-07-24 1987-04-01 Glaxo Group Ltd Microbiological products
WO1988006596A1 (en) * 1987-03-02 1988-09-07 Bissendorf Peptide Gmbh New cardiodilatin fragment, process for preparing same and use thereof
WO1989003422A1 (en) * 1987-10-08 1989-04-20 British Bio-Technology Limited Synthetic gene
EP0440311A1 (de) * 1985-06-20 1991-08-07 Fujisawa Pharmaceutical Co., Ltd. Herstellungsverfahren für menschliches alpha-Atrio-natriuretisches Polypeptid
EP0528686A2 (de) * 1991-08-19 1993-02-24 Suntory Limited Verfahren zur Herstellung von Peptiden

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986002077A1 (en) * 1984-10-02 1986-04-10 Meade Harry M Production of streptavidin-like polypeptides
EP0440311A1 (de) * 1985-06-20 1991-08-07 Fujisawa Pharmaceutical Co., Ltd. Herstellungsverfahren für menschliches alpha-Atrio-natriuretisches Polypeptid
GB2180539A (en) * 1985-07-24 1987-04-01 Glaxo Group Ltd Microbiological products
WO1988006596A1 (en) * 1987-03-02 1988-09-07 Bissendorf Peptide Gmbh New cardiodilatin fragment, process for preparing same and use thereof
WO1989003422A1 (en) * 1987-10-08 1989-04-20 British Bio-Technology Limited Synthetic gene
EP0528686A2 (de) * 1991-08-19 1993-02-24 Suntory Limited Verfahren zur Herstellung von Peptiden

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. LENNICK ET AL: "High-level expression of alpha-human atrial natriuretic peptide from multiple joined genes in Escherichia coli", GENE, vol. 61, 1987, pages 103 - 112, XP002022297 *
Y. SAITO ET AL: "Bacterial synthesis of recombinant alpha human atrial natriuretic polypeptide", JOURNAL OF BIOCHEMISTRY, vol. 102, no. 1, July 1987 (1987-07-01), pages 111 - 122, XP002022296 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1865059A1 (de) 2001-03-12 2007-12-12 Japan Tobacco, Inc. Neues Protein, dafür kodierendes Gen und Verwendungsverfahren dafür
US7713531B2 (en) 2001-03-12 2010-05-11 Japan Tobacco, Inc. Protein, a gene encoding therefor and a method of using the same
US7776333B2 (en) 2001-03-12 2010-08-17 Japan Tobacco Inc. Protein, a genes encoding therefor and a method of using the same
US7855282B2 (en) 2001-03-12 2010-12-21 Japan Tobacco Inc. Protein, a gene encoding therefor and a method of using the same
US7989610B2 (en) 2001-03-12 2011-08-02 Japan Tobacco Inc Protein, a gene encoding therefor and a method of using the same
WO2004106525A1 (fr) * 2003-06-03 2004-12-09 Shanghai Centre Of Research & Development Of New Drugs Proteine de fusion pouvant etre exprimee tres efficacement et son procede de production
CN1298742C (zh) * 2003-06-03 2007-02-07 上海新药研究开发中心 一种适合于高效表达的融合蛋白及其生产方法
US7795384B2 (en) 2003-06-03 2010-09-14 Shanghai Centre Of Research & Development Of New Drugs Fusion protein suitable for high efficiency expression and the production method thereof

Also Published As

Publication number Publication date
DE19535445A1 (de) 1997-03-27
AU7130096A (en) 1997-04-09
JPH11511333A (ja) 1999-10-05
EP0851930A1 (de) 1998-07-08
CA2232841A1 (en) 1997-03-27

Similar Documents

Publication Publication Date Title
WO1997018314A1 (de) Verfahren zur herstellung von peptiden über streptavidin-fusionsproteine
JP3054192B2 (ja) 副甲状腺ホルモンの製造のための組換えdna法
DE69434083T2 (de) Expression eines fusionspolypeptides, das ohne leadersequenz aus dem cytoplasma transportiert wird
DE69233008T2 (de) Fusionierung von Peptiden und Proteinen mit Thioredoxin und thioredoxin-ähnlichen Molekülen
EP0305500B1 (de) Verfahren zur reinigung von rekombinanten polypeptiden
US5322930A (en) Expression of recombinant polypeptides with improved purification
US7105638B1 (en) Product and process for the production, isolation, and purification of recombinant polypeptide
EP1931705B1 (de) Verfahren zur amidierung von polypeptiden mit c-terminalen basischen aminosäuren unter verwendung spezifischer endoproteasen
DE3882593T2 (de) Polypeptid und dessen Herstellung.
EP0229998B1 (de) Fusionsproteine mit eukaryotischem Ballastanteil
EP1819729A2 (de) Verfahren zur herstellung von carboxy-terminal amidierten peptiden
DD291093A5 (de) Recombinierende dna-sequenzen und ihr verfahren zur herstellung des menschlichen proapolipoprotein a-i
AU665034B2 (en) Production of human parathyroid hormone from microorganisms
DE69930938T2 (de) Verfahren zur herstellung eines peptids mit einem pi grösser als 8 oder kleiner als 5
EP1066328A1 (de) Chimäres protein welches eine intramolekulare chaperon-ähnliche sequenz enthältund dessen anwendung zur insulinproduktion
WO1997011186A1 (de) Verfahren zur herstellung von natriuretischen peptiden über streptavidin-fusionsproteine
JP2637392B2 (ja) 遺伝子操作による生物活性β−NGFの生産方法
EP0453456B1 (de) Pdgf-a, pdgf-aa, pdgf-ab, herstellungsverfahren und sie enthaltende arzneimittel
US20020164712A1 (en) Chimeric protein containing an intramolecular chaperone-like sequence
DE3811921A1 (de) Verfahren zur herstellung von proteinen, die n-terminal mit prolin beginnen
JP2994017B2 (ja) ポリペプチド
JP2002533072A (ja) β−リポトロピンおよび他のペプチドの組換え合成

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996932542

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2232841

Country of ref document: CA

Ref country code: JP

Ref document number: 1997 512381

Kind code of ref document: A

Format of ref document f/p: F

Ref country code: CA

Ref document number: 2232841

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1996932542

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1996932542

Country of ref document: EP