WO1997010892A1 - Procede de traitement catalytique de gaz, a teneur elevee en oxygene, en vue de la reduction des emissions des oxydes d'azote - Google Patents

Procede de traitement catalytique de gaz, a teneur elevee en oxygene, en vue de la reduction des emissions des oxydes d'azote Download PDF

Info

Publication number
WO1997010892A1
WO1997010892A1 PCT/FR1996/001430 FR9601430W WO9710892A1 WO 1997010892 A1 WO1997010892 A1 WO 1997010892A1 FR 9601430 W FR9601430 W FR 9601430W WO 9710892 A1 WO9710892 A1 WO 9710892A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalytic
manganese
oxide
cerium
catalytic composition
Prior art date
Application number
PCT/FR1996/001430
Other languages
English (en)
Inventor
Philippe Barthe
Catherine Hedouin
Thierry Seguelong
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Priority to BR9610631A priority Critical patent/BR9610631A/pt
Priority to DE69617993T priority patent/DE69617993T2/de
Priority to EP96931848A priority patent/EP0861116B1/fr
Priority to KR1019980702075A priority patent/KR19990063627A/ko
Priority to AU70881/96A priority patent/AU7088196A/en
Priority to AT96931848T priority patent/ATE210490T1/de
Priority to JP51243097A priority patent/JP3345426B2/ja
Priority to CA002230714A priority patent/CA2230714C/fr
Publication of WO1997010892A1 publication Critical patent/WO1997010892A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a process for the treatment of gases, in particular of exhaust gases from internal combustion engines, with a high oxygen content, with a view to reducing the emissions of nitrogen oxides.
  • the object of the invention is therefore to find a catalyst which can be used for the treatment of exhaust gases with a high oxygen content.
  • the process according to the invention for the treatment of gases, with a high oxygen content, with a view to reducing the emissions of nitrogen oxides, is characterized in that a catalytic composition comprising manganese oxide and at least one oxide chosen from cerium oxide and zirconium oxide.
  • the invention further relates to a catalytic system for the same treatment of the same type of gas, which is characterized in that it comprises a catalytic composition of the above type.
  • the invention relates to a process for the preparation of such a catalytic system which is characterized in that a catalytic composition as mentioned above is used.
  • the catalytic composition used in the context of the present invention comprises manganese oxide and at least one oxide chosen from cerium oxide and zirconium oxide.
  • This composition can also contain an additional element which is also generally present in the composition in the form of oxide. This element can be chosen from those of groups VIII, IB, IVB and VB.
  • group IB are generally suitable in the context of the present invention. Mention may more particularly be made, for the IVB group, of tin, and for the VB group, antimony and bismuth.
  • an oxide suitable for applications in catalysis is preferably used, that is to say an oxide capable in particular of retaining a sufficient specific surface at high temperatures.
  • Manganese is present in an amount expressed in atomic manganese content relative to the number of moles of cerium oxide and zirconium oxide which is preferably at most 50%. This content can more particularly be at most 20%. The minimum manganese content is usually at least 0.5%.
  • the manganese content is between 5 and 20%.
  • the respective proportions of cerium and zirconium can be any.
  • the other element (s) are present in an amount expressed in atomic content of element relative to the number of moles of cerium oxide and of zirconium oxide which is preferably at most 20% and in particular at most 10 %. This content can more particularly be at most 5%.
  • cerium and / or. the zirconium can constitute a support on which the manganese is deposited and, optionally at least one aforementioned additional element.
  • the cerium and / or zirconium, with the manganese can constitute a support on which is deposited at least one element of the aforementioned type.
  • the cerium and / or the zirconium with manganese are present in the form of a solid solution.
  • This variant is particularly applicable in the case where cerium and / or zirconium, with manganese, all form the support for the composition.
  • solid solution is meant that the X-ray diffraction spectra of the cerium and / or zirconium / manganese mixture do indeed reveal, within the latter, the existence of only one identifiable phase (absence of detectable parasitic secondary phase) and which corresponds, for example in the case of a mixture comprising only cerium, to that of a ceric oxide crystallized in the cubic system and whose mesh parameters are more or less offset with respect to a pure ceric oxide, thus reflecting the incorporation of manganese into the crystal lattice of cerium oxide, and therefore obtaining a true solid solution.
  • compositions which can be used in the context of the present invention can be prepared in various ways. Several methods will be given below without implied limitation. According to a first method, the following operations are carried out:
  • a mixture is prepared in a liquid medium containing a compound of cerium and / or zirconium and a compound of manganese;
  • the first operation therefore consists in preparing a mixture in a liquid medium, generally in the aqueous phase, containing at least one compound of cerium and / or zirconium and one compound of manganese. These compounds are preferably soluble compounds.
  • the mixture can be obtained either from compounds initially in the solid state which will then be introduced into a bottom of the water tank, or even directly from solutions of these compounds then mixing, in order any of said solutions.
  • cerium IV salts such as nitrates or cerium-ammoniacal nitrates, which are particularly suitable here.
  • ceric nitrate is used.
  • the solution of cerium IV salts may contain cerium in the cerous state without disadvantage, but it is desirable that it contains at least 85% of cerium IV.
  • An aqueous solution of ceric nitrate can for example be obtained by reaction of the acid nitric on a hydrated ceric oxide prepared in a conventional manner by reaction of a solution of a cerous salt, for example cerous carbonate, and a solution of ammonia in the presence of hydrogen peroxide.
  • ceric nitrate solution obtained according to the electrolytic oxidation process of a cerous nitrate solution as described in document FR-A-2 570 087, which constitutes here a raw material of choice.
  • the aqueous solution of cerium IV salts may have a certain initial free acidity, for example a normality varying between 0.1 and 4 N.
  • a base such as for example an ammonia solution or else 'alkali hydroxides (sodium, potassium, ...), but preferably an ammonia solution, so as to limit this acidity.
  • a neutralization rate (r) of the initial cerium solution by the following equation:
  • ni represents the total number of moles of Ce IV present in the solution after neutralization
  • n2 represents the number of moles of OH ions "effectively necessary to neutralize the initial free acidity provided by the aqueous solution of cerium salt IV
  • n3 represents the total number of moles of OH * ions provided by the addition of
  • this is limited to neutralization rates not exceeding 1, and more preferably not exceeding 0.5.
  • Mention may be made, as zirconium compounds, of the salts of such as zirconium sulfate, zirconyl nitrate or even zirconyl chloride.
  • manganese compounds which can be used, of the salts of inorganic or organic acids, for example of the sulfate, nitrate, chloride or acetate type. Note that nitrate is particularly suitable. These compounds can also be provided in the form of soils. These soils can be obtained for example by neutralization with a base of a salt of these compounds. The amounts of cerium and / or zirconium and manganese present in the mixture must correspond to the stoichiometric proportions required for obtaining the desired final composition.
  • the initial mixture being thus obtained it is then heated.
  • the temperature at which this heat treatment, also called thermohydrolysis, is carried out can be between 80 ° C. and the critical temperature of the reaction medium in particular between 80 and 350 ° C., preferably between 90 and 200 ° C.
  • This treatment can be carried out, depending on the temperature conditions adopted, either under normal atmospheric pressure, or under pressure such as for example the saturated vapor pressure corresponding to the temperature of the heat treatment.
  • the treatment temperature is chosen to be higher than the reflux temperature of the reaction mixture (that is to say generally greater than 100 ° C.), for example chosen between 150 and 350 ° C.
  • the operation is then carried out by introducing the mixture aqueous containing the aforementioned species in a closed enclosure (closed reactor more commonly called autoclave), the necessary pressure resulting then only from the heating of the reaction medium (autogenous pressure).
  • a closed enclosure closed reactor more commonly called autoclave
  • Heating can be carried out either in an air atmosphere or in an inert gas atmosphere, preferably nitrogen.
  • the duration of the treatment is not critical, and can thus vary within wide limits, for example between 1 and 48 hours, preferably between 2 and 24 hours.
  • the temperature rise takes place at a speed which is not critical, and the fixed reaction temperature can thus be reached by heating the medium, for example between 30 minutes and 4 hours, these values being given entirely indicative fact.
  • a solid precipitate is recovered which can be separated from its medium by any conventional technique of solid-liquid separation such as for example filtration, decantation, spinning or centrifugation.
  • a base such as for example an ammonia solution, can be introduced, before and / or after the heating step, into the precipitation medium.
  • the precipitate recovered is then calcined.
  • This calcination is carried out at a temperature generally between 200 and 1200 ° C. and preferably between 300 and 900 ° C.
  • This calcination temperature must be sufficient to transform the precursors into oxides.
  • the duration of the calcination can in turn vary within wide limits, for example between 1 and 24 hours, preferably between 2 and 10 hours. Calcination is generally carried out in air, but calcination carried out for example under inert gas is obviously not excluded.
  • a mixture is prepared in a liquid medium containing a compound of cerium and / or zirconium and a compound of manganese;
  • Cerium soils can be obtained by any suitable technique, in particular, but not limited to, according to the methods described in patent applications FR-A- 2 583735, FR-A- 2 583 736, FR-A- 2583 737, FR-A- 2 596 380, FR-A- 2
  • Cerium soils can be used, the average size of which, as determined by quasi-elastic light scattering, can vary from 3 nm to 100 nm, preferably between 5 and 50 nm.
  • zirconium soils obtained for example by hot hydrolysis of a sulfuric solution of zirconium, in a nitric medium or in a hydrochloric medium at a temperature between 80 and 150 ° C and preferably around 90 ° C, the molar ratio SO3 / ZrO2 of the zirconium sulfuric solution being preferably between 0.34 and 1 and its concentration preferably varying from 0.1 to 2 mole / l expressed as ZrO2.
  • the basic zirconium sulfate thus obtained is then neutralized with a base, preferably ammonia, until a pH of approximately 8 is obtained; then washing and then dispersing the gel obtained by adding a solution of nitric acid, the pH of the dispersion medium then preferably being between 0.5 and 5.
  • Zirconium soils having a medium size can be used between 5 nm and 500 nm, and advantageously between 10 and 200 nm.
  • the mixture obtained above is brought into contact with a basic compound.
  • Products of the hydroxide type can be used as base or basic compound.
  • the order of introduction of the reactants can be any, the basic compound can be introduced into the mixture or vice versa or the reagents can be introduced simultaneously into the reactor.
  • the addition can be carried out at once, gradually or continuously, and it is preferably carried out with stirring.
  • This operation can be carried out at a temperature between room temperature (18-25 ° C) and the reflux temperature of the reaction medium, the latter possibly reaching 120 ° C for example. It is preferably carried out at room temperature.
  • reaction medium can optionally be kept stirred for some time, in order to perfect the precipitation.
  • a mass of a solid precipitate is recovered which can be separated from its medium by any conventional technique.
  • washing and calcination steps are then carried out in the same way as that described for the first method.
  • a mixture is prepared in a liquid medium containing a sol of cerium and / or zirconium and at least one manganese compound;
  • the manganese compound can optionally also be provided in the form of a sol.
  • the second step of this third method is spray drying, that is to say by spraying the mixture in a hot atmosphere (spray-drying).
  • the atomization can be carried out by means of any sprayer known per se, for example by a spray nozzle of the sprinkler apple type or the like.
  • spray drying techniques likely to be used in the present process, reference may be made in particular to the basic work by MASTERS entitled "SPRAY-DRYING" (second edition, 1976, Editions Gerge Godwin - London).
  • the treating gases are driven in a helical movement and flow in a vortex well.
  • the mixture to be dried is injected along a trajectory coincident with the axis of symmetry of the helical trajectories of said gases, which allows the momentum of the gases to be transferred perfectly to the mixture to be treated.
  • the gases thus in fact perform a double function: on the one hand the spraying, that is to say the transformation into fine droplets, of the initial mixture, and on the other hand the drying of the droplets obtained.
  • the extremely short residence time (generally less than about 1/10 of a second) of the particles in the reactor has the advantage, inter alia, of limiting possible risks of overheating as a result of too long contact with the hot gases.
  • the inlet temperature of the gases into the "flash" reactor is between 400 and 900 ° C. and more particularly between 600 and 800 ° C., the temperature of the dried solid between 100 and 250 ° C, preferably between 125 and 200 ° C.
  • a dry product is obtained which can optionally be calcined in the same manner as that described for the preceding methods.
  • the three methods described above constitute the preferred methods for obtaining the cerium and / or zirconium-manganese compositions in the form of solid solutions in the sense given above.
  • a composition can be prepared which can be used for the invention by impregnating a cerium and / or zirconium oxide or a precursor of this oxide with a solution of a manganese compound then by calcining the impregnated oxide.
  • the impregnation is carried out by mixing the oxide to be impregnated or its precursor and a solution of a manganese compound chosen from compounds which are thermally decomposable into oxide.
  • manganese compounds there may be mentioned the salts of organic or inorganic acids such as nitrates, chlorides, sulfates, acetates for example. Nitrates are the preferred compounds.
  • the impregnation is carried out
  • Dry that is to say that the total volume of solution used is approximately equal to the total pore volume developed by the oxide to be impregnated. Concerning the determination of this pore volume, it can be carried out according to the method known with a mercury porosimeter or by measuring the amount of water absorbed by a sample.
  • the impregnated oxide is dried to remove water, thereby leaving the manganese compound in a form homogeneously and intimately dispersed in, or on the surface of, the oxide.
  • the drying is most often carried out in air, at a temperature which can vary between 80 and 300 ° C. and preferably chosen between 100 and 150 ° C. Drying is continued until a constant weight is obtained. Generally, the drying time is between 1 and 24 hours.
  • the impregnated oxide is calcined under the same conditions as those described above.
  • this composition can be prepared using one of the methods described above.
  • a compound of the abovementioned element (s) is also used and what has been described above with regard to the nature of the manganese compound and the order of introduction thereof. Ci in these methods also applies to the compounds of the above elements.
  • the impregnation can be carried out in two stages.
  • the cerium and / or zirconium is thus impregnated with manganese, then dried and finally the product dried by the element is impregnated.
  • a reverse order of impregnation can be followed. It is also possible to proceed by simultaneous impregnation of the manganese and the other element.
  • the gases capable of being treated by the present invention are, for example, those originating from gas turbines, boilers of thermal power stations or else from internal combustion engines, in particular from diesel engines or from engines operating in lean mixture.
  • the invention applies to the treatment of gases which have a high oxygen content and which contain nitrogen oxides, with a view to reducing the emissions of these oxides.
  • the value ⁇ is correlated to the air / fuel ratio in a manner known per se in particular in the field of internal combustion engines.
  • the invention applies to the treatment of gases from systems of the type described in the preceding paragraph and operating continuously under conditions such that ⁇ is always strictly greater than 1.
  • the invention also applies to treatment of gases which have an oxygen content (expressed by volume) of at least 5%, more particularly of at least 10%, this content being, for example, between 5 and 20%.
  • the gases can contain hydrocarbons and, in such a case, one of the reactions which one seeks to catalyze is the reaction HC (hydrocarbons) + NO x .
  • the hydrocarbons which can be used as a reducing agent for the elimination of NOx are in particular the gases or liquids of the families of saturated carbides, ethylenic carbides, acetylenic carbides, aromatic carbides and hydrocarbons from petroleum fractions such as for example methane , ethane, propane, butane, pentane, hexane, ethylene, propylene, acetylene, butadiene, benzene, toluene, xylene, kerosene and gas oil.
  • the gases can also contain, as reducing agent, organic compounds containing oxygen.
  • These compounds may especially be alcohols of the type, for example saturated alcohols such as methanol, ethanol or propanol; ethers such as methyl ether or ethyl ether; esters such as methyl acetate and ketones. It should be noted, however, that according to an advantageous characteristic of the invention, the treatment process can be carried out on a gas without the presence of a hydrocarbon.
  • the invention also relates to a catalytic system for the treatment of gas, with a high oxygen content, for the reduction of emissions of nitrogen oxides, which is characterized in that it comprises a catalytic composition of the type which has been described above.
  • the catalytic composition after having been mixed with a support of the type, for example, alumina or silica, can be in various forms such as granules, beads, cylinders or honeycomb of variable dimensions.
  • the compositions can also be used in catalytic systems comprising a coating (wash coat) based on a support of the same type as above and of these compositions, on a substrate of the type for example metallic or ceramic monolith.
  • a coating wash coat
  • the system comprises, arranged upstream in the direction of gas flow, a first element comprising a substrate of the metallic or ceramic monolith type which comprises a catalytic coating based on a support such as alumina or silica and at least one precious metal which can be for example platinum, palladium, rhodium or iridium.
  • the system comprises a second element, downstream from the first, comprising the above-mentioned catalytic composition.
  • This second element can be in any form of the type described above, for example in the form of beads or a monolith.
  • the catalytic system can consist of a substrate with a catalytic coating comprising either a first layer incorporating the catalytic composition of the invention and a second layer incorporating at least one precious metal of the type indicated in the description of the embodiment described above, ie a single layer comprising a mixture of the catalytic composition and of at least one precious metal.
  • the catalytic system can be in the form of a mixture of the abovementioned catalytic composition on a first support and at least one precious metal on a second support, the supports being able to be identical or different .
  • it may be a mixture of beads or granules based on alumina or silica and some supporting the precious metal, others the composition according to the invention.
  • the systems are mounted in a known manner in the exhaust pipes of vehicles in the case of application to the treatment of exhaust gases.
  • the invention also relates to the process for the preparation of the abovementioned catalytic systems using a catalytic composition of the type described above.
  • the products obtained are tested in two different ways to assess their catalytic performance.
  • the first way corresponds to an evaluation under weak conditions
  • VVH ratio of the flow rate in Nl / h to the volume of catalyst in I.
  • 0.3 g of the powdered catalyst is loaded into a quartz reactor. The powder used was previously compacted, then ground and sieved so as to isolate the particle size range between 0.125 and 0.250 mm.
  • the reaction mixture at the inlet of the reactor has the following composition (by volume):
  • the overall flow rate is 10 Nl / h.
  • the VVH is of the order of 20000 h " 1.
  • the HC signal is given by a BECKMAN total HC detector, based on the principle of flame ionization detection.
  • the signals of NO and NO x are given by a NO x analyzer ECOPHYSICS, based on the principle of chemistry-luminescence: it gives the values of NO, NO x and NO 2 , the latter being calculated by difference of the signals of NO x and NO.
  • the CO and N 2 O signals are given by ROSEMOUNT infrared analyzers.
  • the catalytic activity is measured from the HC, NO, N 2 O and NO x signals as a function of the temperature during a programmed temperature rise from 150 to 700 ° C at a rate of 15 ° C / min and from of the following relationships:
  • TNO x The conversion rate of NO x (TNO x ) into% which is given by:
  • the second way of testing the products corresponds to an evaluation at
  • VVH higher since the mass of catalyst is only 50 mg and the total flow rate in the catalytic reactor of 30NI / h.
  • the VVH under these conditions is of the order of 500000h * 1 .
  • the composition of the reaction mixture is the same as above.
  • the raw materials used are copper nitrate (Cu (N03) 2 , 3H 2 O), manganese nitrate (Mn (N03) 2 , 4H 2 O), bismuth nitrate (Bi (N03) 3, 5H 2 O), antimony tartrate (Sb 2 (C-4H4 ⁇ 6) 3. 6H 2 O), platinum (Pt (H 2 NH 2 CH 2 NH 2 ) 2 CI 2 ) in solution and a tin sol.
  • the tin sol is prepared by adding volume to volume of a solution of NH4OH
  • the supports used are cerium oxide CeO 2 RHONE-POULENC, a cerium-zirconium oxide (30% by weight of ZrO2) RHONE-POULENC and a mixed cerium-manganese oxide (10% by weight of MnO 2 ) RHONE- POULENC, both obtained by the first preparation method described above.
  • the first technique is dry impregnation. It consists in impregnating the support considered with the active element dissolved in a solution of volume equal to the pore volume of the support (determined with water: 0.35 cm / g in the case of CeO 2 and 0.44 cm 3 / g in the case of CeO 2 -Mn 2 ⁇ 3 and CeO 2 -ZrO 2 ) and of concentration making it possible to achieve the desired doping.
  • the second technique is atomization.
  • the mixture comprising the constituent elements of the composition is atomized under the following conditions: • Concentration of reactants in oxide: 150g / l
  • Example No. 1 (Comparative) The performance of the comparative catalyst based on CeO 2 only is given in Tables I and II. Table I Catalytic activity of the low VVH catalyst
  • the catalyst Under the conditions of high VVH (Table VII), the catalyst exhibits a maximum activity with respect to the conversion of NO x of 19% at 390 ° C. N 2 O is not produced.
  • the activity of the catalyst has two areas of activity: the first with a maximum of 13.4% conversion of NO x at 300 ° C and a production of N 2 O ( corresponding to a NO x conversion rate of at most 4%) and the second with a maximum NO x conversion of 23% at 390 ° C.
  • there is a conversion domain for NO x which extends between 255 and 600 ° C. with a very low production of N 2 O between 265 and 400 ° C.
  • Product 5 was tested under the so-called high VVH conditions by removing the hydrocarbon and CO in the reaction mixture. An equivalent nitrogen flow is substituted to allow it to work under the same overall flow conditions.
  • products 1, 8 and 9 were tested under the conditions known as high VVH by removing the hydrocarbon and CO in the reaction mixture.
  • An equivalent nitrogen flow is substituted to allow it to work under the same overall flow conditions.

Abstract

L'invention concerne un procédé de traitement de gaz, à teneur élevée en oxygène, en vue de la réduction des émissions des oxydes d'azote, caractérisé en ce qu'on utilise une composition catalytique comprenant de l'oxyde de manganèse et au moins un oxyde choisi parmi l'oxyde de cérium et l'oxyde de zirconium. Cette composition peut comprendre en outre au moins un autre élément choisi parmi ceux des groupes VIII, IB, IVB et VB. Le procédé de l'invention s'applique notamment au traitement de gaz d'échappement de moteurs à combustion interne, plus particulièrement de moteurs diesel ou de moteurs fonctionnant en mélange pauvre.

Description

PROCEDE DE TRAITEMENT CATALYTIQUE DE GAZ, A TENEUR ELEVEE EN OXYGENE, EN VUE DE LA REDUCTION DES EMISSIONS DES OXYDES D'AZOTE.
La présente invention concerne un procédé de traitement de gaz, notamment de 0 gaz d'échappement de moteurs à combustion interne, à teneur élevée en oxygène, en vue de la réduction des émissions des oxydes d'azote.
On sait que la réduction des émissions des oxydes d'azote (NOx) des gaz d'échappement des moteurs d'automobiles notamment est effectuée à l'aide de catalyseurs "trois voies" qui utilisent stoechiométriquement les gaz réducteurs présents 5 dans le mélange. Tout excès d'oxygène se traduit par une détérioration brutale des performances du catalyseur.
Or, certains moteurs comme les moteurs diesel ou les moteurs essence fonctionnant en mélange pauvre (lean burn) sont économes en carburant mais émettent des gaz d'échappement qui contiennent en permanence un large excès d'oxygène d'au 0 moins 5% par exemple. Un catalyseur trois voies standard est donc sans effet sur les émissions en NOx de ces moteurs. Par ailleurs, la limitation des émissions en NOx est rendue impérative par le durcissement des normes en post combustion automobile qui s'étendent maintenant à ce type de moteurs.
II existe donc un besoin réel d'un catalyseur efficace pour la réduction des 5 émissions des NOx pour ce type de moteurs et, plus généralement, pour le traitement de ce type de gaz.
L'objet de l'invention est donc de trouver un catalyseur qui puisse être utilisé pour le traitement de gaz d'échappement à teneur élevée en oxygène.
Dans ce but, le procédé selon l'invention, pour le traitement de gaz, à teneur 0 élevée en oxygène, en vue de la réduction des émissions des oxydes d'azote, est caractérisé en ce qu'on utilise une composition catalytique comprenant de l'oxyde de manganèse et au moins un oxyde choisi parmi l'oxyde de cérium et l'oxyde de zirconium.
L'invention concerne par ailleurs un système catalytique pour le même traitement 5 du même type de gaz, qui est caractérisé en ce qu'il comprend une composition catalytique du type ci-dessus. L'invention concerne enfin un procédé de préparation d'un tel système catalytique qui est caractérisé en ce qu'on met en oeuvre une composition catalytique telle que mentionnée ci-dessus.
D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer.
Comme indiqué plus haut, la composition catalytique utilisée dans le cadre de la présente invention comprend de l'oxyde de manganèse et au moins un oxyde choisi parmi l'oxyde de cérium et l'oxyde de zirconium. Cette composition peut contenir en outre un élément supplémentaire qui est aussi présent généralement dans la composition sous forme d'oxyde. Cet élément peut être choisi parmi ceux des groupes VIII, IB, IVB et VB.
La classification périodique des éléments à laquelle il est fait référence est celle publiée dans le Supplément au Bulletin de la Société Chimique de France n° 1 (janvier 1966).
Les élément du groupe IB conviennent dans leur ensemble dans le cadre de la présente invention. Pour le groupe IVB, on peut citer plus particulièrement l'étain et pour le groupe VB, l'antimoine et le bismuth.
En ce qui concerne le cérium ou le zirconium, on utilise de préférence un oxyde adapté aux applications en catalyse, c'est à dire un oxyde susceptible notamment de conserver une surface spécifique suffisante à des températures élevées.
A titre d'exemple, on peut citer les oxydes de cérium décrits dans les demandes de brevets français FR-A-2559754 et FR-A-2640954.
Le manganèse est présent dans une quantité exprimée en teneur atomique en manganèse par rapport au nombre de moles d'oxyde de cérium et d'oxyde de zirconium qui est de préférence d'au plus 50%. Cette teneur peut être plus particulièrement d'au plus 20%. La teneur minimale en manganèse est habituellement d'au moins 0,5%.
Généralement, la teneur en manganèse est comprise entre 5 et 20%.
Les proportions respectives de cérium et de zirconium peuvent être quelconques. Le ou les autres éléments sont présents dans une quantité exprimée en teneur atomique en élément par rapport au nombre de moles d'oxyde de cérium et d'oxyde de zirconium qui est de préférence d'au plus 20% et notamment d'au plus 10%. Cette teneur peut être plus particulièrement d'au plus 5%.
II existe plusieurs modes de réalisation de l'invention en ce qui concerne la mise en oeuvre du manganèse et du ou des autres éléments avec le cérium et/ou le zirconium. Selon un premier mode, le cérium et/ou. le zirconium peuvent constituer un support sur lequel est déposé le manganèse et, éventuellement au moins un élément supplémentaire précité.
Selon un second mode, le cérium et/ou le zirconium, avec le manganèse peuvent constituer un support sur lequel est déposé au moins un élément du type précité.
Selon une variante de l'invention, le cérium et/ou le zirconium avec le manganèse sont présents sous forme d'une solution solide. Cette variante s'applique particulièrement au cas où le cérium et/ou le zirconium, avec le manganèse, forment tous le support de la composition. Par solution solide, on entend que les spectres en diffraction X du mélange cérium et/ou zirconium/manganèse ne révèlent en effet, au sein de ces dernières, l'existence que d'une seule phase identifiable (absence de phase secondaire parasite détectable) et qui correspond, par exemple dans le cas d'un mélange ne comportant que du cérium, à celle d'un oxyde cérique cristallisé dans le système cubique et dont les paramètres de mailles sont plus ou moins décalés par rapport à un oxyde cérique pur, traduisant ainsi l'incorporation du manganèse dans le réseau cristallin de l'oxyde de cérium, et donc l'obtention d'une solution solide vraie.
Les compositions utilisables dans le cadre de la présente invention peuvent être préparées de différentes manières. Plusieurs méthodes vont être données ci-dessous à titre non limitatif. Selon une première méthode, on effectue les opérations suivantes :
- on prépare un mélange en milieu liquide contenant un composé du cérium et/ou du zirconium et un composé du manganèse;
• on chauffe ledit mélange;
- on récupère le précipité ainsi obtenu; - on calcine ledit précipité.
La première opération consiste donc à préparer un mélange en milieu liquide, généralement en phase aqueuse, contenant au moins un composé du cérium et/ou du zirconium et un composé du manganèse. Ces composés sont de préférence des composés solubles. Le mélange peut être indifféremment obtenu soit à partir de composés initialement à l'état solide que l'on introduira par la suite dans un pied de cuve d'eau, soit encore directement à partir de solutions de ces composés puis mélange, dans un ordre quelconque, desdites solutions.
A titre de composés solubles dans l'eau du cérium, on peut citer notamment les sels de cérium IV tels que nitrates ou nitrates céri-ammoniacal par exemple, qui conviennent ici particulièrement bien. De préférence, on utilise du nitrate cérique. La solution de sels de cérium IV peut contenir sans inconvénient du cérium à l'état céreux mais il est souhaitable qu'elle contienne au moins 85% de cérium IV. Une solution aqueuse de nitrate cérique peut par exemple être obtenue par réaction de l'acide nitrique sur un oxyde cérique hydraté préparé d'une manière classique par réaction d'une solution d'un sel céreux, par exemple le carbonate céreux, et d'une solution d'ammoniaque en présence d'eau oxygénée. On peut également, de préférence, utiliser une solution de nitrate cérique obtenue selon le procédé d'oxydation électrolytique d'une solution de nitrate céreux tel que décrit dans le document FR-A- 2 570 087, et qui constitue ici une matière première de choix.
On notera ici que la solution aqueuse de sels de cérium IV peut présenter une certaine acidité libre initiale, par exemple une normalité variant entre 0,1 et 4 N. Selon la présente invention, il est autant possible de mettre en oeuvre une solution initiale de sels de cérium IV présentant effectivement une certaine acidité libre comme mentionné ci-dessus, qu'une solution qui aura été préalablement neutralisée de façon plus ou moins poussée par ajout d'une base, telle que par exemple une solution d'ammoniaque ou encore d'hydroxydes d'alcalins (sodium, potassium,...), mais de préférence une solution d'ammoniaque, de manière à limiter cette acidité. On peut alors, dans ce dernier cas, définir de manière pratique un taux de neutralisation (r) de la solution initiale de cérium par l'équation suivante :
r = n3 - n2 ni
dans laquelle ni représente le nombre total de moles de Ce IV présentes dans la solution après neutralisation; n2 représente le nombre de moles d'ions OH" effectivement nécessaires pour neutraliser l'acidité libre initiale apportée par la solution aqueuse de sel de cérium IV; et n3 représente le nombre total de moles d'ions OH* apportées par l'addition de la base. Lorsque la variante "neutralisation" est mise en oeuvre, on utilise dans tous les cas une quantité de base qui doit être impérativement inférieure à la quantité de base qui serait nécessaire pour obtenir la précipitation totale de l'espèce hydroxyde Ce(OH)4 (r=4). Dans la pratique, on se limite ainsi à des taux de neutralisation n'excédant pas 1 , et de préférence encore n'excédant pas 0,5. Comme composés du zirconium, on peut citer les sels du type sulfate de zirconium, nitrate de zirconyle ou bien encore chlorure de zirconyle.
A titre de composés du manganèse utilisables, on peut par exemple citer les sels d'acides inorganiques ou organiques, par exemple du type sulfate, nitrate, chlorure ou acétate. On notera que le nitrate convient particulièrement bien. Ces composés peuvent aussi être apportés sous forme de sols. Ces sols peuvent être obtenus par exemple par neutralisation par une base d'un sel de ces composés. Les quantités de cérium et/ou de zirconium et de manganèse présentes dans le mélange doivent correspondre aux proportions stoechiométriques requises pour l'obtention de la composition finale désirée.
Le mélange initial étant ainsi obtenu, on procède ensuite à son chauffage. La température à laquelle est menée ce traitement thermique, aussi appelé thermohydrolyse, peut être comprise entre 80°C et la température critique du milieu réactionnel en particulier entre 80 et 350°C, de préférence entre 90 et 200°C.
Ce traitement peut être conduit, selon les conditions de températures retenues, soit sous pression normale atmosphérique, soit sous pression telle que par exemple la pression de vapeur saturante correspondant à la température du traitement thermique.
Lorsque la température de traitement est choisie supérieure à la température de reflux du mélange réactionnel (c'est à dire généralement supérieure à 100°C), par exemple choisie entre 150 et 350°C, on conduit alors l'opération en introduisant le mélange aqueux contenant les espèces précitées dans une enceinte close (réacteur fermé plus couramment appelé autoclave), la pression nécessaire ne résultant alors que du seul chauffage du milieu réactionnel (pression autogène). Dans les conditions de températures données ci-dessus, et en milieux aqueux, on peut ainsi préciser, à titre illustratif, que la pression dans ie réacteur fermé varie entre une valeur supérieure à 1
Bar (105 Pa) et 165 Bar (165. 105 Pa). II est bien entendu également possible d'exercer une pression extérieure qui s'ajoute alors à celle consécutive au chauffage.
Le chauffage peut être conduit soit sous atmosphère d'air, soit sous atmosphère de gaz inerte, de préférence l'azote.
La durée du traitement n'est pas critique, et peut ainsi varier dans de larges limites, par exemple entre 1 et 48 heures, de préférence entre 2 et 24 heures. De même, la montée en température s'effectue à une vitesse qui n'est pas critique, et on peut ainsi atteindre la température réactionnelle fixée en chauffant le milieu par exemple entre 30 minutes et 4 heures, ces valeurs étant données à titre tout à fait indicatif.
A l'issue de l'étape de chauffage, on récupère un précipité solide qui peut être séparé de son milieu par toute technique classique de séparation solide-liquide telle que par exemple filtration, décantation, essorage ou centrifugation .
Si nécessaire, on peut introduire, avant et/ou après l'étape de chauffage, une base telle que par exemple une solution d'ammoniaque, dans le milieu de précipitation.
II est aussi possible d'ajouter de la même façon, avant et/ou après l'étape de chauffage, de l'eau oxygénée soit seule soit aussi en combinaison avec la base. On notera qu'il est bien entendu possible de répéter une ou plusieurs fois, à l'identique ou non, une étape de chauffage/précipitation telle que ci-dessus définie, en mettant alors en oeuvre par exemple des cycles de traitements thermiques. Le produit tel que récupéré peut ensuite être soumis à des lavages à l'eau et/ou à l'ammoniaque, à une température comprise entre la température ambiante et la température d'ébullition. Pour éliminer l'eau résiduelle, le produit lavé peut enfin, éventuellement, être séché, par exemple à l'air, et ceci à une température qui peut varier entre 80 et 300°C, de préférence entre 100 et 150°C.
Dans une dernière étape, le précipité récupéré, après éventuellement lavage et/ou séchage, est ensuite calciné. Cette calcination est effectuée à une température comprise généralement entre 200 et 1200°C et de préférence entre 300 et 900°C. Cette température de calcination doit être suffisante pour transformer les précurseurs en oxydes. La durée de la calcination peut quant à elle varier dans de larges limites, par exemple entre 1 et 24 heures, de préférence entre 2 et 10 heures. La calcination est généralement opérée sous air, mais une calcination menée par exemple sous gaz inerte n'est bien évidemment pas exclue.
Une autre méthode de préparation d'une composition utilisable dans la présente invention est caractérisée en ce qu'elle comprend les étapes suivantes :
- on prépare un mélange en milieu liquide contenant un composé du cérium et/ou du zirconium et un composé du manganèse;
- on met en présence ledit mélange avec un composé basique, ce par quoi on fait précipiter le mélange; - on récupère le précipité ainsi obtenu;
- on calcine ledit précipité.
Tout ce qui a été dit plus haut dans la description de la première méthode pour la préparation du mélange en milieu liquide s'applique aussi ici.
On ajoutera toutefois qu'il est aussi possible d'utiliser un sol de cérium et/ou un sol de zirconium.
Les sols de cérium peuvent être obtenus par toute technique appropriée, en particulier, mais non limitativement, selon les méthodes décrites dans les demandes de brevets FR-A- 2 583735, FR-A- 2 583 736, FR-A- 2583 737, FR-A- 2 596 380, FR-A- 2
596 382, FR-A- 2 621 576 et FR-A- 2 655 972 qui sont toutes au nom de la Demanderesse, et dont les enseignements sont ici inclus à titre de référence.
On peut mettre en oeuvre des sols de cérium dont la taille moyenne telle que déterminée par diffusion quasi-élastique de la lumière peut varier de 3 nm à 100 nm, de préférence entre 5 et 50 nm.
On peut utiliser des sols de zirconium obtenus par exemple par hydrolyse à chaud d'une solution sulfurique de zirconium, en milieu nitrique ou en milieu chlorhydrique à une température comprise entre 80 et 150°C et de préférence vers 90°C, le rapport molaire SO3/ZrO2 de la solution sulfurique de zirconium étant compris de préférence entre 0,34 et 1 et sa concentration variant de préférence de 0,1 à 2 mole/l exprimée en ZrO2. Le sulfate basique de zirconium ainsi obtenu est ensuite neutralisé par une base, de préférence l'ammoniaque, jusqu'à l'obtention d'un pH d'environ 8; puis on lave et on disperse ensuite le gel obtenu par ajout d'une solution d'acide nitrique, le pH du milieu de dispersion étant alors de préférence compris entre 0,5 et 5. On peut utiliser des sols de zirconium présentant une taille moyenne comprise entre 5 nm et 500 nm, et avantageusement comprise entre 10 et 200 nm.
II est à noter qu'il est possible aussi de partir de solutions de sels céreux et de manganèse II. On ajoute dans ce cas au mélange de départ un agent oxydant tel que l'eau oxygénée. Dans la deuxième étape de cette seconde méthode, on met en présence le mélange obtenu précédemment avec un composé basique. On peut utiliser comme base ou composé basique les produits du type hydroxyde. On peut citer les hydroxydes d'alcalins ou d'alcalino-terreux. On peut aussi utiliser les aminés secondaires, tertiaires ou quaternaires. Toutefois, les aminés et l'ammoniaque peuvent être préférés dans la mesure où ils diminuent les risques de pollution par les cations alcalins ou alcalino terreux. On peut aussi mentionner l'urée. L'ordre d'introduction des réactifs peut être quelconque, le composé basique pouvant être introduit dans le mélange ou inversement ou encore les réactifs pouvant être introduits simultanément dans le réacteur.
L'addition peut être effectuée en une seule fois, graduellement ou en continu, et elle est de préférence réalisée sous agitation. Cette opération peut être conduite à une température comprise entre la température ambiante (18 - 25°C) et la température de reflux du milieu réactionnel, cette dernière pouvant atteindre 120°C par exemple. Elle est de préférence conduite à température ambiante.
A la fin de l'addition de la solution basique, on peut éventuellement maintenir encore le milieu de réaction sous agitation pendant quelque temps, et ceci afin de parfaire la précipitation.
A l'issue de l'étape de précipitation, on récupère une masse d'un précipité solide qui peut être séparé de son milieu par toute technique classique.
Les étapes de lavage et de calcination sont ensuite conduites de la même façon que celle décrite pour la première méthode.
Pour les deux méthodes qui viennent d'être décrites, on peut noter que, selon une variante, il est possible de ne pas réaliser la dernière étape de calcination mais de n'effectuer dans ce cas qu'un séchage à une température de l'ordre de 100°C.
Une troisième méthode possible de préparation d'une composition utilisable dans le cadre de l'invention comprend les étapes suivantes :
- on prépare un mélange en milieu liquide contenant un sol de cérium et/ou de zirconium et au moins un composé du manganèse;
- on sèche par atomisation le mélange ainsi obtenu; - on calcine le produit séché.
Pour ce qui concerne la première étape de cette troisième méthode, tout ce qui a été décrit plus haut à ce sujet pour les méthodes précédentes s'applique aussi ici. On ajoutera que le composé du manganèse peut éventuellement être apporté aussi sous forme de sol.
La deuxième étape de cette troisième méthode est un séchage par atomisation, c'est à dire par pulvérisation du mélange dans une atmosphère chaude (spray-drying). L'atomisation peut être réalisée au moyen de tout pulvérisateur connu en soi, par exemple par une buse de pulvérisation du type pomme d'arrosoir ou autre. On peut également utiliser des atomiseurs dits à turbine. Sur les diverses techniques de pulvérisation susceptibles d'être mises en oeuvre dans le présent procédé, on pourra se référer notamment à l'ouvrage de base de MASTERS intitulé "SPRAY-DRYING" (deuxième édition, 1976, Editions Gerge Godwin - London).
On notera que l'on peut également mettre en oeuvre l'opération d'atomisation- séchage au moyen d'un réacteur "flash", par exemple du type mis au point par la
Demanderesse et décrit notamment dans les demandes de brevet FR-A-2257 326
FR-A-2 419 754 et FR-A-2 431 321. Dans ce cas, les gaz traitants (gaz chauds) sont animés d'un mouvement hélicoïdal et s'écoulent dans un puits-tourbillon. Le mélange à sécher est injecté suivant une trajectoire confondue avec l'axe de symétrie des trajectoires hélicoïdales desdits gaz, ce qui permet de transférer parfaitement la quantité de mouvement des gaz au mélange à traiter. Les gaz assurent ainsi en fait une double fonction : d'une part la pulvérisation, c'est à dire la transformation en fines gouttelettes, du mélange initial, et d'autre part le séchage des gouttelettes obtenues. Par ailleurs, le temps de séjour extrêmement faible (généralement inférieur à 1/10 de seconde environ) des particules dans le réacteur présente pour avantage, entre autres, de limiter d'éventuels risques de surchauffe par suite d'un contact trop long avec les gaz chauds.
Selon les débits respectifs des gaz et du mélange à sécher, la température d'entrée des gaz dans le réacteur "flash" est comprise entre 400 et 900°C et plus particulièrement entre 600 et 800°C, la température du solide séché entre 100 et 250°C, de préférence entre 125 et 200°C.
A l'issue de cette étape de séchage, on obtient un produit sec qui peut éventuellement être calciné de la même manière que celle décrite pour les méthodes précédentes.
Les trois méthodes décrites ci-dessus constituent les procédés préférés pour obtenir les compositions cérium et/ou zirconium-manganèse sous forme de solutions solides au sens donné plus haut.
Selon une quatrième méthode on peut préparer une composition utilisable pour l'invention en imprégnant un oxyde de cérium et/ou de zirconium ou un précurseur de cet oxyde avec une solution d'un composé du manganèse puis en calcinant l'oxyde imprégné.
On effectue l'imprégnation par mélange de l'oxyde à imprégner ou de son précurseur et d'une solution d'un composé du manganèse choisi parmi les composés décomposables thermiquement en oxyde.
Comme composés convenables du manganèse, on peut citer les sels d'acides organiques ou inorganiques comme les nitrates, les chlorures, les sulfates, les acétates par exemple. Les nitrates constituent les composés préférés.
II est notamment possible d'imprégner l'oxyde par trempage de celui-ci dans la solution du composé de manganèse et d'éliminer l'excès de solution par égouttage ou par passage dans un évaporateur rotatif.
Selon une variante préférée de ce quatrième procédé, l'imprégnation est réalisée
"à sec", c'est à dire que le volume total de solution utilisée est approximativement égal au volume poreux total développé par l'oxyde à imprégner. Concernant la détermination de ce volume poreux, elle peut être réalisée selon la méthode connue au porosimètre à mercure ou bien par mesure de la quantité d'eau absorbée par un échantillon.
Dans une deuxième étape, on sèche l'oxyde imprégné pour éliminer l'eau, en laissant ainsi le composé de manganèse sous une forme dispersée de manière homogène et intime dans, ou à la surface de, l'oxyde. Le séchage est le plus souvent effectué à l'air, à une température qui peut varier entre 80 et 300°C et choisie de préférence entre 100 et 150°C. Le séchage est poursuivi jusqu'à l'obtention d'un poids constant. Généralement, la durée du séchage est comprise entre 1 et 24 heures.
Enfin, dans une troisième étape, on calcine l'oxyde imprégné dans les mêmes conditions que celles décrites précédemment.
Dans le cas de l'utilisation d'une composition comprenant un élément supplémentaire du type précité, on peut préparer cette composition en utilisant un des procédés décrit plus haut. Au lieu de mettre en oeuvre uniquement un composé du manganèse, on utilise en outre un composé du ou des éléments précités et ce qui a été décrit plus haut quant à la nature du composé de manganèse et à l'ordre d'introduction de celui-ci dans ces procédés s'applique aussi aux composés des éléments précités.
On notera que dans le cas du procédé de préparation par imprégnation d'une composition comprenant du manganèse et au moins un autre élément, on peut réaliser l'imprégnation en deux temps. On imprègne ainsi le cérium et/ou le zirconium par le manganèse puis on sèche et enfin on imprègne le produit séché par l'élément. Un ordre inverse d'imprégnation peut être suivi. II est aussi possible de procéder par imprégnation simultanée du manganèse et de l'autre élément. Les gaz susceptibles d'être traités par la présente invention sont, par exemple, ceux issus de turbines à gaz, de chaudières de centrales thermiques ou encore de moteurs à combustion interne, notamment de moteurs diesel ou de moteurs fonctionnant en mélange pauvre. L'invention s'applique au traitement des gaz qui présentent une teneur élevée en oxygène et qui contiennent des oxydes d'azote, en vue de réduire les émissions de ces oxydes. Par gaz présentant une teneur élevée en oxygène, on entend des gaz présentant en permanence un excès d'oxygène par rapport à la valeur stoechiométrique λ = 1. La valeur λ est corrélée au rapport air/carburant d'une manière connue en soi notamment dans le domaine des moteurs à combustion interne. En d'autres termes, l'invention s'applique au traitement des gaz issus de systèmes du type décrit au paragraphe précédent et fonctionnant en permanence dans des conditions telles que λ soit toujours strictement supérieur à 1. L'invention s'applique aussi au traitement des gaz qui présentent une teneur en oxygène (exprimée en volume) d'au moins 5%, plus particulièrement d'au moins 10%, cette teneur pouvant par exemple se situer entre 5 et 20%.
Les gaz peuvent contenir des hydrocarbures et, dans un tel cas, une des réactions que l'on cherche à catalyser est la réaction HC (hydrocarbures) + NOx.
Les hydrocarbures qui peuvent être utilisés comme agent réducteur pour l'élimination des NOx sont notamment les gaz ou les liquides des familles des carbures saturés, des carbures éthyléniques, des carbures acétyléniques, des carbures aromatiques et les hydrocarbures des coupes pétrolières comme par exemple le méthane, l'éthane, le propane, le butane, le pentane, l'hexane, l'éthylène, le propylène, l'acétylène, le butadiène, le benzène, le toluène, le xylène, le kérosène et le gaz oil. Les gaz peuvent contenir aussi comme agent réducteur, des composés organiques contenant de l'oxygène. Ces composés peuvent être notamment les alcools du type par exemple alcools saturés comme le méthanol, l'éthanol ou le propanol; les éthers comme l'éther méthylique ou l'éther éthylique; les esters comme l'acétate de méthyle et les cétones. II faut noter cependant que selon une caractéristique intéressante de l'invention, le procédé de traitement peut être réalisé sur un gaz sans la présence d'un hydrocarbure.
L'invention concerne aussi un système catalytique pour le traitement de gaz, à teneur élevée en oxygène, en vue de la réduction des émissions des oxydes d'azote, qui est caractérisé en ce qu'il comprend une composition catalytique du type qui a été décrit ci-dessus.
Dans ce système, la composition catalytique, après avoir été mélangée à un support du type par exemple alumine ou silice, peut se présenter sous diverses formes telles que granulés, billes, cylindres ou nid d'abeille de dimensions variables. Les compositions peuvent aussi être utilisées dans des systèmes catalytiques comprenant un revêtement (wash coat) à base d'un support du même type que précédemment et de ces compositions, sur un substrat du type par exemple monolithe métallique ou en céramique. D'autres modes de réalisation de systèmes catalytiques incorporant les compositions de l'invention peuvent être envisagés.
Ainsi, selon un premier mode le système comporte, disposé en amont dans le sens de circulation du gaz, un premier élément comprenant un substrat du type monolithe métallique ou en céramique qui comporte un revêtement catalytique à base d'un support comme de l'alumine ou de la silice et d'au moins un métal précieux qui peut être par exemple le platine, le palladium, le rhodium ou l'iridium. En outre, le système comporte un second élément, en aval du premier, comprenant la composition catalytique précitée. Ce second élément peut se présenter sous une forme quelconque du type décrit plus haut comme par exemple sous forme de billes ou d'un monolithe. Selon un autre mode de réalisation, le système catalytique peut être constitué d'un substrat avec un revêtement catalytique comprenant soit une première couche incorporant la composition catalytique de l'invention et une seconde couche incorporant au moins un métal précieux du type indiqué dans la description du mode de réalisation décrit précédemment, soit une couche unique comprenant un mélange de la composition catalytique et d'au moins un métal précieux.
Enfin, selon un autre mode de réalisation, le système catalytique peut se présenter sous forme d'un mélange de la composition catalytique précitée sur un premier support et d'au moins un métal précieux sur un deuxième support, les supports pouvant être identiques ou différents. Par exemple, il peut s'agir d'un mélange de billes ou de granulés à base d'alumine ou de silice et supportant les unes le métal précieux, les autres la composition selon l'invention.
Les systèmes sont montés d'une manière connue dans les pots d'échappement des véhicules dans le cas de l'application au traitement des gaz d'échappement.
L'invention concerne aussi enfin le procédé de préparation des systèmes catalytiques précités mettant en oeuvre une composition catalytique du type décrit précédemment.
Des exemples vont maintenant être donnés.
Dans les exemples donnés ci-dessous, les produits obtenus sont testés de deux manières différentes pour évaluer leurs performances catalytiques. La première manière correspond à une évaluation dans des conditions de faibles
VVH(rapport du débit en Nl/h au volume de catalyseur en I). Dans ce cas, on charge 0,3g du catalyseur en poudre dans un réacteur en quartz. La poudre utilisée a préalablement été compactée puis broyée et tamisée de manière à isoler la tranche granulométrique comprise entre 0,125 et 0,250mm.
Le mélange réactionnel à l'entrée du réacteur a la composition suivante (en volume) :
- NO = 300 vpm
- C3H6 = 300 vpm
- CO = 350 vpm - O2 = 10% - CO2 = 10%
- H2O = 10%
- N2 = qsp 100%
Le débit global est de 10 Nl/h. La VVH est de l'ordre de 20000 h"1. Les signaux de HC (C3H6), CO, N2O, NO et NOx (NOx = NO + NO2) sont enregistrés en permanence ainsi que la température dans le réacteur.
Le signal de HC est donné par un détecteur BECKMAN d'HC totaux, basé sur le principe de la détection par ionisation de flamme.
Les signaux de NO et NOx sont donnés par un analyseur de NOx ECOPHYSICS, basé sur le principe de la chimie-luminescence : il donne les valeurs de NO, NOx et NO2, cette dernière étant calculée par différence des signaux de NOx et NO.
Les signaux de CO et N2O sont donnés par des analyseurs à infra-rouge ROSEMOUNT.
L'activité catalytique est mesurée à partir des signaux HC, NO, N2O et NOx en fonction de la température lors d'une montée en température programmée de 150 à 700°C à raison de 15°C/mn et à partir des relations suivantes :
- Le taux de conversion de NO (TNO) en % qui est donné par :
T(NO) = 100(NO°-NO)/ NO° avec NO° signal de NO à l'instant t = 0 qui correspond au signal de NO obtenu avec le mélange réactionnel lors du by-pass du réacteur catalytique et NO est le signal de NO à l'instant t.
- Le taux de conversion de HC (THC) en % qui est donné par :
T (HC) = 100(HC°-HC)/HC° avec HC° signal de HC à l'instant t = 0 qui correspond au signal de HC obtenu avec le mélange réactionnel lors du by-pass du réacteur catalytique et HC est le signal de HC à l'instant t. - Le taux de conversion des NOx (TNOx) en % qui est donné par :
T(NOx) = 100(NOX°-NOX)/NOX° avec NOx° signal de NOx à l'instant t = 0 qui correspond au signal de NOx obtenu avec le mélange réactionnel lors du by-pass du réacteur catalytique et NOx est le signal de NOx à l'instant t. - Le taux de conversion des NOx en N2O (TN2O) en % qui est donné par : T(N2O) = 200(N2O-N2O°)/NOx° avec N2O° signal de N2O à l'instant t = 0 qui correspond au signal de N2O obtenu avec le mélange réactionnel lors du by-pass du réacteur catalytique et N2O est le signal de N2O à l'instant t. La deuxième manière de tester les produits correspond à une évaluation à des
VVH plus élevées puisque la masse de catalyseur est de seulement 50mg et le débit total dans le réacteur catalytique de 30NI/h. La VVH dans ces conditions est de l'ordre de 500000h*1. La composition du mélange réactionnel est la même que précédemment.
Exemples ι - Synthèse des catalyseurs
- Matières premières :
Les matières premières utilisées sont le nitrate de cuivre (Cu(N03)2, 3H2O), le nitrate de manganèse (Mn(N03)2, 4H2O), le nitrate de bismuth (Bi(N03)3, 5H2O), le tartrate d'antimoine (Sb2(C-4H4θ6)3. 6H2O), du platine (Pt(H2NH2CH2NH2)2CI2) en solution et un sol d'étain.
Le sol d'étain est préparé par ajout volume à volume d'une solution de NH4OH
(1 ,70 mol/l) dans une solution de chlorure d'étain (SnC.4 0,50 mot/l). Après plusieurs lavages à l'aide d'un tampon ammoniacal au pH de précipitation (voisin de 8,7) pour éliminer les chlorures, le précipité est préparé par centrifugation et remis en suspension dans l'eau pour former un sol.
Les supports utilisés sont de l'oxyde de cérium CeO2 RHONE-POULENC, un oxyde cérium-zirconium (30% en poids de ZrO2) RHONE-POULENC et un oxyde mixte cérium-manganèse (10% en poids de MnO2) RHONE-POULENC, tous deux obtenus par la première méthode de préparation décrite plus haut. - Synthèse :
Deux techniques ont été utilisées.
La première technique est l'imprégnation à sec. Elle consiste à imprégner le support considéré avec l'élément actif dissout dans une solution de volume égal au volume poreux du support (déterminé à l'eau : 0,35 cm /g dans le cas de CeO2 et 0,44 cm3/g dans le cas de CeO2-Mn2θ3 et de CeO2-ZrO2) et de concentration permettant d'atteindre le dopage recherché.
Le protocole opératoire suivi est le suivant :
• Imprégnation à sec du premier élément
• Séchage à l'étuve (110°C, 2 h) • Imprégnation à sec du deuxième élément (le cas échéant)
• Séchage à l'étuve (110°C, 2 h)
• Calcination à 750°C pendant 2 h, montée à 5°C/min. Les produits ont été caractérisés par diffraction des rayons X et leur surface spécifique a été déterminée par mesure BET un point.
La deuxième technique est l'atomisation. Le mélange comprenant les éléments constitutifs de la composition est atomisé dans les conditions suivantes : • Concentration des réactifs en oxyde : 150g/l
• Température d'entrée : 240°C
• Température de sortie : 120°C
• Calcination à 750°C pendant 2 h, montée à 5°C/min.
- Produits obtenus Avec un support CeO2 :
- Produit 1 ; [Mn] = 10% atomique (soit [Mn] / ([Mn] + [CeO2]) = 0,01), préparé par imprégnation et calcination à 750°C, SBET = 50 m2/g
- Produit 2 : [Mn] = 5% atomique et [Sn] = 5% atomique
(soit [Mn] + [Sn] / ([Mn] + [Sn] + [CeO2]) = 0,10), préparé par imprégnation et calcination à 750°C, SBET = 61 m2/g
- Produit 3 : comme le produit 2 mais avec Sb au lieu de Sn et avec la même concentration, SBET = 39m2/g.
- Produit 4 : comme le produit 2 mais avec Bi au lieu de Sn et avec la même concentration, SBET = 40m2/g. Avec un support CeO2-Mn2θ3 :
- Produit 5 : support tel quel, calcination à 750°C, SBET = 17 m2/g
- Produit 6 : [Cu] = 5% atomique (soit [Cu] / ([Cu] + [CeO2]) = 0,05), calcination à 750°C, SBET = 12 m2/g
- Produit 7 : [Pt] = 0,8% atomique (soit [Pt] / ([Pt] + [CeO2]) = 0,008), calcination à 750°C, SBET = 13 m2/g
Avec un support CeO2-ZrO2
- Produit 8 : [Mn] = 10% atomique, SBET = 48m2/g
Avec un support ZrO2
- Produit 9 : [Mn] = 10% atomique, obtenu par coséchage d'un sol de zirconium et de nitrate de manganèse, SBET = 23m2/g.
II - Performances catalvtiαues
Exemple n° 1 (comparatif) Les performances du catalyseur comparatif à base de CeO2 uniquement sont portées sur les tableaux I et II. Tableau I Activité catalytique du catalyseur à faible VVH
Figure imgf000017_0001
Tableau II Activité catatvtiαue du catalyseur à forte WH
Figure imgf000017_0002
On voit que, dans les conditions de faible VVH ainsi que dans les conditions de forte VVH, l'activité catalytique vis-à-vis de la réduction des émissions de NOx est nulle. Le catalyseur présente uniquement une activité vis-à-vis de l'oxydation du NO en NO2. Exemple ne 2
Les performances du produit 1 sont portées sur les tableaux III et IV.
Tableau III Activité catalytique du produit 1 à faible VVH.
Figure imgf000018_0001
Tableau IV Activité catalytique du produit 1 à forte VVH.
Figure imgf000018_0002
On voit dans les conditions de faible VVH une forte activité en DeNOx. On ne détecte pas la présence de N2O.
Dans les conditions de forte VVH, on ne détecte pas de N2O.
Exemple n° 3
Les performances du produit 5 sont portées sur le tableau V.
Tableau V Activité catalytique du produit 5 dans les conditions de forte VVH.
Figure imgf000019_0001
Elles montrent, dans les conditions de forte VVH un maximum de conversion des Ox de 23% à 395°C. On ne détecte pas de N2O.
Exemple n° 4
Les performances du produit 2 sont portées sur les tableaux VI et VII. Tableau VI Activité Catalytique du produit 2 dans les conditions de faible VVH.
Figure imgf000020_0001
Tableau VII Activité catalytique du produit 2 dans les conditions de forte WH.
Figure imgf000020_0002
Elles montrent que, dans les conditions de faible VVH (tableau VI), le catalyseur présente une très forte réactivité vis-à-vis de la réduction des émissions de NOx avec un maximum de conversion de 80% dans une plage de température située entre 250 et 360°C. On ne détecte pas de N2O en sortie de réacteur.
Dans les conditions de forte VVH (tableau VII), le catalyseur présente un maximum d'activité vis-à-vis de la conversion de NOx de 19% à 390°C. On ne produit pas de N2O.
Exemple n° 5
Les performances du produit 7 sont portées sur les tableaux VIII et IX.
Tableau VIII Activité catalytique du produit 7 dans les conditions de faible VVH.
Figure imgf000021_0001
Tableau IX Activité catalytique du produit 7 dans les conditions de forte VVH.
Figure imgf000022_0001
Elles montrent, dans les conditions de faible VVH (tableau VIII), une activité importante vis-à-vis de la conversion des NOx avec un maximum de 72% de conversion à 265°C. L'addition du platine a également un effet sur le domaine de conversion des NOx qui est sensiblement élargi puisque le domaine d'activité est compris entre 200 et 500°C.
Dans les conditions de forte VVH (tableau IX), l'activité du catalyseur présente deux domaines d'activité : le premier avec un maximum de 13,4% de conversion des NOx à 300°C et une production de N2O (correspondant à un taux de conversion des NOx d'au plus 4%) et le second avec un maximum de conversion des NOx de 23% à 390°C. On a donc dans ce cas un domaine de conversion pour les NOx qui s'étend entre 255 et 600°C avec une très faible production de N2O entre 265 et 400°C.
Exemple n° 6
Les performances du produit 6 sont portées sur les tableaux X et XI. Tableau X Activité catalytique du produit 6 dans les conditions de faible VVH.
Figure imgf000023_0001
Tableau XI Activité catalytique du produit 6 dans les conditions de forte WH.
Figure imgf000023_0002
Elles montrent, dans les conditions de faible VVH (tableau X), une activité catalytique vis-à-vis des NOx dès 195°C. L'activité passe par un maximum de 30% de conversion des NOx à 305°C. Le domaine d'activité est large (de 195 à 540°C). On ne détecte pas la présence de N2O en sortie de réacteur.
Dans les conditions de forte VVH (tableau XI), l'activité catalytique vis-à-vis de la conversion des NOx passe par un maximum de 18% à 435°C. On ne produit pas de N2O.
Exemple n° 7
Le produit 5 a été testé dans les conditions dites de forte VVH en supprimant l'hydrocarbure et CO dans le mélange réactionnel. Un débit équivalent d'azote lui est substitué pour permettre de travailler dans les mêmes conditions de débit global.
Les performances du produit dans ces conditions sont reportées sur le tableau XII.
Tableau XII Activité catalytique du produit 5 dans les conditions de forte VVH et sans HC ni CO dans le mélange réactionnel.
Figure imgf000024_0001
Elles montrent que, dans les conditions de forte VVH (tableau XII), l'activité catalytique vis-à-vis de la conversion des NOx passe par un maximum de 28% à 365°C. On ne produit pas de N2O. En l'absence d'hydrocarbure dans la phase gaz, l'activité du catalyseur vis-à-vis de la réduction des émissions de NOx est améliorée.
Exemple n° 8
Les performances du produit 3 sont portées sur le tableau XIII. Tableau XIII Activité catalytique du produit 3 dans des conditions de forte VVH.
Figure imgf000025_0001
Exemple n° 9
Les performances du produit 4 sont portées sur le tableau XIV.
Tableau XIV Activité catalytique du produit 4 dans des conditions de forte WH.
Figure imgf000025_0002
Exemple n° 10 à 12
Dans ces exemples, les produits 1 , 8 et 9 ont été testés dans les conditions dites de forte VVH en supprimant l'hydrocarbure et CO dans le mélange réactionnel. Un débit équivalent d'azote lui est substitué pour permettre de travailler dans les mêmes conditions de débit global.
Tableau XV Activité catalytique du produit 1
Figure imgf000026_0001
Tableau XVI Activité catalytique du produit 8
Figure imgf000026_0002
Tableau XVII Activité catalytique du produit 9
Figure imgf000027_0001

Claims

REVENDICATIONS
1- Procédé de traitement de gaz, à teneur élevée en oxygène, en vue de la réduction des émissions des oxydes d'azote, caractérisé en ce qu'on utilise une composition catalytique comprenant de l'oxyde de manganèse et au moins un oxyde choisi parmi l'oxyde de cérium et l'oxyde de zirconium.
2- Procédé selon la revendication 1 , caractérisé en ce qu'on utilise une composition catalytique comprenant en outre au moins un autre élément choisi parmi ceux des groupes VIII, IB, IVB et VB.
3- Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on utilise une composition catalytique dans laquelle le cérium et/ou le zirconium constituent un support sur lequel est déposé le manganèse et, éventuellement au moins un élément précité.
4- Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on utilise une composition catalytique dans laquelle le cérium et/ou le zirconium, avec le manganèse constituent un support sur lequel est déposé au moins un élément précité.
5- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise une composition catalytique dans laquelle le cérium et/ou le zirconium, avec le manganèse sont présents sous forme d'une solution solide.
6- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on utilise une composition catalytique dans laquelle le manganèse est présent dans une quantité exprimée en teneur atomique en manganèse par rapport au nombre de moles d'oxyde de cérium et d'oxyde de zirconium d'au plus 50%, plus particulièrement d'au plus 20%.
7- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on traite un gaz d'échappement de moteurs à combustion interne, plus particulièrement de moteurs diesel ou de moteurs fonctionnant en mélange pauvre.
8- Procédé selon l'une des revendications précédentes, caractérisé en ce que la teneur en oxygène des gaz est d'au moins 5% en volume. 9- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on traite un gaz en présence d'un hydrocarbure ou d'un composé organique contenant de l'oxygène.
10- Procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'on traite un gaz sans la présence d'un hydrocarbure ou d'un composé organique contenant de l'oxygène.
11- Système catalytique pour le traitement de gaz, à teneur élevée en oxygène, en vue de la réduction des émissions des oxydes d'azote, caractérisé en ce qu'il comprend une composition catalytique telle que revendiquée dans les revendications 1 à 6.
12- Système catalytique selon la revendication 11 , caractérisé en ce qu'il comporte, disposé en amont dans le sens de circulation du gaz, un premier élément comprenant un substrat comportant un revêtement catalytique à base d'un support et d'au moins un métal précieux et, en aval, un second élément comprenant la composition catalytique précitée.
13- Système catalytique selon la revendication 11, caractérisé en ce qu'il comporte un substrat avec un revêtement catalytique comprenant soit une première couche incorporant la composition catalytique précitée et une seconde couche incorporant au moins un métal précieux, soit une couche unique comprenant un mélange de la composition catalytique et d'au moins un métal précieux.
14- Système catalytique selon la revendication 11 , caractérisé en ce qu'il comporte un mélange de la composition catalytique précitée sur un premier support et d'au moins un métal précieux sur un deuxième support.
15- Procédé de préparation d'un système catalytique selon l'une des revendications 10 à 14, caractérisé en ce qu'on met en oeuvre une composition catalytique telle que revendiquée dans les revendications 1 à 6.
PCT/FR1996/001430 1995-09-20 1996-09-16 Procede de traitement catalytique de gaz, a teneur elevee en oxygene, en vue de la reduction des emissions des oxydes d'azote WO1997010892A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR9610631A BR9610631A (pt) 1995-09-20 1996-09-16 Processo de tratamento de gases com teor elevado em oxigênio tendo em vista redução das emissões dos óxidos de nitrogênio sistema catalítico para o tratamento de gás com teor elevado em oxigênio e processo de preparação de um sistema catalítico
DE69617993T DE69617993T2 (de) 1995-09-20 1996-09-16 Methode zur katalytischen behandlung von gasen mit hohem sauerstoffgehalt zur reduktion von stickoxid-emissionen
EP96931848A EP0861116B1 (fr) 1995-09-20 1996-09-16 Procede de traitement catalytique de gaz, a teneur elevee en oxygene, en vue de la reduction des emissions des oxydes d'azote
KR1019980702075A KR19990063627A (ko) 1995-09-20 1996-09-16 질소 산화물 방출 감소를 위한 고 산소 함량 가스의 촉매적 처리 방법
AU70881/96A AU7088196A (en) 1995-09-20 1996-09-16 Method for catalytically processing gases with a high oxygen content to reduce nitrogen oxide emissions
AT96931848T ATE210490T1 (de) 1995-09-20 1996-09-16 Methode zur katalytischen behandlung von gasen mit hohem sauerstoffgehalt zur reduktion von stickoxid-emissionen
JP51243097A JP3345426B2 (ja) 1995-09-20 1996-09-16 窒素酸化物の放出を制御する目的で、酸化セリウム及び(又は)酸化ジルコニウムを含む触媒組成物を使用して高酸素含有量のガスを処理するための方法
CA002230714A CA2230714C (fr) 1995-09-20 1996-09-16 Procede de traitement catalytique de gaz, a teneur elevee en oxygene, en vue de la reduction des emissions des oxydes d'azote

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9511020A FR2738756B1 (fr) 1995-09-20 1995-09-20 Procede de traitement de gaz, a teneur elevee en oxygene en vue de la reduction des emissions des oxydes d'azote, utilisant une composition catalytique comprenant de l'oxyde de manganese et de l'oxyde de cerium et/ou de zirconium
FR95/11020 1995-09-20

Publications (1)

Publication Number Publication Date
WO1997010892A1 true WO1997010892A1 (fr) 1997-03-27

Family

ID=9482741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1996/001430 WO1997010892A1 (fr) 1995-09-20 1996-09-16 Procede de traitement catalytique de gaz, a teneur elevee en oxygene, en vue de la reduction des emissions des oxydes d'azote

Country Status (14)

Country Link
EP (1) EP0861116B1 (fr)
JP (1) JP3345426B2 (fr)
KR (1) KR19990063627A (fr)
CN (1) CN1200053A (fr)
AT (1) ATE210490T1 (fr)
AU (1) AU7088196A (fr)
BR (1) BR9610631A (fr)
CA (1) CA2230714C (fr)
DE (1) DE69617993T2 (fr)
ES (1) ES2169812T3 (fr)
FR (1) FR2738756B1 (fr)
MX (1) MX9802171A (fr)
MY (1) MY132526A (fr)
WO (1) WO1997010892A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2771306A1 (fr) * 1997-11-25 1999-05-28 Rhodia Chimie Sa Composition a base de manganese et utilisation comme piege a nox pour le traitement de gaz d'echappement
FR2791907A1 (fr) * 1999-04-12 2000-10-13 Rhodia Chimie Sa COMPOSITIONS UTILISABLES COMME PIEGE A NOx, A BASE DE MANGANESE ET D'UN ALCALIN OU D'UN ALCALINO-TERREUX ET UTILISATION DANS LE TRAITEMENT DES GAZ D'ECHAPPEMENT
FR2792547A1 (fr) * 1999-04-23 2000-10-27 Rhodia Chimie Sa COMPOSITION UTILISABLE COMME PIEGE A NOx, A BASE DE MANGANESE ET D'UN ALCALINO-TERREUX OU D'UNE TERRE RARE ET UTILISATION DANS LE TRAITEMENT DES GAZ D'ECHAPPEMENT
US6727202B2 (en) 2001-08-21 2004-04-27 Engelhard Corporation Enhanced NOx trap having increased durability
US6852666B1 (en) * 1999-05-07 2005-02-08 Faurecia Systemes D'echappement Purifying composition with NOx treatment and internal combustion engine exhaust gases
US8959894B2 (en) 2011-03-24 2015-02-24 GM Global Technology Operations LLC Manganese-based oxides promoted lean NOx trap (LNT) catalyst
WO2015111079A1 (fr) * 2014-01-21 2015-07-30 Council Of Scientific & Industrial Research Catalyseur d'oxydation diesel à base de métal non noble
EP3317013A4 (fr) * 2015-07-01 2019-03-20 BASF Corporation Catalyseurs d'élimination d'oxyde nitreux pour systèmes d'échappement

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2770790B1 (fr) * 1997-11-10 1999-12-10 Rhodia Chimie Sa Composition a support a base d'un oxyde de cerium, d'un oxyde de zirconium et d'un oxyde de scandium ou de terre rare et utilisation pour le traitement des gaz d'echappement
US6103207A (en) * 1999-04-26 2000-08-15 Ford Global Technologies, Inc. Treating diesel exhaust with a catalytic particulate mixture
FR2793161B1 (fr) * 1999-05-07 2001-10-12 Renault Dispositif d'epuration des gaz d'echappement pour moteur a combustion interne
FR2793164B1 (fr) * 1999-05-07 2001-08-10 Ecia Equip Composants Ind Auto Composition d'epuration des gaz d'echappement d'un moteur a combustion interne
FR2793162B1 (fr) * 1999-05-07 2001-07-27 Ecia Equip Composants Ind Auto COMPOSE A ACTIVITE CATALYTIQUE OU A ACTIVITE DE PIEGEAGE, UTILISABLE COMME PIEGE A NOx ASSOCIANT DEUX COMPOSITIONS A BASE DE MANGANESE ET D'UN AUTRE ELEMENT CHOISI PARMI LES ALCALINS, LES ALCALINO-TERREUX ET LES TERRES RARES.
AU4413800A (en) * 1999-05-07 2000-11-21 Ecia Composition for use as nox trap, combining two compositions based on manganese and another element selected among the alkalines, alkaline-earths and rare earthsand use thereof for treating exhaust gases
JP5164665B2 (ja) * 2008-04-09 2013-03-21 第一稀元素化学工業株式会社 セリウム−ジルコニウム系複合酸化物及びその製造方法
US8057767B1 (en) * 2010-08-10 2011-11-15 GM Global Technology Operations LLC Base metal oxides oxidation catalyst
US8466083B2 (en) * 2010-08-27 2013-06-18 GM Global Technology Operations LLC Bi-functional catalyst materials for lean exhaust NOx reduction
US8545779B2 (en) * 2011-01-13 2013-10-01 GM Global Technology Operations LLC Sulfur-tolerant perovskite NOx oxidation catalysts
CN105664924A (zh) * 2016-01-13 2016-06-15 南京大学 形貌效应强化低温活性的脱硝催化剂及其制备方法和应用
TWI766429B (zh) * 2020-11-09 2022-06-01 財團法人工業技術研究院 的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2582964A1 (fr) * 1985-06-10 1986-12-12 Nippon Catalytic Chem Ind Procede pour epurer des gaz d'echappement
EP0488331A1 (fr) * 1990-11-30 1992-06-03 Masakatsu Hiraoka Procédé et filtre pour éliminer des oxides d'azote et composés organiques chlorés des gaz de combustion
EP0624393A1 (fr) * 1993-05-10 1994-11-17 Sakai Chemical Industry Co., Ltd., Catalyseur pour la réduction catalytique d'oxydes d'azote
EP0661089A2 (fr) * 1993-12-28 1995-07-05 Kabushiki Kaisha Riken Dispositif et méthode pour la purification de gaz d'échappement
EP0667182A2 (fr) * 1994-02-10 1995-08-16 Kabushiki Kaisha Riken Epurateur de gaz d'échappement et méthode pour la purification de gaz d'échappement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2582964A1 (fr) * 1985-06-10 1986-12-12 Nippon Catalytic Chem Ind Procede pour epurer des gaz d'echappement
EP0488331A1 (fr) * 1990-11-30 1992-06-03 Masakatsu Hiraoka Procédé et filtre pour éliminer des oxides d'azote et composés organiques chlorés des gaz de combustion
EP0624393A1 (fr) * 1993-05-10 1994-11-17 Sakai Chemical Industry Co., Ltd., Catalyseur pour la réduction catalytique d'oxydes d'azote
EP0661089A2 (fr) * 1993-12-28 1995-07-05 Kabushiki Kaisha Riken Dispositif et méthode pour la purification de gaz d'échappement
EP0667182A2 (fr) * 1994-02-10 1995-08-16 Kabushiki Kaisha Riken Epurateur de gaz d'échappement et méthode pour la purification de gaz d'échappement

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475452B1 (en) 1997-11-25 2002-11-05 Rhodia Chimie Composition based on manganese and use for trapping NOx for treating exhaust gases
WO1999026715A1 (fr) * 1997-11-25 1999-06-03 Rhodia Chimie COMPOSITION A BASE DE MANGANESE ET UTILISATION COMME PIEGE A NOx POUR LE TRAITEMENT DE GAZ D'ECHAPPEMENT
KR100377891B1 (ko) * 1997-11-25 2003-03-29 로디아 쉬미 망간 기재 조성물 및 배기 가스 처리용 NOx트랩으로서의 용도
FR2771306A1 (fr) * 1997-11-25 1999-05-28 Rhodia Chimie Sa Composition a base de manganese et utilisation comme piege a nox pour le traitement de gaz d'echappement
WO2000061289A1 (fr) * 1999-04-12 2000-10-19 Rhodia Services COMPOSITIONS UTILISABLES COMME PIEGE A NOx, A BASE DE MANGANESE ET D'UN ALCALIN OU D'UN ALCALINO-TERREUX ET UTILISATION DANS LE TRAITEMENT DES GAZ D'ECHAPPEMENT
FR2791907A1 (fr) * 1999-04-12 2000-10-13 Rhodia Chimie Sa COMPOSITIONS UTILISABLES COMME PIEGE A NOx, A BASE DE MANGANESE ET D'UN ALCALIN OU D'UN ALCALINO-TERREUX ET UTILISATION DANS LE TRAITEMENT DES GAZ D'ECHAPPEMENT
WO2000064580A1 (fr) * 1999-04-23 2000-11-02 Rhodia Chimie COMPOSITION UTILISABLE COMME PIEGE A NOx, A BASE DE MANGANESE ET D'UN ALCALINO-TERREUX OU D'UNE TERRE RARE ET UTILISATION DANS LE TRAITEMENT DES GAZ D'ECHAPPEMENT
FR2792547A1 (fr) * 1999-04-23 2000-10-27 Rhodia Chimie Sa COMPOSITION UTILISABLE COMME PIEGE A NOx, A BASE DE MANGANESE ET D'UN ALCALINO-TERREUX OU D'UNE TERRE RARE ET UTILISATION DANS LE TRAITEMENT DES GAZ D'ECHAPPEMENT
US6852666B1 (en) * 1999-05-07 2005-02-08 Faurecia Systemes D'echappement Purifying composition with NOx treatment and internal combustion engine exhaust gases
US6727202B2 (en) 2001-08-21 2004-04-27 Engelhard Corporation Enhanced NOx trap having increased durability
US8959894B2 (en) 2011-03-24 2015-02-24 GM Global Technology Operations LLC Manganese-based oxides promoted lean NOx trap (LNT) catalyst
WO2015111079A1 (fr) * 2014-01-21 2015-07-30 Council Of Scientific & Industrial Research Catalyseur d'oxydation diesel à base de métal non noble
US10646827B2 (en) 2014-01-21 2020-05-12 Council Of Scientific & Industrial Research Non noble metal based diesel oxidation catalyst
EP3317013A4 (fr) * 2015-07-01 2019-03-20 BASF Corporation Catalyseurs d'élimination d'oxyde nitreux pour systèmes d'échappement
RU2736939C2 (ru) * 2015-07-01 2020-11-23 Басф Корпорейшн Катализаторы для удаления закиси азота для выхлопных систем

Also Published As

Publication number Publication date
MY132526A (en) 2007-10-31
ES2169812T3 (es) 2002-07-16
DE69617993D1 (de) 2002-01-24
DE69617993T2 (de) 2002-07-18
FR2738756A1 (fr) 1997-03-21
JP3345426B2 (ja) 2002-11-18
CA2230714C (fr) 2002-04-09
FR2738756B1 (fr) 1998-12-11
CN1200053A (zh) 1998-11-25
MX9802171A (es) 1998-11-29
EP0861116A1 (fr) 1998-09-02
AU7088196A (en) 1997-04-09
KR19990063627A (ko) 1999-07-26
CA2230714A1 (fr) 1997-03-27
EP0861116B1 (fr) 2001-12-12
ATE210490T1 (de) 2001-12-15
JPH11500354A (ja) 1999-01-12
BR9610631A (pt) 1999-03-16

Similar Documents

Publication Publication Date Title
EP0802824B1 (fr) Composition catalytique a base d'oxyde de cerium et d'oxyde de manganese, de fer ou de praseodyme, son procede de preparation et son utilisation en catalyse postcombustion automobile
WO1997010892A1 (fr) Procede de traitement catalytique de gaz, a teneur elevee en oxygene, en vue de la reduction des emissions des oxydes d'azote
EP2083936B1 (fr) Composition a acidite elevee a base d'oxydes de zirconium, de silicium et d'au moins un autre element choisi parmi le titane, l'aluminium, le tungstene, le molybdene, le cerium, le fer, l'etain, le zinc et le manganese
EP0676232B1 (fr) L'utilisation d'un catalyseur à base de spinelles pour la réduction des émissions des oxydes d'azote
CA2255571C (fr) Composition a base d'oxyde de cerium et d'oxyde de zirconium, procede de preparation et utilisation en catalyse
FR2907445A1 (fr) Composition a acidite elevee a base d'oxyde de zirconium, d'oxyde de titane et d'oxyde de tungstene,procede de preparation et utilisation dans le traitement des gaz d'echappement
EP0946266B1 (fr) Procede de traitement de gaz d'echappement de moteurs a combustion interne fonctionnant avec un carburant contenant du soufre
CA2310123C (fr) Composition a support a base d'un oxyde de cerium, d'un oxyde de zirconium et d'un oxyde de scandium ou de terre rare et utilisation pour le traitement des gaz d'echappement
EP2571813B1 (fr) Composition a base de cerium, de zirconium et de tungstene, procede de preparation et utilisation en catalyse
FR2901155A1 (fr) Compositions utilisees notamment pour le piegeage d'oxydes d'azote (nox)
CA2611126C (fr) Procede de traitement de gaz pour l'oxydation catalytique du monoxyde de carbone et des hydrocarbures utilisant une composition a base d'un metal et d'une zircone comprenant de lasilice
CA2202185A1 (fr) Compositions catalytiques pour la reduction des oxydes d'azote a base de tantale, de vanadium, de niobium, de cuivre ou d'antimoine
FR2793161A1 (fr) Dispositif d'epuration des gaz d'echappement pour moteur a combustion interne
FR2765492A1 (fr) Procede de traitement de gaz pour la reduction des emissions des oxydes d'azote utilisant une composition catalytique avec un support a base de silice et d'oxyde de titane
FR2750058A1 (fr) Procede de traitement de gaz pour la reduction des emissions des oxydes d'azote
FR2765120A1 (fr) Procede de traitement de gaz pour la reduction des emissions des oxydes d'azote, utilisant un catalyseur a base de ruthenium ou de ruthenium et d'etain
EP1316358A1 (fr) Composition à base d'une ferrierite et son utilisation dans un procédé pour la réduction des émissions des oxydes d'azote
FR2725638A1 (fr) Compositions catalytiques pour la reduction des oxydes d'azote a base de tantale, de vanadium, de niobium ou d'antimoine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96197797.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996931848

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2230714

Country of ref document: CA

Ref document number: 2230714

Country of ref document: CA

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1997 512430

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/002171

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1019980702075

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1996931848

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980702075

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996931848

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019980702075

Country of ref document: KR