WO1997007394A1 - Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance - Google Patents

Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance Download PDF

Info

Publication number
WO1997007394A1
WO1997007394A1 PCT/FR1996/001296 FR9601296W WO9707394A1 WO 1997007394 A1 WO1997007394 A1 WO 1997007394A1 FR 9601296 W FR9601296 W FR 9601296W WO 9707394 A1 WO9707394 A1 WO 9707394A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
filters
cell
passed
control assembly
Prior art date
Application number
PCT/FR1996/001296
Other languages
English (en)
Inventor
Robert Delignieres
Christian Durand
Original Assignee
Institut Français Du Petrole
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9510121A external-priority patent/FR2738064B1/fr
Application filed by Institut Français Du Petrole filed Critical Institut Français Du Petrole
Priority to EP96929348A priority Critical patent/EP0787287A1/fr
Priority to US08/809,447 priority patent/US5854681A/en
Priority to JP9508995A priority patent/JPH10507838A/ja
Publication of WO1997007394A1 publication Critical patent/WO1997007394A1/fr
Priority to NO971812A priority patent/NO971812L/no

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths

Definitions

  • the present invention relates to a device and a method for optically measuring or detecting at least one characteristic or variation of at least one characteristic of a reactive substance, such as its absorbance for example, comprising in particular a means of self-calibration of the device to compensate for any drifts.
  • a device for measuring optical characteristics of a reactive substance contained in a transparent cell, such as its true absorbance. It comprises a light source, a first optical branch and a second optical branch, which selectively allow the passage of light through and outside the cell, an optical system for forming rays having passed through the first branch.
  • the method used provides precise and reliable results, but nevertheless does not make it possible to compensate for all the drifts due in particular to the aging of the different components and to the differences in the optical path or paths.
  • the device and the method according to the present invention make it possible to improve the accuracy by performing a self-calibration of the device, for example at any time of the measurements.
  • the object of the device according to the invention is to measure or optically detect at least one characteristic of a reactive substance contained in a transparent cell, or alternatively the variations or modifications of this substance, such as its true absorbance. It comprises at least one light source, connected by at least one optical branch to a means allowing selectively the passage of incident light from the light source through and outside the cell, at least one reference filter , an optical system for forming rays having passed through the selective means and a selective optical filter, means for measuring the intensity of the light having passed through the optical system, a control assembly, selection means controlled by said set of control and an electric power supply.
  • the device is characterized in that the means for selecting the passage of light is adapted to let the incident light pass through said cell and / or through at least one of the reference filters and / or directly to the outside of said cell and of at least one of said filters.
  • the optical filter can be chosen from a set of three centered selective filters, the first on a first wavelength corresponding to the isobestic point of the reactive substance, the second on a wavelength in a part of the light spectrum where the substance is the most sensitive and the third, in another part of the spectrum where the substance is the least sensitive.
  • the control assembly comprises, for example, a control processor, a unit for acquiring light intensity measurement signals and an interface assembly for controlling the selection means.
  • the optical system comprises bypass means for directing the light rays which have passed through the light passage selection means towards the three filters
  • the measurement means comprise three detectors for measuring the light having passed through the three filters
  • the electrical switching means comprise elements for intermittently connecting said detectors with said control assembly and a switch for connecting the light source, for example a lamp, to the power supply unit intermittently.
  • the reference cell and / or at least one of said reference filters are connected independently to said control assembly.
  • the device may also include a support common to the reference filter and to the transparent cell, said common support being movable in rotation and / or in translation and the support being connected to said control assembly.
  • the device comprises a first optical branch and a second optical branch allowing the passage of incident light respectively through the transparent cell and through at least one of said reference filters.
  • the device may include means for measuring the ambient temperature and / or that of the temperature of the reactive substance, which can be connected to the control assembly by the electrical switching means and means for measuring the electrical supply voltage of the light source which can be connected to the control assembly by the electrical switching means.
  • the first branch and the second branch each comprise, for example, at least one optical filter.
  • Means for measuring the electrical supply voltage of the light source can be connected to the control assembly by the electrical switching means.
  • the method according to the invention is characterized according to one embodiment, in that it comprises the automatic realization of measurement cycles under the control of a control assembly, each of them comprising: a) a measurement step where the light having passed through the transparent cell is directed successively through three selective filters (F1, F2, F3), and the detected values of the light intensities from the three filters are acquired; b) a measurement step in which the light having passed through at least one first reference medium is successively passed through the three filters and the detected values of the light intensities from the three filters are also acquired; c) a measurement step in which the light having passed through at least a second reference medium is successively passed through the three filters and the detected values of the light intensities from the three filters are also acquired, and d) it is determined from values measured in steps b) and c) for each of the filters a correction coefficient value Kcj relating to each of the filters and the intensity values measured for steps a) and b) or a) and c are determined from the intensity values measured ) and the correction coefficient associated with
  • the reference media are for example reference filters having known transmittance values, or a neutral filter which does not modify, or only slightly, the incident light.
  • the incident light can be passed through the air.
  • the incident light is sent respectively during steps b) and c) through a first filter and through a second reference filter, the reference filters used in steps b) and c) having a associated transmittance value Tel, Te2, the difference Tel-Te2 is chosen to be substantially equal to the maximum value of the transmittance of the substance contained in the cell.
  • FIG. 1 schematically shows a first embodiment of the device comprising a single optical path and a movable means for selecting the passage of the incident light
  • FIG. 2 schematically shows a second embodiment comprising two optical paths for the passage of incident light
  • FIGS. 3A and 3B schematize alternative embodiments of the selection means according to the diagram in FIG. 1,
  • FIGS. 4 and 5 detail an example of a flowchart and a step of acquiring the measures for implementing the embodiment of FIG. 1.
  • the absorbance A values are subject to significant fluctuations if the measurement is only made due to the instability of the light source, for example a lamp.
  • the color temperature may vary due to various causes related to the lamp itself: progressive vaporization of the filament, aging of the envelope etc., and the instability of the power supply. This results in a notable modification of the shape of the frequency spectrum of the source. It is observed, for example, that the color temperature of the source can decrease over time by more than 10%, which results in significant variations in the ratios between the light intensities applied to the different filters with the result of false measurements.
  • Drifts can also arise from differences in optical path between the light source and the measurement system.
  • the device and the method according to the invention precisely make it possible to disregard the effects due to aging or to the degradation of the components entering the device and / or possibly to instabilities or uncertainties due to the optical paths may be different, by performing a self-calibration of the device for each wavelength, for example at all times.
  • the device comprises a light source 1 such as a halogen lamp with tungsten filament.
  • the light coming from the source 1 is directed towards an assembly or mobile means 2 allowing selectively the passage of the incident light.
  • the means comprises, for example, a support 3 provided with a transparent cell 4, containing a reactive substance for which it is desired, for example, to measure the color variations, connected to the support by an actuator 5 and a reference means such as a filter. 6 itself connected to the support by an actuator 5 '.
  • the means 2 is mobile in rotation and / or in translation depending on its structure, so as to position the cell and / or the reference filter relative to the beam of incident light.
  • Transparent cell 4 and filter 6 are arranged on the support 3 so as to allow the incident light to pass outside of these two elements.
  • the first LI corresponds to the so-called isobestic point of the coloring substance where the absorbance of the basic fraction of the substance is equal to that of its acid fraction and therefore independent of the pH value.
  • the second L2 is the one for which the colored substance reacts the most to variations in the parameter to be measured.
  • the third L3 corresponds to a wavelength for which the absorbance of the colored substance does not undergo any variation.
  • Each of the three filters F1, F2, F3 is doubled for example with a neutral filter whose transmittance is chosen so as to balance the light intensities passing through the three branches 13, 14, 15.
  • the light having passed through the three colored filters respectively F1, F2, F3, is applied to three photoelectric detectors D1, D2, D3.
  • the signals which they deliver are applied to three inputs of a processing device M, for example a multiplexer.
  • the device is managed by a control unit 9 comprising a control processor 10, an acquisition unit 11 connected to the output of the multiplexer M and an interface assembly 12 for controlling the various components of the device and the multiplexer M.
  • the device also comprises an electric power supply unit 13 such as an electric accumulator in the case of autonomous operation of the device, this block being connected to the lamp 1 by means of a switch II also controlled by the interface assembly 12.
  • the device also comprises a thermal probe 14 disposed in the vicinity of the elements of the device for measuring the ambient temperature, and / or that of the reactive substance, this probe being connected to an input of the multiplexer M, as well as a voltmeter for measuring the voltage delivered by the power supply unit 13.
  • the interface assembly 12 is connected, for example individually to the transparent cell and to the reference filter, which in the embodiment of FIG. 1 are separate elements, so as to control by acting, for example, on the actuators 5 and 5 ', their positioning relative to the incident light beam.
  • the assembly 12 controls the mobile support to position the elements relative to the light beam.
  • the transparent cell being movable directly or indirectly, its connection with a possible external source containing reactive products is carried out using flexible pipes.
  • the measurement method that is applied makes it possible to disregard the degradation of the components by determining a correction coefficient for each wavelength of the filters, preferably permanently.
  • each measurement cycle firstly comprises a series of 8, 12 or 16 so-called “offset" measurements, where the noise signals affecting are measured in sequence the detectors Dl, D2, D3 by a sequential control of the multiplexer M, these signals being acquired and digitized by the acquisition unit 11.
  • the noise signals having been measured, the lamp is then turned on by opening the switch II, then the cell and the reference filter are positioned so as to allow the incident light to pass directly to the filters F1, F2, F3, and a first sequence of measurements of the light having passed directly and successively filtered through the filters is carried out Fl, F2, F3.
  • the transparent cell is positioned so that the incident light passes through and we proceed in a sequence analogous to a second series of measurements of the light having passed through the transparent cell and successively filtered through the filters F1, F2, F3 .
  • the transparent cell is repositioned towards its initial position and the reference filter is placed to allow the incident light to pass through and a third sequence of measurements of the light having passed through is carried out. the reference filter and successively filtered through the filters F1, F2, F3 according to an analogous sequence.
  • Trj (Kr * Mrj) / Mij where Kr is the coupling coefficient of the reference filter. Knowing the value of the initial transmittance for the reference filter, Te, we obtain the correction coefficient associated with a wavelength value referenced by the index j
  • Tsj Kcj * [(Ksj * Msj) / Mij] where Ksj is the coupling coefficient of the cell.
  • the absorbance value of the substance contained in the transparent cell is then directly deduced for each wavelength of the following expression
  • the processor 10 is adapted to apply to the measurements a correction as a function of the temperature variation, such as a linear correction for example. If we want to minimize measurement errors even better, we can also take into account variations in the electrical voltage (due in the case of an autonomous supply, to the discharge of the accumulator), which have the effect of vary the light intensity of the lamp 1. Taking these variations in temperature and electrical voltage into account, precise measurements can be obtained to within 1%.
  • FIG. 2 describes another embodiment comprising two optical paths in place of the single optical path of FIG. 1 and two reference filters.
  • the light coming from the source 1 is subdivided by an optical separator 21 into two light brushes which are directed by means of optical fibers 11, 12 for example, the first, towards a main optical branch comprising a shutter 22 and a cell 23 containing the reactive substance, the color variations of which are coated, the second towards a derived optical branch to form a beam passing outside the cell 23 and through an assembly 24 comprising two reference filters 25 and 26, having respectively initial transmittance values Tel and Te2.
  • the shutter 22 and the light passage selection device 24 are connected to the interface assembly 12, which controls their opening or positioning relative to the beam of the incident light so as to allow the beam to pass through. selective according to a sequence substantially identical to that described in relation to FIG. 1 through the two reference filters and the transparent cell respectively.
  • the reference filters 25 and 26 have selected transmittance values so that the difference Tel-Te2 is substantially of the same order of magnitude as the minimum possible transmittance of the substance to be measured contained in the cell. This advantageously makes it possible to calibrate this measurement, independently of the amount of light having passed through the medium.
  • the two optical branches are connected to an optical node 7 which allows the transmission of the beam of light coming selectively from one or the other branch, towards an optical splitter 8.
  • the latter subdivides the beam into three beams directed towards the three filters as described in FIG. 1.
  • the measurement method is carried out according to a sequence analogous to that described in relation to FIG. 1, the light being sent respectively through each of the reference filters and through the transparent cell.
  • Kcj is the correction factor or calibration factor of the device we are looking for.
  • the difference in transmittance for a wavelength j is known by calibration carried out for example before the implementation of the method according to the invention.
  • the difference in transmittance ⁇ j relative to the two filters indexed f and f is determined.
  • Kcj (Msj) / ⁇ j) / [l / (Kfj * Mfj) - l / (Kfj * Mfj)]
  • the value of the transmittance of the substance contained in the transparent cell is determined.
  • one of the reference filters can be a neutral filter, introducing little or no modification at the level of the incident light.
  • FIG. 3A describes an exemplary embodiment for the means for selecting the passage of the light movable in translation.
  • It comprises, arranged on a common support 30, the transparent cell 4, a reference filter 6 and for example a slot 31 allowing the light to pass directly.
  • slot can be replaced by a second reference filter as mentioned in FIG. 2.
  • the support 30 is made mobile in translation, for example by means of known means, such as a stepping motor or any other available means known to the person skilled in the art allowing its movement, and preferably simultaneously, a indexing of the elements present on the support in order to position them precisely with respect to the incident light beam to carry out the steps of the method.
  • known means such as a stepping motor or any other available means known to the person skilled in the art allowing its movement, and preferably simultaneously, a indexing of the elements present on the support in order to position them precisely with respect to the incident light beam to carry out the steps of the method.
  • FIG. 3B shows a means 2 mounted for example on an axis of rotation 32.
  • the axis of rotation 32 is connected to a control device, such as a motor (not shown in the figure) connected to the assembly 12, for example, which controls it so as to position the cell and, or the reference filters, depending on the sequences involved during the method.
  • a control device such as a motor (not shown in the figure) connected to the assembly 12, for example, which controls it so as to position the cell and, or the reference filters, depending on the sequences involved during the method.
  • the shapes of the slots, filters and supports can be any and are chosen as a function of the size and the characteristics of the light beam.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Selon un mode de réalisation, le dispositif comporte un parcours optique unique et un moyen mobile permettant le passage sélectif d'un faisceau de lumière respectivement à travers une cellule transparente (4) contenant une substance à étudier, au moins un filtre de référence (6). La lumière émanant successivement de l'un et l'autre de ces deux composants est appliquée sélectivement à trois filtres (F1-F3) filtrant trois longueurs d'onde choisies en fonction de la substance à étudier. On mesure par trois détecteurs (D1 à D3) les intensités lumineuses successives ayant traversé chacun des filtres et à partir de ces mesures on détermine un coefficient de correction avant de calculer une caractéristique de la substance contenue dans la cellule transparente.

Description

DISPOSITIF PERFECTIONNE ET METHODE POUR MESURER OPTIQUEMENT DES CARACTÉRISTIQUES D'UNE SUBSTANCE
La présente invention concerne un dispositif et une méthode pour mesurer ou détecter optiquement au moins une caractéristique ou une variation d'au moins une caractéristique d'une substance réagissante, telles que son absorbance par exemple, comportant notamment un moyen d'auto- calibration du dispositif permettant de pallier à d'éventuelles dérives.
Dans le brevet FR-2.701.318, est décrit un dispositif pour mesurer des caractéristiques optiques d'une substance réagissante contenue dans une cellule transparente, telles que son absorbance vraie. Il comporte une source lumineuse, une première branche optique et une deuxième branche optique, permettant sélectivement le passage de la lumière au travers de la cellule et à l'extérieur de celle-ci, un système optique pour former des rayons ayant traversé la première branche ou la deuxième branche optique et un filtre optique sélectif parmi un ensemble de trois filtres sélectifs centrés le premier sur une première longueur d'onde correspondant au point isobestique de la substance réagissante, le deuxième, sur une longueur d'onde située dans une partie du spectre de la lumière où la substance est la plus sensible et le troisième, dans une autre partie du spectre où la substance est la moins sensible, des moyens de mesure de l'intensité de la lumière ayant traversé le système optique, et permettant de déterminer des caractéristiques de la substance en combinant des valeurs d'intensité de la lumière ayant traversé la cellule contenant la substance et une cellule de référence. La méthode employée fournit des résultats précis et fiables, mais néanmoins ne permet pas de pallier à toutes les dérives dues notamment au vieillissement des différents composants et aux différences du ou des chemins optiques.
Le dispositif et la méthode selon la présente invention permettent d'améliorer la précision en effectuant une auto calibration du dispositif, par exemple à tout instant des mesures.
On élimine ainsi tous les effets de dérive dus notamment, au vieillissement et à la dégradation des différents composants du dispositif, et aux instabilités dues aux trajets optiques. Le dispositif selon l'invention a pour objet de mesurer ou détecter optiquement au moins une caractéristique d'une substance réagissante contenue dans une cellule transparente, ou encore les variations ou modifications de cette substance, telles que son absorbance vraie. Il comporte au moins une source lumineuse, reliée par au moins une branche optique à un moyen permettant sélectivement le passage de la lumière incidente issue de la source lumineuse au travers de la cellule et à l'extérieur de celle-ci, au moins un filtre de référence, un système optique pour former des rayons ayant traversé le moyen sélectif et un filtre optique sélectif, des moyens de mesure de l'intensité de la lumière ayant traversé le système optique, un ensemble de pilotage, des moyens de sélection contrôlés par ledit ensemble de pilotage et un bloc d'alimentation électrique.
Le dispositif est caractérisé en ce que le moyen de sélection du passage de la lumière est adapté pour laisser passer la lumière incidente au travers de ladite cellule et/ou au travers d'au moins un des filtres de référence et/ou directement à l'extérieur de ladite cellule et d'au moins un desdits filtres.
Le filtre optique peut être choisi parmi un ensemble de trois filtres sélectifs centrés, le premier sur une première longueur d'onde correspondant au point isobestique de la substance réagissante, le deuxième sur une longueur d'onde dans une partie du spectre de la lumière où la substance est la plus sensible et le troisième, dans une autre partie du spectre où la substance est la moins sensible.
L'ensemble de pilotage comporte, par exemple, un processeur de commande, une unité d'acquisition des signaux de mesure d'intensité lumineuse et un ensemble d'interface pour contrôler le moyen de sélection.
Selon un mode de réalisation, le système optique comporte des moyens de dérivation pour diriger vers les trois filtres les rayons lumineux ayant traversé le moyen de sélection de passage de la lumière, les moyens de mesure comportent trois détecteurs pour mesurer la lumière ayant traversé les trois filtres, et les moyens de commutation électrique comportent des éléments pour connecter par intermittence lesdits détecteurs avec ledit ensemble de pilotage et un commutateur pour connecter la source lumineuse, par exemple une lampe, au bloc d'alimentation électrique par intermittence. La cellule de référence et/ou au moins un desdits filtres de référence, sont reliés indépendamment audit ensemble de pilotage.
Il peut aussi comprendre un support commun au filtre de référence et à la cellule transparente, ledit support commun étant mobile en rotation et/ou en translation et le support étant relié audit ensemble de pilotage. Suivant un mode de réalisation, le dispositif comporte une première branche optique et une deuxième branche optique permettant respectivement le passage de la lumière incidente au travers de la cellule transparente et au travers d'au moins un desdits filtres de référence. Pour améliorer la précision des mesures, le dispositif peut comporter des moyens de mesure de la température ambiante et /ou de celle de la température de la substance réagissante, pouvant être connectés à l'ensemble de pilotage par les moyens de commutation électrique et des moyens de mesure de la tension électrique d'alimentation de la source lumineuse pouvant être connectés à l'ensemble de pilotage par les moyens de commutation électrique.
La première branche et la deuxième branche comportent, par exemple, chacune au moins un filtre optique. Des moyens de mesure de la tension électrique d'alimentation de la source lumineuse peuvent être connectés à l'ensemble de pilotage par les moyens de commutation électrique.
La méthode selon l'invention est caractérisée suivant un mode de réalisation, en ce qu'elle comporte la réalisation automatique de cycles de mesure sous le contrôle d'un ensemble de pilotage, chacun d'eux comportant : a) une étape de mesure où l'on dirige la lumière ayant traversé la cellule transparente successivement au travers trois filtres sélectifs (Fl, F2, F3), et on acquiert les valeurs détectées des intensités lumineuses issues des trois filtres; b) une étape de mesure où l'on dirige la lumière ayant traversé au moins un premier milieu de référence successivement au travers des trois filtres et on acquiert également les valeurs détectées des intensités lumineuses issues des trois filtres; c) une étape de mesure où l'on dirige la lumière ayant traversé au moins un second milieu de référence successivement au travers des trois filtres et on acquiert également les valeurs détectées des intensités lumineuses issues des trois filtres, et d) on détermine à partir des valeurs mesurées aux étapes b) et c) pour chacun des filtres une valeur de coefficient de correction Kcj relative à chacun des filtres et on détermine à partir des valeurs d'intensité mesurées pour les étapes a) et b) ou a) et c) et du coefficient de correction associé à un filtre des caractéristiques de la substance réagissante.
Les milieux de référence sont par exemple des filtres de référence ayant des valeurs de transmitance connues, ou encore un filtre neutre ne modifiant pas, ou peu, la lumière incidente.
On utilise, par exemple, trois filtres sélectifs centrés de la manière suivante, le premier sur une première longueur d'onde correspondant au point isobestique de la substance réagissante, le deuxième sur une longueur d'onde dans une partie du spectre de la lumière où la substance est la plus sensible et le troisième, dans une autre partie du spectre où la substance est la moins sensible.
On peut au cours de l'étape b) ou de l'étape c) faire passer la lumière incidente à travers l'air.
Selon une autre façon de procéder, on envoi respectivement au cours des étapes b) et c) la lumière incidente à travers un premier filtre et à travers un second filtre de référence, les filtres de référence utilisés aux étapes b) et c) ayant une valeur de transmitance associée Tel, Te2, la différence Tel-Te2 est choisie sensiblement égale à la valeur maximum de la transmitance de la substance contenue dans la cellule.
D'autres caractéristiques et avantages du dispositif selon l'invention et de la méthode de mise en oeuvre, apparaîtront mieux à la lecture de la description ci- après de deux modes de réalisation décrits seulement à titre d'exemples en se référant aux dessins annexés où :
- la figure 1 montre schématiquement un premier mode de réalisation du dispositif comportant un parcours optique unique et un moyen mobile de sélection du passage de la lumière incidente, - la figure 2 montre schématiquement un deuxième mode de réalisation comportant deux parcours optiques pour le passage de la lumière incidente,
- les figures 3A et 3B schématisent des variantes de réalisation des moyens de sélection selon le schéma de la figure 1,
- les figures 4 et 5 détaillent un exemple d'organigramme et une étape d'acquisition des mesures de mise en oeuvre du mode de réalisation de la figure 1.
On rappelle tout d'abord que le pH d'une solution se calcule par la relation: pH = pKi + log x/(l-x) (1), où pKi est une constante et x est la fraction basique de la substance. Ce paramètre x est reliée à l'absorbance A de la substance par la relation x = A/(c.l. ε) (2)
où c représente la concentration, 1, la longueur du trajet optique traversé par les rayons et ε, le coefficient d'extinction de la cellule. L'absorbance s'exprime en fonction de l'intensité incidente Ii appliquée à la cellule et de l'intensité le qui en émerge, par la relation :
A = log (Ii/Ie) (3)
Les valeurs de l'absorbance A sont soumises à des fluctuations importantes si l'on procède uniquement à la mesure de le du fait de l'instabilité de la source lumineuse, par exemple une lampe. On sait en effet que les caractéristiques d'une telle source varient au cours du temps. La température de couleur est susceptible de varier en raison de causes diverses tenant à la lampe elle-même : vaporisation progressive du filament, vieillissement de l'enveloppe etc., et à l'instabilité de l'alimentation électrique. Il en résulte une modification notable de la forme du spectre de fréquence de la source. On observe par exemple que la température de couleur de la source peut diminuer au cours du temps de plus de 10%, ce qui se traduit par des variations importantes des rapports entre les intensités lumineuses appliquées aux différents filtres avec pour conséquence des fausses mesures.
Des dérives peuvent aussi provenir des différences de parcours optique entre la source de lumière et le système de mesure.
La valeur de la transmitance se déduit simplement de la valeur de l'absorbance A selon la relation T = 1-A. De par sa conception et son mode de mise en oeuvre, le dispositif et la méthode selon l'invention permettent justement de faire abstraction des effets dus au vieillissement ou à la dégradation des composants entrant dans le dispositif et/ ou éventuellement à des instabilités ou des incertitudes dues aux trajets optiques pouvant être différents, en réalisant une' auto-calibration du dispositif pour chaque longueur d'onde, et par exemple en permanence.
Suivant un premier mode de réalisation décrit à la figure 1, le dispositif comporte une source lumineuse 1 telle qu'une lampe halogène à filament de tungstène. La lumière issue de la source 1 est dirigée vers un ensemble ou moyen mobile 2 permettant sélectivement le passage de la lumière incidente. Le moyen comporte par exemple un support 3 muni d'une cellule transparente 4, contenant une substance réactive dont on veut, par exemple, mesurer les variations de couleur, reliée au support par un actionneur 5 et d'un moyen de référence tel un filtre 6 relié lui-même au support par un actionneur 5'. Le moyen 2 est mobile en rotation et/ou en translation selon sa structure, de façon à positionner la cellule et/ ou le filtre de référence par rapport au faisceau de la lumière incidente. La cellule transparente 4 et le filtre de référence 6 sont agencées sur le support 3 de manière à laisser passer la lumière incidente à l'extérieur de ces deux éléments.
Différentes variantes de réalisation du moyen mobile sont décrites aux figures 3A et 3B. Le faisceau de lumière issu de la cellule 4, du filtre de référence 6 et /ou ayant passé à l'extérieur de ces deux éléments, est subdivisé par un séparateur optique 8 en trois faisceaux qui sont dirigés par trois fibres optiques 13, 14, 15 respectivement vers trois filtres colorés Fl, F2, F3. Ces trois filtres laissent passer respectivement les longueurs d'onde LI = 494 nm, L2 = 600 nm et L3 = 730 nm par exemple. La première LI correspond au point dit isobestique de la substance colorante où l'absorbance de la fraction basique de la substance est égale à celle de sa fraction acide et donc indépendante de la valeur du pH. La deuxième L2 est celle pour laquelle la substance colorée réagit le plus aux variations du paramètre à mesurer. La troisième L3 correspond à une longueur d'onde pour laquelle l'absorbance de la substance colorée ne subit aucune variation. Chacun des trois filtres Fl, F2, F3 est doublé par exemple d'un filtre neutre dont la transmitance est choisie de façon à équilibrer les intensités lumineuses passant dans les trois branches 13, 14, 15. La lumière ayant traversé respectivement les trois filtres colorés Fl, F2, F3, est appliquée à trois détecteiirs photoélectriques Dl, D2, D3. Les signaux qu'ils délivrent sont appliqués à trois entrées d'un dispositif de traitement M, par exemple un multiplexeur.
Sans sortir du cadre de l'invention, il est aussi possible d'acquérir et de traiter directement les signaux délivrés par les détecteurs photoélectriques, selon des procédés connus par l'homme de métier.
La gestion du dispositif est assurée par un ensemble de pilotage 9 comportant un processeur de commande 10, une unité d'acquisition 11 connectée à la sortie du multiplexeur M et un ensemble d'interface 12 pour la commande des différents composants du dispositif et du multiplexeur M. Le dispositif comporte encore un bloc d'alimentation électrique 13 tel qu'un accumulateur électrique dans le cas d'un fonctionnement autonome du dispositif, ce bloc étant connecté à la lampe 1 par l'intermédiaire d'un interrupteur II également commandé par l'ensemble d'interface 12. De préférence, le dispositif comporte aussi une sonde thermique 14 disposée au voisinage des éléments du dispositif pour mesurer la température ambiante, et/ou celle de la substance réactive, cette sonde étant reliée à une entrée du multiplexeur M, ainsi qu'un voltmètre pour mesurer la tension délivrée par le bloc d'alimentation 13. L'ensemble d'interface 12 est relié, par exemple individuellement à la cellule transparente et au filtre de référence, qui dans 1 'exemple de réalisation de la figure 1 sont des éléments séparées, de manière à contrôler en agissant, par exemple, sur les actionneurs 5 et 5', leur positionnement par rapport au faisceau de lumière incidente.
Selon d'autres modes de réalisation, l'ensemble 12 commande le support mobile pour positionner les éléments par rapport au faisceau de lumière.
La cellule transparente étant mobile directement ou indirectement, sa liaison avec une éventuelle source extérieure contenant des produits réactifs s'effectue à l'aide de conduites souples.
La méthode de mesure que l'on applique permet de faire abstraction de la dégradation des composants en déterminant un coefficient de correction pour chaque longueur d'onde des filtres, de préférence en permanence.
Comme l'indique l'organigramme des Figs 4 et 5, chaque cycle de mesure comporte tout d'abord une série de 8, 12 ou 16 mesures dites d'"offset", où l'on mesure en séquence les signaux de bruit affectant les détecteurs Dl, D2, D3 par une commande séquentielle du multiplexeur M, ces signaux étant acquis et numérisés par l'ensemble d'acquisition 11. Les signaux de bruit ayant été mesurés, on allume ensuite la lampe en ouvrant l'interrupteur II, puis on positionne la cellule et le filtre de référence de façon à laisser passer directement la lumière incidente vers les filtres Fl, F2, F3, et on procède à une première séquence de mesures de la lumière ayant traversé directement et successivement filtrée à travers les filtres Fl, F2, F3. Puis on positionne la cellule transparente de façon à ce que la lumière incidente passe à travers et on procède selon une séquence analogue à une seconde série de mesures de la lumière ayant traversé la cellule transparente et successivement filtrés à travers les filtres Fl, F2, F3. Puis en agissant par exemple sur les actionneurs 5 et 5' on repositionne la cellule transparente vers sa position initiale et on place le filtre de référence pour laisser passer la lumière incidente à travers et on procède à une troisième séquence de mesures de la lumière ayant traversé le filtre de référence et successivement filtrés à travers les filtres Fl, F2, F3 selon une séquence analogue.
A la fin de ce cycle de mesures, on se trouve en possession pour chaque valeur de longueur d'onde associée à un des filtres Fl, F2 ou F3 et indicée dans la suite de la description par j, d'une mesure de la lumière incidente Mij, d'une valeur de la lumière Msj ayant traversé la cellule transparente contenant la substance susceptible de varier et de la valeur de la lumière ayant traversé le filtre de référence Mrj . Pour chaque longueur d'onde propre à un filtre, on détermine la valeur de la transmitance du filtre de référence selon la formule :
Trj = (Kr*Mrj)/Mij où Kr est le coefficient de couplage du filtre de référence. Connaissant la valeur de la transmitance initiale pour le filtre de référence, Te, on obtient le coefficient de correction associée à une valeur de longueur d'onde référencée par l'indice j
Kcj = (Te/Trj) Et, à partir de ce coefficient de correction, on détermine la valeur de la transmitance de la substance contenue dans la cellule transparente pour une valeur de longueur d'onde
Tsj = Kcj *[(Ksj*Msj)/Mij] où Ksj est le coefficient de couplage de la cellule.
La valeur de l'absorbance de la substance contenue dans la cellule transparente est ensuite directement déduite pour chaque longueur d'onde de l'expression suivante
Asj =1 - Tsj
On calcule ainsi les absorbances Asl, As2 et As3 correspondant aux trois longueurs d'onde des filtres colorés Fl à F3. Par application de la relation (2), on peut montrer que l'on obtient la valeur de la fraction basique x de la substance étudiée, par la relation suivante : x = k. (As2 - As3)/ (Asl - As3) où k est une constante, et que, du fait de la méthode comparative employée, on fait totalement abstraction de toute dégradation de tous les composants du dispositif pour chaque longueur d'onde. Le processeur 10 peut en déduire par exemple le pH de la substance analysée.
Pour compléter les mesures précédentes, on procède de préférence à une acquisition de la température mesurée par la sonde thermique 14 ainsi que de la tension électrique appliquée à la lampe 1 mesurée par l'élément 15, et on tient compte de ces valeurs afin de corriger les erreurs. On constate en effet que les erreurs de mesure quand la température passe de 20°C à 60°C sont de l'ordre de 4%. Pour compenser ces variations, le processeur 10 est adapté à appliquer aux mesures une correction en fonction de la variation de température, telle qu'une correction linéaire par exemple. Si l'on veut encore mieux minimiser les erreurs de mesure, on peut aussi tenir compte des variations de la tension électrique (dues dans le cas d'une alimentation autonome, à la décharge de l'accumulateur), qui ont pour effet de faire varier l'intensité lumineuse de la lampe 1. En tenant compte de ces variations de la température et de la tension électrique, on peut obtenir des mesures précises à l%o près.
La figure 2 décrit un autre mode de réalisation comprenant deux chemins optiques à la place du chemin unique optique de la figure 1 et de deux filtres de référence.
La lumière issue de la source 1 est subdivisée par un séparateur optique 21 en deux pinceaux lumineux qui sont dirigés au moyen de fibres optiques 11, 12 par exemple, le premier, vers une branche optique principale comportant un obturateur 22 et une cellule 23 contenant la substance réactive dont on vêtit mesurer les variations de couleur, le deuxième, vers une branche optique dérivée pour former un faisceau passant à l'extérieur de la cellule 23 et à travers un ensemble 24 comprenant deux filtres de référence 25 et 26, ayant respectivement des valeurs de transmitances initiales Tel et Te2. L'obturateur 22 et le dispositif 24 de sélection de passage de la lumière sont reliés à l'ensemble d'interface 12, qui commande leur ouverture ou le positionnement par rapport au faisceau de la lumière incidente de façon à laisser passer le faisceau de manière sélective selon une séquence sensiblement identique à celle décrite en relation avec la figure 1 à travers respectivement les deux filtres de référence et la cellule transparente. Les filtres de référence 25 et 26 possèdent des valeurs de transmitance choisies de façon que la différence Tel-Te2 soit sensiblement du même ordre de grandeur que la transmitance minimum possible de la substance à mesurer contenue dans la cellule. Ceci permet avantageusement de calibrer cette mesure, indépendamment de la quantité de lumière ayant traversé le milieu. Les deux branches optiques sont connectées à un noeud optique 7 qui permet la transmission du faisceau de lumière provenant sélectivement de l'une ou l'autre branche, vers un séparateur optique 8. Ce dernier subdivise le faisceau en trois faisceaux dirigés vers les trois filtres comme il est décrit à la figure 1. La méthode de mesures s'effectue selon une séquence analogue à celle décrite en relation avec la figure 1, la lumière étant envoyée respectivement à travers chacun des filtres de référence et à travers la cellule transparente. A la fin de ce cycle de mesures, on se trouve en possession pour chaque valeur de longueur d'onde associée à un des filtres Fl, F2 ou F3 et indicée ci- après par j, d'une valeur de la lumière Msj ayant traversé la cellule transparente contenant la substance susceptible de varier et des valeurs de la lumière ayant traversé les deux filtres de référence 25 et 26, Mfj et Mf'j indicées f et f.
Le calcul du coefficient de correction s'effectue par exemple de la manière suivante : pour chaque longueur d'onde indicée j, on détermine la valeur de la transmitance de la substance par rapport aux deux filtres de référence 25 et 26, qui correspond au rapport entre la lumière mesurée après avoir traversé la cellule transparente contenant la substance et la lumière passant par un filtre de référence, corrigé du coefficient de transfert du filtre : on obtient : pour le filtre f(25), Tsj = (Msj)/(Kcj*Kfj*Mfj), et pour le filtre f (26), T'sj = (Msj)/(Kcj*Kf'j*Mf'j) où Kfj et Kf's sont les valeurs des transferts connus des filtres f et f pour la longueur d'onde j.
Kcj est le facteur de correction ou facteur d'étalonnage du dispositif que l'on cherche.
La différence de transmitance pour une longueur d'onde j est connue par étalonnage effectué par exemple avant la mise en oeuvre du procédé selon l'invention.
Ainsi, pour chaque longueur d'onde, on détermine la différence de transmitance Δj relative aux deux filtres indicés f et f.
Δj = Tsj - T'sj = (Msj)/(Kcj) [l/(KfjMfj) - l/(Kfj*Mf'j)]
De cette équation, on déduit la valeur du facteur de correction Kcj pour une longueur d'onde indicée j : Kcj = (Msj)/Δj ) /[l/(Kfj*Mfj) - l/(Kfj*Mfj)]
Et à partir de ce coefficient de correction, on détermine la valeur de la transmitance de la substance contenue dans la cellule transparente.
II est bien entendu que l'un des filtres de référence peut être un filtre neutre, n'introduisant pas ou peu de modification au niveau de la lumière incidente. La figure 3A décrit un exemple de réalisation pour le moyen de sélection de passage de la lumière mobile en translation.
Il comporte, disposé sur un support commun 30, la cellule transparente 4, un filtre de référence 6 et par exemple une fente 31 laissant passer la lumière directement.
Il est bien entendu que la fente peut être remplacée par un second filtre de référence comme mentionné à la figure 2.
Le support 30 est rendu mobile en translation, par exemple à l'aide de moyens connus, tel qu'un moteur pas à pas ou tout autre moyen disponible et connu de l'homme de métier permettant son déplacement, et de préférence simultanément, une indexation des éléments présents sur le support afin de les positionner de manière précise par rapport au faisceau de lumière incidente pour réaliser les étapes de la méthode.
Sur la figure 3B, on a représenté un moyen 2 monté par exemple sur un axe de rotation 32.
De manière identique, l'axe de rotation 32 est relié à un dispositif de commande, tel un moteur (non représenté sur la figure) relié à l'ensemble 12, par exemple, qui le pilote de façon à positionner la cellule et, le ou les filtres de référence, selon les séquences mises en jeu au cours de la méthode. II est bien entendu que les formes des fentes, filtres et supports peuvent être quelconques et sont choisis en fonction de l'encombrement et des caractéristiques du faisceau lumineux.

Claims

REVENDICATIONS
1) Dispositif pour mesurer et/ou détecter optiquement au moins une caractéristique ou une variation d'au moins une caractéristique d'une substance réagissante contenue dans une cellule transparente (4), comportant au moins une source lumineuse (1), reliée par au moins une branche optique à au moins un moyen (2) permettant sélectivement le passage de la lumière incidente au travers de la cellule et à l'extérieur de celle-ci, au moins un filtre de référence (6), un système optique pour former des rayons ayant traversé ledit moyen sélectif et un filtre optique sélectif parmi un ensemble de trois filtres sélectifs (Fl, F2, F3), le premier sur une première longueur d'onde correspondant au point isobestique de la substance réagissante, le deuxième sur une longueur d'onde dans une partie du spectre de la lumière où la substance est la plus sensible et le troisième, dans une autre partie du spectre où la substance est la moins sensible, des moyens de mesure (D1-D3) de l'intensité de la lumière ayant traversé le système optique, un ensemble de pilotage (9), des moyens de sélection contrôlés par ledit ensemble de pilotage et un bloc d'alimentation électrique (13), caractérisé en ce que ledit moyen (2) de sélection du passage de la lumière est adapté pour laisser passer la lumière incidente au travers de ladite cellule et/ou au travers d'au moins un desdits filtres de référence et/ou à l'extérieur de ladite cellule et d'au moins un desdits filtres de référence.
2) Dispositif selon la revendication 1, caractérisé en ce que l'ensemble de pilotage (9) comporte un processeur de commande (10), une unité d'acquisition (11) des signaux de mesure d'intensité lumineuse et un ensemble d'interface (12) pour contrôler lesdits moyens de sélection.
3) Dispositif selon la revendication 1 ou 2, caractérisé en ce que ledit système optique comporte des moyens de dérivation (8) pour diriger vers les trois filtres les rayons lumineux ayant traversé les moyens de sélection de passage de la lumière, les moyens de mesure comportent trois détecteurs (Dl, D2, D3) pour mesurer la lumière ayant traversé les trois filtres, et les moyens de commutation électrique comportent des éléments (M) pour connecter par intermittence lesdits détecteurs avec ledit ensemble de pilotage et un commutateur (II) pour connecter la source lumineuse au bloc d'alimentation électrique par intermittence. 4) Dispositif selon l'une des revendications précédentes caractérisé en ce que la cellule de référence et/ou l'un desdits filtres de référence sont reliés indépendamment audit ensemble de pilotage (9).
5) Dispositif selon l'une des revendications précédentes caractérisé en ce que ledit moyen (2) de sélection du passage de la lumière comporte un support commun au filtre de référence et à la cellule transparente, ledit support commun étant mobile en rotation et/ou en translation et en ce que ledit support est relié audit ensemble de pilotage (9).
6) Dispositif selon l'une des revendications 1 à 3 caractérisé en ce qu'il comporte une première branche optique et une deuxième branche optique permettant respectivement le passage de la lumière incidente au travers de la cellule transparente (23) et au travers d'au moins un desdits filtres de référence (25, 26).
7) Dispositif selon la revendication 1, caractérisé en ce qu'il comporte des moyens (14) de mesure de la température ambiante et/ou de la température de la substance réagissante, connectés à l'ensemble de pilotage par les moyens de commutation électrique.
8) Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comporte des moyens (15) de mesure de la tension électrique d'alimentation de la source lumineuse pouvant être connectés à l'ensemble de pilotage par les moyens (11-14) de commutation électrique.
9) Méthode pour détecter et/ou mesurer optiquement les modifications d'une substance réagissante contenue dans une cellule transparente, caractérisée en ce qu'elle comporte la réalisation automatique de cycles de mesure sous le contrôle d'un ensemble de pilotage, comportant chacun : a) une étape de mesure où l'on dirige la lumière ayant traversé la cellule transparente successivement au travers de trois filtres sélectifs (Fl, F2, F3) et on acquiert les valeurs Msj détectées des intensités lumineuses issues des trois filtres, b) une étape de mesure où l'on dirige la lumière ayant traversé un premier milieu de référence successivement au travers des trois filtres et on acquiert également les valeurs Mrj détectées des intensités lumineuses issues des trois filtres, c) une étape de mesure où l'on dirige la lumière ayant traversé un second milieu de référence au travers des trois filtres et on acquiert également les valeurs Mij détectées des intensités lumineuses issues des trois filtres, et d) on détermine à partir des valeurs mesurées aux étapes b) et c) pour chacun des filtres une valeur de coefficient de correction Kcj relative à chacun des filtres et on détermine à partir des valeurs d'intensité mesurées pour les étapes a) et b) ou a) et c) et du coefficient de correction associé à un filtre des caractéristiques de la substance réagissante.
10) Méthode selon la revendication 9 caractérisée en ce qu'au cours de l'étape b) ou de l'étape c), on envoie directement la lumière incidente à travers l'air.
11) Méthode selon la revendication 9 caractérisé en ce qu'au cours de l'étape b) et de l'étape c) on dirige respectivement la lumière incidente à travers un premier filtre et un second filtre de référence, chacun des filtres ayant une valeur de transmitance associée Tel, Te2 et en ce que la différence Tel-Te2 est sensiblement égale à la valeur minimum de la transmitance de la substance contenue dans la cellule.
PCT/FR1996/001296 1995-08-21 1996-08-20 Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance WO1997007394A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP96929348A EP0787287A1 (fr) 1995-08-21 1996-08-20 Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance
US08/809,447 US5854681A (en) 1995-08-21 1996-08-20 Device and method measuring optically the characteristics of a substance
JP9508995A JPH10507838A (ja) 1995-08-21 1996-08-20 物質の特性を光学的に測定する改良された装置および方法
NO971812A NO971812L (no) 1995-08-21 1997-04-18 Forbedret anordning og fremgangsmåte for optisk måling av et stoffs egenskaper

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9510121A FR2738064B1 (fr) 1995-08-21 1995-08-21 Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance
FR95/14146 1995-11-30
FR95/10121 1995-11-30
FR9514146A FR2738065B1 (fr) 1995-08-21 1995-11-30 Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance

Publications (1)

Publication Number Publication Date
WO1997007394A1 true WO1997007394A1 (fr) 1997-02-27

Family

ID=26232175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1996/001296 WO1997007394A1 (fr) 1995-08-21 1996-08-20 Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance

Country Status (7)

Country Link
US (1) US5854681A (fr)
EP (1) EP0787287A1 (fr)
JP (1) JPH10507838A (fr)
CA (1) CA2201786A1 (fr)
FR (1) FR2738065B1 (fr)
NO (1) NO971812L (fr)
WO (1) WO1997007394A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867709A2 (fr) * 1997-03-27 1998-09-30 Bayer Corporation System d'etalonage pour spectromètres

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2368637B (en) 2000-06-02 2004-12-15 Lattice Intellectual Property Filtered IR Measurements of gases
DE10231667A1 (de) * 2002-07-12 2004-01-22 Olympus Biosystems Gmbh Beleuchtungsvorrichtung und optische Objektuntersuchungseinrichtung
JP5401978B2 (ja) * 2008-12-25 2014-01-29 栗田工業株式会社 溶解物濃度の測定方法及び測定装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3589814A (en) * 1969-12-01 1971-06-29 Thomas Co Arthur H Rotating cell spectrophotometer
US3802776A (en) * 1971-03-23 1974-04-09 Siemens Ag Photometer for determining the oxygen content of blood
US3825342A (en) * 1971-05-07 1974-07-23 Max Planck Gesellschaft Computing type optical absorption mixture analyzer
US3853407A (en) * 1973-04-23 1974-12-10 Sensores Corp Multiple path spectrophotometer method and apparatus
FR2689636A1 (fr) * 1992-04-07 1993-10-08 Inst Francais Du Petrole Méthode et dispositif pour mesurer des caractéristiques optiques d'une substance.
FR2701318A1 (fr) * 1993-02-09 1994-08-12 Inst Francais Du Petrole Dispositif perfectionné et méthode pour mesurer optiquement des caractéristiques d'une substance.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3589814A (en) * 1969-12-01 1971-06-29 Thomas Co Arthur H Rotating cell spectrophotometer
US3802776A (en) * 1971-03-23 1974-04-09 Siemens Ag Photometer for determining the oxygen content of blood
US3825342A (en) * 1971-05-07 1974-07-23 Max Planck Gesellschaft Computing type optical absorption mixture analyzer
US3853407A (en) * 1973-04-23 1974-12-10 Sensores Corp Multiple path spectrophotometer method and apparatus
FR2689636A1 (fr) * 1992-04-07 1993-10-08 Inst Francais Du Petrole Méthode et dispositif pour mesurer des caractéristiques optiques d'une substance.
FR2701318A1 (fr) * 1993-02-09 1994-08-12 Inst Francais Du Petrole Dispositif perfectionné et méthode pour mesurer optiquement des caractéristiques d'une substance.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867709A2 (fr) * 1997-03-27 1998-09-30 Bayer Corporation System d'etalonage pour spectromètres
EP0867709A3 (fr) * 1997-03-27 1999-05-12 Bayer Corporation System d'etalonage pour spectromètres

Also Published As

Publication number Publication date
NO971812D0 (no) 1997-04-18
US5854681A (en) 1998-12-29
CA2201786A1 (fr) 1997-02-27
FR2738065B1 (fr) 1997-11-07
NO971812L (no) 1997-04-18
FR2738065A1 (fr) 1997-02-28
JPH10507838A (ja) 1998-07-28
EP0787287A1 (fr) 1997-08-06

Similar Documents

Publication Publication Date Title
EP0635127B1 (fr) Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance
KR101734876B1 (ko) 양자 효율 측정 시스템 및 사용 방법
CA1281914C (fr) Procede et dispositif de determination de la couleur, en particulier d'une prothese dentaire
EP0390615B1 (fr) Dispositif de mesure opto-électronique
FR2615279A1 (fr) Capteur de deplacement a fibres optiques decalees
WO2005030030B1 (fr) Procede et dispositif pour fluorimetrie par mesure de rapport
FR2805892A1 (fr) Dispositif de mesure optique, notamment pour la surveillance de la qualite dans des processus continus
FR2776771A1 (fr) Procede d'etalonnage en longueur d'onde d'un dispositif de filtrage d'un rayonnement electromagnetique
US4904088A (en) Method and apparatus for determining radiation wavelengths and wavelength-corrected radiation power of monochromatic light sources
EP1064533B1 (fr) Dispositif et procede de mesure directe de l'energie calorifique contenue dans un gaz combustible
CH634921A5 (fr) Appareil destine a reperer la quantite de sebum secretee par une peau.
JPH01250741A (ja) 単一の対数データコンバータを有するデュアルビームマルチチャンネル分光光度計
US4281897A (en) Photometric system including a time-division optical attenuator
EP0787287A1 (fr) Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance
FR2738064A1 (fr) Dispositif perfectionne et methode pour mesurer optiquement des caracteristiques d'une substance
FR2648600A1 (fr) Appareil opto-electronique de mesure a distance d'une grandeur physique
EP0327416B1 (fr) Procédé d'optimisation du contraste dans une image d'un échantillon
FR2716973A1 (fr) Procédé et dispositif de détermination de l'absorption d'un rayonnement électromagnétique par un gaz.
FR2689636A1 (fr) Méthode et dispositif pour mesurer des caractéristiques optiques d'une substance.
FR2752457A1 (fr) Dispositif d'etalonnage d'un appareil spectroscopique
FR2848669A1 (fr) Procede de mesure d'une quantite de photons proportionnelle a la quantite de photons recus par l'objet et dispositif associe.
FR2768513A1 (fr) Procede d'analyse colorimetrique comparative et dispositif correspondant
Lamothe Using 600–650 nm light for IRSL sample preparation
EP0239487A2 (fr) Détecteur réfractométrique pour chromatographie en phase liquide
WO2021126077A1 (fr) Étalonnage de longueur d'onde de détecteur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1996929348

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2201786

Country of ref document: CA

Ref country code: CA

Ref document number: 2201786

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08809447

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996929348

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996929348

Country of ref document: EP