WO1997010686A1 - Dispositif de commutation pour la distribution d'energie electrique - Google Patents

Dispositif de commutation pour la distribution d'energie electrique Download PDF

Info

Publication number
WO1997010686A1
WO1997010686A1 PCT/NZ1996/000098 NZ9600098W WO9710686A1 WO 1997010686 A1 WO1997010686 A1 WO 1997010686A1 NZ 9600098 W NZ9600098 W NZ 9600098W WO 9710686 A1 WO9710686 A1 WO 9710686A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical power
electrical
level
ambient light
circuit
Prior art date
Application number
PCT/NZ1996/000098
Other languages
English (en)
Inventor
Ashby Robert Howitt
George Matehe Tuau
Original Assignee
Ashby Robert Howitt
George Matehe Tuau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ashby Robert Howitt, George Matehe Tuau filed Critical Ashby Robert Howitt
Priority to AU68920/96A priority Critical patent/AU6892096A/en
Publication of WO1997010686A1 publication Critical patent/WO1997010686A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • This invention relates to a device for automatically switching electrical power to
  • the invention relates to a device which when certain conditions are encountered, can interrupt the delivery of or initiate the delivery of electrical power to electrical accessories powered by a battery type of electrical storage system.
  • the invention relates to a means capable of automatically interrupting the delivery of or initiate the delivery of electrical power to
  • Motor vehicles generally have an electrical storage device such as a lead acid battery which is maintained in a charged state by electrical generating means such as an alternator or generator which is driven by the engine which otherwise provides the motive power for the vehicle.
  • electrical generating means such as an alternator or generator which is driven by the engine which otherwise provides the motive power for the vehicle.
  • a continuing problem with motor vehicles is that the headlights or other electrical power consuming apparatus can be left in a turned on state while the vehicle engine is not running. In this situation no power is being generated nor delivered to the battery and in certain circumstances, this can result in a total or substantial discharge of the battery. Consequently when the engine of the vehicle is to be restarted there is either insufficient or no electrical capacity to enable the electrical starter motor of the motor vehicle to operate.
  • Another disadvantage with the known multiple compartment type of battery is that it is generally unusable in moored boats, because ofthe movement imparted to the boat by the water.
  • a yet further disadvantage is that if the vehicle in which the battery is installed is subject to any excessive movement which can happen, for instance, during a gust of wind, then this can result in the second compartment being electrically connected to the first compartment.
  • Such known multiple compartment types of batteries have further disadvantages in that they are generally available in one specific size only and because of their complexity they are expensive in comparison with a standard type of battery.
  • Another method of partially alleviating the problem consists in installing a switching mechanism with the headlights and optionally with other circuits so that when the ignition switch is turned to the off position, then the headlights and/or other equipment are turned off.
  • a switching mechanism with the headlights and optionally with other circuits so that when the ignition switch is turned to the off position, then the headlights and/or other equipment are turned off.
  • the invention comprises an electrical power switching means to connect and/or disconnect electrical power from a rechargeable electrical storage system to an electrically powered accessory, said switching means comprising; detecting means to detect the presence of electrical power in an indicator electrical circuit, and
  • At least one light sensor means to detect the level of ambient light
  • the construction and arrangement being that the electrical power switching means will connect and maintain electrical power to the said electrically powered accessory when: (a) the detecting means detects the presence of electrical power in said indicator circuit, and
  • the system includes a transient conditions filter connected to the means to generate an electrical signal.
  • the invention comprises a method of controlling the distribution of electrical power to an electrically powered accessory comprising a system including: means to detect the presence of electrical power in an indicator electrical circuit; means to detect the level of ambient light and to generate an electrical signal dependent upon the level of ambient light; a transient conditions filter connected to said means to generate an electrical signal;
  • system will connect electrical power to said electrically powered accessory when electrical power is detected in said indicator electrical circuit and when the ambient light detecting means generates an electrical signal above a pre set level
  • connection or disconnection of electrical power is delayed by the transient conditions filter for a predetermined time after a change in the output of the means to detect the level of ambient light such that said connection or disconnection is dependent on a steady state change in the level of ambient light.
  • the system includes a power up delay to delay the connection of electrical power to said electrically powered accessories after electrical power has initially been detected in said indicator electrical circuit.
  • the power up delay circuit is connected to the output of said transient conditions filter.
  • the system includes the time delay to maintain the steady state of the switching means for a period following a change in the level of ambient light above or below a predetermined threshold comprises a hysteresis triggering device.
  • the said indicator electrical circuit is the ignition circuit of a motor vehicle.
  • the system includes means to enable the threshold ofthe level of ambient light to be adjusted.
  • connection or disconnection signal from said light sensor means is delayed by said transient conditions filter for a predetermined time such that the said connection or disconnection is dependent upon a steady state change in the level of ambient light.
  • Figure 1 is a block diagram of a preferred embodiment automated electrical switching system
  • Figure 2 is a circuit diagram of a battery saving device and automated lighting
  • a preferred form automated switching system comprises an indicator electrical circuit 1, an external circuit 8, and a switching device 2 comprising a light sensor mechanism 3, a hysteresis triggering device 4, a transient conditions filter circuit 5, a power up delay circuit 6, and an external device relay circuit 7.
  • the system controls the external circuit 8 according to the ambient level of light and the availability of electrical energy. This is particularly useful in vehicle lighting systems which are required to provide artificial lighting during natural darkness and which rely on electrical storage devices such as batteries to do this.
  • the indicator electrical circuit 1 detects the availability of electrical power, for example it may detect whether the generator of the motor vehicle is charging the battery or whether the ignition system of a motor vehicle powered by a petrol engine has been energised by manual operation of the ignition key.
  • the light sensor circuit 3 which converts the ambient lighting level into an electrical signal or voltage level.
  • the sensitivity of the sensor circuit 3 to lighting levels can be adjusted to increase or decrease the voltage level for a given lighting level as desired. This can be used to adjust the threshold lighting levels at which the external circuit 8 is switched on or off.
  • the sensor circuit 3 utilises a light dependent resistor.
  • the light sensor circuit 3 is connected to a hysteresis triggering device 4 such as a Schmidt trigger to generate a steady bistable output (light or dark) from the signal from the sensor circuit 3.
  • a hysteresis triggering device 4 such as a Schmidt trigger to generate a steady bistable output (light or dark) from the signal from the sensor circuit 3.
  • the hysteresis triggering device 4 incorporates different high and low input thresholds at which it switches between light and dark output signals. This avoids a rapidly changing output signal when the signal from the sensor circuit 3 is slowly varying near a particular threshold. For example when the low level or dark input threshold is reached, the triggering device 4 switches to a dark output and the signal level of the sensor circuit 3 has to increase above this to a high or light input threshold before the triggering device switches back to a light output.
  • the triggering device 4 is connected to a transient conditions filter 5 which filters out transient changes in the output signal of the triggering device 4.
  • the purpose of the filter 5 is to avoid frequent on/off switching of the external circuit 8 due to transient lighting conditions for example, the light of the headlights of an oncoming motor vehicle in ambient darkness.
  • the delay circuit 5 enables the system to discriminate between steady state and temporary increases or decreases in the level of ambient light. This is particularly important in applications of the system to motor vehicles where the likelihood of temporary changes in lighting levels is increased by the mobility of the vehicle.
  • the transient conditions filter 5 is connected to the external device relay circuit 7 either directly or via a power up delay circuit 6.
  • the external device relay circuit 7 switches the external device 8 according to the steady state ambient level of light and the availability of electrical power.
  • the external device 8 could be the headlight circuit of a motor vehicle which is automatically switched on during low steady state levels of ambient light and battery charging or ignition on conditions, and is automatically switched off either when the steady state ambient lighting level rises above a preset level, or when the battery is no longer being charged or the ignition circuit is off as indicated by the indicator electrical circuit 1.
  • a power up delay circuit 6 can be included in the switching device 2 to delay a dark or external device on signal if the system or the device 2 has just been powered up. For example if the ignition switch of the motor vehicle has just been switched on in ambient darkness, the power up delay circuit 6 will delay the signal to switch on the headlights. This will minimise the drain on the storage battery during start up of the vehicle engine.
  • An override switch may be included in the external device 8 to override the automated on/off signals from the switching device 2.
  • an automated headlight system for a motor vehicle may be overridden such that the headlights may be switched on during relatively high levels of ambient light or when the battery is not being charged or the ignition is off.
  • An alarm system (not shown) may be fitted to warn the operator of the motor vehicle that the manual override switch is on while the battery is not being charged.
  • Figure 2 shows the preferred embodiment system applied to a petrol engine motor vehicle as a battery saving device and automated lighting system. Circuit elements equivalent to the elements in Figure 1 are numbered the same.
  • the indicator electrical circuit 1 is preferably the ignition circuit of a motor vehicle.
  • the system also includes a power regulator and protection circuit 9.
  • the light sensor circuit 3 includes a light dependent resistor and a variable resistor in a voltage divider circuit.
  • the signal output or voltage level for a given level of ambient light can be varied by adjusting the variable resistor.
  • the hysteresis triggering device 4 is a joined input NAND gate with hysteresis or different high and low input level thresholds. The device 4 generates either a lights off or lights on signal or state corresponding to a high (light) or low (dark) input level respectively.
  • the system filters out unwanted transient lighting conditions imposed on the steady state light levels using a lights on and lights off signal delay circuit 5.
  • the circuit 5 transmits signals only if they are maintained for a predetermined length of time, corresponding to a change in the steady state rather than transient lighting levels.
  • the lights on and lights off delay circuitry 5 component values can be adjusted to produce the desired lights off and lights on delays.
  • the power up delay circuitry 6 component values can be adjusted to provide a suitable power up delay as previously described.
  • the external device relay circuitry 7 switches the main and side lights of the motor vehicle on when enabled by the supply of power from the battery (when the ignition is switched on), and by low steady state levels of ambient lighting.
  • the main and side lights of the motor vehicle are switched off if the steady state level of ambient lighting rises above a present threshold, or power is removed from the system by the switching off of the ignition switch.
  • Means can also be provided, such as a light emitting diode to provide visual indication of the status of the unit.
  • the unit is preferably connected directly to the electrical circuit ofthe motor vehicle and will bypass the usual main lighting switch to send power automatically to the side lights and the headlights only when the ignition switch is turned on. To obtain this, the unit is wired to the vehicle electrical system so that power will be fed to the side lights and head lights only when the ignition switch is turned on.
  • the time delay from when the light sensor detects a low ambient light level until power is applied to the vehicle accessories can be of the order of five seconds, while the delay after the light sensor detects levels above the predetermined level is in the order of 12 seconds but this can vary as required depending upon the particular circumstances.
  • the system can be designed so that the circuit from the battery to the head lamps and or other accessories will be broken only upon the combination of certain events such as the non-generation of electrical power and when the ignition switch is turned off thereby ensuring the head lights will remain illuminated even during an engine stall situation.
  • the system can include a by-pass in conjunction with the switching means so that when the relay is in the turned off condition, electrical power will be connected to the accessories, which may be for instance an electrical clock, burglar alarm and the like.
  • a by-pass in conjunction with the switching means so that when the relay is in the turned off condition, electrical power will be connected to the accessories, which may be for instance an electrical clock, burglar alarm and the like.
  • This can be arranged as a separate by-pass or the switch mechanism can be arranged to allow such an occurrence.
  • the present invention is particularly concerned with the control of electric power to the head lights of a motor vehicle, it can also be utilised to control power to other accessories of a motor vehicle or to accessories or lighting of any device whereby the electrical storage battery is charged by an electrical generating device which operates only when the engine is running. Situations where such a device will be of particular assistance is for instance in boats or in any mobile or fixed situation where it is undesirable for the electrical storage system to become completely discharged.
  • At least one light sensor is mounted on or in the motor vehicle so the or each sensor will sample the ambient light.
  • Means can also be provided to override the circuitry and to modify or adjust the sensitivity of the operation of the circuitry to suit particular circumstances as required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

Cette invention concerne un dispositif (2) assurant la commutation automatique pour l'alimentation en électricité d'un accessoire électrique (8). Ce dispositif comprend un système capteur de lumière (3) qui détecte le niveau de lumière ambiante et génère un signal, ainsi qu'un système de détection (1) de la présence d'énergie électrique dans un circuit indicateur électrique. Lorsque le niveau de lumière ambiante est inférieur à un niveau prédéterminé et que de l'énergie électrique est présente dans le circuit indicateur électrique, le dispositif effectue la commutation et envoie de l'énergie électrique audit accessoire. Le système capteur de lumière génère un signal qui est traité par un filtre de régime transitoire (5), lequel filtre les variations temporaires et/ou mineures du niveau de lumière ambiante.
PCT/NZ1996/000098 1995-09-15 1996-09-13 Dispositif de commutation pour la distribution d'energie electrique WO1997010686A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU68920/96A AU6892096A (en) 1995-09-15 1996-09-13 Electrical power distribution switching means

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NZ28003395 1995-09-15
NZ280033 1995-09-15

Publications (1)

Publication Number Publication Date
WO1997010686A1 true WO1997010686A1 (fr) 1997-03-20

Family

ID=19925469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NZ1996/000098 WO1997010686A1 (fr) 1995-09-15 1996-09-13 Dispositif de commutation pour la distribution d'energie electrique

Country Status (2)

Country Link
AU (1) AU6892096A (fr)
WO (1) WO1997010686A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052788A2 (fr) * 1997-05-22 1998-11-26 Mun Chor Chow Commande des phares d'un vehicule

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3031000A1 (de) * 1980-01-24 1981-10-29 VEB Meßgerätewerk "Erich Weinert" Magdeburg, DDR 3011 Magdeburg Schaltungsanordnung fuer daemmerungsschalter
FR2577742A1 (fr) * 1985-02-20 1986-08-22 Laloum James Dispositif de commande d'allumage et d'extinction automatique des feux d'un vehicule en fonction de la lumiere du jour
DE4232812A1 (de) * 1992-09-30 1993-04-22 Dalibor Plesek Kfz-lichtsteuerautomat
JPH05278520A (ja) * 1992-04-02 1993-10-26 Matsushita Electric Ind Co Ltd 後方点灯用車載ライト装置
GB2269008A (en) * 1992-07-15 1994-01-26 Applied Security Design Ltd A security device
DE4324164A1 (de) * 1993-07-19 1994-01-27 Dirk Heidenberger Einrichtung einer automatischen Kfz-Beleuchtung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3031000A1 (de) * 1980-01-24 1981-10-29 VEB Meßgerätewerk "Erich Weinert" Magdeburg, DDR 3011 Magdeburg Schaltungsanordnung fuer daemmerungsschalter
FR2577742A1 (fr) * 1985-02-20 1986-08-22 Laloum James Dispositif de commande d'allumage et d'extinction automatique des feux d'un vehicule en fonction de la lumiere du jour
JPH05278520A (ja) * 1992-04-02 1993-10-26 Matsushita Electric Ind Co Ltd 後方点灯用車載ライト装置
GB2269008A (en) * 1992-07-15 1994-01-26 Applied Security Design Ltd A security device
DE4232812A1 (de) * 1992-09-30 1993-04-22 Dalibor Plesek Kfz-lichtsteuerautomat
DE4308145A1 (de) * 1992-09-30 1993-11-25 Dalibor Plesek KFZ-Lichtsteuerautomat
DE4324164A1 (de) * 1993-07-19 1994-01-27 Dirk Heidenberger Einrichtung einer automatischen Kfz-Beleuchtung

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DERWENT ABSTRACT, Accession No. 86-259911/40, Class Q16; & FR,A,2 577 742 (LALOUM JM) 22 August 1986. *
DERWENT ABSTRACT, Accession No. 93-135718/17, Class Q16; & DE,A,4 232 812 (PLESEK D) 22 April 1993. *
DERWENT ABSTRACT, Accession No. 93-374274/47, Class X22; & JP,A,05 278 520 (MATSUSHITA ELEC. IND. CO. LTD.) 26 October 1993. *
DERWENT ABSTRACT, Accession No. 93-378547/48, Class Q16; & DE,A,4 308 145, (PLESEK D), 25 November 1993. *
DERWENT ABSTRACT, Accession No. 94-D36208/05, Class Q16; & DE,A,4 324 164 (HEIDENBERGER) 27 January 1994. *
DERWENT ABSTRACT, Accession No. L5178D/45, Class X26; & DE,A,3 031 000 (VEB MESSGER WEINERT) 29 October 1981. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052788A2 (fr) * 1997-05-22 1998-11-26 Mun Chor Chow Commande des phares d'un vehicule
WO1998052788A3 (fr) * 1997-05-22 1999-06-24 Mun Chor Chow Commande des phares d'un vehicule

Also Published As

Publication number Publication date
AU6892096A (en) 1997-04-01

Similar Documents

Publication Publication Date Title
US4902956A (en) Safety device to prevent excessive battery drain
EP0433328B1 (fr) Systeme de coupure de l'alimentation en courant electrique d'un vehicule a moteur
US5691619A (en) Automatic safety switch for preventing accidental battery discharge
US6320351B1 (en) Intelligent switch for battery
US7683503B2 (en) Dead battery preventing device for preventing engine start failure of vehicle having economy running function and dead battery prevention method
WO2001086735A2 (fr) Commutateur programmable destine a une batterie
US4323837A (en) Power supply circuit for automotive vehicles
US5838136A (en) 3-pole battery switches
US7243630B2 (en) Foot controlled engine start and stop system for conversion of an off-road utility vehicle for use as a golf cart
US7129598B2 (en) Safety switch for preventing an unintentional vehicle battery discharge
WO1998054811A1 (fr) Batterie et unite de commande de batterie
WO1997010686A1 (fr) Dispositif de commutation pour la distribution d'energie electrique
CA2115405C (fr) Commutateurs a 3-poles pour batterie
WO1994004394A1 (fr) Commutateur de batteries tripolaires
WO1993017481A1 (fr) Systeme de commutation et d'alimentation en puissance electrique pour automobiles
JPH09290684A (ja) 小型車両のヘッドランプ点灯制御装置
JPH05150020A (ja) 車両用バツテリ容量検出装置
JPH07257273A (ja) 車輌用夜間追突警告装置
KR0133235B1 (ko) 자동차의 과방전 방지장치
JPH03293934A (ja) 車両搭載用電源装置
US5777455A (en) Switch for a battery charging system
JPS6330200Y2 (fr)
KR19980073190A (ko) 자동차용 자동 충전장치 및 자동 충전방법
KR19990031194A (ko) 차량용 배터리의 자동 충전 제어 장치 및 그 방법
JPS6341240Y2 (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA